Rotation theory

Andres Koropecki

Universidade Federal Fluminense Brasil

Dynamics of homeomorphisms of $\mathbb{T} = \mathbb{R}/\mathbb{Z}$

Poincaré

For $f \in \text{Homeo}_+(\mathbb{T})$, quantify the "average rotation"?

Rotation number

• Dynamical invariant:

$$\rho(f) \in \mathbb{R}/\mathbb{Z}, \quad \rho(hfh^{-1}) = \rho(f) \ \forall h \in \text{Homeo}_+(\mathbb{T})$$

- Contains a lot of dynamical information:
 - $\rho(f) = p/q \in \mathbb{Q}/\mathbb{Z} \implies$ periodic orbit (of period q), and limit sets of all orbits are periodic orbits of the same type.
 - $\rho(f) \notin \mathbb{Q}/\mathbb{Z} \implies$ unique minimal set, unique ergodicity, monotone semiconjugation to irrational rotation, and if f is C^2 then f then actual conjugation (Denjoy)
- $f \mapsto \rho(f)$ is continuous.

Lifts

It is not obvious how to define $\rho(f)$ using f directly. We use lifts.

- $\pi \colon \mathbb{R} \to \mathbb{T}$ quotient projection (universal cover)
- π is a local homeomorphism, $\pi(x+k)=\pi(x)$ for all $k\in\mathbb{Z}$
- Given $f \in \operatorname{Homeo}_+(\mathbb{T})$, there is a lift $\tilde{f} : \mathbb{R} \circlearrowleft \operatorname{such} \operatorname{that} \pi \tilde{f} = f \pi$:

- $\tilde{f}(x+k) = \tilde{f}(x) + k$ for all $k \in \mathbb{Z}$
- Lifts are not unique, but they differ by a constant integer.

Rotation number

$$\rho(\tilde{f},z) := \lim_{n \to +\infty} \frac{\tilde{f}^n(z) - z}{n}$$

- $\rho(\tilde{f},z) = \rho(\tilde{f},z+k)$ for all $k \in \mathbb{Z}$;
- For $x \in \mathbb{T}$, define $\rho(\tilde{f}, x) = \rho(\tilde{f}, z)$ where $z \in \pi^{-1}(x)$;

- If \tilde{f}_1, \tilde{f}_2 are two lifts of f, then $\rho(\tilde{f}_1, z) \rho(\tilde{f}_2, z) \in \mathbb{Z}$.

Theorem

The number $\rho(\tilde{f}, z)$ exists and is independent of z.

Rotation number of f

- $\rho(\tilde{f})$ is defined as $\rho(\tilde{f},z)$ for any z;
- $\rho(f) = \pi(\rho(\tilde{f})) \in \mathbb{T}^1$ depends only of f (and not of the lift).

Rotation number

Displacement function:

- $\bullet \ \ \tilde{\Delta} \colon \mathbb{R} \to \mathbb{R} : \quad \ \tilde{\Delta}(\tilde{x}) = \tilde{f}(\tilde{x}) \tilde{x} \ \big(\mathbb{Z}\text{-periodic}\big);$
- $\bullet \ \ \underline{\Delta} \colon \underline{\mathbb{T}} \to \underline{\mathbb{R}} : \quad \ \underline{\Delta}(x) = \tilde{\underline{\Delta}}(\tilde{x}) \text{ for } \tilde{x} \in \pi^{-1}(x)$
- $\Delta^n(x) = \Delta_{\tilde{f}^n}(x) = \tilde{f}^n(\tilde{x}) \tilde{x} = \sum_{k=0}^{n-1} \Delta(f^k(x))$ (Birkhoff sum);

Existence of $\rho(f, z)$ for some z

• The rotation number is a limit of Birkhoff averages: if $\pi(\tilde{x}) = x$,

$$\frac{\tilde{f}^n(\tilde{x}) - \tilde{x}}{n} = \frac{1}{n} \Delta^n(x) = \frac{1}{n} \sum_{k=0}^{n-1} \Delta(f^k(x)).$$

- Krylov-Bogoliubov: there exist f-invariant probabilities;
- Ergodic Theorem: the limit exists μ -a.e. (μ an f-invariant probab.);
- Moreover $\rho(\tilde{f}, x) = \int_{\mathbb{T}} \Delta d\mu$, μ -a.e. x;

Rotation number

Bounded Oscillation Property

$$|\Delta^n(x) - \Delta^n(y)| \le M \quad \forall x, y, n$$

Since

$$\rho(\tilde{f}, x) = \lim_{n \to \infty} \frac{1}{n} \Delta^n(x)$$

exists for some x, BOP $\implies \rho(\tilde{f},x)$ exists for all x (and same value)

Bounded Rotational Deviations Property

$$|\Delta^n(x) - n\rho| \leqslant M \quad \forall x, n$$

In the large scale, the dynamics is close to the rigid rotation by $\rho(f)$.

Realization by periodic points

$$\rho(\tilde{f}) = p/q \iff \exists z \in \mathbb{R} \text{ s. t. } \tilde{f}^q(z) = z + p$$

Rotation number: Alternative approach

- Let (f_t) be an isotopy from $f_0 = \operatorname{Id}$ to $f_1 = f$ (model case: a flow);
- For $x \in \mathbb{T}$, the path $\gamma_x(t) = f_t(x)$ goes from x to f(x);
- The path $\gamma_x^n = \gamma_x * \gamma_{f(x)} * \cdots * \gamma_{f^{n-1}(x)}$ goes from x to $f^n(x)$;
- Measure the average rotation of this path, and take the limit:

For each n take a lift $\tilde{\gamma}_{_{X}}^{n}$ to \mathbb{R} of the path $\gamma_{_{X}}^{n}$, and

$$r(x) = \lim_{n \to \infty} \frac{\tilde{\gamma}_x^n(n) - \tilde{\gamma}_x(0)}{n}$$

This is independent of the lifts used, but depends on the chosen isotopy.

• If we change the isotopy, the number r(x) changes by an integer.

In fact, (f_t) lifts to an isotopy (\tilde{f}_t) starting from $\tilde{f}_0 = \mathrm{Id}_{\mathbb{R}}$, and the map $\tilde{f} := \tilde{f}_1$ is a lift of f such that $\rho(\tilde{f}, x) = r(x)$.

More general setting?

- Endomorphisms of the circle of degree 1;
- Homeomorphisms of the annulus;
- Flows on the torus;
- Homeomorphisms of the torus;
- Homeomorphisms of some topologically complicated compact connected sets;
- Homeomorphisms of arbitrary orientable surfaces;
- Heomomorphisms of general spaces which admit certain type of coverings.

 $f: \mathbb{T} \to \mathbb{T}$ continuous (maybe not invertible);

- $\bullet \ \tilde{f}: \mathbb{R} \to \mathbb{R} \ \text{a lift} \implies \tilde{f}(x+1) = \tilde{f}(x) + m \ \text{for some} \ m \in \mathbb{Z};$
- $m = \deg(f)$, does not depend on the lift;
- $deg(f) > 1 \implies rich dynamics (many periodic points, etc);$

 $f: \mathbb{T} \to \mathbb{T}$ continuous (maybe not invertible);

- $\tilde{f}: \mathbb{R} \to \mathbb{R}$ a lift $\implies \tilde{f}(x+1) = \tilde{f}(x) + m$ for some $m \in \mathbb{Z}$;
- $m = \deg(f)$, does not depend on the lift;
- $deg(f) > 1 \implies rich dynamics (many periodic points, etc);$
- ullet deg $(f)=1\iff ilde{\Delta}= ilde{f}-\mathrm{Id}_{\mathbb{R}}$ is \mathbb{Z} -periodic;

 $f: \mathbb{T} \to \mathbb{T}$ continuous (maybe not invertible);

- $\tilde{f}: \mathbb{R} \to \mathbb{R}$ a lift $\implies \tilde{f}(x+1) = \tilde{f}(x) + m$ for some $m \in \mathbb{Z}$;
- $m = \deg(f)$, does not depend on the lift;
- $deg(f) > 1 \implies rich dynamics (many periodic points, etc);$
- ullet deg $(f)=1\iff ilde{\Delta}= ilde{f}-\mathrm{Id}_{\mathbb{R}}$ is \mathbb{Z} -periodic;
- Induces a displacement function $\Delta \colon \mathbb{T} \to \mathbb{R}$;
- ullet The definition of $ho(\tilde{f},x)$ used before works the same way:

$$\rho(\tilde{f}, x) = \lim_{n \to \infty} \frac{1}{n} \Delta^n(x) = \lim_{n \to \infty} \frac{1}{n} \Delta(f^n(x))$$

- May not exist, or may depend on x.
- But exists for some x (as before, Birkhoff's theorem).

Degree 1 endomorphisms of the circle $f: \mathbb{T} \to \mathbb{T}$ degree 1 map, $\tilde{f}: \mathbb{R} \to \mathbb{R}$ a lift.

Rotation set

$$\rho(\tilde{f}) = \{ \lim_{n \to \infty} \rho(\tilde{f}, x) : x \in \mathbb{T}, \text{ limit exists} \} \subset \mathbb{R}$$

Rotation interval

$$\overline{\rho}(\tilde{\boldsymbol{f}}) = \left[\rho_{-}(\tilde{\boldsymbol{f}}), \rho_{+}(\tilde{\boldsymbol{f}})\right] = \left[\inf \rho(\tilde{\boldsymbol{f}}), \sup \rho(\tilde{\boldsymbol{f}})\right]$$

 $f: \mathbb{T} \to \mathbb{T}$ degree 1 map, $\tilde{f}: \mathbb{R} \to \mathbb{R}$ a lift.

Rotation set

$$\rho(\tilde{f}) = \{ \lim_{n \to \infty} \rho(\tilde{f}, x) : x \in \mathbb{T}, \text{ limit exists} \} \subset \mathbb{R}$$

Rotation interval

$$\overline{\rho}(\tilde{f}) = \left[\rho_{-}(\tilde{f}), \rho_{+}(\tilde{f})\right] = \left[\inf \rho(\tilde{f}), \sup \rho(\tilde{f})\right]$$

Invariant measures

- $\mathcal{M}(f) \subset \mathcal{M}(\mathbb{T})$ space of f-invariant probabilities;
- Mean rotation number of $\mu \in \mathcal{M}(f)$:

$$ho(ilde{f},\mu)=\int_{\mathbb{T}}\Delta\,d\mu$$

- $\bullet \ \, \text{Ergodic theorem:} \, \, \rho(\tilde{f},x) \, \, \text{exists} \, \, \mu\text{-a.e. and} \, \, \rho(\tilde{f},\mu) = \int_{\mathbb{T}} \rho(\tilde{f},x) \, d\mu(x);$
- If μ is ergodic, $\rho(\tilde{f}, x) = \rho(\tilde{f}, \mu)$ for μ -a.e. x.

Recall: $\mathcal{M}(\tilde{f})$ is convex, ergodic measures = extremal points of $\mathcal{M}(\tilde{f})$.

Theorem

Extremal rotation numbers ρ_{\pm} are mean rotation numbers of ergodic measures. In particular

$$\rho_{\pm}(\tilde{f}) \in \rho(\tilde{f})$$

Theorem

Extremal rotation numbers ρ_{\pm} are mean rotation numbers of ergodic measures. In particular

$$\rho_{\pm}(\tilde{f})\in\rho(\tilde{f})$$

Theorem (Ito '81)

The rotation set coincides with the rotation interval: $\overline{\rho}(\tilde{f}) = \rho(\tilde{f})$.

- Rational elements of $\overline{\rho}(\tilde{f})$ are realized by periodic points: if $p/q \in \overline{\rho}(\tilde{f})$ then there exists $z \in \mathbb{R}$ such that $\tilde{f}^q(z) = z + p$ (Exercise).
- The rotation set varies continuously.
- $\rho(\tilde{f})$ nonsingular interval \implies topological entropy.

Theorem

Extremal rotation numbers ρ_{\pm} are mean rotation numbers of ergodic measures. In particular

$$\rho_{\pm}(\tilde{f}) \in \rho(\tilde{f})$$

Theorem (Ito '81)

The rotation set coincides with the rotation interval: $\overline{\rho}(\tilde{f}) = \rho(\tilde{f})$.

- Rational elements of $\overline{\rho}(\tilde{f})$ are realized by periodic points: if $p/q \in \overline{\rho}(\tilde{f})$ then there exists $z \in \mathbb{R}$ such that $\tilde{f}^q(z) = z + p$ (Exercise).
- The rotation set varies continuously.
- ullet $ho(ilde{f})$ nonsingular interval \implies topological entropy.

Example: if $\tilde{f}(x) = x + \sin(2\pi x)$, then $\rho(\tilde{f}) = [-1, 1]$.

 $\mathbb{A} = \mathbb{T}^1 \times [0,1], \quad \pi \colon \tilde{\mathbb{A}} := \mathbb{R} \times [0,1] \to \mathbb{A}$ $f \colon \mathbb{A} \to \mathbb{A}$ homeomorphism homotopic to $\mathrm{Id}, \ \tilde{f} \colon \tilde{\mathbb{A}} \to \tilde{\mathbb{A}}$ lift.

$$\mathbb{A} = \mathbb{T}^1 \times [0,1], \quad \pi \colon \tilde{\mathbb{A}} := \mathbb{R} \times [0,1] \to \mathbb{A}$$
 $f \colon \mathbb{A} \to \mathbb{A}$ homeomorphism homotopic to $\mathrm{Id}, \ \tilde{f} \colon \tilde{\mathbb{A}} \to \tilde{\mathbb{A}}$ lift.

- \tilde{f} commutes with $T: (x, y) \mapsto (x + 1, y)$;
- Horizontal displacement: $\tilde{\Delta} : \tilde{\mathbb{A}} \to \tilde{\mathbb{R}}, \ \tilde{\Delta}(\tilde{z}) = \mathrm{pr}_1(\tilde{f}(\tilde{z}) \tilde{z})$
- $\tilde{\Delta}$ is T-periodic and induces $\Delta : \mathbb{A} \to \mathbb{R}$;

Rotation number of $z \in \mathbb{A}$

$$\rho(\tilde{f},z)$$
 is the limit as $n \to \infty$ (if \exists) of

$$\frac{1}{n}\Delta^n(z) = \frac{1}{n}\sum_{k=0}^{n-1}\Delta(f^n(z)) = \operatorname{pr}_1\left(\frac{\tilde{f}^n(\tilde{z}) - \tilde{z}}{n}\right)$$

- Rotation set (pointwise): $\rho(\tilde{f}) = \{\rho(\tilde{f}, z) : z \in \mathbb{A}, \text{ exists } \}.$
- Rotation interval: $\overline{\rho} = [\rho_{-}(\tilde{f}), \rho_{+}(\tilde{f})].$
- Mean rotation number: $\rho(\tilde{f}, \mu) = \int_{\mathbb{A}} \Delta d\mu$ for $\mu \in \mathcal{M}(f)$.

As before:

- $\rho(\tilde{f},z)$ exists μ a.e. and $\rho(\tilde{f},\mu)=\int_{\mathbb{A}}\rho(\tilde{f},z)d\mu(z)$
- μ ergodic $\Longrightarrow \rho(\tilde{f},z) = \rho(\tilde{f},\mu)$ for μ -a.e.
- ullet ho_{\pm} correspond to ergodic measures.

New situation

- (1) $\rho(\tilde{f})$ may fail to be an interval $(\rho(\tilde{f}) \subsetneq \overline{\rho}(\tilde{f}))$;
- (2) Rational elements of $\overline{\rho}(\tilde{f})$ may fail to be realized by periodic points;
- (3) No continuous dependence (but upper-semicontinuous OK).
- (4) $\rho(\tilde{f}, z)$ may fail to exist for some z's.

Examples.

 $f: \mathbb{A} \to \mathbb{A}$ isotopic to the identity $(f \in \operatorname{Homeo}_0(\mathbb{A}))$

Theorem (Poincaré-Birkhoff)

If f is area-preserving and has the boundary twist condition then f has a fixed point (in fact, at least two)

"area-preserving" can be replaced by "nonwandering"

 $f: \mathbb{A} \to \mathbb{A}$ isotopic to the identity $(f \in \operatorname{Homeo}_0(\mathbb{A}))$

Theorem (Poincaré-Birkhoff)

If f is area-preserving and has the boundary twist condition then f has a fixed point (in fact, at least two)

"area-preserving" can be replaced by "nonwandering"

Theorem (Franks '88, '89)

If f is area-preserving and $0 \in \overline{\rho}(\widetilde{f})$ for some lift then \widetilde{f} has a fixed point.

 $f: \mathbb{A} \to \mathbb{A}$ isotopic to the identity $(f \in \operatorname{Homeo}_0(\mathbb{A}))$

Theorem (Poincaré-Birkhoff)

If f is area-preserving and has the boundary twist condition then f has a fixed point (in fact, at least two)

"area-preserving" can be replaced by "nonwandering"

Theorem (Franks '88, '89)

If f is area-preserving and $0 \in \overline{\rho}(\tilde{f})$ for some lift then \tilde{f} has a fixed point.

Corollary (Realization of rational points)

If f is area-preserving, every rational $p/q \in \rho(\tilde{f})$ is realized by a periodic point, i.e. there is $\tilde{z} \in \tilde{\mathbb{A}}$ such that $\tilde{f}^q(\tilde{z}) = \tilde{z} + (p,0)$.

Birkhoff/Kerekjarto: area-preserving \leftrightarrow "curve intersection property"

Theorem (Handel)

The (pointwise) rotation set is closed. Moreover, for every $\alpha \in \rho(\hat{f})$

- (a) α is realized by an ergodic measure;
- (b) if α is rational, it is realized by a periodic orbit;
- (c) if α is not in an exceptional discrete set Q, it is realized by a compact invariant set.

Part (c) means that there is a compact invariant set $K_{\alpha} \subset \mathbb{A}$ such that $\rho(\tilde{f},x) = \alpha$ for all $x \in K_{\alpha}$.

Theorem (Handel)

The (pointwise) rotation set is closed. Moreover, for every $\alpha \in \rho(\tilde{f})$

- (a) α is realized by an ergodic measure;
- (b) if α is rational, it is realized by a periodic orbit;
- (c) if α is not in an exceptional discrete set Q, it is realized by a compact invariant set.

Part (c) means that there is a compact invariant set $K_{\alpha} \subset \mathbb{A}$ such that $\rho(\tilde{f}, x) = \alpha$ for all $x \in K_{\alpha}$.

Question

Is the exceptional set empty?

The proof is convoluted and relies on Nielsen-Thurston classification and global shadowing properties of pseudo-Anosov maps.

Area-preserving homeomorphisms of the annulus

With the area-preserving (or nonwandering) hypothesis, one gets the same results that hold for degree 1 endomorphisms of the circle:

Corollary (Franks + Handel)

If f is area-preserving then the pointwise rotation set is a closed interval i.e. $\rho(\tilde{f}) = \overline{\rho}(\tilde{f})$. Moreover, every rational element is realized by a periodic orbit and every element is realized by an ergodic measure.

Theorem (Le Calvez)

If f is area-preserving and C^1 , then the exceptional set is empty, except perhaps for the endpoints of $\rho(\tilde{f})$.

A basic result from Brouwer theory

Fixed point index of a loop $\gamma \subset \mathbb{R}^2$

If $f \in \operatorname{Homeo}_+(\mathbb{R}^2)$ is such that $\gamma \cap \operatorname{Fix}(f) = \emptyset$, the (Lefschetz) fixed point index of C is the number $I(f,\gamma) \in \mathbb{Z}$ defined as the degree of the map $\theta \colon \mathbb{S}^1 \to \mathbb{S}^1$ defined by

$$\theta \mapsto \frac{f(\gamma(\theta)) - \gamma(\theta)}{\|f(\gamma(\theta)) - \gamma(\theta)\|}.$$

where $\gamma \colon \mathbb{S}^1 \to \mathbb{R}^2$ is a parametrization of γ .

- The index is invariant by homotopy of γ in $\mathbb{R}^2 \backslash \mathrm{Fix}(f)$.
- If $I(f,\gamma) \neq 0$ then f has a fixed point in the disk bounded by γ .

A basic result from Brouwer theory

Fixed point index of a loop $\gamma \subset \mathbb{R}^2$

If $f \in \operatorname{Homeo}_+(\mathbb{R}^2)$ is such that $\gamma \cap \operatorname{Fix}(f) = \emptyset$, the (Lefschetz) fixed point index of C is the number $I(f,\gamma) \in \mathbb{Z}$ defined as the degree of the map $\theta \colon \mathbb{S}^1 \to \mathbb{S}^1$ defined by

$$\theta \mapsto \frac{f(\gamma(\theta)) - \gamma(\theta)}{\|f(\gamma(\theta)) - \gamma(\theta)\|}.$$

where $\gamma \colon \mathbb{S}^1 \to \mathbb{R}^2$ is a parametrization of γ .

- The index is invariant by homotopy of γ in $\mathbb{R}^2 \backslash \text{Fix}(f)$.
- If $I(f,\gamma) \neq 0$ then f has a fixed point in the disk bounded by γ .

Lemma (Brouwer)

If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is an orientation-preserving homeomorphism which has a non-fixed periodic point, then there exists simple loop of index 1.

Thus, $Per(f) \neq \emptyset \implies Fix(f) \neq \emptyset$.

Free Disks Lemma

A set K is free (for f) if $f(K) \cap K = \emptyset$

Definition

A free disk chain is a sequence D_0, \ldots, D_n of open topological disks s.t.

- ullet The disks are pairwise disjoint and free for f;
- For each i there is $k_i > 0$ such that $f^{k_i}(D_i) \cap D_{i+1} \neq \emptyset$.

If $D_n = D_0$ we say (D_i) is a periodic free disk chain.

Free Disks Lemma

A set K is free (for f) if $f(K) \cap K = \emptyset$

Definition

A free disk chain is a sequence D_0, \ldots, D_n of open topological disks s.t.

- The disks are pairwise disjoint and free for f;
- For each i there is $k_i > 0$ such that $f^{k_i}(D_i) \cap D_{i+1} \neq \emptyset$.

If $D_n = D_0$ we say (D_i) is a periodic free disk chain.

Free Disks Lemma / Franks' Lemma

If $f \in \operatorname{Homeo}_+(\mathbb{R}^2)$ has a periodic free disk chain, then f has an index 1 simple loop (hence a fixed point).

Follows from Brouwer's lemma using the following fact:

If (f_t) is an isotopy s.t. $\forall t$, $\operatorname{Fix}(f_t) \cap \gamma = \emptyset$, then $I(f_0, \gamma) = I(f_1, \gamma)$.

Brouwer homeomorphisms

Corollary

If $f \in \operatorname{Homeo}_+(\mathbb{R}^2)$ has a recurrent point, or even a nonwandering point, then f has a fixed point.

A Brouwer homeomorphism is an $f \in \operatorname{Homeo}_+(\mathbb{R}^2)$ without fixed points. Brouwer homeomorphisms have no wandering points.

Lemma

If K is a compact connected set and f is a Brouwer homeomorphism such that $f(K) \cap K = \emptyset$, then $f^n(K) \cap K = \emptyset$ for all $n \neq 0$.

Otherwise, one may produce a periodic free disk chain.

Remark

Brouwer's Plane Translation Theorem says that moreover every point belongs to a "Brouwer line" (more on that later).

Theorem (Franks)

If \tilde{f} is a lift of an area-preserving $f \in \operatorname{Homeo}_0(\mathbb{A})$, every rational $p/q \in \overline{\rho}(\tilde{f})$ is realized by a periodic point of f, i.e. there exists $z \in \tilde{\mathbb{A}}$ such that $\tilde{f}^q(z) = z + (p,0)$.

Theorem (Franks)

If \tilde{f} is a lift of an area-preserving $f \in \operatorname{Homeo}_0(\mathbb{A})$, every rational $p/q \in \overline{\rho}(\tilde{f})$ is realized by a periodic point of f, i.e. there exists $z \in \tilde{\mathbb{A}}$ such that $\tilde{f}^q(z) = z + (p,0)$.

Reduction to p/q = 0

$$p/q \in \rho(\tilde{f}) \iff 0 \in \rho(\tilde{f}^q - (p, 0))$$

Thus it suffices to show that $0 \in \overline{\rho}(\tilde{f}) \implies \operatorname{Fix}(\tilde{f}) \neq \emptyset$.

Theorem (Franks)

If \tilde{f} is a lift of an area-preserving $f \in \text{Homeo}_0(\mathbb{A})$, every rational $p/q \in \overline{\rho}(\tilde{f})$ is realized by a periodic point of f, i.e. there exists $z \in \tilde{\mathbb{A}}$ such that $\tilde{f}^{q}(z) = z + (p, 0)$.

Reduction to p/q = 0

$$p/q \in \rho(\tilde{f}) \iff 0 \in \rho(\tilde{f}^q - (p, 0))$$

Thus it suffices to show that $0 \in \overline{\rho}(\tilde{f}) \implies \operatorname{Fix}(\tilde{f}) \neq \emptyset$

Thus it suffices to show that $0 \in \overline{\rho}(\tilde{f}) \implies \operatorname{Fix}(\tilde{f}) \neq \emptyset$.

Idea: Assuming that $\operatorname{Fix}(\tilde{f}) = \emptyset$, show that \tilde{f} has a periodic free disk chain (contradiction).

Assume $0 \in \overline{\rho}(\tilde{f})$ and $\operatorname{Fix}(\tilde{f}) = \emptyset$. Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk $D \subset \tilde{\mathbb{A}}$ is a free disk such that $\tilde{f}^n(D) \cap (D + (k,0)) \neq 0$ for some $k \geqslant 0$ ($k \leqslant 0$) and n > 0.

Assume $0 \in \overline{\rho}(\tilde{f})$ and $\operatorname{Fix}(\tilde{f}) = \emptyset$. Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk $D \subset \tilde{\mathbb{A}}$ is a free disk such that $\tilde{f}^n(D) \cap (D + (k,0)) \neq 0$ for some $k \geqslant 0$ ($k \leqslant 0$) and n > 0.

Lemma

Assume $0 \in \overline{\rho}(\tilde{f})$ and $\operatorname{Fix}(\tilde{f}) = \emptyset$. Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk $D \subset \tilde{\mathbb{A}}$ is a free disk such that $\tilde{f}^n(D) \cap (D + (k,0)) \neq 0$ for some $k \geq 0$ ($k \leq 0$) and n > 0.

Lemma

$$\bullet \ \overline{\rho}(\widetilde{f}) = \left[\rho_-, \rho_+\right] \text{ with } \rho_- \leqslant 0 \leqslant \rho_+; \\$$

Assume $0 \in \overline{\rho}(\tilde{f})$ and $\operatorname{Fix}(\tilde{f}) = \emptyset$. Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk $D \subset \tilde{\mathbb{A}}$ is a free disk such that $\tilde{f}^n(D) \cap (D + (k,0)) \neq 0$ for some $k \geqslant 0$ ($k \leqslant 0$) and n > 0.

Lemma

- $\overline{\rho}(\tilde{f}) = [\rho_-, \rho_+]$ with $\rho_- \leqslant 0 \leqslant \rho_+$;
- There exist an ergodic μ_{\pm} such that $\rho(\tilde{f}, \mu_{\pm}) = \rho_{\pm}$;

Assume $0 \in \overline{\rho}(\tilde{f})$ and $\operatorname{Fix}(\tilde{f}) = \emptyset$. Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk $D \subset \tilde{\mathbb{A}}$ is a free disk such that $\tilde{f}^n(D) \cap (D + (k,0)) \neq 0$ for some $k \geqslant 0$ ($k \leqslant 0$) and n > 0.

Lemma

- $\overline{\rho}(\tilde{f}) = [\rho_-, \rho_+]$ with $\rho_- \leq 0 \leq \rho_+$;
- There exist an ergodic μ_{\pm} such that $\rho(\tilde{f}, \mu_{\pm}) = \rho_{\pm}$;
- Fix two small free disks D^\pm such that $\mu_\pm(D^\pm)>0$;

Assume $0 \in \overline{\rho}(\tilde{f})$ and $\operatorname{Fix}(\tilde{f}) = \emptyset$. Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk $D \subset \tilde{\mathbb{A}}$ is a free disk such that $\tilde{f}^n(D) \cap (D + (k,0)) \neq 0$ for some $k \geqslant 0$ ($k \leqslant 0$) and n > 0.

Lemma

- $\overline{\rho}(\tilde{f}) = [\rho_-, \rho_+]$ with $\rho_- \leq 0 \leq \rho_+$;
- There exist an ergodic μ_{\pm} such that $\rho(\tilde{f}, \mu_{\pm}) = \rho_{\pm}$;
- Fix two small free disks D^{\pm} such that $\mu_{\pm}(D^{\pm}) > 0$;
- Show that D^+ is positively returning and D^- is negatively returning.
- (Use first return map + Kac's lemma).