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Dynamics of homeomorphisms of T “ R{Z

Poincaré

For f P Homeo`pTq, quantify the “average rotation”?

Rotation number

‚ Dynamical invariant:

ρpf q P R{Z, ρphfh´1q “ ρpf q @h P Homeo`pTq

‚ Contains a lot of dynamical information:

ρpf q “ p{q P Q{Z ùñ periodic orbit (of period q),
and limit sets of all orbits are periodic orbits of the same type.

ρpf q R Q{Z ùñ unique minimal set, unique ergodicity,
monotone semiconjugation to irrational rotation, and if f is C 2 then f
then actual conjugation (Denjoy)

‚ f ÞÑ ρpf q is continuous.



Lifts

It is not obvious how to define ρpf q using f directly. We use lifts.

π : RÑ T quotient projection (universal cover)

π is a local homeomorphism, πpx ` kq “ πpxq for all k P Z
Given f P Homeo`pTq, there is a lift f̃ : R ý such that πf̃ “ f π:

R f̃ //

π
��

R
π
��

T f // T

f̃ px ` kq “ f̃ pxq ` k for all k P Z
Lifts are not unique, but they differ by a constant integer.



Rotation number

ρpf̃ , zq :“ lim
nÑ`8

f̃ npzq ´ z

n

ρpf̃ , zq “ ρpf̃ , z ` kq for all k P Z;

For x P T, define ρpf̃ , xq “ ρpf̃ , zq where z P π´1pxq;

ρpf̃ n, zq “ n ¨ ρpf̃ , zq;

ρpf̃ ` k, zq “ ρpf̃ , zq ` k;

If f̃1, f̃2 are two lifts of f , then ρpf̃1, zq ´ ρpf̃2, zq P Z.

Theorem

The number ρpf̃ , zq exists and is independent of z.

Rotation number of f

ρpf̃ q is defined as ρpf̃ , zq for any z ;

ρpf q “ πpρpf̃ qq P T1 depends only of f (and not of the lift).



Rotation number

Displacement function:

∆̃ : RÑ R : ∆̃px̃q “ f̃ px̃q ´ x̃ (Z-periodic);

∆: TÑ R : ∆pxq “ ∆̃px̃q for x̃ P π´1pxq

∆npxq “ ∆f̃ npxq “ f̃ npx̃q ´ x̃ “
n´1
ÿ

k“0

∆pf kpxqq (Birkhoff sum);

Existence of ρpf , zq for some z

The rotation number is a limit of Birkhoff averages: if πpx̃q “ x ,

f̃ npx̃q ´ x̃

n
“

1

n
∆npxq “

1

n

n´1
ÿ

k“0

∆pf kpxqq.

Krylov-Bogoliubov: there exist f -invariant probabilities;

Ergodic Theorem: the limit exists µ-a.e. (µ an f -invariant probab.);

Moreover ρpf̃ , xq “
ş

T ∆ dµ, µ-a.e. x ;



Rotation number

Bounded Oscillation Property

|∆npxq ´∆npyq| ď M @x , y , n

Since

ρpf̃ , xq “ lim
nÑ8

1

n
∆npxq

exists for some x , BOP ùñ ρpf̃ , xq exists for all x (and same value)

Bounded Rotational Deviations Property

|∆npxq ´ nρ| ď M @x , n

In the large scale, the dynamics is close to the rigid rotation by ρpf q.

Realization by periodic points

ρpf̃ q “ p{q ðñ Dz P R s. t. f̃ qpzq “ z ` p



Rotation number: Alternative approach

Let pftq be an isotopy from f0 “ Id to f1 “ f (model case: a flow);

For x P T, the path γxptq “ ftpxq goes from x to f pxq;

The path γnx “ γx ˚ γf pxq ˚ ¨ ¨ ¨ ˚ γf n´1pxq goes from x to f npxq;

Measure the average rotation of this path, and take the limit:

For each n take a lift γ̃nx to R of the path γnx , and

rpxq “ lim
nÑ8

γ̃nx pnq ´ γ̃xp0q

n

This is independent of the lifts used, but depends on the chosen isotopy.

If we change the isotopy, the number rpxq changes by an integer.

In fact, pftq lifts to an isotopy pf̃tq starting from f̃0 “ IdR, and the map
f̃ :“ f̃1 is a lift of f such that ρpf̃ , xq “ rpxq.



More general setting?

Endomorphisms of the circle of degree 1;

Homeomorphisms of the annulus;

Flows on the torus;

Homeomorphisms of the torus;

Homeomorphisms of some topologically complicated compact
connected sets;

Homeomorphisms of arbitrary orientable surfaces;

Heomomorphisms of general spaces which admit certain type of
coverings.



Degree 1 endomorphisms of the circle

f : TÑ T continuous (maybe not invertible);

f̃ : RÑ R a lift ùñ f̃ px ` 1q “ f̃ pxq `m for some m P Z;

m “ degpf q, does not depend on the lift;

degpf q ą 1 ùñ rich dynamics (many periodic points, etc);

degpf q “ 1 ðñ ∆̃ “ f̃ ´ IdR is Z-periodic;

Induces a displacement function ∆: TÑ R;

The definition of ρpf̃ , xq used before works the same way:

ρpf̃ , xq “ lim
nÑ8

1

n
∆npxq “ lim

nÑ8

1

n
∆pf npxqq

May not exist, or may depend on x .

But exists for some x (as before, Birkhoff’s theorem).
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Degree 1 endomorphisms of the circle
f : TÑ T degree 1 map, f̃ : RÑ R a lift.

Rotation set

ρpf̃ q “ t lim
nÑ8

ρpf̃ , xq : x P T, limit existsu Ă R

Rotation interval

ρpf̃ q “ rρ´pf̃ q, ρ`pf̃ qs “ rinf ρpf̃ q, sup ρpf̃ qs

Invariant measures

Mpf q ĂMpTq space of f -invariant probabilities;

Mean rotation number of µ PMpf q:

ρpf̃ , µq “
ş

T ∆ dµ

Ergodic theorem: ρpf̃ , xq exists µ-a.e. and ρpf̃ , µq “
ş

T ρpf̃ , xq dµpxq;

If µ is ergodic, ρpf̃ , xq “ ρpf̃ , µq for µ-a.e. x.

Recall: Mpf̃ q is convex, ergodic measures = extremal points of Mpf̃ q.
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Degree 1 endomorphisms of the circle

Theorem

Extremal rotation numbers ρ˘ are mean rotation numbers of ergodic
measures. In particular

ρ˘pf̃ q P ρpf̃ q

Theorem (Ito ’81)

The rotation set coincides with the rotation interval: ρpf̃ q “ ρpf̃ q.

Rational elements of ρpf̃ q are realized by periodic points: if
p{q P ρpf̃ q then there exists z P R such that f̃ qpzq “ z ` p (Exercise).

The rotation set varies continuously.

ρpf̃ q nonsingular interval ùñ topological entropy.

Example: if f̃ pxq “ x ` sinp2πxq, then ρpf̃ q “ r´1, 1s.
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Homeomorphisms of the annulus

A “ T1 ˆ r0, 1s, π : Ã :“ Rˆ r0, 1s Ñ A
f : AÑ A homeomorphism homotopic to Id, f̃ : ÃÑ Ã lift.

f̃ commutes with T : px , yq ÞÑ px ` 1, yq;

Horizontal displacement: ∆̃ : ÃÑ R̃, ∆̃pz̃q “ pr1pf̃ pz̃q ´ z̃q

∆̃ is T -periodic and induces ∆: AÑ R;

Rotation number of z P A
ρpf̃ , zq is the limit as n Ñ8 (if D) of

1

n
∆npzq “

1

n

n´1
ÿ

k“0

∆pf npzqq “ pr1

ˆ

f̃ npz̃q ´ z̃

n

˙
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Homeomorphisms of the annulus

Rotation set (pointwise): ρpf̃ q “ tρpf̃ , zq : z P A, exists u.

Rotation interval: ρ “ rρ´pf̃ q, ρ`pf̃ qs.

Mean rotation number: ρpf̃ , µq “
ş

A ∆dµ for µ PMpf q.

As before:

ρpf̃ , zq exists µ a.e. and ρpf̃ , µq “
ş

A ρpf̃ , zqdµpzq

µ ergodic ùñ ρpf̃ , zq “ ρpf̃ , µq for µ-a.e.

ρ˘ correspond to ergodic measures.

New situation

(1) ρpf̃ q may fail to be an interval (ρpf̃ q Ĺ ρpf̃ q);

(2) Rational elements of ρpf̃ q may fail to be realized by periodic points;

(3) No continuous dependence (but upper-semicontinuous OK).

(4) ρpf̃ , zq may fail to exist for some z 1s.

Examples.



Homeomorphisms of the annulus

f : AÑ A isotopic to the identity (f P Homeo0pAq)

Theorem (Poincaré-Birkhoff)

If f is area-preserving and has the boundary twist condition then f has a
fixed point (in fact, at least two)

“area-preserving” can be replaced by “nonwandering”

Theorem (Franks ’88, ’89)

If f is area-preserving and 0 P ρpf̃ q for some lift then f̃ has a fixed point.

Corollary (Realization of rational points)

If f is area-preserving, every rational p{q P ρpf̃ q is realized by a periodic
point, i.e. there is z̃ P Ã such that f̃ qpz̃q “ z̃ ` pp, 0q.

Birkhoff/Kerekjarto: area-preserving Ø“curve intersection property”
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Homeomorphisms of the annulus

Theorem (Handel)

The (pointwise) rotation set is closed. Moreover, for every α P ρpf̃ q

(a) α is realized by an ergodic measure;

(b) if α is rational, it is realized by a periodic orbit;

(c) if α is not in an exceptional discrete set Q, it is realized by a compact
invariant set.

Part (c) means that there is a compact invariant set Kα Ă A such that
ρpf̃ , xq “ α for all x P Kα.

Question

Is the exceptional set empty?

The proof is convoluted and relies on Nielsen-Thurston classification and
global shadowing properties of pseudo-Anosov maps.
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Area-preserving homeomorphisms of the annulus

With the area-preserving (or nonwandering) hypothesis, one gets the same
results that hold for degree 1 endomorphisms of the circle:

Corollary (Franks + Handel)

If f is area-preserving then the pointwise rotation set is a closed interval
i.e. ρpf̃ q “ ρpf̃ q. Moreover, every rational element is realized by a periodic
orbit and every element is realized by an ergodic measure.

Theorem (Le Calvez)

If f is area-preserving and C 1, then the exceptional set is empty, except
perhaps for the endpoints of ρpf̃ q.



A basic result from Brouwer theory

Fixed point index of a loop γ Ă R2

If f P Homeo`pR2q is such that γ X Fixpf q “ H, the (Lefschetz) fixed
point index of C is the number I pf , γq P Z defined as the degree of the
map θ : S1 Ñ S1 defined by

θ ÞÑ
f pγpθqq ´ γpθq

}f pγpθqq ´ γpθq}
.

where γ : S1 Ñ R2 is a parametrization of γ.

The index is invariant by homotopy of γ in R2zFixpf q.

If I pf , γq ‰ 0 then f has a fixed point in the disk bounded by γ.

Lemma (Brouwer)

If f : R2 Ñ R2 is an orientation-preserving homeomorphism which has a
non-fixed periodic point, then there exists simple loop of index 1.

Thus, Perpf q ‰ H ùñ Fixpf q ‰ H.
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Free Disks Lemma

A set K is free (for f ) if f pK q X K “ H

Definition

A free disk chain is a sequence D0, . . . ,Dn of open topological disks s.t.

The disks are pairwise disjoint and free for f ;

For each i there is ki ą 0 such that f ki pDi q X Di`1 ‰ H.

If Dn “ D0 we say pDi q is a periodic free disk chain.

Free Disks Lemma / Franks’ Lemma

If f P Homeo`pR2q has a periodic free disk chain, then f has an index 1
simple loop (hence a fixed point).

Follows from Brouwer’s lemma using the following fact:

If pftq is an isotopy s.t. @t, Fixpftq X γ “ H, then I pf0, γq “ I pf1, γq.
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Brouwer homeomorphisms

Corollary

If f P Homeo`pR2q has a recurrent point, or even a nonwandering point,
then f has a fixed point.

A Brouwer homeomorphism is an f P Homeo`pR2q without fixed points.
Brouwer homeomorphisms have no wandering points.

Lemma

If K is a compact connected set and f is a Brouwer homeomorphism such
that f pK q X K “ H, then f npK q X K “ H for all n ‰ 0.

Otherwise, one may produce a periodic free disk chain.

Remark

Brouwer’s Plane Translation Theorem says that moreover every point
belongs to a “Brouwer line” (more on that later).



Realizing periodic points

Theorem (Franks)

If f̃ is a lift of an area-preserving f P Homeo0pAq, every rational
p{q P ρpf̃ q is realized by a periodic point of f , i.e. there exists z P Ã such
that f̃ qpzq “ z ` pp, 0q.

Reduction to p{q “ 0

p{q P ρpf̃ q ðñ 0 P ρpf̃ q ´ pp, 0qq
Thus it suffices to show that 0 P ρpf̃ q ùñ Fixpf̃ q ‰ H.

Idea: Assuming that Fixpf̃ q “ H, show that f̃ has a periodic free disk
chain (contradiction).
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Realizing periodic points

Assume 0 P ρpf̃ q and Fixpf̃ q “ H. Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk D Ă Ã is a free disk such that
f̃ npDq X pD ` pk, 0qq ‰ 0 for some k ě 0 (k ď 0) and n ą 0.

Lemma

If f̃ has positively returning free disk D` and a negatively returning free
disk D´, then f̃ has a periodic free disk chain.

ρpf̃ q “ rρ´, ρ`s with ρ´ ď 0 ď ρ`;

There exist an ergodic µ˘ such that ρpf̃ , µ˘q “ ρ˘;

Fix two small free disks D˘ such that µ˘pD
˘q ą 0;

Show that D` is positively returning and D´ is negatively returning.

(Use first return map + Kac’s lemma).
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If f̃ has positively returning free disk D` and a negatively returning free
disk D´, then f̃ has a periodic free disk chain.

ρpf̃ q “ rρ´, ρ`s with ρ´ ď 0 ď ρ`;

There exist an ergodic µ˘ such that ρpf̃ , µ˘q “ ρ˘;

Fix two small free disks D˘ such that µ˘pD
˘q ą 0;

Show that D` is positively returning and D´ is negatively returning.

(Use first return map + Kac’s lemma).



Realizing periodic points

Assume 0 P ρpf̃ q and Fixpf̃ q “ H. Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk D Ă Ã is a free disk such that
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