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Dynamics of homeomorphisms of T = R/Z

Poincaré

For f € Homeo, (T), quantify the “average rotation?

Rotation number

e Dynamical invariant:

p(f) e R/Z, p(hfh~1) = p(f) Yh € Homeo, (T)
e Contains a lot of dynamical information:
e p(f) =p/qe Q/Z = periodic orbit (of period q),
and limit sets of all orbits are periodic orbits of the same type.

e p(f) ¢ Q/Z = unique minimal set, unique ergodicity,
monotone semiconjugation to irrational rotation, and if f is C? then f
then actual conjugation (Denjoy)

e f — p(f) is continuous.




Lifts

It is not obvious how to define p(f) using f directly. We use lifts.
e m: R — T quotient projection (universal cover)
e 7 is a local homeomorphism, w(x + k) = w(x) for all k e Z
e Given f € Homeo, (T), there is a lift f: R © such that 7f = fr:

7

_—

f

_

H< =

o f(x+k)=F(x)+kforall keZ

o Lifts are not unique, but they differ by a constant integer.



Rotation number

~ f"(z) —z
p(f,z) = p(f,z + k) for all k € Z;
For x € T, define p(f,x) = p(f, z) where z € 7~ 1(x);
p(f",z) =n: p(fa z);
p(f + k,z) = p(f,z) + k;
If f1, f> are two lifts of £, then p(f1,z) — p(f2, 2) € Z.

Theorem

The number p(f, z) exists and is independent of z.

Rotation number of f
o p(f) is defined as p(f, z) for any z;
o p(f) = m(p(f)) e T! depends only of f (and not of the lift).




Rotation number

Displacement function:
o A:R—R: AKX) =f(X) =% (Z-periodic);
o A:T—R: A(x)=A(R) for x e 771(x)
n—1
o A"(x) = Dz, (x) = F1(%) — % = D A(F¥(x)) (Birkhoff sum);
k=0
Existence of p(f,z) for some z

@ The rotation number is a limit of Birkhoff averages: if m(X) = x,
fry—x 1, 15
POZX_ 2 anG) = 237 A+ ().
k=0

n
@ Krylov-Bogoliubov: there exist f-invariant probabilities;
e Ergodic Theorem: the limit exists p-a.e. (u an f-invariant probab.);

o Moreover p(f,x) = S Adp, prae. x;




Rotation number

Bounded Oscillation Property
|A"(x) = A"(y)| <M Vx,y, n

Since

. 1,
p(f,x) = nll_)moo ;A (x)
exists for some x, BOP — p(f,x) exists for all x (and same value)

Bounded Rotational Deviations Property
|A"(x) —np| <M Vx, n

In the large scale, the dynamics is close to the rigid rotation by p(f).
Realization by periodic points

p(f) =p/qg — IzeRs. t. fi(z)=z+p




Rotation number: Alternative approach

@ Let (f;) be an isotopy from fy = Id to f; = f (model case: a flow);
@ For x € T, the path ~,(t) = f;(x) goes from x to f(x);
® The path 77 = 7x * Y¢(x) * == * Y1) gOes from x to f(x);

@ Measure the average rotation of this path, and take the limit:
For each n take a lift 4 to R of the path ~7, and
r(x) = nILmOO w
This is independent of the lifts used, but depends on the chosen isotopy.
@ If we change the isotopy, the number r(x) changes by an integer.

In fact, () lifts to an isotopy (?t) starting from % = Idg, and the map
f:=fiis a lift of f such that p(f,x) = r(x).



More general setting?

Endomorphisms of the circle of degree 1;
Homeomorphisms of the annulus;
Flows on the torus;

Homeomorphisms of the torus;

Homeomorphisms of some topologically complicated compact
connected sets;

Homeomorphisms of arbitrary orientable surfaces;

@ Heomomorphisms of general spaces which admit certain type of
coverings.



Degree 1 endomorphisms of the circle

f: T — T continuous (maybe not invertible);
o f:R—-Ralift = f(x+1)=7(x)+ m for some me Z;
e m = deg(f), does not depend on the lift;

@ deg(f) > 1 = rich dynamics (many periodic points, etc);
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Degree 1 endomorphisms of the circle

f: T — T continuous (maybe not invertible);
o f:R—-Ralift = f(x+1)=7(x)+ m for some me Z;
e m = deg(f), does not depend on the lift;

deg(f) > 1 = rich dynamics (many periodic points, etc);
deg(f) =1 A=f—Idgis Z-periodic;

Induces a displacement function A: T — R,

The definition of p(7,x) used before works the same way:

p(f,x) = lim 1A”(x) = lim lA(f"(x))

n—oo N n—oo N

May not exist, or may depend on x.

But exists for some x (as before, Birkhoff's theorem).



Degree 1 endomorphisms of the circle
f: T — T degree 1 map, 7: R — R a lift.

Rotation set

p(f) = { Iimoop(?', x):x €T, limit exists} ¢ R

Rotation interval

p(F) = [p-(F). p+(F)] = [inf p(f), sup p(F)]




Degree 1 endomorphisms of the circle
f: T — T degree 1 map, 7: R — R a lift.

Rotation set

p(f) = { Iimoop(?,x) :x €T, limit exists} < R

Rotation interval

p(F) = [p—(F), p+(F)] = [inf p(F), sup p(F)]

Invariant measures
o M(f) < M(T) space of f-invariant probabilities;
@ Mean rotation number of e M(f):
p(f,p) = §pAdp
o Ergodic theorem: p(f, x) exists p-a.e. and p(f, ) = S p(f, x) du(x);
o If p is ergodic, p(f,x) = p(f, ) for p-a.e. x.

Recall: M(f) is convex, ergodic measures = extremal points of M(f).




Degree 1 endomorphisms of the circle

Theorem

Extremal rotation numbers p4 are mean rotation numbers of ergodic
measures. In particular

p+(F) € p(f)




Degree 1 endomorphisms of the circle

Theorem

Extremal rotation numbers p4 are mean rotation numbers of ergodic
measures. In particular

p+(f) € p(f)

Theorem (Ito '81)

The rotation set coincides with the rotation interval: 5(f) = p(f).

o Rational elements of p(f) are realized by periodic points: if
p/q € p(f) then there exists z € R such that f9(z) = z + p (Exercise).
@ The rotation set varies continuously.

@ p(f) nonsingular interval = topological entropy.




Degree 1 endomorphisms of the circle

Theorem

Extremal rotation numbers p4 are mean rotation numbers of ergodic
measures. In particular

p+(f) € p(f)

Theorem (Ito '81)

The rotation set coincides with the rotation interval: 5(f) = p(f).

o Rational elements of p(f) are realized by periodic points: if
p/q € p(f) then there exists z € R such that f9(z) = z + p (Exercise).
@ The rotation set varies continuously.

@ p(f) nonsingular interval = topological entropy.

Example: if f(x) = x + sin(27x), then p(f) = [-1,1].




Homeomorphisms of the annulus

A=T!x[0,1], 7:A:=Rx[0,1]—>A
f: A — A homeomorphism homotopic to Id, f: A — A lift.



Homeomorphisms of the annulus

A=T!x[0,1], 7:A:=Rx[0,1]—>A
f: A — A homeomorphism homotopic to Id, f: A — A lift.

o f commutes with T: (x,y) — (x +1,y);
e Horizontal displacement: A: A — R, A(2) = pr,(7(2) — 2)
e Ais T-periodic and induces A: A — R;

Rotation number of z € A

p(f, z) is the limit as n — oo (if 3) of




Homeomorphisms of the annulus

e Rotation set (pointwise): p(f) = {p(f,z) : z€ A, exists }.
@ Rotation interval: 5 = [p +(0)].

):p
p) = §, Adp for pe M(f).

oY

~(f
@ Mean rotation number: p(f, 1)

As before:
o p(f,z) exists i a.e. and p(f,p) = N p(f,z)du(z)
o 1 ergodic —> p(f,z) = p(f, p) for p-a.e.

@ py correspond to ergodic measures.

New situation

(1) p(f) may fail to be an interval (p(f) < 5(f));
(2) Rational elements of 5(f) may fail to be realized by periodic points;
(3) No continuous dependence (but upper-semicontinuous OK).
(4)

4) p(f,z) may fail to exist for some z's.

Examples.



Homeomorphisms of the annulus

f: A — A isotopic to the identity (f € Homeog(A))
Theorem (Poincaré-Birkhoff)

If f is area-preserving and has the boundary twist condition then f has a
fixed point (in fact, at least two)

“area-preserving” can be replaced by “nonwandering”



Homeomorphisms of the annulus

f: A — A isotopic to the identity (f € Homeog(A))
Theorem (Poincaré-Birkhoff)

If f is area-preserving and has the boundary twist condition then f has a
fixed point (in fact, at least two)

“area-preserving” can be replaced by “nonwandering”
Theorem (Franks '88, '89)

If f is area-preserving and 0 € B(f) for some lift then f has a fixed point.




Homeomorphisms of the annulus

f: A — A isotopic to the identity (f € Homeog(A))
Theorem (Poincaré-Birkhoff)

If f is area-preserving and has the boundary twist condition then f has a
fixed point (in fact, at least two)

“area-preserving” can be replaced by “nonwandering”

Theorem (Franks '88, '89)

If f is area-preserving and 0 € B(f) for some lift then f has a fixed point.

v

Corollary (Realization of rational points)

If f is area-preserving, every rational p/q € p(f) is realized by a periodic
point, i.e. there is 7 € A such that f9(2) = z + (p,0).

Birkhoff/Kerekjarto: area-preserving < “curve intersection property”



Homeomorphisms of the annulus

Theorem (Handel)

The (pointwise) rotation set is closed. Moreover, for every o € p(f)
(a) « is realized by an ergodic measure;

(b) if « is rational, it is realized by a periodic orbit;

(c) if « is not in an exceptional discrete set Q, it is realized by a compact
invariant set.

Part (c) means that there is a compact invariant set K, < A such that
p(f,x) =« for all x € K,.



Homeomorphisms of the annulus

Theorem (Handel)

The (pointwise) rotation set is closed. Moreover, for every o € p(f)
(a) « is realized by an ergodic measure;

(b) if « is rational, it is realized by a periodic orbit;

(c) if « is not in an exceptional discrete set Q, it is realized by a compact
invariant set.

Part (c) means that there is a compact invariant set K, — A such that
p(f,x) =« for all x € K,.

Question
Is the exceptional set empty? J

The proof is convoluted and relies on Nielsen-Thurston classification and
global shadowing properties of pseudo-Anosov maps.



Area-preserving homeomorphisms of the annulus

With the area-preserving (or nonwandering) hypothesis, one gets the same
results that hold for degree 1 endomorphisms of the circle:

Corollary (Franks + Handel)

If f is area-preserving then the pointwise rotation set is a closed interval

i.e. p(f) = p(f). Moreover, every rational element is realized by a periodic
orbit and every element is realized by an ergodic measure.

v

Theorem (Le Calvez)

If f is area-preserving and C*, then the exceptional set is empty, except

perhaps for the endpoints of p(f).




A basic result from Brouwer theory

Fixed point index of a loop v = R?
If f € Homeo, (R?) is such that v n Fix(f) = &, the (Lefschetz) fixed
point index of C is the number /(f,~y) € Z defined as the degree of the
map 6: St — S defined by
L 60) =1(60)

[£(~(8)) —~(0)]

where v: ST — R? is a parametrization of 7.

0

e The index is invariant by homotopy of 7 in R?\Fix(f).
o If I(f,7) # 0 then f has a fixed point in the disk bounded by ~.



A basic result from Brouwer theory

Fixed point index of a loop v = R?

If f € Homeo, (R?) is such that v n Fix(f) = &, the (Lefschetz) fixed
point index of C is the number /(f,~y) € Z defined as the degree of the
map 6: St — S defined by

o F0() =(6)
[F(2(8) =@

where v: ST — R? is a parametrization of 7.

e The index is invariant by homotopy of 7 in R?\Fix(f).
o If I(f,7) # 0 then f has a fixed point in the disk bounded by ~.
Lemma (Brouwer)

If f: R? — R? is an orientation-preserving homeomorphism which has a
non-fixed periodic point, then there exists simple loop of index 1.

Thus, Per(f) # @ = Fix(f) # &.



Free Disks Lemma

A set K is free (for f)if f((K)n K =
Definition

A free disk chain is a sequence Dy, ..., D, of open topological disks s.t.

@ The disks are pairwise disjoint and free for f;
o For each i there is k; > 0 such that f%(D;) n Djy1 # &.
If D, = Dy we say (D;) is a periodic free disk chain.




Free Disks Lemma

A set K is free (for f)if f((K)n K =

Definition

A free disk chain is a sequence Dy, ..., D, of open topological disks s.t.
@ The disks are pairwise disjoint and free for f;
o For each i there is k; > 0 such that f%(D;) n Djy1 # &.

If D, = Dy we say (D;) is a periodic free disk chain.

Free Disks Lemma / Franks' Lemma

If f € Homeo, (R?) has a periodic free disk chain, then f has an index 1
simple loop (hence a fixed point).

Follows from Brouwer's lemma using the following fact:

If (f¢) is an isotopy s.t. Vt, Fix(fy) n v = &, then I(fo,~v) = I(f1,7).




Brouwer homeomorphisms

Corollary

If f € Homeo, (R?) has a recurrent point, or even a nonwandering point,
then f has a fixed point.

A Brouwer homeomorphism is an f € Homeo (R?) without fixed points.
Brouwer homeomorphisms have no wandering points.

Lemma

If K is a compact connected set and f is a Brouwer homeomorphism such
that f(K) n K = &, then f"(K) n K = & for all n # 0.

Otherwise, one may produce a periodic free disk chain.

Remark

Brouwer's Plane Translation Theorem says that moreover every point
belongs to a “Brouwer line" (more on that later).




Realizing periodic points

Theorem (Franks)

If f is a lift of an area-preserving f € Homeog(A), every rational 5
p/q € p(f) is realized by a periodic point of f, i.e. there exists z € A such
that f9(z) = z + (p, 0).




Realizing periodic points

Theorem (Franks)

If  is a lift of an area-preserving f € Homeog(A), every rational

p/q € ﬁ(?) is realized by a periodic point of f, i.e. there exists z € A such
that f9(z) = z + (p, 0).

Reduction to p/q = 0

p/qe p(f) < 0€p(fi—(p,0) _
Thus it suffices to show that 0 € p(f) = Fix(f) # &.




Realizing periodic points

Theorem (Franks)

If  is a lift of an area-preserving f € Homeog(A), every rational
p/q € p(f) is realized by a periodic point of f, i.e. there exists z € A such
that f9(z) = z + (p, 0).

Reduction to p/q = 0

p/q e p(f) <= 0 p(f?—(p,0))
Thus it suffices to show that 0 € p(f) — Fix(f) # &.

ldea: Assuming that Fix(f) = (7, show that f has a periodic free disk
chain (contradiction).



Realizing periodic points

Assume 0 € p(f) and Fix(f) = . Find a periodic free disk chain.
Positively and negatively returning disks

A positively (negatively) returning disk D — A is a free disk such that
f"(D) n (D + (k,0)) # 0 for some k >0 (k <0) and n > 0.
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If f has positively returning free disk D and a negatively returning free
disk D—, then f has a periodic free disk chain.
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Positively and negatively returning disks

A positively (negatively) returning disk D — A is a free disk such that
f"(D) n (D + (k,0)) # 0 for some k >0 (k <0) and n > 0.

Lemma

If f has positively returning free disk D and a negatively returning free
disk D—, then f has a periodic free disk chain.

o p(F) = [p—, p+] with p_ <0 < py;



Realizing periodic points

Assume 0 € p(f) and Fix(f) = . Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk D — A is a free disk such that
f"(D) n (D + (k,0)) # 0 for some k >0 (k <0) and n > 0.

Lemma

If f has positively returning free disk D and a negatively returning free
disk D—, then f has a periodic free disk chain.

o p(f) =[p—,p+] with p_ <0< py;
o There exist an ergodic pi+ such that p(f,u+) = p+;



Realizing periodic points
Assume 0 € 5(f) and Fix(f) = . Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk D — A is a free disk such that
f"(D) n (D + (k,0)) # 0 for some k >0 (k <0) and n> 0.

Lemma

If f has positively returning free disk D and a negatively returning free
disk D—, then f has a periodic free disk chain.

o p(F) = [p—, p+] with p_ <0 < py;
o There exist an ergodic p+ such that p(f, ut) =

I+

e Fix two small free disks D* such that ;u_r(Di)

O



Realizing periodic points

Assume 0 € p(f) and Fix(f) = . Find a periodic free disk chain.

Positively and negatively returning disks

A positively (negatively) returning disk D — A is a free disk such that
f"(D) n (D + (k,0)) # 0 for some k >0 (k <0) and n> 0.

Lemma

If f has positively returning free disk D and a negatively returning free
disk D—, then f has a periodic free disk chain.

o p(f) = [p—, p+] with p— <0 < py;

@ There exist an ergodic p+ such that p(f,us) = p+;

o Fix two small free disks D* such that p4(D*) > 0;

@ Show that D™ is positively returning and D~ is negatively returning.
o (Use first return map + Kac's lemma).



