Rotation theory III

Andres Koropecki

Universidade Federal Fluminense Brasil

Rotation set

 $f \in \mathsf{Homeo}_{\mathrm{Id}}(\mathbb{T}^2), \quad \widetilde{f} \in \mathsf{Homeo}(\mathbb{R}^2) \text{ lift.}$

$$\rho(\widetilde{f}) = \left\{ \lim_{k \to \infty} \frac{\widetilde{f}^{n_k}(\widetilde{z}_k) - \widetilde{z}_k}{n_k} \right\} = \left\{ \lim_{k \to \infty} \frac{1}{n_k} \Delta^{n_k}(z_k) \right\}$$

- Compact, convex;
- equal to $\rho_m(\widetilde{f}) = \{ \int_{\mathbb{T}^2} \Delta \, d\mu : \mu \in \mathcal{M}(f) \};$
- Extremal elements always realized by ergodic measures;
- Rational elements realized by periodic points if extremal or interior;
- All interior elements realized by compact invariant sets;
- Interior \iff entropy.

Rotation sets with nonempty interior

Theorem (Addas-Zanata 2013, 2015)

If f is $C^{1+\alpha}$ and $(0,0) \in \operatorname{int} \rho(\widetilde{f})$, then there exists a hyperbolic periodic point p for \widetilde{f} such that for all $v \in \mathbb{Z}^2$, the stable manifold of p has a topologically transverse intersection with the unstable manifold of p+v (and vice-versa).

Rotation sets with nonempty interior

Theorem (Addas-Zanata 2013, 2015)

If f is $C^{1+\alpha}$ and $(0,0)\in\operatorname{int}\rho(\widetilde{f})$, then there exists a hyperbolic periodic point p for \widetilde{f} such that for all $v\in\mathbb{Z}^2$, the stable manifold of p has a topologically transverse intersection with the unstable manifold of p+v (and vice-versa).

Theorem (de Carvalho, K., Tal)

If f is $C^{1+\alpha}$ and the rotation set has nonempty interior, then f is monotonely semiconjugate to a "model map" which is: transitive, with dense periodic points, continuum-wise expansive , and more.

Question

Which compact convex sets are realizable as rotation sets?

Question

Which compact convex sets are realizable as rotation sets?

With empty interior (intervals)

- Single points (rotations);
- intervals with rational slope containing rational points;
- intervals with irrational slope and one rational endpoint (Katok);

Question

Which compact convex sets are realizable as rotation sets?

With empty interior (intervals)

- Single points (rotations);
- intervals with rational slope containing rational points;
- intervals with irrational slope and one rational endpoint (Katok);

Franks-Misiurewicz '90: Are these the only ones?

Question

Which compact convex sets are realizable as rotation sets?

With empty interior (intervals)

- Single points (rotations);
- intervals with rational slope containing rational points;
- intervals with irrational slope and one rational endpoint (Katok);

Franks-Misiurewicz '90: Are these the only ones?

No. (Avila)

• Examples with irrational slope and no rational points (see Liu's talk)

Question

Which compact convex sets are realizable as rotation sets?

With empty interior (intervals)

- Single points (rotations);
- intervals with rational slope containing rational points;
- intervals with irrational slope and one rational endpoint (Katok);

Franks-Misiurewicz '90: Are these the only ones?

No. (Avila)

• Examples with irrational slope and no rational points (see Liu's talk)

The rational case

Can an interval of rational slope without periodic points be realized?

Question

Which compact convex sets are realizable as rotation sets?

With empty interior (intervals)

- Single points (rotations);
- intervals with rational slope containing rational points;
- intervals with irrational slope and one rational endpoint (Katok);

Franks-Misiurewicz '90: Are these the only ones?

No. (Avila)

• Examples with irrational slope and no rational points (see Liu's talk)

The rational case

Can an interval of rational slope without periodic points be realized?

Some advances [K., Passeggi, Sambarino 2016], [Kocsard 2016].

Question

Which compact convex sets are realizable as rotation sets?

Question

Which compact convex sets are realizable as rotation sets?

Only examples known with nonempty interior:

- Convex polygons with rational vertices (Kwapisz '92)
- Example with countably many extremal points (Kwapisz '95), also (Boyland, de Carvalho, Hall 2016)

Question

Which compact convex sets are realizable as rotation sets?

Only examples known with nonempty interior:

- Convex polygons with rational vertices (Kwapisz '92)
- Example with countably many extremal points (Kwapisz '95), also (Boyland, de Carvalho, Hall 2016)

Can it be a disk? Can it have uncountably many extremal points?

Question

Which compact convex sets are realizable as rotation sets?

Only examples known with nonempty interior:

- Convex polygons with rational vertices (Kwapisz '92)
- Example with countably many extremal points (Kwapisz '95), also (Boyland, de Carvalho, Hall 2016)

Can it be a disk? Can it have uncountably many extremal points?

Conjecture

The set of extremal points is totally disconnected.

Question

Which compact convex sets are realizable as rotation sets?

Only examples known with nonempty interior:

- Convex polygons with rational vertices (Kwapisz '92)
- Example with countably many extremal points (Kwapisz '95), also (Boyland, de Carvalho, Hall 2016)

Can it be a disk? Can it have uncountably many extremal points?

Conjecture

The set of extremal points is totally disconnected.

The only compact convex sets known to be <u>non-realizable</u> are those whose boundary contain an interval of irrational slope with a rational non-extremal point (Le Calvez, Tal 2016)

Continuity

$$\widetilde{f}\mapsto \rho(\widetilde{f})$$
 is upper-semicontinuous (continuous when $\rho(\widetilde{f})$ has interior)

Continuity

$$\widetilde{f}\mapsto \rho(\widetilde{f})$$
 is upper-semicontinuous (continuous when $\rho(\widetilde{f})$ has interior)

Perturbations

How/when can we perturb $\rho(\widetilde{f})$ with a small perturbation of f?

Continuity

 $\widetilde{f}\mapsto
ho(\widetilde{f})$ is upper-semicontinuous (continuous when $ho(\widetilde{f})$ has interior)

Perturbations

How/when can we perturb $\rho(\tilde{f})$ with a small perturbation of f?

The rotation set is <u>stable</u> if it does not change under small perturbations of the dynamics.

- Addas-Zanata 2004: C^0 -stable \implies rational extremal points;
- Guihéneuf 2016: Also C¹.
- Passeggi 2014: C^0 -generically, stable + polygonal.
- Guihéneuf, K. 2016: Same thing area-preserving + estimates.

Continuity

 $\widetilde{f}\mapsto
ho(\widetilde{f})$ is upper-semicontinuous (continuous when $ho(\widetilde{f})$ has interior)

Perturbations

How/when can we perturb $\rho(\tilde{f})$ with a small perturbation of f?

The rotation set is <u>stable</u> if it does not change under small perturbations of the dynamics.

- Addas-Zanata 2004: C^0 -stable \implies rational extremal points;
- Guihéneuf 2016: Also C¹.
- Passeggi 2014: C^0 -generically, stable + polygonal.
- Guihéneuf, K. 2016: Same thing area-preserving + estimates.

We do not know any result about C^r -stability, or how to control the result even for C^0 perturbations. Related: C^r -enerically \exists periodic point?

Mean rotation vectors in the area-preserving case

Let $\mu = \text{Lebesgue measure on } \mathbb{T}^2$.

Lemma

If f,g are area-preserving, then $\rho(\widetilde{f}\widetilde{g},\mu)=\rho(\widetilde{f},\mu)+\rho(\widetilde{g},\mu)$

Note: provides a group homomorphism $\operatorname{Diff}_{\mu}^{r}(\mathbb{T}^{2}) \to \mathbb{T}^{2}$.

Mean rotation vectors in the area-preserving case

Let $\mu = \text{Lebesgue measure on } \mathbb{T}^2$.

Lemma

If f,g are area-preserving, then $\rho(\widetilde{f}\widetilde{g},\mu)=\rho(\widetilde{f},\mu)+\rho(\widetilde{g},\mu)$

Note: provides a group homomorphism $\operatorname{Diff}_{\mu}^{r}(\mathbb{T}^{2}) \to \mathbb{T}^{2}$.

Theorem (Conley-Zehnder 83, Franks 88, Le Calvez 98)

If $ho(\widetilde{f},\mu)=(0,0)$ then \widetilde{f} has a fixed point (actually, 3, ess. different)

$$\implies$$
 if $\rho(\widetilde{f},\mu) \in \mathbb{Q}^2$ then it is realized by a periodic point.

Mean rotation vectors in the area-preserving case

Let $\mu =$ Lebesgue measure on \mathbb{T}^2 .

Lemma

If f,g are area-preserving, then $\rho(\widetilde{f}\widetilde{g},\mu)=\rho(\widetilde{f},\mu)+\rho(\widetilde{g},\mu)$

Note: provides a group homomorphism $\operatorname{Diff}_{u}^{r}(\mathbb{T}^{2}) \to \mathbb{T}^{2}$.

Theorem (Conley-Zehnder 83, Franks 88, Le Calvez 98)

If $\rho(\widetilde{f},\mu)=(0,0)$ then \widetilde{f} has a fixed point (actually, 3, ess. different)

 \implies if $\rho(\widetilde{f},\mu) \in \mathbb{Q}^2$ then it is realized by a periodic point.

Theorem

For area-preserving diffeomorphisms, C^r -generically the rotation set has nonempty interior (any r).

Proof: Use perturbations of the form $R_v \circ f$ with v small.

Rotational deviations: the case with nonempty interior

The rotation set measures "average" speed of rotation, but average rotation 0 does not mean "no rotation at all"; e. g.

$$\widetilde{f}^n(z) = z + \sqrt{n}v \implies \rho(\widetilde{f}, z) = (0, 0)$$

Rotational deviations: the case with nonempty interior

The rotation set measures "average" speed of rotation, but average rotation 0 does not mean "no rotation at all"; e. g.

$$\widetilde{f}^n(z) = z + \sqrt{n}v \implies \rho(\widetilde{f}, z) = (0, 0)$$

No "sublinear" behavior:

Theorem

If $ho(\widetilde{f})$ has nonempty interior, then there exists M>0 such that

$$\forall n \in \mathbb{Z}, \quad \{\widetilde{f}^n(z) - z : z \in [0,1]^2\} = \Delta^n(\mathbb{T}^2) \subset B_M(n\rho(\widetilde{f})).$$

Rotational deviations: the case with nonempty interior

The rotation set measures "average" speed of rotation, but average rotation 0 does not mean "no rotation at all"; e. g.

$$\widetilde{f}^n(z) = z + \sqrt{n}v \implies \rho(\widetilde{f}, z) = (0, 0)$$

No "sublinear" behavior:

Theorem

If $\rho(\widetilde{f})$ has nonempty interior, then there exists M>0 such that

$$\forall n \in \mathbb{Z}, \quad \{\widetilde{f}^n(z) - z : z \in [0,1]^2\} = \Delta^n(\mathbb{T}^2) \subset B_M(n\rho(\widetilde{f})).$$

- Dávalos 2014: rational polygons (BLC foliations, "forcing")
- ullet Addas-Zanata 2015: C^{1+lpha} (Pesin theory, homoclinic intersections)
- Tal-Le Calvez 2016: general (BLC foliations, forcing theory)

Rotational deviations: the case with empty interior

Assume $\rho(\widetilde{f})$ has empty interior. If $\rho(\widetilde{f}) = \{v\}$ we call f a **pseudo-rotation**.

- $v \in \mathbb{R}^2 \backslash \mathbb{Q}^2$ (irrational pseudo-rotation).
 - Dynamics is aperiodc.
 - ▶ May be topologically weak-mixing, or even mixing (Kochergin)
 - May have unbounded rotational deviations (Kocsard, K., Jäger)
 - ▶ May have positive entropy (but not if *f* is smooth) (Rees, Katok)
 - All of this may happen for area-preserving maps, minimal.

Rotational deviations: the case with empty interior

Assume $\rho(\widetilde{f})$ has empty interior. If $\rho(\widetilde{f}) = \{v\}$ we call f a **pseudo-rotation**.

- $v \in \mathbb{R}^2 \backslash \mathbb{Q}^2$ (irrational pseudo-rotation).
 - Dynamics is aperiodc.
 - ▶ May be topologically weak-mixing, or even mixing (Kochergin)
 - May have unbounded rotational deviations (Kocsard, K., Jäger)
 - May have positive entropy (but not if f is smooth) (Rees, Katok)
 - All of this may happen for area-preserving maps, minimal.
- $v=(p_1/q,p_2/q)\in\mathbb{Q}^2$ (rational pseudo-rotation)
 - Must have periodic points;
 - Interesting case: v = (0,0) (take $\tilde{g} = \tilde{f}^q (p_1, p_2)$).
 - If $\rho(\tilde{f}) = (0,0)$ we say f is **irrotational**.
 - May have unbounded rotational deviations.
 - Katok's example.
 - Interesting case: f area-preserving.

Irrotational area-preserving homeomorphisms

Theorem (Lifted Poincaré recurrence) [K., Tal 2015]

If f is area-preserving and irrotational, then a.e. $z \in \mathbb{R}^2$ is \widetilde{f} -recurrent.

Irrotational area-preserving homeomorphisms

Theorem (Lifted Poincaré recurrence) [K., Tal 2015]

If f is area-preserving and irrotational, then a.e. $z \in \mathbb{R}^2$ is \widetilde{f} -recurrent.

An open set $U \subset \mathbb{T}^2$ is **essential** it contains a loop homotopically nontrivial in \mathbb{T}^2 . An arbitrary set is essential if every neighborhood is essential.

Irrotational area-preserving homeomorphisms

Theorem (Lifted Poincaré recurrence) [K., Tal 2015]

If f is area-preserving and irrotational, then a.e. $z \in \mathbb{R}^2$ is \widetilde{f} -recurrent.

An open set $U \subset \mathbb{T}^2$ is **essential** it contains a loop homotopically nontrivial in \mathbb{T}^2 . An arbitrary set is essential if every neighborhood is essential.

Theorem (Le Calvez, Tal 2016)

If f is area-preserving and irrotational, then either $\mathrm{Fix}(f)$ is essential or the displacement is uniformly bounded: $\sup_{z\in\mathbb{T}^2,n\in\mathbb{Z}}\|\Delta^n(z)\|<\infty$.

Irrotational area-preserving homeomorphisms

Theorem (Lifted Poincaré recurrence) [K., Tal 2015]

If f is area-preserving and irrotational, then a.e. $z \in \mathbb{R}^2$ is \widetilde{f} -recurrent.

An open set $U \subset \mathbb{T}^2$ is **essential** it contains a loop homotopically nontrivial in \mathbb{T}^2 . An arbitrary set is essential if every neighborhood is essential.

Theorem (Le Calvez, Tal 2016)

If f is area-preserving and irrotational, then either $\mathrm{Fix}(f)$ is essential or the displacement is uniformly bounded: $\sup_{z\in\mathbb{T}^2,n\in\mathbb{Z}}\|\Delta^n(z)\|<\infty$.

Corollary

For an area-preserving rational pseudo-rotation, either $\operatorname{Fix}(f^n)$ is essential or f has uniformly bounded rotational deviations.

Irrotational area-preserving homeomorphisms

Theorem (Lifted Poincaré recurrence) [K., Tal 2015]

If f is area-preserving and irrotational, then a.e. $z \in \mathbb{R}^2$ is \widetilde{f} -recurrent.

An open set $U \subset \mathbb{T}^2$ is **essential** it contains a loop homotopically nontrivial in \mathbb{T}^2 . An arbitrary set is essential if every neighborhood is essential.

Theorem (Le Calvez, Tal 2016)

If f is area-preserving and irrotational, then either $\mathrm{Fix}(f)$ is essential or the displacement is uniformly bounded: $\sup_{z\in\mathbb{T}^2,n\in\mathbb{Z}}\|\Delta^n(z)\|<\infty$.

Corollary

For an area-preserving rational pseudo-rotation, either $\operatorname{Fix}(f^n)$ is essential or f has uniformly bounded rotational deviations.

Question: Does the lifted Poincaré recurrence hold for irrotational area-preserving homeomorphisms of arbitrary surfaces?

Bounded deviations when $\rho(\widetilde{f})$ is an interval

Problem

If $\rho(\widetilde{f})$ is an interval, are the rotational deviations bounded? In the direction perpendicular to $\rho(\widetilde{f})$?

Bounded deviations when $\rho(\widetilde{f})$ is an interval

Problem

If $\rho(\widetilde{f})$ is an interval, are the rotational deviations bounded? In the direction perpendicular to $\rho(\widetilde{f})$?

Theorem (Dávalos 2015)

Yes if $\rho(\widetilde{f})$ is an interval with rational slope intersecting \mathbb{Q}^2 . (Model: Vertical interval through the origin.)

Guelman, K., Tal 2014: area preserving case.

Bounded deviations when $\rho(\widetilde{f})$ is an interval

Problem

If $\rho(\widetilde{f})$ is an interval, are the rotational deviations bounded? In the direction perpendicular to $\rho(\widetilde{f})$?

Theorem (Dávalos 2015)

Yes if $\rho(\widetilde{f})$ is an interval with rational slope intersecting \mathbb{Q}^2 . (Model: Vertical interval through the origin.)

Guelman, K., Tal 2014: area preserving case.

Theorem (Kocsard, 2016)

Yes if f is minimal.

General case?

More on area-preserving homeomorphisms

From now on f is area-preserving.

Definition

f is irrotational if $\rho(\widetilde{f})=\{(0,0)\}$ for some lift

Recall:

Theorem (Le Calvez, Tal 2016)

f is irrotational $\implies \operatorname{Fix}(f)$ essential or uniformly bounded displacement.

That is, if f is irrotational then either the fixed point set is <u>very large</u> or there is no rotation at all.

Irrotational example

Irrotational diffeomorphisms with unbounded deviations (K, Tal 2013)

There exists a C^{∞} Bernoulli (\Longrightarrow ergodic) diffeomorphism f with a lift \widetilde{f} such that $\rho(\widetilde{f}) = \{(0,0)\}$ and the displacement is unbounded in all directions. More specifically, the orbit of almost every point intersects every fundamental domain in \mathbb{R}^2 .

- Find an open topological disk U in \mathbb{T}^2 in a way that its lift to \mathbb{R}^2 intersects every fundamental domain.
- Choose a smooth ergodic diffeomorphism ϕ of the unit disk $\mathbb D$ which is the identity on $\partial \mathbb D$ and $\phi \mathrm{Id}$ goes to 0 sufficiently fast near $\partial \mathbb D$ (Katok 1979).
- Extend as the identity on $\mathbb{T}^2 \setminus U$.
- Simpler example: blow up an orbit of a minimal flow on \mathbb{T}^2 .

Note: Fix(f) is huge!.

Unbounded disk (with direction)

Invariant disks

General philosophy

If an open connected set U is invariant by an area-preserving homeomorphism, there are strong restrictions on the topology of ∂U (unless f has a "huge" set of fixed points).

In the area-preserving setting, connected open invariant (periodic) sets appear frequently: if U is open, the connected component of U in $\mathcal{O}_f(U) = \bigcup_{n \in \mathbb{Z}} f^n(U)$ is periodic. Also: KAM.

Bounded disks lemma

Recall: U inessential \iff every loop in U is trivial in \mathbb{T}^2 . An arbitrary set is inessential if it has an inessential neighborhood.

Covering diameter

For U open connected and inessential, $\mathcal{D}(U) = \operatorname{diam}(\widehat{U})$ where \widehat{U} is a lift of U (= connected component of $\pi^{-1}(U)$).

Bounded disks lemma (K. Tal, 2014/17)

Suppose that f is area-preserving and $\operatorname{Fix}(f)$ is inessential. There exists M>0 such that for any inessential open invariant connected set U one has $\mathcal{D}(U)\leqslant M$.

It holds on any surface. There is a version for non-simply connected sets.

Application: dynamically essential and inessential points

An open set $U \subset \mathbb{T}^2$ is **fully essential** in \mathbb{T}^2 if $\mathbb{T}^2 \setminus U$ is inessential.

Dynamically essential/inessential points

- $x \in Ine(f) =$ **dynamically inessential** points if there is a neighborhood U of x such that $\mathcal{O}_f(U)$ is inessential in \mathbb{T}^2 .
- $x \in \operatorname{Ess}(f) = \operatorname{dynamically}$ essential points if $\mathcal{O}_f(U)$ is essential for every neighborhood U of x.
- $x \in C(f)$ = **dynamically fully essential** points if $\mathcal{O}_f(U)$ is fully essential for every neighborhood U of x.

Area preserving \implies every $x \in Ine(f)$ belongs to a periodic open topdisk.

- Ine(f) is open invariant;
- Ess $(f) = \mathbb{T}^2 \setminus \operatorname{Ine}(f)$ and C(f) are compact invariant.

Note: Ine(f) may be essential as a set, Ess(f) may be inessential.

Strictly toral dynamics

Theorem (K., Tal 2014)

If $\rho(\tilde{f})$ has nonempty interior then:

- Ine(f) is a disjoint union of periodic homotopically bounded topological disks;
- ullet Ess(f) is a fully essential continuum and $\mathcal{C}(f)=\mathsf{Ess}(f)$, and
 - C(f) is weakly syndetically transitive;
 - For any lift \widetilde{f} of f and U neighborhood of $x \in C(f)$, $\rho(\widetilde{f}, U) = \rho(\widetilde{f})$.
 - Every rotation vector realized by a periodic point or ergodic measure can be realized in C(f).

Moreover, C(f) is indecomposable.

There is a version for higher genus surfaces (K, Tal 2017).

Strictly toral dynamics

