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ABSTRACT. In 1936, Erdos and Turdn [ET] conjectured that every set of integers A with positive natural density
contains a k-term arithmetic progression for every k. In 1953 [R] Roth proved Erddés-Turdn’s conjecture for k = 3.
Later Szemerédi gave a proof first for k = 4 [Sz1] and then for general k [Sz2]. In 1977 Furstenberg [F] gave a proof
by ergodic theoretic techniques and in 1998 Gowers [G] gave a proof for Szemerédi’s Theorem using higher Fourier
analysis.

In this course I will sketch ergodic, depending on the amount of time available I will review some of the history of
the subject. I will also sketch the analytic proof of Szemerédi theorem as well as the ergodic proof and I will try to
describe their connection.
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