Existence of Minimal Logarithmic Signature for Finite Simple Groups

A. R. Ashrafi¹ and A. R. Rahimipour²

¹Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51116, I. R. Iran
²Department of Mathematics, Faculty of Science, University of Qom, P.O. Box 37161-46611, Qom, I. R. Iran

March 31, 2015

Abstract

A logarithmic signature (*LS* for short) of a finite group *G* is a sequence $\alpha = [A_1, \dots, A_s]$ of subsets of *G* such that every element $g \in G$ can be uniquely written in the form $g = g_1 \cdots g_s$, where $g_i \in A_i$, $1 \leq i \leq s$. The number $\sum_{i=1}^s |A_i|$ is called the length of α and denoted by $l(\alpha)$. An observation by González Vasco and Steinwandt shows that $l(\alpha) \geq \sum_{i=1}^s m_i p_i$. A logarithmic signature α is said to be minimal (*MLS*) if $l(\alpha) = \sum_{i=1}^s m_i p_i$.

In this talk, recent progress on this conjecture is reported. We also present an efficient algorithm for providing MLS for sporadic groups.

Keywords: Minimal logarithmic signature, sporadic group.

AMS Subject Classification Number: 05C25, 05C50.

References

 M. I. González Vasco, M. Rötteler and R. Steinwandt, On minimal length factorizations of finite groups, *Exp. Math.* 12 (1) (2003) 1–12.

- [2] M. I. González Vasco and R. Steinwandt, Obstacles in two public key cryptosystems based on group factorizations, *Tatra Mt. Math. Publ.* 25 (2002) 23–37.
- [3] S. S. Magliveras and N. D. Memon, Algebraic properties of cryptosystem PGM, J. Cryptol. 5 (1992) 167–183.
- [4] S. S. Magliveras and N. D. Memon, Properties of cryptosystem PGM, in Advances in Cryptology – Crypto '89, Lecture Notes in Computer Science 435, Springer-Verlag, Berlin (1990), pp. 447–460.