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Abstract

The main purpose of this course is to present some of the main ideas of infinite
dimensional Lie theory and to explain how it differs from the finite dimensional
theory. In the introductory section, we present some of the main types of infinite
dimensional Lie groups: linear Lie groups, groups of smooth maps and groups
of diffeomorphisms. We then turn in some more detail to manifolds modeled on
locally convex spaces and the corresponding calculus (Section 2). In Section 3,
we present some basic Lie theory for locally convex Lie groups. The Fundamental
Theorem for Lie group-valued functions on manifolds and some of its immediate
applications are discussed in Section 4. For many infinite dimensional groups, the
exponential function behaves worse than for finite dimensional ones or Banach–
Lie groups. Section 5 is devoted to the class of locally exponential Lie groups
for which the exponential function is a local diffeomorphism in 0. We conclude
these notes with a brief discussion of the integrability problem for locally convex
Lie algebras: When is a locally convex Lie algebra the Lie algebra of a global Lie
group?
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group, integrable Lie algebra, locally convex Lie group, continuous inverse alge-
bra.
Mathematics Subject Index 2010: 22E65.

Contents

1 Introduction 3
1.1 Some history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Linear Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Groups of continuous and smooth maps . . . . . . . . . . . . . . . . . . . 6
1.4 Groups of homeomorphisms and diffeomorphisms . . . . . . . . . . . . . 7

1.4.1 The homeomorphism group as a discrete group . . . . . . . . . . 7
1.4.2 Diffeomorphism groups . . . . . . . . . . . . . . . . . . . . . . . . 8

1



1.4.3 Diffeomorphism of non-compact manifolds . . . . . . . . . . . . . 9
1.4.4 Similarity with the unitary group . . . . . . . . . . . . . . . . . . 9
1.4.5 Diffeomorphisms in infinite dimensions . . . . . . . . . . . . . . . 10

1.5 Exercises for Section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Infinite dimensional manifolds 12
2.1 Locally convex spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Calculus on locally convex spaces . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Differentiable manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Exercises for Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Infinite dimensional Lie groups 42
3.1 Infinite dimensional Lie groups and their Lie algebras . . . . . . . . . . . 43
3.2 The adjoint representation . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 The diffeomorphism group . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 From local data to global Lie groups . . . . . . . . . . . . . . . . . . . . 53
3.5 Exercises for Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 The Fundamental Theorem for Lie group-valued functions 58
4.1 Logarithmic derivatives and their applications . . . . . . . . . . . . . . . 59

4.1.1 Equivariant differential forms and Lie algebra cohomology . . . . 59
4.1.2 Maurer–Cartan forms and logarithmic derivatives . . . . . . . . . 60

4.2 Regular Lie groups and the Fundamental Theorem . . . . . . . . . . . . 64
4.2.1 The Fundamental Theorem . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 The non-simply connected case . . . . . . . . . . . . . . . . . . . 70

4.3 Exercises for Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Locally exponential Lie groups and Lie subgroups 72
5.1 Locally exponential Lie groups . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Diff(S1) is not locally exponential . . . . . . . . . . . . . . . . . . 78
5.1.2 The structure of abelian Lie groups . . . . . . . . . . . . . . . . . 80
5.1.3 Lie subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.4 Algebraic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.5 Analytic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Exercises for Section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Integrability of Lie algebras 88

A Characters of the algebra of smooth functions 93

B The compact open topology 94

2



C Lie algebra cohomology 98
C.1 Cohomology with values in topological modules . . . . . . . . . . . . . . 98
C.2 Affine actions of Lie algebras and 1-cocycles . . . . . . . . . . . . . . . . 102
C.3 Abelian extensions and 2-cocycles . . . . . . . . . . . . . . . . . . . . . . 103

1 Introduction

Symmetries play a decisive role in the natural sciences and throughout mathematics.
Infinite dimensional Lie theory deals with symmetries depending on infinitely many pa-
rameters. Such symmetries may be studied on an infinitesimal, local or global level,
which amounts to studying Lie algebras, local Lie groups or global Lie groups, respec-
tively.

Finite dimensional Lie theory was created in the late 19th century by Marius Sophus
Lie, who showed that in finite dimensions the local and the infinitesimal theory are
essentially equivalent. The differential geometric approach to finite dimensional global
Lie groups (as smooth or analytic manifolds) is naturally complemented by the theory
of algebraic groups with which it interacts most fruitfully. A crucial point of the finite
dimensional theory is that finiteness conditions permit to develop a full-fledged struc-
ture theory of finite dimensional Lie groups in terms of the Levi splitting and the fine
structure of semisimple groups.

In infinite dimensions, the passage from the infinitesimal to the local and from there
to the global level is not possible in general, so that the theory splits into three properly
distinct levels. A substantial part of the literature on infinite dimensional Lie theory
exclusively deals with of Lie algebras (the infinitesimal level), their structure, and their
representations. However, only special classes of groups, such as Kac–Moody groups
or certain direct limit groups, can be approached by purely algebraic methods. This is
relevant for many applications in mathematical physics, where the infinitesimal approach
is convenient for calculations, but a global perspective is need to understand geometric
and topological phenomena. A similar statement applies to non-commutative geometry,
where derivations and covariant derivatives are ubiquitous, but global symmetry groups
are often neglected.

In these lectures, we concentrate on the local and global level of infinite dimensional
Lie theory, as well as the mechanisms allowing or preventing to pass from one level to
another. Our studies are based on a notion of a Lie group which is both simple and
very general: A Lie group is a manifold, endowed with a group structure such that
multiplication and inversion are smooth maps. The main difference compared to the
finite dimensional theory concerns the notion of a manifold: The manifolds we consider
shall not be finite dimensional, but modeled on an arbitrary locally convex space. It is
quite useful to approach Lie groups from such a general perspective, because this enables
a unified discussion of all basic aspects of the theory. To obtain more specific results, it
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is essential to focus on individual classes of Lie groups. In this introduction, we discuss
several classes of infinite dimensional Lie groups without going into details. The main
purpose is to give an impression of the enormous variety of infinite dimensional Lie
groups.

1.1 Some history

The concept of a Banach–Lie group, i.e., a Lie group modeled on a Banach space,
has been introduced by G. Birkhoff in [Bi38]. The step to more general classes of
infinite dimensional Lie groups modeled on complete locally convex spaces occurs first
in an article of Marsden and Abraham [MA70] in the context of hydrodynamics. This
Lie group concept has been worked out by J. Milnor in his Les Houches lecture notes
[Mil83] which provide many basic results of the general theory. The observation that the
completeness condition on the underlying locally convex space can be omitted for the
basic theory is due to H. Glöckner [Gl02a]. This is important for quotient constructions
because quotients of complete locally convex spaces need not be complete.

There are other, weaker, concepts of Lie groups, resp., infinite dimensional manifolds.
One is based on the “convenient setting” for global analysis developed by Fröhlicher,
Kriegl and Michor [FK88, KM97]. In the context of Fréchet manifolds, this setting
does not differ from ours, but for more general model spaces it provides a concept of a
smooth map which does not imply continuity, hence leads to “Lie groups” which are not
topological groups. Another approach is based on the concept of a diffeological space
due to J.-M. Souriau [So85] which can be used to study spaces like quotients of R by non-
discrete subgroups in a differential geometric context. It has the important advantage
that the category of diffeological spaces is cartesian closed and that any quotient of
a diffeological space carries a natural diffeology. On the other hand, this incredible
freedom creates some quite ugly creatures.

Throughout these notes, K ∈ {R,C} and all vector spaces are real or complex. For
two topological vector spaces V,W , we write L(V,W ) for the space of continuous linear
operators V → W and put L(V ) := L(V, V ).

1.2 Linear Lie groups

In finite dimensional Lie theory, a natural approach to Lie groups is via matrix groups,
i.e., subgroups of the group GLn(R) of invertible real n × n-matrices. Since every
finite dimensional algebra can be embedded into a matrix algebra, this is equivalent to
considering subgroups of the unit groups

A× := {a ∈ A : (∃b ∈ A)ab = ba = 1}
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of finite dimensional unital associative algebras A. The advantage of this approach
is that, under mild completeness assumptions, one can define the exponential function
quite directly via the exponential series and thus take a shortcut to several deeper results
on Lie groups [HN12]. This approach also works quite well in the context of Banach–Lie
groups. Here the linear Lie groups are subgroups of unit groups of Banach algebras, but
this setting is too restrictive for many applications of infinite dimensional Lie theory.

Let V be a locally convex space and A := L(V ) the unital associative algebra of all
continuous linear endomorphisms of V . Its unit group is the general linear group GL(V )
of V , but unfortunately there is no natural manifold structure on GL(V ) if V is not a
Banach space [Ma63]. In particular, it is far from being open, as follows from the fact
that if the spectrum of the operator A is unbounded, then there exists no ε > 0 sucht
that, for every t ∈ [−ε, ε] the operator 1 + tA is invertible. Therefore it is much more
natural to consider a class of well-behaved associative algebras instead of the algebras
of the form L(V ) for general locally convex spaces.

We shall see that the most natural class of algebras for infinite dimensional Lie
theory are the so-called continuous inverse algebras (cias). These are unital locally
convex algebras A with continuous multiplication such that the unit group A× is open
and the inversion is a continuous map A× → A.

Remark 1.1. (a) Each unital Banach algebra A is a continuous inverse algebra. In
fact, if ‖ · ‖ is a sub-multiplicative norm on A with ‖1‖ = 1, then for each x ∈ A with
‖x‖ < 1 we have 1− x ∈ A× with

(1− x)−1 =
∞∑
k=0

xk,

and the geometric series, also called the Neumann series in this context, converges
uniformly on each ball Br(0) with r < 1. We conclude that A× contains B1(1) and that
inversion is continuous on this ball. Now elementary arguments imply that A× is open
and that inversion is continuous (Exercise 1.1).

(b) For each Banach space V , the algebra L(V ) of continuous linear operators on V
is a unital Banach algebra with respect to the operator norm

‖ϕ‖ := sup{‖ϕ(v)‖ : ‖v‖ ≤ 1},

hence in particular a cia.
(c) For each cia A and n ∈ N, the matrix algebra Mn(A) also is a cia when endowed

with the product topology obtained by identifying it with An2
(cf. [Bos90, Exercise I.3];

see also [Ne08]).
(d) If M is a compact manifold, then the algebra C∞(M,C) is a continuous inverse

algebra (cf. Section 2 for the topology on this algebra).
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(e) Let B be a Banach algebra and α : G×B → B be a strongly continuous action of
the finite dimensional Lie group G on B by isometric automorphisms. Then the space
A := B∞ of smooth vectors for this action is a dense subalgebra and a Fréchet cia
(cf. [Bos90, Prop. A.2.9]).

We shall see below that the unit group of a cia is a Lie group, when endowed with
its natural manifold structures as an open subset. This property clearly shows that in
the context of infinite dimensional Lie theory over locally convex spaces, cias form the
natural class of algebras to be considered.

In view of Remark 1.1(c), GLn(A) is a Lie group for each cia A. We think of “Lie
subgroups” of these groups as linear Lie groups, but we shall only see later in Section 5
how and in how many ways the notion of a Lie subgroup can be made more precise.
Note that most classical Lie groups are defined as centralizers of certain matrices or
as the set of fixed points for a group of automorphisms. All these constructions have
natural generalizations to matrices with entries in cias.

1.3 Groups of continuous and smooth maps

In the context of Banach–Lie groups, one constructs Lie groups of mappings as follows.
For a compact space X and a Banach–Lie group K, the group C(X,K) of continuous
maps is a Banach–Lie group with Lie algebra C(X, k), where k := L(K) is the Lie algebra
of K.

In the larger context of locally convex Lie groups, one also obtains for each Lie group
K and a compact smooth manifold M a Lie group structure on the group C∞(M,K)
of smooth maps from M to K. This is a Fréchet–Lie group if K is a Fréchet–Lie group
and its Lie algebra is C∞(M, k).

The passage from continuous maps to smooth maps is motivated by the behavior
of central extensions of these groups. The groups C∞(M,K) have much more central
extensions than the groups C(M,K), hence exhibit a richer geometric structure. Closely
related is the fact that algebras of smooth functions have much more derivations than
algebras of continuous functions (cf. also the discussion in Subsection 1.4).

A larger class of groups of smooth maps is obtained as gauge groups of principal
bundles. If q : P → B is a smooth principal bundle with structure group K and

σ : P ×K → P, (p, k) 7→ σk(p) = p.k

denotes the right action of K on P , then

Gau(P ) := {ϕ ∈ Diff(P ) : q ◦ ϕ = q, (∀k ∈ k) ϕ ◦ σk = σk ◦ ϕ}

is called the gauge group of the bundle and its elements are called gauge transformations.
In view of q◦ϕ = q, each gauge transformation ϕ can be written as ϕ(p) = p.f(p) for some
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smooth function f : P → K, and from ϕ ◦ σk = σk ◦ ϕ we derive that kf(p.k) = f(p)k,
i.e.,

f(p.k) = k−1f(p)k for p ∈ P, k ∈ K. (1)

Conversely, every smooth function f : P → K satisfying (1) defines a gauge transforma-
tion by ϕf (p) := p.f(p). Moreover,

ϕf1(ϕf2(p)) = ϕf2(p).f1

(
ϕf2(p)

)
= p.(f2(p)f1(p.f2(p))) = p.(f1(p)f2(p)) = ϕf1f2(p)

implies that we obtain an isomorphism of groups

C∞(P,K)K := {f ∈ C∞(P,K) : (∀p ∈ P )(∀k ∈ K) f(p.k) = k−1f(p)k}
→ Gau(P ), f 7→ ϕf ,

where C∞(P,K)K carries the group structure defined by the pointwise product.
We may therefore view Gau(P ) as a subgroup of the group C∞(P,K), endowed with

the pointwise product, and we shall see below under which requirements on the bundle
and the structure group K one can show that Gau(P ) is a Lie group.

If the bundle P is trivial, then there exists a smooth global section
σ : B → P , and the map

C∞(P,K)K → C∞(M,K), f 7→ f ◦ σ

is an isomorphism of groups.

1.4 Groups of homeomorphisms and diffeomorphisms

Interesting groups arise naturally from geometric or other structures on spaces as their
automorphism groups. In the spirit of Felix Klein’s Erlangen Program [Kl1872], ge-
ometric structures are even defined in terms of their automorphism groups. In this
section, we take a closer look at the homeomorphism group Homeo(X) of a topological
space X, the diffeomorphism group Diff(M) of a smooth manifold M and relate them
to the automorphism groups of the corresponding algebras of continuous and smooth
functions.

1.4.1 The homeomorphism group as a discrete group

If X is a topological space, then the group Homeo(X) acts naturally by automorphisms
on the algebra C(X,R) of continuous real-valued functions on X by algebra automor-
phisms via

(ϕ.f)(x) := f(ϕ−1(x)).
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If, in addition, X is compact, then C(X,R) has a natural Banach algebra structure
given by the sup-norm, and with Gelfand duality the space X can be recovered from
this algebra as

X ∼= Homalg(C(X,R),R) \ {0}

in the sense that every non-zero algebra homomorphism C(X,R) → R (which is auto-
matically continuous) is given by a point evaluation δp(f) = f(p). The topology on X
can be recovered from C(X,R) by endowing Homalg(C(X,R),R) with the topology of
pointwise convergence on C(X,R).

For any Banach algebra A, the group Aut(A) carries a natural Lie group structure
(as a Lie subgroup of GL(A)), so that Homeo(X) ∼= Aut(C(X,R)) inherits a natural
Lie group structure when endowed with the topology inherited from the Banach algebra
L(C(X,R)). We claim that this topology turns Homeo(X) into a discrete group. In
fact, if ϕ is a non-trivial homeomorphism of X and p ∈ X is moved by ϕ, then there
exists a continuous function f ∈ C(X,R) with ‖f‖ = 1, f(p) = 0 and f(ϕ−1(p)) = 1.
Then ‖ϕ.f − f‖ ≥ 1 implies that ‖ϕ − 1‖ ≥ 1. Therefore the group Homeo(X) is
discrete. Since exponentials of continuous derivations yield one-parameter groups of
automorphisms, it follows that der(C(X,R)) = {0}.

Nevertheless, one considers continuous actions of connected Lie groups G on X,
where the continuity of the action means that the action map α : G×X → X, (g, x) 7→
αg(x) is continuous. But this does not mean that the corresponding homomorphism
G → Homeo(X), g 7→ αg is continuous. We will see that this phenomenon, i.e., that
certain automorphism groups are endowed with Lie group structures which are too fine
for many purposes, occurs at several levels of the theory (cf. also Exercise 1.5).

1.4.2 Diffeomorphism groups

Now let M be a compact smooth manifold and consider the Fréchet algebra A :=
C∞(M,R) of smooth functions on M (cf. Example 2.4). In this context, we also have

M ∼= Hom(C∞(M,R),R) \ {0}

in the sense that every non-zero algebra homomorphism C∞(M,R) → R is given by a
point evaluation δp(f) := f(p) for some p ∈M (see Theorem A.1). The smooth structure
on M is completely determined by the requirement that the maps M → R, p 7→ δp(f) are
smooth. This implies that the group Aut(C∞(M,R)) of automorphisms of C∞(M,R)
can be identified with the group Diff(M) of all diffeomorphisms of M .

In sharp contrast to the topological context, the group Diff(M) has a non-trivial
structure as a Lie group modeled on the space V(M) of (smooth) vector fields on M ,
which then is the Lie algebra of (the opposite of) this group. Moreover, for a finite
dimensional Lie group G, smooth left actions α : G×M →M correspond to Lie group
homomorphisms G→ Diff(M). For G = R, we obtain in particular the correspondence
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between smooth flows on M , smooth vector fields on M , and one-parameter subgroups
of Diff(M). If X ∈ V(M) is a vector field and ΦX : R → Diff(M), t 7→ ΦX

t the corre-
sponding flow, then

exp: V(M)→ Diff(M), X 7→ ΦX
1

is the exponential function of the Fréchet–Lie group Diff(M).
Other important groups of diffeomorphisms arise as subgroups of Diff(M). Of par-

ticular importance is the stabilizer subgroup Diff(M,µ) of a volume form µ on M (if M
is orientable), and the stabilizer Sp(M,ω) of a symplectic form ω if (M,ω) is symplectic
(cf. [KM97]).

1.4.3 Diffeomorphism of non-compact manifolds

If M is a paracompact finite dimensional smooth manifold, then we still have

M ∼= Hom(C∞(M,R),R) \ {0} and Diff(M) ∼= Aut(C∞(M,R))

(Theorem A.1), but then there is no natural Lie group structure on Diff(M) such
that smooth actions of Lie groups G on M correspond to Lie group homomorphisms
G→ Diff(M).

It is possible to turn Diff(M) into a Lie group with Lie algebra Vc(M), the Lie
algebra of all smooth vector fields with compact support. If M is compact, this yields
the aforementioned Lie group structure on Diff(M), but if M is not compact, then
the corresponding topology on Diff(M) is so fine that the global flow generated by a
vector field whose support is not compact does not lead to a continuous homomorphism
R → Diff(M). For this Lie group structure, the normal subgroup Diffc(M) of all
diffeomorphisms which coincide with idM outside a compact set is an open subgroup
([KM97]).

1.4.4 Similarity with the unitary group

The situation for non-compact manifolds is similar to the situation we encounter in the
theory of unitary group representations. Let H be a Hilbert space and U(H) its unitary
group. This group has two natural topologies. The uniform topology on U(H) inherited
from the Banach algebra L(H) turns it into a Banach–Lie group U(H)n, but this topol-
ogy is rather fine. The strong operator topology (the topology of pointwise convergence)
turns U(H) into a topological group U(H)s such that continuous unitary representations
of a topological group G correspond to continuous group homomorphisms G → U(H).
If G is a finite dimensional Lie group, then a continuous unitary representation is con-
tinuous with respect to the uniform topology on U(H) if and only if all operators of the
derived representation are bounded, but this implies already that the representation fac-
tors through a Lie group with compact Lie algebra (cf. [Si52], [Gu80, Exercise I.6]). In
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some sense, the condition that the operators of the derived representation are bounded
is analogous to the requirement that the vector fields corresponding to a smooth action
on a manifold have compact support. In this sense, the uniform topology on U(H)
shows similarities to the Lie group structure from Subsection 1.4.3 on Diff(M) if M is
non-compact. The case of a compact manifold M corresponds to the case of a finite
dimensional Hilbert space H, for which the two topologies on U(H) coincide.

1.4.5 Diffeomorphisms in infinite dimensions

Clearly, the situation becomes worse if M is an infinite dimensional manifold. Then
Diff(M) has no natural group topology, but we can still make sense of smooth maps
f : N → Diff(M), where N is a smooth manifold, by requiring that the corresponding
map

N ×M →M2, (n,m) 7→ (f(n)(m), f(n)−1(m))

is smooth. In this sense, a smooth action of a Lie group G on M is a smooth homomor-
phism G→ Diff(M).

Similar statements hold for the group GL(V ), where V is a general locally convex
space ([GN]).

1.5 Exercises for Section 1

Exercise 1.1. For an associative K-algebra A, we write A+ for the algebra A×K with
the multiplication

(a, s)(b, t) := (ab+ sb+ ta, st).

(1) Verify that A+ is a unital algebra with unit 1 = (0, 1).

(2) Show that GL1(A) := A×+ ∩ (A× {1}) is a group.

(3) If e ∈ A is an identity element, then A+ is isomorphic to the direct product algebra
A×K with the product (a, s)(b, t) = (ab, st).

Exercise 1.2. A topological ring is a ring R endowed with a topology for which addition
and multiplication are continuous. Let R be a unital topological ring. Show that:

(1) For x ∈ R×, the left and right multiplications λx(y) := xy and ρx(y) := yx are
homeomorphisms of R.

(2) The unit group R× is open if and only if it is a neighborhood of 1.

(3) The inversion R× → R is continuous, i.e., (R×, ·) is a topological group, if it is
continuous in 1.
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Exercise 1.3. Let R be a unital ring, n ∈ N and Mn(R) the ring of all (n×n)-matrices
with entries in R. In the following, we write elements x ∈Mn(R) as

x =

(
a b
c d

)
∈Mn(R) =

(
Mn−1(R) Mn−1,1(R)
M1,n−1(R) R

)
=

(
Mn−1(R) Rn−1

(Rn−1)> R

)
.

(1) Show that a matrix x is of the form(
1 β
0 1

)(
α 0
0 δ

)(
1 0
γ 1

)
with α ∈ GLn−1(R), β, γ> ∈ Rn−1, δ ∈ R×

if and only if d ∈ R×, a− bd−1c ∈ GLn−1(R), and that in this case

δ = d, β = bd−1, γ = d−1c, α = a− bd−1c.

(2) Assume, in addition, that R is a topological ring with open unit group and con-
tinuous inversion. Show by induction on n that

(a) GLn(R) is open in Mn(R).

(b) Inversion in GLn(R) is continuous, i.e., GLn(R) is a topological group.

Exercise 1.4. Let R be a unital ring and consider the right R-module Rn, where
the module structure is given by (x1, . . . , xn).r := (x1r, . . . , xnr). Let M be a right
R-module, σ : r 7→ rσ an involution on R, i.e., an involutive anti-automorphism and
ε ∈ {±1}. A biadditive map β : M ×M → R is called σ-sesquilinear if

β(x.r, y.s) = rσβ(x, y)s for x, y ∈M, r, s ∈ R.

It is called σ-ε-hermitian if, in addition,

σ(x, y)σ = εσ(y, x) for x, y ∈M.

For ε = 1, we call the form σ-hermitian and σ-antihermitian for ε = −1. For a σ-ε-
hermitian form β on M ,

U(M,β) := {ϕ ∈ AutR(M) : (∀x, y ∈M) β(ϕ(x), ϕ(y)) = β(x, y)}

is called the corresponding unitary group. Show that:

(1) EndR(Rn) ∼= Mn(R), where Mn(R) operates by left multiplication on column
vectors on Rn.

(2) AutR(Rn) ∼= GLn(R).
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(3) β(x, y) :=
∑n

i=1 x
σ
i yi is a σ-hermitian form on Rn. Describe the corresponding

unitary group in terms of matrices.

(4) β(x, y) :=
∑n

i=1 x
σ
i yn+i − xσn+iyi is a σ-antihermitian form on R2n. Describe the

corresponding unitary group in terms of matrices.

Exercise 1.5. Let X be a topological space and endow the set C(X,X) of continuous
self-maps of X with the compact open topology, i.e., the topology generated by the sets
W (K,O) := {f ∈ C(X,X) : f(K) ⊆ O}, where K ⊆ X is compact and O ⊆ X is open
(cf. Appendix B). We endow the group Homeo(X) with the initial topology with respect
to the map

Homeo(X)→ C(X,X)2, ϕ 7→ (ϕ, ϕ−1).

Show that, if X is locally compact, then this topology turns Homeo(X) into a topological
group. Hint: If f ◦ g ∈ W (K,O) choose a compact subset K ′ and an open subset O′

with g(K) ⊆ O′ ⊆ K ′ ⊆ f−1(O)

Exercise 1.6. Let G be a finite dimensional connected Lie group and π : G→ GL(X) be
a faithful representation which is continuous when GL(X) carries the uniform topology
inherited from the Banach algebra L(X) and for which π(G) is bounded. Show that
g := L(G) is a compact Lie algebra by using the following steps:

(1) π is a smooth homomorphism of Lie groups. In particular, we have a representation
of the Lie algebra L(π) : g→ L(X).

(2) ‖x‖ := ‖L(π)(x)‖ defines a norm on g, and Ad(G) is bounded with respect to this
norm.

(3) Ad(G) has compact closure, so that g is a compact Lie algebra.

If, in addition, X is a Hilbert space, then one can even show that there exists a scalar
product compatible with the topology which is invariant under G, so that π becomes
a unitary representation with respect to this scalar product. This can be achieved by
showing that the set of all compatible scalar products is a Bruhat–Tits space and then
applying the Bruhat–Tits Fixed Point Theorem ([La99]).

2 Infinite dimensional manifolds

In this section, we turn to some more details on infinite dimensional manifolds. First we
briefly discuss the concept of a locally convex space, then the basics and the peculiarities
of calculus on these spaces, and finally manifolds modeled on locally convex spaces.

In this section, V always denotes a K-vector space and K is R or C.
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2.1 Locally convex spaces

Definition 2.1. (a) Let V be a K-vector space. A seminorm is a function p : V → R+

satisfying

(SN1) p(λx) = |λ|p(x) for λ ∈ K, x ∈ V .

(SN2) p(x+ y) ≤ p(x) + p(y) for x, y ∈ V (Subadditivity).

If, in addition, p(x) > 0 for x ∈ V \ {0}, then p is called a norm.
If p is a seminorm on a K-vector space V , then Np := p−1(0) is a subspace of V ,

and Vp := V/Np is a normed space with ‖v + Np‖ := p(v). Let αp : V → Vp denote the
corresponding quotient map.

(b) We call a set P of seminorms on V separating if p(v) = 0 for all p ∈ P implies
v = 0. This is equivalent to the linear map

α : V →
∏
p∈P

Vp, v 7→ (αp(v))p∈P

being injective.
(c) If X is a set and fj : X → Xj, j ∈ J , are mappings into topological spaces,

then the coarsest topology on X for which all these maps are continuous is called the
initial topology on X with respect to the family (fj)j∈J . This topology is generated by
the inverse images of open subsets of the spaces Xj under the maps fj. Combining the
functions fj to a single function

f : X →
∏
j∈J

Xj, x 7→ (fj(x))j∈J ,

the initial topology on X is nothing but the inverse image of the product topology
under f .

(d) To each separating family P of seminorms on V we associate the initial topology
τP on V defined by the maps αp : V → Vp to the normed spaces Vp. We call it the locally
convex topology on V defined by P .

Since the family P is separating, V is a Hausdorff space. Further it is easy to show
that V is a topological vector space in the sense that addition and scalar multiplication
on V are continuous maps.

A locally convex space is a vector space endowed with a topology defined by a sep-
arating family of seminorms. The preceding argument shows that each locally convex
space is in particular a topological vector space which can be embedded into a product∏

p∈P Vp of normed spaces.
(e) A locally convex space V is called a Fréchet space if its topology can be defined

by a countable family P = {pn : n ∈ N} of seminorms and if V is complete with respect

13



to the compatible metric

d(x, y) :=
∑
n∈N

2−n
pn(x− y)

1 + pn(x− y)
.

Remark 2.2. (a) A sequence (xn)n∈N in a locally convex space V is said to be a Cauchy
sequence if each sequence αp(xn), p ∈ P , is a Cauchy sequence in Vp. We say that V is
sequentially complete if every Cauchy sequence in V converges.

(b) One has a natural notion of completeness for locally convex spaces (every Cauchy
filter converges). Complete locally convex spaces can be characterized as those isomor-
phic to closed subspaces of products of Banach spaces. In fact, let V p denote the
completion of the normed space Vp. We then have a topological embedding

α : V →
∏
p∈P

V p, v 7→ (αp(v))p∈P ,

and the completeness of V is equivalent to the closedness of α(V ) in the product of the
Banach spaces V p, which is a complete space (Exercise 2.8).

Examples 2.3. (a) Let X be a topological space. For each compact subset K ⊆ X, we
obtain a seminorm pK on C(X,R) by

pK(f) := sup{|f(x)| : x ∈ K}.

The family P of these seminorms defines on C(X,R) the locally convex topology of
uniform convergence on compact subsets of X.

If X is compact, then we may take K = X and obtain a norm on C(X,R) which
defines the topology; all other seminorms pK are redundant (cf. Exercise 2.1). In this
case, C(X,R) is a Banach space.

(b) The preceding example can be generalized to the space C(X, V ), where X is a
topological space and V is a locally convex space. Then we define for each compact
subset K ⊆ X and each continuous seminorm q on V a seminorm

pK,q(f) := sup{q(f(x)) : x ∈ K}.

The family of these seminorms defines a locally convex topology on C(X, V ), the topology
of uniform convergence on compact subsets of X (cf. Appendix B).

(c) If X is locally compact and countable at infinity, then there exists a sequence
(Kn)n∈N of compact subsets of X with

⋃
nKn and Kn ⊆ K0

n+1. We call such a sequence
(Kn)n∈N an exhaustion of X. Then each compact subset K ⊆ X lies in some Kn, so that
each seminorm pK is dominated by some pKn . This implies that C(X,R) is metrizable,
and since it is also complete, it is a Fréchet space. It even is a Fréchet algebra in the
sense that the algebra multiplication is continuous (cf. Exercise 2.4).
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(d) For any set X, the space RX of all real-valued function X → R is a locally convex
space with respect to the product topology. The topology is defined by the seminorms
px defined by px(f) := |f(x)|, x ∈ X. This space is complete, and it is metrizable if and
only if X is countable.

Example 2.4. (a) Let U ⊆ Rn be an open subset and consider the algebra C∞(U,R).
For each multiindex m = (m1, . . . ,mn) ∈ N0 with |m| := m1 + . . .+mn, we consider the
differential operator

Dm := Dm1
1 · · ·Dmn

n :=
∂|m|

∂m1
1 · · · ∂mn

n

.

We now obtain for each m and each compact subset K ⊆ U a seminorm on C∞(U,R)
by

pK,m(f) := sup{|Dmf(x)| : x ∈ K}.

The family of all these seminorms defines a locally convex topology on C∞(U,R).
To obtain an exhaustion of U , we choose a norm ‖·‖ on Rn and consider the compact

subsets
Kn :=

{
x ∈ U : ‖x‖ ≤ n, dist(x, U c) ≥ 1

n

}
,

where U c := Rn \ U denotes the complement of U and

dist(x, U c) := inf{‖x− y‖ : y ∈ U c}

is a continuous function (Exercise 2.5). It is easy to see that (Kn)n∈N is an exhaustion
of U , so that the topology on C∞(U,R) can be defined by a countable set of seminorms.
Moreover, C∞(U,R) is complete with respect to the corresponding metric, and the
multiplication on this algebra is continuous, so that it is a Fréchet algebra (Exercise 2.6).

(b) Let M be a smooth n dimensional manifold and consider the algebra C∞(M,R).
If (ϕ,U) is a chart of M , then ϕ(U) is an open subset of some Rn, so that, in view of
(a), we have already a Fréchet algebra structure on C∞(ϕ(U),R). We now consider the
map

Φ: C∞(M,R) ↪→
∏

(ϕ,U)

C∞(ϕ(U),R), f 7→ (f |U ◦ ϕ−1)(ϕ,U)

and endow the right hand side with the product topology, turning it into a locally convex
algebra (Exercise 2.8). Therefore the inverse image of this topology turns C∞(M,R)
into a locally convex algebra.

This description is convenient, but not very explicit. To see how it can be defined
by seminorms, note that for each compact subset K ⊆M for which there exists a chart
ϕ : U → Rn with K ⊆ U and for each multiindex m ∈ Nn

0 we have a seminorm

pK,m(f) := sup{|Dm(f ◦ ϕ−1)(x)| : x ∈ ϕ(K)}.
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It is easy to see that these seminorms define the topology on C∞(M,R) and that we
thus obtain the structure of a Fréchet algebra on C∞(M,R). The topology is called the
topology of local uniform convergence of all partial derivatives.

(c) If M is a finite dimensional paracompact complex manifold, then we consider the
algebra Hol(M,C) of holomorphic functions on M as a subalgebra of C(M,C), endowed
with the topology of uniform convergence on compact subsets of M (Example 2.3).
This topology turns Hol(M,C) into a Fréchet algebra. Moreover, one can show that the
injective map Hol(M,C) ↪→ C∞(M,C) is also a topological embedding (Exercise 2.9).

Definition 2.5. Let V be a vector space and αj : Vj → V linear maps, defined on locally
convex spaces Vj. We consider the system P of all those seminorms p on V for which
all compositions p ◦ αj are continuous seminorms on the spaces Vj. By means of P , we
obtain on V a locally convex topology called the final locally convex topology defined by
the mappings (αj)j∈J .

This locally convex topology has the universal property that a linear map ϕ : V → W
into a locally convex space W is continuous if and only if all the maps ϕ ◦αj, j ∈ J , are
continuous (Exercise).

Example 2.6. (a) Let X be a locally compact space and Cc(X,R) the space of com-
pactly supported continuous functions. For each compact subset K ⊆ X, we then have
a natural inclusion

αK : CK(X,R) := {f ∈ Cc(X,R) : supp(f) ⊆ K} ↪→ Cc(X,R).

Each space CK(X,R) is a Banach space with respect to the norm

‖f‖∞ := sup{|f(x)| : x ∈ X} = sup{|f(x)| : x ∈ K}.

We endow Cc(X,R) with the final locally convex topology defined by the maps αK
(Definition 2.5).

(b) Let M be a smooth manifold and consider the space C∞c (M,R) of smooth func-
tions with compact support. For each compact subset K ⊆ M , we then have a natural
inclusion

αK : C∞K (M,R) := {f ∈ C∞c (M,R) : supp(f) ⊆ K} ↪→ C∞c (M,R).

We endow each space C∞K (M,R) with the subspace topology inherited from C∞(M,R),
which turns it into a Fréchet space. We endow C∞c (M,R) with the final locally convex
topology defined by the maps αK (Definition 2.5).

2.2 Calculus on locally convex spaces

In this section, we briefly explain the cornerstones of calculus in locally convex spaces.
The main point is that one uses an appropriate notion of differentiability, resp., smooth-
ness which for the special case of Banach spaces differs from Fréchet differentiability but
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which is more convenient in the setup of locally convex spaces. Our basic references are
[Ha82] and [Gl02a], and in particular in [GN], which contains detailed proofs. One read-
ily observes that once one has the Fundamental Theorem of Calculus, then the proofs
of the finite dimensional case carry over (see also [BGN04]).

A different approach to differentiability in infinite dimensional spaces is provided by
the so-called convenient setting, developed in [FK88] and [KM97]. A central feature
of this approach is that smooth maps are no longer required to be continuous, but for
calculus over Fréchet spaces one finds the same class of smooth maps. The concept
of a diffeological space due to J.-M. Souriau [So85] goes much further. It is primarily
designed to study spaces with pathologies like quotients of R by non-discrete subgroups
in a differential geometric context.

Definition 2.7. Let X and Y be topological vector spaces, U ⊆ X open and f : U → Y
a map. Then the derivative of f at x in the direction of h is defined as

df(x)(h) := lim
t→0

1

t

(
f(x+ th)− f(x)

)
whenever the limit exists. The function f is called differentiable at x if df(x)(h) exists
for all h ∈ X. It is called continuously differentiable if it is differentiable at all points of
U and

df : U ×X → Y, (x, h) 7→ df(x)(h)

is a continuous map. It is called a C1-map if it is continuous and continuously differen-
tiable.

For n ≥ 2, a C1-map f is called a Cn-map if df is a Cn−1-map. It is called C∞

(or smooth) if it is Cn for each n ∈ N. This is the notion of differentiability used in
[Mil83, Ha82, Gl02a, Ne01].

(b) If X and Y are complex vector spaces, then the map f is called holomorphic if it
is C1 and for all x ∈ U the map df(x) : X → Y is complex linear (cf. [Mil83, p. 1027]).
We will see below that the maps df(x) are always real linear (Lemma 2.9).

(c) Higher derivatives are defined for Cn-maps by

dnf(x)(h1, . . . , hn) := lim
t→0

1

t

(
dn−1f(x+ thn)(h1, . . ., hn−1)− dn−1f(x)(h1, . . ., hn−1)

)
.

Remark 2.8. (a) If X and Y are Banach spaces, then the notion of continuous dif-
ferentiability is weaker than the usual notion of continuous Fréchet-differentiability in
Banach spaces, which requires that the map x 7→ df(x) is continuous with respect to the
operator norm. Nevertheless, one can show that a C2-map in the sense defined above
is C1 in the sense of Fréchet differentiability, so that the two concepts lead to the same
class of C∞-functions (cf. [Ne01, I.6 and I.7]).

(b) We also note that the existence of linear maps which are not continuous shows
that the continuity of f does not follow from the differentiability of f because each linear
map f : X → Y is differentiable at each x ∈ X in the sense of Definition 2.7(a).
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Now we recall the precise statements of the most fundamental facts on calculus on
locally convex spaces needed in the following.

Lemma 2.9. Let X and Y be locally convex spaces, U ⊆ X an open subset, and
f : U → Y a continuously differentiable function.

(i) For any x ∈ U , the map df(x) : X → Y is real linear and continuous.

(ii) (Fundamental Theorem of Calculus) If x+ [0, 1]h ⊆ U , then

f(x+ h) = f(x) +

∫ 1

0

df(x+ th)(h) dt.

In particular, f is locally constant if and only if df = 0.

(iii) f is continuous.

(iv) If f is Cn, n ≥ 2, then the functions (h1, . . . , hn) 7→ dnf(x)(h1, . . . , hn), x ∈ U ,
are symmetric n-linear maps.

(v) If x+ [0, 1]h ⊆ U and f is Cn, then we have the Taylor Formula

f(x+ h) = f(x) + df(x)(h) + . . .+
1

(n− 1)!
dn−1f(x)(h, . . . , h)

+
1

(n− 1)!

∫ 1

0

(1− t)n−1dnf(x+ th)(h, . . . , h) dt.

Proof. (i) For each linear functional λ ∈ Y ′ and h1, h2 ∈ X, the map

F (t1, t2) := λ(f(x+ t1h1 + t2h2))

is defined on an open 0-neighborhood in R2 and has continuous partial derivatives

∂F

∂t1
(t1, t2) = λ

(
df(x+ t1h1 + t2h2)(h1)

)
,

∂F

∂t2
(t1, t2) = λ

(
df(x+ t1h1 + t2h2)(h2)

)
.

From finite dimensional calculus we know that F is a C1-map and dF (0, 0) : R2 → R
is linear. This implies that λ ◦ df(x) is linear on span{h1, h2}. Since E ′ separates the
points (by the Hahn–Banach Theorem) of Y and h1, h2 are arbitrary, the map df(x) is
real linear. Its continuity follows from the continuity of df .

(ii) We consider for λ ∈ Y ′ the C1-map

F : I → R, F (t) := λ(f(x+ th))
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and obtain from the Fundamental Theorem in one variable

λ(f(x+ h)− f(x)) = F (1)− F (0) =

∫ 1

0

F ′(t) dt =

∫ 1

0

λ(df(x+ th)(h)) dt.

Since Y ′ separates the points of Y , this implies that the weak integral
∫ 1

0
df(x+th)(h) dt,

which a priori exists only in the completion of Y , actually defines an element of Y which
coincides with f(x+ h)− f(x).

(iii) Let p be a continuous seminorm on Y and ε > 0. Then there exists a balanced
0-neighborhood U1 ⊆ X with x + U1 ⊆ U and p

(
df(x + th)(h)

)
< ε for t ∈ [0, 1] and

h ∈ U1. Hence

p
(
f(x+ h)− f(x)

)
≤
∫ 1

0

p
(
df(x+ th)(h)

)
dt ≤ ε

(Exercise 2.12), and thus f is continuous.
(iv) Arguing as in (i), we may w.l.o.g. assume that Y = R. That the maps dnf(x)

are symmetric and n-linear follows by considering maps of the form

(t1, . . . , tn)→ f(x+ t1h1 + . . .+ tnhn)

on open 0-neighborhood in Rn and then applying the corresponding finite dimensional
result.

(v) We consider the Cn-map

F : I = [0, 1]→ R, F (t) := f(x+ th) with F (n)(t) = dnf(x+ th)(h, . . . , h)

and apply the Taylor Formula for Cn-functions I → R.

The following characterization of C1-functions is particularly convenient for the proof
of the Chain Rule.

Proposition 2.10. Let X and Y be locally convex spaces, U ⊆ X an open subset and
f : U → Y a map. Then

U [1] := {(x, h, t) ∈ U ×X ×K : x+ th ∈ U}

is an open subset of U × X × K and f is C1 if and only if there exists a continuous
function f [1] : U [1] → Y with

f [1](x, h, t) :=
1

t
(f(x+ th)− f(x)) for t 6= 0.

If this is the case, then
df(x)(h) = f [1](x, h, 0).
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Proof. The openness of U [1] follows from the continuity of the map

U ×X ×K→ X, (x, h, t) 7→ x+ th,

because U [1] is the inverse image of U under this map. If a continuous function f [1]

exists with the required properties, then clearly df(x)(h) = f [1](x, h, 0), which implies
that f is a C1-function.

Suppose, conversely, that f is C1. Since U is open, there exists for each x ∈ U a
convex balanced 0-neighborhood V ⊆ X with x+V ⊆ U . For y, th ∈ 1

2
V , we then have

y + [0, 1]th ⊆ U , so that Lemma 2.9(ii) implies that

1

t
(f(y + th)− f(y)) =

∫ 1

0

df(y + sth)(h) ds.

Since the right hand side defines a continuous function on the neighborhood

{(y, h, t) ∈ U [1] : y + [0, 1]th ⊆ U}

of U ×X × {0}, we see that

f [1](x, h, t) :=

{∫ 1

0
df(y + sth)(h) ds if x+ [0, 1]th ⊆ U

1
t
(f(x+ th)− f(x)) otherwise

is a continuous function on U [1] satisfying all requirements.

Proposition 2.11. (Chain Rule) If X, Y and Z are locally convex spaces, U ⊆ X and
V ⊆ Y are open, and f1 : U → V , f2 : V → Z are C1, then f2 ◦ f1 : U → Z is C1 with

d(f2 ◦ f1)(x) = df2

(
f1(x)

)
◦ df1(x) for x ∈ U.

Proof. We use the characterization of C1-function from Proposition 2.10. For (x, h, t) ∈
U [1], we have

1

t

(
(f2 ◦ f1)(x+ th)− (f2 ◦ f1)(x)

)
=

1

t

(
f2(f1(x) + tf

[1]
1 (x, h, t))− f2(f1(x))

)
= f

[1]
2 (f1(x), f

[1]
1 (x, h, t), t).

Since this is a continuous function on U [1], Proposition 2.10 implies that f2 ◦ f1 is C1.
For t = 0, we obtain in particular

d(f2 ◦ f1)(x)(h) = f
[1]
2 (f1(x), f

[1]
1 (x, h, 0), 0) = df2(f1(x))(df1(x)(h)).
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Proposition 2.12. If X1, X2 and Y are locally convex spaces, X = X1 ×X2, U ⊆ X
is open, and f : U → Y is continuous, then the partial derivatives

d1f(x1, x2)(h) := lim
t→0

1

t

(
f(x1 + th, x2)− f(x1, x2)

)
and

d2f(x1, x2)(h) := lim
t→0

1

t

(
f(x1, x2 + th)− f(x1, x2)

)
exist and are continuous if and only if f is C1. In this case, we have

df(x1, x2)(h1, h2) = d1f(x1, x2)(h1) + d2f(x1, x2)(h2).

Proof. If f is C1, then the existence and continuity of the partial derivatives d1f and
d2f follows by restricting df .

Suppose, conversely, that the partial derivatives df1 and df2 exist and that they are
continuous, so that they are also linear in the last argument (Lemma 2.9). For

(x1, x2) + ([0, 1]h1, [0, 1]h2) ⊆ U,

we then have

f(x1 + th1, x2 + th2)− f(x1, x2)

= f(x1 + th1, x2 + th2)− f(x1 + th1, x2) + f(x1 + th1, x2)− f(x1, x2)

=

∫ 1

0

df2(x1 + th1, x2 + sth2)(th2) ds+

∫ 1

0

d1f(x1 + sth1, x2)(th1) ds

= t
(∫ 1

0

df2(x1 + th1, x2 + sth2)(h2) ds+

∫ 1

0

d1f(x1 + sth1, x2)(h1) ds
)
.

Using the continuous dependence of integrals on parameters (Exercise 2.12(c)), we con-
clude that all directional derivatives of f exist and equal

df(x1, x2)(h1, h2) =

∫ 1

0

df2(x1, x2)(h2) ds+

∫ 1

0

d1f(x1, x2)(h1) ds

= d2f(x1, x2)(h2) + d1f(x1, x2)(h1).

Remark 2.13. (a) If f : X → Y is a continuous linear map, then f is smooth with

df(x)(h) = f(h)

for all x, h ∈ X, and dnf = 0 for n ≥ 2.
(b) From (a) and Proposition 2.12 it follows that a continuous k-linear map

m : X1 × . . .×Xk → Y
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is continuously differentiable with

dm(x)(h1, . . . , hk) = m(h1, x2, . . . , xk) + · · ·+m(x1, . . . , xk−1, hk).

Inductively one obtains that m is smooth with dk+1m = 0 (cf. Exercise 2.21).
(c) The addition map a : X ×X → X, (x, y) 7→ x+ y of a topological vector space is

smooth. In fact, we have

da(x, y)(v, w) = v + w = a(v, w),

so that a is a C1-map. Inductively it follows that a is smooth.
(d) If f : U → Y is Cn+1, then Lemma 2.9(iv) and Proposition 2.12 imply that

d(dnf)(x, h1, . . . , hn)(y, k1, . . . , kn) = dn+1f(x)(h1, . . . , hn, y)

+ dnf(x)(k1, h2, . . . , hn) + . . .+ dnf(x)(h1, . . . , hn−1, kn).

It follows in particular that, whenever f is Cn, then f is Cn+1 if and only if dnf is C1.
(e) If f : U → Y is holomorphic, then the finite dimensional theory shows that for

each h ∈ X, the function U → Y, x 7→ df(x)(h) is holomorphic. Hence d2f(x) is complex
bilinear and therefore d(df) is complex linear. Thus df : U×X → Y is also holomorphic.

Example 2.14. In the definition of C1-maps, we have not required the underlying topo-
logical vector spaces to be locally convex and one may wonder whether this assumption
is made for convenience or if there are some serious underlying reasons. The follow-
ing example shows that local convexity is crucial for the validity of the Fundamental
Theorem.

Let V denote the space of measurable functions f : [0, 1]→ R for which

|f | :=
∫ 1

0

|f(x)|
1
2 dx

is finite and identify functions which coincide on a set whose complement has measure
zero. Then d(f, g) := |f − g| defines a metric on this space (Exercise 2.3). We thus
obtain a metric topological vector space (V, d).

For a subset E ⊆ [0, 1], let χE denote its characteristic function. Consider the curve

γ : [0, 1]→ V, γ(t) := χ[0,t].

Then
|h−1

(
γ(t+ h)− γ(t)

)
| = |h|−

1
2 |h| → 0

for each t ∈ [0, 1] as h → 0. Hence γ is C1 with dγ = 0. Since γ is not constant, the
Fundamental Theorem of Calculus does not hold in V .

The defect in this example is caused by the non-local convexity of V . In fact, one
can even show that all continuous linear functionals on V vanish.
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Remark 2.15. (a) In the context of Banach spaces, one has an Inverse Function The-
orem and also an Implicit Function Theorem [La99]. Such results cannot be expected
in general for Fréchet spaces (cf. the exponential function of Diff(S1)). Nevertheless,
Glöckner’s recent paper [Gl06] contains implicit function theorems for maps of the type
f : E → F , where F is a Banach space and E is locally convex.

(b) Another remarkable pathology occurring already for Banach spaces is that a
closed subspace F of a Banach space E need not have a closed complement. A simple
example is the subspace F := c0(N,R) in E := `∞(N,R) ([Wer95, Satz IV.6.5]; see also
Exercise 2.13).

This has the consequence that the quotient map q : E → E/F has no smooth sections
because the existence of a smooth local section σ : U → E around 0 ∈ E/F implies the
existence of a closed complement im(dσ(0)) ∼= E/F to F in E. Nevertheless, the map
q : E → E/F defines the structure of a topological F -principal bundle over E/F which
has a continuous global section by Michael’s Selection Theorem [Mi59]).

Remark 2.16. (Pathologies of linear ODEs in Fréchet spaces) (a) First we give an
example of a linear ODE for which solutions to initial value problems exist, but are not
unique. We consider the Fréchet space V := C∞([0, 1],R) and the continuous linear
operator Lf := f ′ on this space. We are asking for solutions of the initial value problem

γ̇(t) = Lγ(t), γ(0) = γ0. (2)

As a consequence of E. Borel’s Theorem that each power series is the Taylor series of a
smooth function, each γ0 has a smooth extension to a function on R. Let h be such a
function and consider

γ : R→ V, γ(t)(x) := h(t+ x).

Then γ(0) = h|[0,1] = γ0 and γ̇(t)(x) = h′(t + x) = (Lγ(t))(x). It is clear that these
solutions of (2) depend on the choice of the extension h of γ0. Different choices lead to
different extensions.

(b) Now we consider the space V := C∞(S1,C) which we identify with the space of
2π-periodic smooth functions on the real line. We consider the linear operator Lf :=
−f ′′ and the equation (2), which in this case is the heat equation with reversed time. It
is easy to analyze this equation in terms of the Fourier expansion of γ. So let

γ(t)(x) =
∑
n∈Z

an(t)einx

be the Fourier expansion of γ(t). Then (2) implies a′n(t) = n2an(t) for each n ∈ Z, so
that an(t) = an(0)etn

2
holds for any solution γ of (2). If the Fourier coefficients an(0)

of γ0 do not satisfy ∑
n

|an(0)|eεn2

<∞
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for some ε > 0 (which need not be the case for a smooth function γ0), then (2) does not
have a solution on [0, ε].

As a consequence, the operator exp(tL) is never defined for t 6= 0. Nevertheless, we
may use the Fourier series expansion to see that β(t) := (1 + it2)1 + tL defines a curve
β : R→ GL(V ) which is smooth in the sense that

R× V → V × V, (t, v) 7→ (β(t)(v), β(t)−1(v))

is smooth. We further have β′(0) = L, so that L arises as the tangent vector of a smooth
curve in GL(V ), but not for a one-parameter group.

Definition 2.17. A locally convex space E is said to be Mackey complete if for each
smooth curve ξ : [0, 1]→ E there exists a differentiable curve η : [0, 1]→ E with η′ = ξ.

For a more detailed discussion of Mackey completeness and equivalent conditions we
refer to [KM97, Th. 2.14].

Remark 2.18. If E is a sequentially complete locally convex space, then it is Mackey
complete because the sequential completeness implies the existence of Riemann integrals
of continuous E-valued functions on compact intervals, hence that for each continuous
curve ξ : [0, 1]→ E there exists a differentiable curve

η : [0, 1]→ E, η(t) :=

∫ t

0

ξ(s) ds with η′ = ξ.

Remark 2.19. (a) We briefly recall the basic definitions underlying the convenient
calculus in [KM97]. Let E be a locally convex space. The c∞-topology on E is the
final topology with respect to the set C∞(R, E). Let U ⊆ E be an open subset and
f : U → F a function, where F is a locally convex space. Then we call f conveniently
smooth if

f ◦ C∞(R, U) ⊆ C∞(R, F ).

This implies nice cartesian closedness properties of the class of smooth maps (cf. [KM97,
p.30]).

(b) If E is a Fréchet space, then the c∞-topology coincides with the original topology
([KM97, Th. 4.11]), so that each conveniently smooth map is continuous.

We claim that for an open subset U of a Fréchet space, a map f : U → F is conve-
niently smooth if and only if it is smooth in the sense of Definition 2.7. This can be
shown as follows. Since C∞(R, E) is the same space for both notions of differentiability,
the Chain Rule shows that smoothness in the sense of Definition 2.7 implies smoothness
in the sense of convenient calculus. Now we assume that f : U → F is conveniently
smooth. Then the derivative df : U × E → F exists and defines a conveniently smooth
map df : U → L(E,F ) ⊆ C∞(E,F ) ([KM97, Th. 3.18]). Hence df : U × E → F is also
conveniently smooth, and thus continuous with respect to the c∞-topology. As E × E
is a Fréchet space, it follows that df is continuous. Therefore f is C1 in the sense of
Definition 2.7, and now one can iterate the argument.
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2.3 Differentiable manifolds

Since we have a chain rule for C1-maps between locally convex spaces, hence also for
smooth maps, we can define smooth manifolds as in the finite dimensional case (cf.
[Ha82, Mil83, Gl02a, GN]):

Definition 2.20. Let M be a Hausdorff topological space and E a locally convex space.
An E-chart of an open subset U ⊆M is a homeomorphism ϕ : U → ϕ(U) ⊆ E onto an
open subset ϕ(U) of E. We denote such a chart as a pair (ϕ,U). Two charts (ϕ,U) and
(ψ, V ) are said to be smoothly compatible if the map

ψ ◦ ϕ−1|ϕ(U∩V ) : ϕ(U ∩ V )→ ψ(U ∩ V )

is smooth. From the chain rule it follows that compatibility of charts is an equivalence
relation on the set of all E-charts of M . An E-atlas of M is a family A := (ϕi, Ui)i∈I of
pairwise compatible E-charts of M for which

⋃
i Ui = M . A smooth E-structure on M

is a maximal E-atlas and a smooth E-manifold is a pair (M,A), where A is a maximal
E-atlas on M .

We call a manifold modeled on a locally convex, resp., Fréchet space, resp., Banach
space a locally convex, resp., Fréchet, resp., Banach manifold.

Remark 2.21. (a) Locally convex spaces are regular in the sense that each point has a
neighborhood base consisting of closed sets, and this property is inherited by manifolds
modeled on these spaces (cf. [Mil83]).

(b) If M1, . . . ,Mn are smooth manifolds modeled on the spaces Ei, i = 1, . . . , n, then
the product set M := M1 × . . . ×Mn carries a natural manifold structure with model
space E =

∏n
i=1Ei.

Definition 2.22. (a) One defines the tangent bundle πTM : TM → M as follows. Let
A := (ϕi, Ui)i∈I be an E-atlas of M . On the disjoint union of the set ϕ(Ui) × E, we
define an equivalence relation by

(x, v) ∼
(
(ϕj ◦ ϕ−1

i )(x), d(ϕj ◦ ϕ−1
i )(x)(v)

)
for x ∈ ϕi(Ui ∩ Uj) and v ∈ E and write [x, v] for the equivalence class of (x, v). Let
p ∈ Ui. Then the equivalence classes of the form [ϕi(p), v] are called tangent vectors in
p. Since all the differentials d(ϕj ◦ ϕ−1

i )(x) are invertible linear maps, it easily follows
that the set Tp(M) of all tangent vectors in p forms a vector space isomorphic to E
under the map E → Tp(M), v 7→ [x, v]. Now we turn the tangent bundle

TM :=
⋃
p∈M

Tp(M)
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into a manifold by the charts

ψi : TUi :=
⋃
p∈Ui

Tp(M)→ ϕ(Ui)× E, [ϕi(x), v] 7→ (ϕi(x), v).

It is easy to see that for each open subset U of a locally convex space E, we have
TU ∼= U ×E (as smooth manifolds) and in particular TUj ∼= Uj ×E in the setting from
above.

(b) Let M and N be smooth manifolds modeled on locally convex spaces and
f : M → N a smooth map. We write Tf : TM → TN for the corresponding map
induced on the level of tangent vectors. Locally this map is given by

Tf(x, h) =
(
f(x), df(x)(h)

)
,

where df(p) := Tp(f) : Tp(M) → Tf(p)(N) denotes the differential of f at p. In view of
Remark 2.13(d), the tangent map Tf is smooth if f is smooth. In the following, we will
always identify M with the zero section in TM . In this sense, we have Tf |NM = f . If V
is a locally convex space, then TV ∼= V ×V and the map Tf can accordingly be written
as Tf = (f, df), where we think of df as a map TM → V .

From the relations

T (idM) = idTM and T (f1 ◦ f2) = Tf1 ◦ Tf2

for smooth maps f2 : M1 → M2 and f2 : M2 → M3 it follows that T is an endofunctor
on the category of smooth manifolds. Moreover, it preserves finite products in the sense
that for smooth manifolds M1, . . . ,Mn, there is a natural isomorphism

T (M1 × · · · ×Mn) ∼= TM1 × · · · × TMn.

(c) A (smooth) vector field X on M is a smooth section of the tangent bundle
qTM : TM → M , i.e. a smooth map X : M → TM with πTM ◦ X = idM . We write
V(M) for the space of all vector fields on M . If f ∈ C∞(M,V ) is a smooth function on
M with values in some locally convex space V and X ∈ V(M), then we obtain a smooth
function on M via

Xf := df ◦X : M → TM → V.

Remark 2.23. If M = U is an open subset of the locally convex space E, then TU =
U × E with the bundle projection πTU : U × E → U, (x, v) 7→ x. Then each smooth

vector field is of the form X(x) = (x, X̃(x)) for some smooth function X̃ : U → E, and
we may thus identify V(U) with the space C∞(U,E).

Remark 2.24. (a) One can also define for each E-manifold M a cotangent bundle
T ∗(M) =

⋃
m∈M Tm(M)′ and endow it with a vector bundle structure over M , but to
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endow it with a smooth manifold structure we need a locally convex topology on the
dual space E ′ such that for each local diffeomorphism f : U → E, U open in E, the
map U ×E ′ → E ′, (x, λ) 7→ λ ◦ df(x) is smooth. If E is a Banach space, then the norm
topology on E ′ has this property, and the author of these notes is not aware of any other
example where this is the case.

In Subsection 2.4, we shall introduce differential forms directly, without reference to
any cotangent bundle.

(b) The following modification might be useful to construct a replacement for a
cotangent bundle. Instead of the, mostly badly behaved, duality E × E ′ → K, one
may also start with another locally convex space F for which we have a non-degenerate
continuous pairing E×F → K, (e, f) 7→ 〈e, f〉, so that we may think of F as a subspace
of E ′. Then we may consider E-manifolds with an atlas for which all coordinate changes

f := ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ) ⊆ E

have the property that for each x, the continuous linear map df(x) : E → E has an
adjoint map df(x)> on F , satisfying

〈df(x)v, w〉 = 〈v, df(x)>w〉 for v ∈ E,w ∈ F,

and for which the map

ϕ(U ∩ V )× F → ψ(U ∩ V )× F, (x,w) 7→ (f(x), (df(x)>)−1w)

is smooth. Then one can use these maps as glueing maps to obtain an F -vector bundle
over M which is a subbundle of T ∗(M) with a natural differentiable structure.

Lemma 2.25. If X, Y ∈ V(M), then there exists a vector field [X, Y ] ∈ V(M) which is
uniquely determined by the property that on each open subset U ⊆M we have

[X, Y ]f = X(Y f)− Y (Xf) (3)

for all f ∈ C∞(U,R).

Proof. Locally the vector fields X and Y are given as X(p) =
(
p, X̃(p)

)
and Y (p) =(

p, Ỹ (p)
)
. We define a vector field by

[X, Y ] (̃p) := dỸ (p)
(
X̃(p)

)
− dX̃(p)

(
Ỹ (p)

)
. (4)

Then the smoothness of the right hand side follows from the chain rule. The requirement
that (3) holds on continuous linear functionals f determines [X, Y ]̃ uniquely. Clearly,
(4) defines a smooth vector field on M . Now the assertion follows because locally (3) is
a consequence of the Chain Rule (Proposition 2.11).
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Proposition 2.26. (V(M), [·, ·]) is a Lie algebra.

Proof. The crucial part is to check the Jacobi identity. This follows from the observation
that if U is an open subset of a locally convex space, then the mapping

Φ: V(U)→ der
(
C∞(U,R)

)
, Φ(X)(f) = Xf

is injective and satisfies Φ([X, Y ]) = [Φ(X),Φ(Y )] (Exercise 2.17). Therefore the
Jacobi identity in V(U) follows from the Jacobi identity in the associative algebra
End

(
C∞(U,R)

)
.

For the applications to Lie groups we will need the following lemma.

Lemma 2.27. Let M and N be smooth manifolds and ϕ : M → N a smooth map.
Suppose that XN , YN ∈ V(N) and XM , YM ∈ V(M) are ϕ-related in the sense that

XN ◦ ϕ = Tϕ ◦XM and YN ◦ ϕ = Tϕ ◦ YM .

Then
[XN , YN ] ◦ ϕ = Tϕ ◦ [XM , YM ].

Proof. It suffices to perform a local calculation. Therefore we may w.l.o.g. assume that
M ⊆ F is open, where F is a locally convex space and that N is a locally convex space.
Then

[XN , YN ]̃
(
ϕ(p)

)
= dỸN

(
ϕ(p)

)
.X̃N

(
ϕ(p)

)
− dX̃N

(
ϕ(p)

)
.ỸN
(
ϕ(p)

)
.

Next we note that our assumption implies that ỸN ◦ ϕ = dϕ ◦ (idF ×ỸM). Using the
Chain Rule we obtain

dỸN
(
ϕ(p)

)
dϕ(p) = d(dϕ)

(
p, ỸM(p)

)
◦
(

idF , dỸM(p)
)

which, in view of Remark 2.13(d), leads to

dỸN
(
ϕ(p)

)
.X̃N

(
ϕ(p)

)
= dỸN

(
ϕ(p)

)
dϕ(p).X̃M(p)

= d(dϕ)
(
p, ỸM(p)

)
◦
(

idF , dỸM(p)
)
.X̃M(p)

= d2ϕ(p)
(
ỸM(p), X̃M(p)

)
+ dϕ(p)

(
dỸM(p).X̃M(p)

)
.

Now the symmetry of the second derivative (Lemma 2.9(iv)) implies that

[XN , YN ]̃
(
ϕ(p)

)
=dϕ(p)

(
dỸM(p).X̃M(p)− dX̃M(p).ỸM(p)

)
=dϕ(p)

(
[XM , YM ]̃ (p)

)
.
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2.4 Differential forms

Differential forms play a significant role throughout infinite dimensional Lie theory; ei-
ther as differential forms on Lie groups or as differential forms on manifolds on which
certain Lie groups act. In the present section, we describe a natural approach to differ-
ential forms on manifolds modeled on locally convex spaces. The main difference to the
finite dimensional case is that in local charts there is no natural coordinate description of
differential forms and that for general locally convex manifolds (not even for all Banach
manifolds), smooth partitions of unity are available, so that one has to be careful with
localization arguments.

We have already seen that for each smooth manifold M , the space V(M) of smooth
vector fields on M carries a natural Lie algebra structure. We shall see below that
each smooth p-form ω ∈ Ωp(M,V ) with values in a locally convex space V defines an
alternating p-linear map

V(M)p → C∞(M,V ), (X1, . . . , Xp) 7→ ω(X1, . . . , Xp).

If M has the property that each tangent vector extends to a smooth vector field, which
is always the case locally, then this leads to an inclusion of Ωp(M,V ) into the space of
Lie algebra cochains for V(M) with values in the V(M)-module C∞(M,V ). We shall
define the exterior derivative on differential forms in such a way that with respect to this
identification, it corresponds to the Lie algebra differential (Appendix C). This point of
view will prove very useful, and in this section we use it to derive geometric structures
such as the Lie derivative and the exterior differential from the abstract setting of Lie
algebra cochains.

Definition 2.28. (a) If M is a differentiable manifold and V a locally convex space,
then a V -valued p-form ω on M is a function ω which associates to each x ∈ M a
k-linear alternating map ωx = ω(x) : Tx(M)p → V such that in local coordinates the
map (x, v1, . . . , vp) 7→ ωx(v1, . . . , vp) is smooth. We write Ωp(M,V ) for the space of
smooth V -valued p-forms on M with values in V and identify Ω0(M,V ) with the space
C∞(M,V ) of smooth V -valued functions on M .

(b) Let V1, V2, V3 be locally convex spaces and β : V1 × V2 → V3 be a continuous
bilinear map. Then the wedge product

Ωp(M,V1)× Ωq(M,V2)→ Ωp+q(M,V3), (ω, η) 7→ ω ∧ η

is defined by (ω ∧ η)x := ωx ∧ ηx, where

(ωx ∧ ηx)(v1, . . . , vp+q) :=
1

p!q!

∑
σ∈Sp+q

sgn(σ)β
(
ωx(vσ(1), . . . , vσ(p)), ηx(vσ(p+1), . . . , vσ(p+q))

)
.

For p = q = 1, we have in particular

(ω ∧ η)x(v1, v2) = β(ωx(v1), ηx(v2))− β(ωx(v2), ηx(v1)).
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Important special cases where such wedge products are used are:

(1) β : R× V → V is the scalar multiplication of V .

(2) β : A×A → A is the multiplication of an associative algebra A.

(3) β : g × g → g is the Lie bracket of a Lie algebra. In this case, we also write
[ω, η] := ω ∧ η.

(c) The pull-back ϕ∗ω of ω ∈ Ωp(M,V ) with respect to a smooth map ϕ : N → M
is the smooth p-form in Ωp(N, V ) defined by

(ϕ∗ω)x(v1, . . . , vp) := ωϕ(x)(dϕ(x)v1, . . . , dϕ(x)vp) = ωϕ(x)(Tx(ϕ)v1, . . . , Tx(ϕ)vp).

Note that the chain rule implies that

id∗M ω = ω and ϕ∗1(ϕ∗2ω) = (ϕ2 ◦ ϕ1)∗ω (5)

holds for compositions of smooth maps. Moreover,

ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η (6)

follows directly from the definitions. For f = ω ∈ Ω0(M,V ), we simply have ϕ∗f = f ◦ϕ.

The definition of the exterior differential

d : Ωp(M,V )→ Ωp+1(M,V )

is a bit more subtle than in finite dimensions where one usually uses local coordinates
to define it in charts.

Proposition 2.29. For ω ∈ Ωp(M,V ), x ∈ M and v0, . . . , vp ∈ Tx(M), we choose
smooth vector fields Xi defined on a neighborhood of x satisfying Xi(x) = vi. Then

(dω)x(v0, . . . , vp) :=

p∑
i=0

(−1)i
(
Xi.ω(X0, . . . , X̂i, . . . , Xp)

)
(x) (7)

+
∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp)(x) (8)

does not depend on the choice of the vector fields Xi and defines a smooth (p+ 1)-form
dω ∈ Ωp+1(M,V ).

The definition of the differential is designed in such a way that forX0, . . . , Xp ∈ V(M)
we have in C∞(M,V ) the identity

(dω)(X0, . . . , Xp) :=

p∑
i=0

(−1)iXi.ω(X0, . . . , X̂i, . . . , Xp)

+
∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp). (9)
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Proof. We have to verify that the right hand side of (7) does not depend on the choice
of the vector fields Xk and that it is alternating in the vk. First we show that dω does
not depend on the choice of the vector fields Xk, which amounts to showing that if one
vector field Xk vanishes in x, then the right hand side of (7) vanishes.

Suppose that Xk(x) = 0. Then the only terms not obviously vanishing in x are

p∑
i 6=k

(−1)i
(
Xi.ω(X0, . . . , X̂i, . . . , Xp)

)
(x), (10)

∑
i<k

(−1)i+kω([Xi, Xk], X0, . . . , X̂i, . . . , X̂k, . . . , Xp)(x), (11)

and ∑
k<i

(−1)i+kω([Xk, Xi], X0, . . . , X̂k, . . . , X̂i, . . . , Xp)(x). (12)

In local coordinates, we have(
Xi.ω(X0, . . . , X̂i, . . . , Xp)

)
(x)

= (d1ω)(x,Xi(x))(X1(x), . . . , X̂i(x), . . . , Xp(x))

+
∑
j<i

ωx(X0(x), . . . , dXj(x)Xi(x), . . . , X̂i(x), . . . , Xp(x))

+
∑
j>i

ωx(X0(x), . . . , X̂i(x), . . . , dXj(x)Xi(x), . . . , Xp(x)). (13)

For a fixed i > k, the assumption Xk(x) = 0 implies that only the term

ωx(X0(x), . . . , dXk(x)Xi(x), . . . , X̂i(x), . . . , Xp(x))

contributes. In view of Xk(x) = 0, we have

dXk(x)Xi(x) = dXk(x)Xi(x)− dXi(x)Xk(x) = [Xi, Xk](x).

This leads to

(−1)kω([Xk, Xi], X0, . . . , X̂k, . . . , X̂i, . . . , Xp)(x)

= −ωx(X0(x), . . . , dXk(x)Xi(x), . . . , X̂i(x), . . . , Xp(x)), (14)

so that corresponding terms in (10) and (12) cancel, and the same happens for i < k for
terms in (10) and (11). This proves that dω is independent of the choice of the vector
fields Xi.

To see that we obtain a smooth (p + 1)-form, we use local coordinates and choose
the vector fields Xi as constant vector fields. Then

(dω)x(v0, . . . , vp) =

p∑
i=0

(−1)i(d1ω)(x, vi)(v0, . . . , v̂i, . . . , vp) (15)
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is a smooth function of (x, v0, . . . , vp).
It remains to show that dω is alternating. If vi = vj for some i < j, then the

argument above shows that we may assume that Xi = Xj. Since ω is alternating, it
suffices to observe that

(dω)x(v0, v1, . . . , vp)

= (−1)i(d1ω)(x, vi)(v0, . . . , v̂i, . . . , vp) + (−1)j(d1ω)(x, vj)(v0, . . . , v̂j, . . . , vp)

= (−1)i(d1ω)(x, vi)(v0, . . . , v̂i, . . . , vp) + (−1)i+1(d1ω)(x, vi)(v0, . . . , v̂i, . . . , vp) = 0.

Proposition 2.30. For each ω ∈ Ωp(M,V ), we have d2ω = 0.

Proof. It clearly suffices to verify this for the case where M is an open subset of a locally
convex space E.

Each p-form ω ∈ Ωp(M,V ) defines a p-linear map ωg : V(M)p → C∞(M,V ). In this
sense, we may consider ωg as a p-cochain for the Lie algebra g := V(M) with values in
the V(M)-module C∞(M,V ), where the module structure is the natural one given by
(Xf)(x) := df(x)X(x). The map ω 7→ ωg is injective, as we see by evaluating p-forms
on constant vector fields. Moreover, the definition of d implies that dgωg = (dω)g. Now
(d2ω)g = d2

gωg = 0 implies that d2ω = 0 (Appendix C).

Remark 2.31. Another way to verify that d2ω = 0 is to calculate directly in local
coordinates using formula (15). Then d2ω = 0 easily follows from the symmetry of
second derivatives of ω (Lemma 2.9(iv)) (Exercise 2.10).

Definition 2.32. Extending d to a linear map on the space Ω(M,V ) :=
⊕

p∈N0
Ωp(M,V )

of all V -valued differential forms on M , the relation d2 = 0 implies that the space

Zp
dR(M,V ) := ker(d|Ωp(M,V ))

of closed forms contains the space Bp
dR(M,V ) := d(Ωp−1(M,V )) of exact forms, so that

the V -valued de Rham cohomology space

Hp
dR(M,V ) := Zp

dR(M,V )/Bp
dR(M,V )

is well-defined.

Remark 2.33. We consider smooth functions f : M → V as differential forms of de-
gree 0. Then df is the 1-form with df(x)(v) = Tx(f)v, where df is the differential of f , as
defined above. Since M is locally convex, the vanishing of df means that the function f is
locally constant (Lemma 2.9(ii)). Thus H0

dR(M,V ) = Z0
dR(M,V ) is the space of locally

constant functions on M . If M has d connected components, then H0
dR(M,V ) ∼= V d.

Lemma 2.34. If ϕ : N →M is a smooth map and ω ∈ Ωp(M,V ), then d(ϕ∗ω) = ϕ∗dω.
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Proof. First we assume that ϕ is a diffeomorphism. Let X0, . . . , Xp ∈ V(N) and define
Y0, . . . , Yp ∈ V(M) by Yi(ϕ(x)) := dϕ(x)(Xi(x)), so that Yi ◦ ϕ = Tϕ ◦ Xi. In view of
Lemma 2.25, this implies that [Yi, Yj] ◦ ϕ = Tϕ ◦ [Xi, Xj] for i, j = 0, . . . , p. Moreover,
we have

ϕ∗(ω(Y0, . . . , Ŷi, . . . , Yp)) = (ϕ∗ω)(X0, . . . , X̂i, . . . , Xp).

We further have for each smooth function f on M the relation

ϕ∗(Yif)(x) = df(ϕ(x))Yi(ϕ(x)) = df(ϕ(x))dϕ(x)Xi(x) = (Xi.(ϕ
∗f))(x),

so that we obtain with (7)

ϕ∗(dω)(X0, . . . , Xp) = d(ϕ∗ω)(X0, . . . , Xp).

Since this relation also holds on each open subset of M , resp., N , we conclude that
d(ϕ∗ω) = ϕ∗(dω). The preceding argument applies in particular to local diffeomorphisms
defined by charts.

To complete the proof of the general case, we may now assume w.l.o.g. that M and
N are open subsets of locally convex spaces. Using constant vector fields, we then have

(dω)x(v0, . . . , vp) =

p∑
i=0

(−1)i(d1ω(x, vi))(v0, . . . , v̂i, . . . , vp)

and therefore

(ϕ∗(dω))x(v0, . . . , vp) =

p∑
i=0

(−1)i(d1ω(ϕ(x), dϕ(x)vi))(dϕ(x)v0, . . . , dϕ(x)v̂i, . . . , dϕ(x)vp).

On the other hand, the Chain Rule leads to

d(ϕ∗ω)x(v0, . . . , vp)

=

p∑
i=0

(−1)i(d1ω(ϕ(x), dϕ(x)vi))(dϕ(x)v0, . . . , dϕ(x)v̂i, . . . , dϕ(x)vp)

+

p∑
i=0

(−1)i
∑
j<i

ωϕ(x)(dϕ(x)v0, . . . , d
2ϕ(x)(vi, vj), . . . , dϕ(x)v̂i, . . . , dϕ(x)vp)

+

p∑
i=0

(−1)i
∑
j>i

ωϕ(x)(dϕ(x)v0, . . . , dϕ(x)v̂i, . . . , d
2ϕ(x)(vi, vj), . . . , dϕ(x)vp)

=

p∑
i=0

(−1)i(d1ω(ϕ(x), dϕ(x)vi))(dϕ(x)v0, . . . , dϕ(x)v̂i, . . . , dϕ(x)vp),

where the terms in the last two lines cancel because of the symmetry of the bilinear
maps d2ϕ(x) (Lemma 2.9(iv)). This proves the assertion.
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For finite dimensional manifolds, one usually defines the Lie derivative of a differential
form in the direction of a vector field X by using its local flow t 7→ ΦX

t :

LXω :=
d

dt

∣∣∣
t=0

(ΦX
−t)
∗ω.

Since vector fields on infinite dimensional manifold need not have a local flow (cf. Re-
mark 2.16), we introduce the Lie derivative more directly, resembling its algebraic coun-
terpart (cf. Appendix C).

Definition 2.35. (a) For any smooth manifold M and each locally convex space, we
have a natural representation of the Lie algebra V(M) on the space Ωp(M,V ) of
V -valued p-forms on M , given by the Lie derivative. For Y ∈ V(M), the Lie derivative
LY ω is defined on v1, . . . , vp ∈ Tx(M) by

(LY .ω)x(v1, . . . , vp)

= (Y.ω(X1, . . . , Xp))(x)−
p∑
j=1

ω(X1, . . . , [Y,Xj], . . . , Xp)(x)

= (Y.ω(X1, . . . , Xp))(x) +

p∑
j=1

(−1)jω([Y,Xj], X1, . . . , X̂j, . . . , Xp)(x),

where X1, . . . , Xp are vector fields on a neighborhood of x satisfying Xi(x) = vi. To see
that the right hand side does not depend on the choice of the vector fields Xi, suppose
that Xi(x) = 0 for some i. Then evaluation of the right hand side in x yields in local
coordinates

(Y.ω(X1, . . . , Xp))(x)− ω(X1, . . . , [Y,Xi], . . . , Xp)(x)

= ωx(X1(x), . . . , dXi(x)Y (x), . . . , Xp(x))

− ωx(X1(x), . . . , dXi(x)Y (x)− dY (x)Xi(x), . . . , Xp(x)) = 0.

Therefore LY ω is well-defined. In local coordinates, we have

(LY ω)x(v1, . . . , vp) = (Y.ω(v1, . . . , vp))(x) +

p∑
j=1

ω(v1, . . . , dY (x)vi, . . . , vp)

= (d1ω)(x, Y (x))(v1, . . . , vp) +

p∑
j=1

ω(v1, . . . , dY (x)vi, . . . , vp),

which immediately implies that LY ω defines a smooth V -valued p-form on M .
(b) We further obtain for each X ∈ V(M) and p ≥ 1 a linear map

iX : Ωp(M,V )→ Ωp−1(M,V ) with (iXω)x = iX(x)ωx,

34



where
(ivωx)(v1, . . . , vp−1) := ωx(v, v1, . . . , vp−1).

For ω ∈ Ω0(M,V ) = C∞(M,V ), we put iXω := 0.

Proposition 2.36. For X, Y ∈ V(M), we have on Ω(M,V ):

(1) [LX ,LY ] = L[X,Y ], i.e., the Lie derivative defines a representation of the Lie algebra
V(M) on Ωp(M,V ).

(2) [LX , iY ] = i[X,Y ].

(3) LX = d ◦ iX + iX ◦ d (Cartan formula).

(4) LX ◦ d = d ◦ LX .

(5) LX(Zp
dR(M,V )) ⊆ Bp

dR(M,V ).

Proof. (1)-(3) It suffices to verify these formulas locally in charts, so that we may assume
that M is an open subset of a locally convex space. Then (1)-(3) follow from the
corresponding formulas in Appendix C, applied to the Lie algebra g = V(M) and the
module C∞(M,V ).

(4) follows from (3) and d2 = 0.
(5) follows from (3).

Remark 2.37. Clearly integration of differential forms ω ∈ Ωp(M,V ) only makes sense
if M is a finite dimensional oriented manifold (possibly with boundary) of dimension
p and V is Mackey complete. We need the Mackey completeness to insure that each
smooth function f : Q→ V on a cube Q :=

∏p
i=1[ai, bi] ⊆ Rp has an iterated integral∫

Q

fdx :=

∫ b1

a1

· · ·
∫ bp

ap

f(x1, . . . , xp) dx1 · · · dxp.

If ϕ : U → Rp is a chart of M compatible with the orientation and supp(ω) is a compact
subset of U , then we define∫

M

ω :=

∫
ϕ(U)

(ϕ−1)∗ω =

∫
ϕ(U)

f dx,

where f ∈ C∞(ϕ(U), V ) is the compactly supported function determined by

((ϕ−1)∗ω)(x) = f(x) dx1 ∧ . . . ∧ dxp.

If, more generally, ω has compact support and (χi)i∈I is a smooth partition of unity
with the property that supp(χi) is contained in a chart domain, then we define∫

M

ω :=
∑
i∈I

∫
M

χiω
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and observe that the right hand side is a finite sum, where each summand is defined
since supp(χiω) is contained in a chart domain. Using the transformation formula for p
dimensional integrals, it is easy to see that the definition of the integral

∫
M
ω does not

depend on the choice of the charts and the partitions of unity.
We also note that Stokes’ Theorem∫

M

dη =

∫
∂M

η

holds for V -valued (p− 1)-forms, where it is understood that the boundary ∂M carries
the induced orientation.

The assumption that V is Mackey complete is crucial in the following lemma to
ensure the existence of the Riemann integral defining ϕ. For a conceptual proof we refer
to [GN, Ch. III].

Lemma 2.38. (Poincaré Lemma) Let E be locally convex, V a Mackey complete locally
convex space and U ⊆ E an open subset which is star-shaped with respect to 0. Let
ω ∈ Ωk+1(U, V ) be a V -valued closed (k+ 1)-form. Then ω = dϕ for some ϕ ∈ Ωk(U, V )
satisfying ϕ(0) = 0 which is given by

ϕ(x)(v1, . . . , vk) =

∫ 1

0

tkω(tx)(x, v1, . . . , vk) dt.

Remark 2.39. (a) The Poincaré Lemma is the first step to de Rham’s Theorem. To
obtain de Rham’s Theorem for finite dimensional manifolds, one makes heavy use of
smooth partitions of unity which do not always exist for infinite dimensional manifolds,
not even for all Banach manifolds.

(b) We call a smooth manifold M smoothly paracompact if every open cover has a
subordinated smooth partition of unity. De Rham’s Theorem holds for every smoothly
paracompact Fréchet manifold ([KM97, Thm. 34.7]). Smoothly Hausdorff second count-
able manifolds modeled on a smoothly regular space are smoothly paracompact ([KM97,
27.4]). Typical examples of smoothly regular spaces are nuclear Fréchet spaces ([KM97,
Th. 16.10]).

(c) Examples of Banach spaces which are not smoothly paracompact are C([0, 1],R)
and `1(N,R). On these spaces, there exists no non-zero smooth function supported in
the unit ball ([KM97, 14.11]).

2.5 Exercises for Section 2

Exercise 2.1. Let (V, τP) be a locally convex space.

(1) Show that a seminorm q on V is continuous if and only if there exists a λ > 0 and
p1, . . . , pn ∈ P such that q ≤ λmax(p1, . . . , pn). Hint: A seminorm is continuous
if and only if it is bounded on some 0-neighborhood.
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(2) Two sets P1 and P2 of seminorms on V define the same locally convex topology if
and only if all seminorms in P2 are continuous w.r.t. τP1 and vice versa.

Exercise 2.2. Show that the set of all seminorms on a vector space V is separating.
The corresponding locally convex topology is called the finest locally convex topology.
Hint: Every vector space has a basis (provided one believes in the Axiom of Choice,
resp., Zorn’s Lemma).

Exercise 2.3. Fix p ∈]0, 1[ and let V denote the space of measurable functions
f : [0, 1] → R (we identify functions which coincide on a set whose complement has
measure zero), for which

|f | :=
∫ 1

0

|f(x)|p dx

is finite. Show that d(f, g) := |f − g| defines a metric on this space. Hint: The function
[0,∞[→ R, x 7→ xp is sub-additive. This is turn follows from its concavity.

Exercise 2.4. Let X be a locally compact space which is countable at infinity, i.e., there
exists a sequence (Kn)n∈N of compact subsets of X with X =

⋃
nKn and Kn ⊆ K0

n+1.
We call such a sequence (Kn)n∈N an exhaustion of X. Show that:

(1) Each compact subset K ⊆ X lies in some Kn.

(2) The topology of uniform convergence on compact subsets of X on the space
C(X,R) is given by the sequence of seminorms (pKn)n∈N (Hint: Exercise II.1).

(3) C(X,R) is metrizable.

(4) C(X,R) is complete.

(5) The multiplication on C(X,R) is continuous.

(6) C(X,R) is a Fréchet algebra.

Exercise 2.5. Let (M,d) be a metric space and ∅ 6= S ⊆ M a subset. Show that the
function

f : M → R, x 7→ dist(x, S) := inf{d(x, s) : s ∈ S}

is a contraction, hence in particular continuous.

Exercise 2.6. Let U ⊆ Rn be an open subset and

Kn := {x ∈ U : ‖x‖ ≤ n, dist(x, U c) ≥ 1
n
}.

(1) Each compact subset K ⊆ U lies in some Kn.
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(2) The topology on the space C∞(U,R) is given by the countable family of seminorms
(pKn,m)n,m∈N (cf. Example 2.4).

(3) C∞(U,R) is metrizable.

(4) C∞(U,R) is complete.

(5) The multiplication on C∞(U,R) is continuous. Hint: Leibniz Rule.

(6) C∞(U,R) is a Fréchet algebra.

Exercise 2.7. Let X be a locally compact space. The unit group C(X,R)× = C(X,R×)
is open in C(X,R) if and only if X is compact. Hint: If X is not compact, then
there exists for each compact subset K ⊆ X a continuous function fK ∈ C(X,R) with
fK |K = 1. Show that the net (fK) converges to 1.

Exercise 2.8. Let (Xi)i∈I be a family of locally convex spaces. Show that:

(1) The product topology on X :=
∏

i∈I Xi defines on X the structure of a locally
convex space.

(2) This space is complete if and only if all the spaces Xi are complete.

(3) If, in addition, each Xi is a locally convex unital algebra, then X is a locally convex
unital algebra.

Exercise 2.9. Let M be a paracompact finite dimensional complex manifold and endow
the space Hol(M,C) with the topology of uniform convergence on compact subsets.
Show that:

(1) Hol(M,C) is a Fréchet algebra.

(2) The mapping Hol(M,C)→ C∞(M,C) is a topological embedding. Hint: Cauchy
estimates in several variables.

Exercise 2.10. Verify that d2ω = 0 for the exterior differential on Ωp(M,V ) (M a
smooth manifold modeled on X, V a locally convex space) directly in local coordinates,
using formula (15). Hint: For each x ∈M , the map

X2 → Altp(X, V ), (v, w) 7→ d2
1ω(x)(v, w)

(second derivative with respect to the first argument of ω) is symmetric (Lemma 2.9).
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Exercise 2.11. Let X be a locally convex space and p a continuous seminorm on X.
Show that

p = sup{λ ∈ X ′ : λ ≤ p}.

Hint: Consider the closed convex subset B := {x ∈ X : p(x) ≤ 1}. Then λ|B ≤ 1 is
equivalent to λ ≤ p and if p(x) > 1, then there exists a continuous linear functional
λ ∈ Y ′ with λ|B ≤ 1 and λ(x) > 1 (Hahn–Banach Separation Theorem).

Exercise 2.12. Let Y be a locally convex space and γ : [a, b]→ Y a continuous curve.

Assume that the integral I(γ) :=
∫ b
a
γ(t) dt exists in the sense that there exists an ele-

ment I ∈ Y such that λ(I(γ)) =
∫ b
a
λ(γ(t)) dt holds for each continuous linear functional

λ ∈ Y ′. Show that:

(a) For each continuous seminorm p on Y , we have

p
(∫ b

a

γ(t) dt
)
≤
∫ b

a

p(γ(t)) dt.

Hint: Use Exercise 2.11.

(b) The map I : C([a, b], Y )→ Y is continuous, when C([a, b], Y ) is endowed with the
topology of uniform convergence (which coincides with the compact open topology;
cf. Appendix B).

(c) If X is a topological space and γ : X× [a, b]→ Y a continuous map, then the map

X → Y, x 7→
∫ b

a

γ(x, t) dt

is continuous.

Exercise 2.13. Let X be a complete metric topological vector space (f.i. a Fréchet
space) and Y ⊆ X a closed subspace. Show that the following are equivalent:

(1) There exists a closed subspace Z ⊆ X for which the summation map
S : Y ⊕ Z → X, (y, z) 7→ y + z is bijective.

(2) There exists a closed subspace Z ⊆ X for which the map S : Y ⊕ Z → X is a
topological isomorphism.

(3) There exists a continuous projection p : X → X with p(X) = Y .

Hint: Open Mapping Theorem.
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Exercise 2.14. Let V be a K-vector space and g a K-Lie algebra, where K is a field
of characteristic zero. We write Altp(V, g) for the linear space of p-linear alternating
maps V p → g and put Alt0(V, g) := g and Alt1(V, g) := Lin(V, g). On the space
Alt(V, g) :=

⊕
p∈N0

Altp(V, g), we then define a bilinear product by

[α, β](v1, . . . , vp+q) :=
1

p!q!

∑
σ∈Sp+q

sgn(σ)[α(vσ(1), . . . , vσ(p)), β(vσ(p+1), . . . , vσ(p+q))]

for α ∈ Altp(V, g) and β ∈ Altq(V, g). Show that this multiplication has the following
properties for α ∈ Altp(V, g), β ∈ Altq(V, g) and γ ∈ Altr(V, g):

(1) [α, β] = (−1)pq+1[β, α].

(2) (−1)pr[[α, β], γ] + (−1)qp[[β, γ], α] + (−1)qr[[γ, α], β] = 0 (graded Jacobi identity).

(3) Alt(V, g) is a Lie superalgebra with respect to the 2-grading defined by

Alt(V, g) := Alteven(V, g)⊕ Altodd(V, g).

Exercise 2.15. Let M be a smooth manifold and g a locally convex Lie algebra. Then
the product on the space Ω(M, g) :=

⊕
p∈N0

Ωp(M, g), (Definition 2.28(3) satisfies for
α ∈ Ωp(M, g), β ∈ Ωq(M, g) and γ ∈ Ωr(M, g):

(1) [α, β] = (−1)pq+1[β, α].

(2) (−1)pr[[α, β], γ] + (−1)qp[[β, γ], α] + (−1)qr[[γ, α], β] = 0 (super Jacobi identity).

(3) Ω(M, g) is a Lie superalgebra with respect to the 2-grading defined by

Ω(M, g) := Ωeven(M, g)⊕ Ωodd(M, g).

Hint: If M is an open subset of a locally convex space, then we have the canonical
embedding Ωp(M, g) ↪→ Altp(V(M), C∞(M, g)) which is compatible with the product,
and Exercise 2.14 applies.

Exercise 2.16. Let f : M → N be a smooth map between manifolds, πTM : TM →M
the tangent bundle projection and σM : M → TM the zero section. Show that

πTN ◦ Tf = f ◦ πTM and σN ◦ f = Tf ◦ σM .

Exercise 2.17. Let M be a smooth manifold. Show that:

(a) For each vector field, the map C∞(M,K) → C∞(M,K), f 7→ LXf := Xf is a
derivation.
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(b) The map V(M) → der(C∞(M,K)), X 7→ LX from (a) is a homomorphism of Lie
algebras.

(c) If M is an open subset of some locally convex space, then the map under (b) is
injective.

Exercise 2.18. Let M and N be smooth manifolds. The Ck-topology on the set
Ck(M,N) of smooth maps M → N is the topology obtained from the embedding

Ck(M,N) ↪→ C(T kM,T kN), f 7→ T kf,

where the space C(T kM,T kN) is endowed with the compact open topology. Show that:

(1) If M = U is open in a locally convex space E and N = F is a locally convex space,
then the Ck-topology on the space Ck(U, F ) coincides with the topology defined
by the embedding

Ck(U, F ) ↪→
k∏
j=0

C(U × Ej, F ), f 7→ (f, df, . . . , dkf),

where each factor on the right hand side carries the compact open topology.

(2) If M = U is open in E := Kn and N = F is a locally convex space, then the
Ck-topology on the space Ck(U, F ) coincides with the topology defined by the
seminorms

qK,j(f) := sup{(q ◦Djf)(x) : x ∈ K},

for j ≤ m, K ⊆ U compact and q a continuous seminorm on F (cf. Example 2.4).
Hint: Use that T jU ∼= U ×E2j−1 and T jF ∼= F 2j and describe the 2j-components
of the map T jf in terms of higher derivatives of f .

Exercise 2.19. If E and F are Banach spaces and L(E,F ) is endowed with the operator
norm, then the subset Iso(E,F ) ⊆ L(E,F ) of all topological isomorphisms E → F is
an open subset.

Exercise 2.20. Let M be a smooth connected compact manifold. We endow the set
C1(M,M) with the C1-topology (cf. Exercise 2.18). Show that:

(1) The set Diff1
loc(M) of all maps f ∈ C1(M,M) for which each map

df(x) : Tx(M) → Tf(x)(N) is a linear isomorphism (the set of local diffeomor-
phisms) is open. Hint: GLn(K) is open in Mn(K).

(2) If f : M → M is a local diffeomorphism, then it is a covering map. It is a diffeo-
morphism if and only if it is one-to-one.
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(3)∗ For a local diffeomorphism f , the number n(f) := |f−1(x)| does not depend
on x and it defines a continuous function Diff1

loc(M)→ N.

Hint: Let q : M̂ → M denote the orientation cover of M . Then f lifts to a map
f̂ : M̂ → M̂ and n(f) = | deg(f̂)| holds for the mapping degree deg(f̂) of f̂ which

can be defined by f̂ ∗µ = deg(f̂)µ for a volume form µ on M̂ .

(4)∗ Show that the set of all local diffeomorphisms f with n(f) ≥ 2 is closed in the
C1-topology. Hint: Use a Riemannian metric on M to see that for each c ∈]0, 1[,
the set of all f with ‖df(x)v‖ ≥ c‖v‖ for all x ∈ M , v ∈ Tx(M), is closed and
a neighborhood of each g with ‖dg(x)v‖ > c

2
‖v‖ for all x ∈ M , 0 6= v ∈ Tx(M).

For any sequence fn → f with fn(xn) = fn(yn) and fn → f , we may assume that
xn → x, yn → y. Show that if xn 6= yn for all n, then x 6= y and f(x) = f(y).

(5) Show that the group Diff1(M) of C1-diffeomorphisms is an open subset of C1(M,M).
Hint: Use (3) or (4).

Exercise 2.21. Let X1, . . . , Xk and Y be locally convex spaces. Show that for a k-linear
map m : X1 × . . .×Xk → Y , the following are equivalent:

(1) m is continuous.

(2) m is continuous in (0, 0, . . . , 0).

(3) m is continuous in some k-tuple (x1, . . . , xk).

3 Infinite dimensional Lie groups

In this section, we give the definition of an infinite dimensional (locally convex) Lie
group and explain how its Lie algebra can be defined in such a way that it defines a
functor from the category of Lie groups to the category of locally convex Lie algebras.

In our treatment of Lie groups, we basically follow [Mil83], but we do not assume
that the model space of a Lie group is complete (cf. also [GN]).

Notation: Let G be a group and g ∈ G. We write

• λg : G→ G, x 7→ gx for the left multiplication by g,

• ρg : G→ G, x 7→ xg for the right multiplication by g,

• mG : G×G→ G, (x, y) 7→ xy for the multiplication map, and

• ηG : G→ G, x 7→ x−1 for the inversion.

In the following, K denotes either R or C.
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3.1 Infinite dimensional Lie groups and their Lie algebras

Definition 3.1. A locally convex Lie group G is a locally convex manifold endowed with
a group structure such that the multiplication map and the inversion map are smooth.
We shall often write g := T1(G) for the tangent space in 1.

A morphism of Lie groups is a smooth group homomorphism. In the following, we
shall call locally convex Lie groups simply Lie groups. We write LieGrp for the so
obtained category of Lie groups.

Example 3.2. (Vector groups) Each locally convex space V is an abelian Lie group
with respect to addition. In fact, we endow V with the obvious manifold structure and
observe that addition and inversion are smooth maps.

Example 3.3. (Unit groups of cias) Let A be a continuous inverse algebra over K and
A× its unit group. As an open subset of A, the group A× carries a natural manifold
structure. The multiplication on A is bilinear and continuous, hence a smooth map
(Remark 2.13(b)). Therefore the multiplication of A× is smooth.

It remains to see that the inversion η : A× → A× is smooth. Its continuity follows
from the assumption that A is a cia. For a, b ∈ A×, we have

b−1 − a−1 = a−1(a− b)b−1,

which implies that for t ∈ K sufficiently close to 0, we get

η(a+ th)− η(a) = (a+ th)−1 − a−1 = a−1(−th)(a+ th)−1 = −ta−1h(a+ th)−1.

Therefore the continuity of η implies that η is everywhere differentiable with

dη(a)(h) = lim
t→0

1

t
(η(a+ th)− η(a)) = lim

t→0
−a−1h(a+ th)−1 = −a−1ha−1.

Now the continuity of η implies that dη : A× × A → A is continuous, hence that η is a
C1-map. With the Chain Rule and the smoothness of the multiplication, this in turn
implies that dη is a C1-map, hence that η is C2. Iterating this argument, we conclude
that η is smooth.

Lemma 3.4. Let G be a Lie group. (a) The tangent map

TmG : T (G×G) ∼= TG× TG→ TG, (v, w) 7→ v · w := TmG(v, w)

defines a Lie group structure on TG with identity element 0 ∈ T1(G) = g and inversion
TηG. The canonical projection πTG : TG → G is a morphism of Lie groups with kernel
(g,+) and the zero section σ : G → TG, g 7→ 0g ∈ Tg(G) is a homomorphism of Lie
groups with πTG ◦ σ = idG.
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(b) Identifying g ∈ G with σ(g) ∈ TG, we write

g.v := 0g · v, v.g := v · 0g for g ∈ G, v ∈ TG. (16)

Then the map
Φ: G× g→ TG, (g, x) 7→ g.x

is a diffeomorphism.

Proof. (a) Since the multiplication map mG : G×G→ G is smooth, the same holds for
its tangent map

TmG : T (G×G) ∼= TG× TG→ TG.

Let {1} denote the trivial group, εG : G → {1} the constant homomorphism and
uG : {1} → G the group homomorphism representing the identity element. Then the
group axioms for G are encoded in the relations

(1) mG ◦ (mG × id) = mG ◦ (id×mG) (associativity),

(2) mG ◦ (ηG × id) = mG ◦ (id×ηG) = εG (inversion), and

(3) mG ◦ (uG × id) = mG ◦ (id×uG) = id (unit element).

Using the functoriality of T , we see that these properties carry over to the corresponding
maps on TG and show that TG is a Lie group with multiplication TmG, inversion TηG,
and unit element 0 = TuG(0) ∈ T1(G) = g.

For the zero section σ : G→ TG, we have TmG ◦(σ×σ) = σ◦mG, which means that
it is a morphism of Lie groups. That πTG is a morphism of Lie groups follows likewise
from

πTG ◦ TmG = mG ◦ (πTG × πTG)

(cf. Exercise 2.16).
We have for v, v′ ∈ g:

TmG(g.v, g′.v′) = TmG(g.v, g′.0) + TmG(g.0, g′.v′) = (g.v).g′ + gg′.v′

and in particular TmG(v, v′) = v + v′, showing that kerπTG ∼= (g,+). That the smooth
map Φ is a diffeomorphism follows from Φ−1(v) = (πTG(v), πTG(v)−1.v).

Definition 3.5. A vector field X ∈ V(G) is called left invariant if

X ◦ λg = T (λg) ◦X

holds for each g ∈ G if we consider X as a section X : G → TG of the tangent bundle
TG. We write V(G)l for the set of left invariant vector fields in V(G). The left invariance
of a vector field X implies in particular that for each g ∈ G, we have X(g) = g.X(1) in
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the sense of (16) in Lemma 3.4. For each x ∈ g, we have a unique left invariant vector
field xl ∈ V(G)l defined by xl(g) := g.x, and the map

V(G)l → T1(G) = g, X 7→ X(1)

is a linear bijection. If X, Y are left invariant, then they are λg-related to themselves,
and Lemma 2.27 implies that their Lie bracket [X, Y ] inherits this property, hence that
[X, Y ] ∈ V(G)l. We thus obtain a unique Lie bracket [·, ·] on g satisfying

[x, y]l = [xl, yl] for all x, y ∈ g. (17)

Lemma 3.6. For each g-chart (ϕ,U) of G with 1 ∈ U and ϕ(1) = 0, the second order
Taylor polynomial in (0, 0) of the multiplication x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)) is of the form

x+ y + b(x, y),

where b : g× g→ g is a continuous bilinear map satisfying

[x, y] = b(x, y)− b(y, x). (18)

In particular, the Lie bracket on g = T1(G) is continuous.

Proof. We consider a chart ϕ : V → g of G, where V ⊆ G is an open 1-neighborhood
and ϕ(1) = 0. Let W ⊆ V be an open symmetric 1-neighborhood with WW ⊆ V .
Then we have on the open set ϕ(W ) ⊆ g the smooth multiplication

x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)), x, y ∈ ϕ(W ).

From Tm(v, w) = v + w for v, w ∈ T1(G) we immediately see that the second order
Taylor polynomial of ∗ has the form x + y + b(x, y), where b : g × g → g is quadratic
map, hence can be written as

b(x, y) = β((x, y), (x, y))

for some continuous symmetric bilinear map β : (g × g)2 → g (Lemma 2.9(iv)). Com-
paring Taylor expansions of x ∗ 0 = 0 ∗ x = x up to second order implies that

b(x, 0) = b(0, x) = 0,

so that
b(x, y) = β((x, 0), (0, y)) + β((0, y), (x, 0)).

It follows in particular that b is bilinear.
For x ∈ W , let λx : ϕ(W ) → g, y 7→ x ∗ y. Then the left invariant vector field vl

corresponding to v ∈ g is given on ϕ(W ) by vl(x) = dλx(0).v, and in 0 its first order
Taylor polynomial in 0 is v + b(x, v). Therefore, the Lie bracket on g satisfies

[v, w] = [vl, wl](0) = dwl(0)vl(0)− dvl(0)wl(0) = dwl(0)v − dvl(0)w = b(v, w)− b(w, v).
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Definition 3.7. The locally convex Lie algebra L(G) := (g, [·, ·]) is called the Lie algebra
of G.

Proposition 3.8. (Functoriality of the Lie algebra) If ϕ : G→ H is a homomorphism
of Lie groups, then the tangent map

L(ϕ) := T1(ϕ) : L(G)→ L(H)

is a homomorphism of Lie algebras.

Proof. Let x, y ∈ g and xl, yl be the corresponding left invariant vector fields. Then
ϕ ◦ λg = λϕ(g) ◦ ϕ for each g ∈ G implies that

Tϕ ◦ xl = L(ϕ)(x)l ◦ ϕ and Tϕ ◦ yl = L(ϕ)(y)l ◦ ϕ,

and therefore
Tϕ ◦ [xl, yl] = [L(ϕ)(x)l,L(ϕ)(y)l] ◦ ϕ

(Lemma 2.27). Evaluating at 1, we obtain L(ϕ)[x, y] = [L(ϕ)(x),L(ϕ)(y)].

Remark 3.9. We obviously have L(idG) = idL(G), and for two morphisms ϕ1 : G1 → G2

and ϕ2 : G2 → G3 of Lie groups, we have

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1),

as a consequence of the Chain Rule.
The preceding lemma implies that the assignments G 7→ L(G) and ϕ 7→ L(ϕ) define

a functor
L : LieGrp→ lcLieAlg

from the category LieGrp of (locally convex) Lie groups to the category lcLieAlg of
locally convex Lie algebras.

Since each functor maps isomorphisms to isomorphisms, for each isomorphism of Lie
groups ϕ : G→ H, the map L(ϕ) is an isomorphism of locally convex Lie algebras.

Definition 3.10. A locally convex Lie algebra g is said to be integrable if there exists
a Lie group G with L(G) ∼= g.

Although every finite dimensional Lie algebra is integrable, integrability of infinite-
dimensional Lie algebras turns out to be a very subtle property. We shall discuss some
interesting examples in Section 6 below.

We now have a look at the Lie algebras of the Lie groups from Examples 3.2, 3.3.
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Example 3.11. (a) If G is an abelian Lie group, then the map b : g×g→ g in Lemma 3.6
is symmetric, which implies that L(G) is abelian. This applies in particular to the
additive Lie group (V,+) of a locally convex space.

(b) Let A be a cia. Then the map

ϕ : A× → A, x 7→ x− 1

is a chart of A× satisfying ϕ(1) = 0. In this chart, the group multiplication is given by

x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)) = (x+ 1)(y + 1)− 1 = x+ y + xy.

In the terminology of Lemma 3.6, we then have b(x, y) = xy and therefore

[x, y] = xy − yx

is the commutator bracket in the associative algebra A.

Using the Lie group structures on tangent bundles, we can now also deal with groups
of smooth maps and diffeomorphism groups.

Example 3.12. (Groups of smooth maps) Let M be a manifold (possibly infinite-di-
mensional) and K a Lie group with Lie algebra k. Then we obtain a natural topology
on the group G := C∞(M,K) as follows.

The tangent bundle TK of K is a Lie group (Lemma 3.4). Iterating this procedure,
we obtain a Lie group structure on all higher tangent bundles T nK.

For each n ∈ N0, we thus obtain topological groups C(T nM,T nK) by using the
topology of uniform convergence on compact subsets of T nM (Lemma B.3), which coin-
cides with the compact open topology (Proposition B.4). We also observe that for two
smooth maps f1, f2 : M → K, the functoriality of T yields

T (f1 · f2) = T (mG ◦ (f1 × f2)) = T (mG) ◦ (Tf1 × Tf2) = Tf1 · Tf2.

Therefore the canonical inclusion map

C∞(M,K) ↪→
∏
n∈N0

C(T nM,T nK), f 7→ (T nf)n∈N0

is a group homomorphism, so that the inverse image of the product topology on the
right hand side is a group topology on C∞(M,K). Therefore C∞(M,K) always carries
a natural structure of a topological group, even if M and K are infinite dimensional.

Now we assume that M is compact. Then these topological groups can even be
turned into Lie groups modeled on the space g := C∞(M, k). The charts of G are
obtained from those ofK as follows. If ϕK : UK → k is a chart ofK, i.e., a diffeomorphism
of an open subset UK ⊆ K onto an open subset ϕ(UK) of k, then the set

UG := {f ∈ G : f(M) ⊆ UK}
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is an open subset of G (cf. Appendix B). Assume, in addition, that 1 ∈ UK and
ϕK(1) = 0. Then we use the map

ϕG : UG → g, f 7→ ϕK ◦ f

as a chart of a 1-neighborhood of G, and by combining it with left translates, we obtain
an atlas of G defining a Lie group structure (cf. Theorem 3.20 below). For details we
refer to [Gl01], resp., [GN].

To calculate the Lie algebra of this group, we observe that for m ∈ M , we have for
the multiplication in local coordinates

(f ∗G g)(m) = ϕG

(
ϕ−1
G (f)ϕ−1

G (g)
)

(m) = ϕK
(
ϕ−1
K (f(m))ϕ−1

K (g(m))
)

= f(m) ∗K g(m) = f(m) + g(m) + bk(f(m), g(m)) + · · · .

In view of Lemma 3.4, this implies that
(
bg(f, g)

)
(m) = bk(f(m), g(m)), and hence that

[f, g](m) = bg(f, g)(m)− bg(g, f)(m) = bk(f(m), g(m))− bk(g(m), f(m)) = [f(m), g(m)].

Therefore L(C∞(M,K)) = C∞(M, k), endowed with the pointwise defined Lie bracket.

Remark 3.13. If M is a non-compact finite dimensional manifold, then one cannot
expect the topological groups C∞(M,K) to be Lie groups. A typical example arises
for M = N (a 0 dimensional manifold) and K = T := R/Z. Then C∞(M,K) ∼= TN is
a topological group for which no 1-neighborhood is contractible, so that it carries no
smooth manifold structure.

Remark 3.14. (The Lie algebra of a local Lie group) There is also a natural notion of
a local Lie group. The corresponding algebraic concept is that of a local group: Let G
be a set and D ⊆ G×G a subset on which we are given a map

mG : D → G, (x, y) 7→ xy.

We say that the product xy of two elements x, y ∈ G is defined if (x, y) ∈ D. The
quadruple (G,D,mG,1), where 1 is a distinguished element of G, is called a local group
if the following conditions are satisfied:

(1) Suppose that xy and yz are defined. If (xy)z or x(yz) is defined, then the other
product is also defined and both are equal.

(2) For each x ∈ G, the products x1 and 1x are defined and equal to x.

(3) For each x ∈ G, there exists a unique element x−1 ∈ G such that xx−1 and x−1x
are defined and xx−1 = x−1x = 1.
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(4) If xy is defined, then y−1x−1 is defined.

If (G,D,mG,1) is a local group and, in addition, G has a smooth manifold structure,
D is open, and the maps

mG : D → G, ηG : G→ G, x 7→ x−1

are smooth, then G, resp., (G,D,mG,1) is called a local Lie group.
Let G be a local Lie group and g := T1(G). For each x ∈ g = T1(G), we then obtain

a left invariant vector field xl(g) := g.x := 0g · x. One can show that the Lie bracket
of two left invariant vector fields is again left invariant and that we thus obtain a Lie
algebra structure on g (Exercise 3.1). Describing the multiplication in a local chart
ϕ : V → g with ϕ(1) = 0, we can argue as in the proof of Lemma 3.6 that its second
order Taylor polynomial is of the form x + y + b(x, y) with a continuous bilinear map
b : g× g→ g satisfying

[x, y] = b(x, y)− b(y, x).

We conclude that L(G) := L(G,D,mG,1) := (g, [·, ·]) is a locally convex Lie algebra.
For more details on local Lie groups we refer to [GN].

3.2 The adjoint representation

The adjoint action is a crucial structure element of a Lie group G. It is the representation
of G on L(G) obtained by taking derivatives in 1 for the conjugation action of G on
itself. In this sense, it is a linearized picture of the non-commutativity of G.

Definition 3.15. Let G be a Lie group. Then for each g ∈ G the map

cg : G→ G, x 7→ gxg−1,

is a smooth automorphism, hence induces a continuous linear automorphism

Ad(g) := L(cg) : g→ g.

We thus obtain an action G × g → g, (g, x) 7→ Ad(g).x called the adjoint action of G
on g.

If g′ := L(g,K) denotes the topological dual of g, then we also obtain a representation
on g′ by Ad∗(g)f := f ◦ Ad(g)−1, called the coadjoint action. Since we do not endow
g′ with a topology, we will not specify any smoothness or continuity properties of this
action.

Proposition 3.16. The adjoint action Ad: G × g → g, (g, x) 7→ Ad(g).x is smooth.
The operators

adx : g→ g, adx(y) := T Ad(x, 0y) satisfy adx(y) = [x, y].
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Proof. The smoothness of the adjoint action of G on g follows directly from the smooth-
ness of the multiplication of the Lie group TG because Ad(g).x = (g.x).g−1 (Lemma 3.4).

To calculate the linear maps adx : g→ g, we consider a local chart ϕ : V → g of G,
where V ⊆ G is an open 1-neighborhood and ϕ(1) = 0.

For x ∈ ϕ(W ), we write α1(x) + α2(x) for the second order Taylor polynomial of
the inversion map x 7→ x−1, where α1 is linear and α2 is quadratic. Comparing Taylor
expansions in 0 of

0 = x ∗ x−1 = x+ α1(x) + α2(x) + b(x, α1(x)) + . . .

(Lemma 3.6), we get α1(x) = −x and α2(x) = −b(x,−x) = b(x, x). Therefore

(x ∗ y) ∗ x−1 =
(
x+ y + b(x, y)

)
+
(
− x+ b(x, x)

)
+ b(x+ y,−x) + · · ·

= y + b(x, y)− b(y, x) + · · ·

by the Chain Rule for Taylor polynomials, and by taking the derivative w.r.t. x in 0 in
the direction z, we eventually get ad z(y) = b(z, y)− b(y, z) = [z, y].

3.3 The diffeomorphism group

Proposition 3.17. Let G be a Lie group and σ : M ×G→M, (m, g) 7→ m.g a smooth
right action of G on the smooth manifold M . Then the map Tσ : TM × TG → TM is
a smooth right action of TG on TM . The assignment

σ̇ : g→ V(M), with σ̇(x)(m) := dσ(m,1)(0, x) = Tσ(0m, x)

is a homomorphism of Lie algebras.

Proof. That Tσ defines an action of TG on TM follows in the same way as in Lemma 3.4
above by applying T to the commutative diagrams defining a right action of a group.

To see that σ̇ is a homomorphism of Lie algebras, we pick m ∈M and write

σm : G→M, g 7→ m.g

for the smooth orbit map of m. Then the equivariance of σm means that σm ◦λg = σm.g.
From this we derive

dσm(g)xl(g) = dσm(g)dλg(1)x = dσm.g(1)x = σ̇(x)(m.g),

i.e., the left invariant vector field xl is σm-related to σ̇(x). Therefore Lemma 2.27 implies
that

σ̇([x, y])(m) = dσm(1)[x, y]l(1) = dσm(1)[xl, yl](1) = [σ̇(x), σ̇(x)](m).

50



Corollary 3.18. If σ : G×M →M is a smooth left aftion of G on M , then

σ̇ : g→ V(M), with σ̇(x)(m) := −Tσ(x, 0m)

is a homomorphism of Lie algebras.

Proof. If σ is a smooth left action, then σ̃(m, g) := σ(m, g−1) is a smooth right action
and T σ̃(0m, x) = −Tσ(x, 0m) follows from the Chain Rule and dηG(1)x = −x.

Example 3.19. Let M be a compact manifold and g = V(M), the Lie algebra of smooth
vector fields on M . We now explain how the group Diff(M) can be turned into a Lie
group, modeled on g.

We shall see in Section 4 below that, although Diff(M) has a smooth exponential
function, it is not a local diffeomorphism of a 0-neighborhood in g onto an identity
neighborhood in G. Therefore we cannot use it to define charts for G. But there is an
easy way around this problem.

Let g be a Riemannian metric on M and Exp: TM →M be its exponential function,
which assigns to v ∈ Tm(M) the point γ(1), where γ : [0, 1]→M is the geodesic segment
with γ(0) = m and γ′(0) = v. We then obtain a smooth map

Φ: TM →M ×M, v 7→ (m,Exp v), v ∈ Tm(M).

There exists an open neighborhood U ⊆ TM of the zero section such that Φ maps U
diffeomorphically onto an open neighborhood of the diagonal in M ×M . Now

Ug := {X ∈ V(M) : X(M) ⊆ U}

is an open subset of the Fréchet space V(M), and we define a map

ϕ : Ug → C∞(M,M), ϕ(X)(m) := Exp(X(m)).

It is clear that ϕ(0) = idM . One can show that after shrinking Ug to a sufficiently small
0-neighborhood in the C1-topology on V(M), we may achieve that ϕ(Ug) ⊆ Diff(M).
To see that Diff(M) carries a Lie group structure for which ϕ is a chart, one has to
verify that the group operations are smooth in a 0-neighborhood when transfered to Ug

via ϕ, so that Theorem 3.20 below applies. We thus obtain a Lie group structure on
Diff(M) (cf. [GN]).

From the smoothness of the map Ug×M →M, (X,m) 7→ ϕ(X)(m) = Exp(X(m)) it
follows that the canonical left action σ : Diff(M)×M → M, (ϕ,m) 7→ ϕ(m) is smooth
in an identity neighborhood of Diff(M), and hence smooth, because it is an action by
smooth maps. The corresponding homomorphism of Lie algebras

σ̇ : L(Diff(M))→ V(M)
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is given by

σ̇(X)(m) = −Tσ(X, 0m) = −(dExp)0m(X(m)) = −X(m),

i.e., σ̇ = − idV(M). This leads to

L(Diff(M)) = (V(M), [·, ·])op.

This “wrong” sign is caused by the fact that we consider Diff(M) as a group acting
on M from the left. If we consider it as a group acting on the right, we obtain the
opposite multiplication

ϕ ∗ ψ := ψ ◦ ϕ,

and
L(Diff(M)op) ∼= (V(M), [·, ·])

follows from Proposition 3.17.
The tangent bundle of Diff(M) can be identified with the set

T (Diff(M)) := {X ∈ C∞(M,TM) : πTM ◦X ∈ Diff(M)},

where the map
π : T (Diff(M))→ Diff(M), X 7→ πTM ◦X

is the bundle projection. Then

Tϕ(Diff(M)) := π−1(ϕ) = {X ∈ C∞(M,TM) : πTM ◦X = ϕ}

is the tangent space in the diffeomorphism ϕ. The multiplication in the group T (Diff(M))
is given by the formula

X · Y := πT 2M ◦ TX ◦ Y,

where πT 2M : T 2M → TM is the natural projection. Note that

πTM ◦ (X · Y ) = πTM ◦ πT 2M ◦ TX ◦ Y = πTM ◦X ◦ πTM ◦ Y

shows that π is a group homomorphism. Identifying ϕ ∈ Diff(M) with the origin in
Tϕ(Diff(M)), we get

X · ϕ = πT 2M ◦ TX ◦ ϕ = X ◦ ϕ and ϕ ·X = πT 2M ◦ Tϕ ◦X = Tϕ ◦X.

In particular, this leads to the formula

Ad(ϕ).X = Tϕ ◦X ◦ ϕ−1

for the adjoint action of Diff(M) on T0(Diff(M)) = V(M).
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3.4 From local data to global Lie groups

The following theorem is helpful to obtain Lie group structures on groups.

Theorem 3.20. Let G be a group and U = U−1 a symmetric subset. We further assume
that U is a smooth manifold such that

(L1) there exists an open 1-neighborhood V ⊆ U with V 2 = V · V ⊆ U such that the
group multiplication mV : V × V → U is smooth,

(L2) the inversion map ηU : U → U, u 7→ u−1 is smooth, and

(L3) for each g ∈ G there exists an open 1-neighborhood Ug ⊆ U with cg(Ug) ⊆ U and
such that the conjugation map cg : Ug → U, x 7→ gxg−1 is smooth.

Then there exists a unique Lie group structure on G for which there exists an open 1-
neighborhood U0 ⊆ U such that the inclusion map U0 → G induces a diffeomorphism
onto an open subset of G.

Proof. (cf. [Ch46, §14, Prop. 2] or [Ti83, p.14] for the finite dimensional case) First we
consider the filter basis F consisting of all 1-neighborhoods in U . In the terminology of
Lemma B.2, (L1) implies (U1), (L2) implies (U2), and (L3) implies (U3). Moreover, the
assumption that U is Hausdorff implies that

⋂
F = {1}. Therefore Lemma B.2 implies

that G carries a unique structure of a (Hausdorff) topological group for which F is a
basis of 1-neighborhoods.

After shrinking V and U , we may assume that there exists a diffeomorphism
ϕ : U → ϕ(U) ⊆ E, where E is a topological K-vector space, ϕ(U) an open subset,
that V satisfies V = V −1, V 4 ⊆ U , and that mV : V 2 × V 2 → U is smooth. For g ∈ G,
we consider the maps

ϕg : gV → E, ϕg(x) = ϕ(g−1x)

which are homeomorphisms of gV onto ϕ(V ). We claim that (ϕg, gV )g∈G is an E-atlas
of G.

Let g1, g2 ∈ G and put W := g1V ∩ g2V . If W 6= ∅, then g−1
2 g1 ∈ V V −1 = V 2. The

smoothness of the map

ψ := ϕg2 ◦ ϕ−1
g1
|ϕg1 (W ) : ϕg1(W )→ ϕg2(W )

given by
ψ(x) = ϕg2(ϕ

−1
g1

(x)) = ϕg2(g1ϕ
−1(x)) = ϕ(g−1

2 g1ϕ
−1(x))

follows from the smoothness of the multiplication V 2 × V 2 → U . This proves that
(ϕg, gU)g∈G is an atlas of G. Moreover, the construction implies that all left translations
of G are smooth maps.
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The construction also shows that for each g ∈ G, the conjugation cg : G → G is
smooth in a neighborhood of 1. Since all left translations are smooth, and cg ◦ λx =
λcg(x) ◦ cg, the smoothness of cg in a neighborhood of x ∈ G follows. Therefore all
conjugations and hence also all right multiplications are smooth. The smoothness of the
inversion follows from its smoothness on V and the fact that left and right multiplications
are smooth. Finally the smoothness of the multiplication follows from the smoothness
in 1× 1 because

mG(g1x, g2y) = g1xg2y = g1g2cg−1
2

(x)y = g1g2mG(cg−1
2

(x), y).

The uniqueness of the Lie group structure is clear, because each locally diffeomorphic
bijective homomorphism between Lie groups is a diffeomorphism.

Remark 3.21. Suppose that the group G in Theorem 3.20 is generated by each
1-neighborhood V in U . Then condition (L3) can be omitted. Indeed, the construc-
tion of the Lie group structure shows that for each g ∈ V , the conjugation cg : G → G
is smooth in a neighborhood of 1. Since the set of all these g is a submonoid of G
containing V , it contains V n for each n ∈ N, hence all of G because G is generated
by V . Therefore all conjugations are smooth, and one can proceed as in the proof of
Theorem 3.20.

Corollary 3.22. Let G be a group and N E G a normal subgroup that carries a Lie
group structure. Then there exists a Lie group structure on G for which N is an open
subgroup if and only if for each g ∈ G the restriction cg|N is a smooth automorphism
of N .

Proof. If N is an open normal subgroup of the Lie group G, then clearly all inner
automorphisms of G restrict to smooth automorphisms of N .

Suppose, conversely, that N is a normal subgroup of the group G which is a Lie
group and that all inner automorphisms of G restrict to smooth automorphisms of N .
Then we can apply Theorem 3.20 with U = N and obtain a Lie group structure on G
for which the inclusion N → G is a local diffeomorphism, hence a diffeomorphism onto
an open subgroup of G.

For the following corollary we recall that a surjective morphism ϕ : G→ H of topo-
logical groups is called a covering if it is an open map with discrete kernel.

Corollary 3.23. Let ϕ : G→ H be a covering of topological groups. If G or H is a Lie
group, then the other group has a unique Lie group structure for which ϕ is a morphism
of Lie groups which is a local diffeomorphism.

Proof. Since ϕ is a covering, it is a local homeomorphism, so that there exists an open
symmetric 1-neighborhood W ⊆ G such that ϕW := ϕ|W : W → ϕ(W ) is a homeomor-
phism. We only have to choose W so small that we have WW−1∩kerϕ = {1} to ensure
that ϕW is injective.
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Suppose first that G is a Lie group. Then we apply Theorem 3.20 with U := ϕ(W ).
To verify (L1), we choose W1 ⊆ W open with W1W1 ⊆ W and put V := ϕ(W1), and
for (L3) we note that the surjectivity of ϕ implies that for each h ∈ H, there is an
element g ∈ G with ϕ(g) = h. Now we choose an open 1-neighborhood Wg ⊆ W with
cg(Wg) ⊆ W and put Uh := ϕ(Wg).

If, conversely, H is a Lie group, then we put U := W , as V we choose any open
1-neighborhood with V V ⊆ U , and as Ug we may also choose any open 1-neighborhood
with cg(Ug) ⊆ U .

Corollary 3.24. Let G be a Lie group.

(1) If N E G is a discrete subgroup, then the quotient G/N carries a unique Lie group
structure for which the quotient map q : G→ G/N is a local diffeomorphism.

(2) If G is connected and qG : G̃ → G the universal covering group, then G̃ carries a
unique Lie group structure for which qG is a local diffeomorphism.

Proof. (1) follows directly from Corollary 3.23, because the quotient map G→ G/N is
a covering.

(2) We first have to construct a topological group structure on the universal covering

space G̃. Pick an element 1̃ ∈ q−1
G (1). Then the multiplication map mG : G × G → G

lifts uniquely to a continuous map m̃G : G̃× G̃→ G̃ with m̃G(1̃, 1̃) = 1̃. To see that the
multiplication map m̃G is associative, we observe that

qG ◦ m̃G ◦ (idG̃×m̃G) = mG ◦ (qG × qG) ◦ (idG̃×m̃G) = mG ◦ (idG×mG) ◦ (qG × qG × qG)

= mG ◦ (mG × idG) ◦ (qG × qG × qG) = qG ◦ m̃G ◦ (m̃G × idG̃),

so that the two continuous maps

m̃G ◦ (idG̃×m̃G), m̃G ◦ (m̃G × idG̃) : G̃3 → G,

are lifts of the same map G3 → G and both map (1̃, 1̃, 1̃) to 1̃. Hence the uniqueness of

lifts implies that m̃G is associative. We likewise obtain that the unique lift η̃G : G̃→ G̃
of the inversion map ηG : G→ G with η̃G(1̃) = 1̃ satisfies

m̃G ◦ (ηG × idG̃) = 1̃ = m̃G ◦ (idG̃×ηG).

Therefore m̃G defines on G̃ a topological group structure such that qG : G̃ → G is a
covering morphism of topological groups. Now Corollary 3.23 applies.

Remark 3.25. If qG : G̃ → G is the universal covering morphism of a connected Lie
group G, then ker qG is a discrete normal subgroup of the connected group G̃, hence
central (Exercise 3.3). Left multiplications by elements of this group lead to deck trans-

formations of the covering G̃→ G, and this shows that π1(G) ∼= ker qG as groups.
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Clearly, G ∼= G̃/ ker qG. If, conversely, Γ ⊆ G̃ is a discrete central subgroup, then G̃/Γ

is a Lie group with the same universal covering group as G. Two such groups G̃/Γ1 and

G̃/Γ2 are isomorphic if and only if there exists a Lie group automorphism ϕ ∈ Aut(G̃)
with ϕ(Γ1) = Γ2. Therefore the isomorphism classes of Lie groups with the same

universal covering group G are parametrized by the orbits of the group Aut(G̃) in the set

S of discrete central subgroups of G̃. Since the normal subgroup Inn(G̃) := {cg : g ∈ G̃}
of inner automorphisms acts trivially on this set, the action of Aut(G̃) on S factors

through an action of the group Out(G̃) := Aut(G̃)/ Inn(G̃).

Since each automorphism ϕ ∈ Aut(G) lifts to a unique automorphism ϕ̃ ∈ Aut(G̃)

(Exercise!), we have a natural embedding Aut(G) ↪→ Aut(G̃), and the image of this

homomorphism consists of the stabilizer of the subgroup ker qG ⊆ Z(G̃).

3.5 Exercises for Section 3

Exercise 3.1. Let (G,D,mG,1) be a local Lie group. Show that:

(1) For g, h, u ∈ G with (g, h), (h, u), (gh, u) ∈ D, we have

dλg(h) ◦ dλh(u) = dλgh(u).

Hint: Show that λg ◦ λh = λgh on a neighborhood of u.

(2) For the open set Dg := {h ∈ G : (g, h) ∈ D} and the smooth map

λg : Dg → G, h 7→ gh

the vector field defined by xl(u) := dλu(1).x satisfies the left invariance condition

xl ◦ λg = T (λg) ◦ xl|Dg .

(3) Show that the set V(G)l of left invariant vector fields on G is a Lie subalgebra of
the Lie algebra V(G) and show that this leads to a Lie bracket on g = T1(G).

(4) The tangent bundle TG ofG carries a local Lie group structure (TG, TD, TmG, 01).

(5) If ϕ : G → H is a morphism of local Lie groups, then L(ϕ) := dϕ(1) is a homo-
morphism of Lie algebras.

(6) For x ∈ G and (x, y), (y, x−1), (xy, x−1) ∈ D, we put cx(y) := (xy)x−1 and note
that this map is defined on some neighborhood of 1. If (x, y) ∈ D, then cx◦cy = cxy
holds on a neighborhood of 1.

(7) Ad: G→ Aut(g), g 7→ L(cg) is a homomorphism of the local group G to the group
Aut(g).
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Exercise 3.2. Let G be an abelian group and N ≤ G a subgroup carrying a Lie group
structure. Then there exists a unique Lie group structure on G for which N is an open
subgroup. Hint: Corollary 3.22.

Exercise 3.3. Let G be a connected topological group and Γ E G a discrete normal
subgroup. Then Γ is central.

Exercise 3.4. Let A be a cia and M a compact smooth manifold. Show that C∞(M,A)
is a cia with respect to the natural topology on this algebra which is obtained from the
embedding

C∞(M,A) ↪→
∏
p∈N0

C(T pM,T pA),

where the right hand side carries the product topology and on each factor the topology
of compact convergence (which, in view of Appendix B, coincides with the compact open
topology).

Exercise 3.5. Let G be a Lie group and T nG, n ∈ N, its iterated tangent bundles.
Show that:

(1) TG ∼= (g,+) oAd G.

(2) The adjoint action of G on g induces an action T Ad of TG ∼= goG on Tg ∼= g×g,
given by

(T Ad)(x, g)(v, w) = (Ad(g).v + [x,Ad(g)w],Ad(g)w).

(3) T 2G ∼= (g× g) oT Ad (goG). The multiplication in this group satisfies

(x2, x1, x0,1)(x′2, x
′
1, x
′
0,1) = (x2 + x′2 + [x0, x

′
1], x1 + x′1, x0 + x′0).

(4) Generalize (3) to T 3G.

(5) T nG ∼= N oG, where N is a nilpotent Lie group diffeomorphic to g2n−1.

Exercise 3.6. (a) Let m : G × G → G be a smooth associative multiplication on the
manifold G with identity element 1. Show that the differential in (1,1) is given by

dm(1,1) : T1(G)× T1(G)→ T1(G), (v, w) 7→ v + w.

(b) Show that the smoothness of the inversion in the definition of a Banach–Lie group
is redundant because the Inverse Function Theorem can be applied to the map

G×G→ G×G, (x, y) 7→ (x, xy)

whose differential in (1,1) is given by the map (v, w) 7→ (v, v + w).
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Exercise 3.7. Let G be a Lie group with Lie algebra g and ϕ : UG → g a local chart
with ϕ(1) = 0. Show that:

(1) For the local multiplication x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)), the second order Taylor
polynomial of x ∗ y ∗ x−1 ∗ y−1 in (0, 0) is the Lie bracket [x, y].

(2) Use (1) to show that for each morphism of Lie groups ϕ : G→ H, the map dϕ(1)
is a homomorphism of Lie algebras. Hint: Compare the second order Taylor
polynomials of ϕ(x) ∗ ϕ(y) ∗ ϕ(x)−1 ∗ ϕ(y)−1 and ϕ(x ∗ y ∗ x−1 ∗ y−1) by using the
Chain Rule for Taylor polynomials.

Exercise 3.8. Let G be a Lie group, V a locally convex space and σ : G × V → V a
smooth linear action of G on V . Then all vector fields σ̇(x), x ∈ g, are linear, and we
thus obtain a representation of Lie algebras L(σ) : g→ gl(V ) with L(σ)(x)v = −σ̇(x)(v).

Exercise 3.9. Let G and N be Lie groups and ϕ : G → Aut(N) be a homomorphism
such that the map G × N → N, (g, n) 7→ ϕ(g)(n) is smooth. Then the semi-direct
product group N oG with the multiplication

(n, g)(n′, g′) := (nϕ(g)(n′), gg′)

is a Lie group with Lie algebra noL(ϕ) g, where L(ϕ) : g→ der(n) is the derived repre-
sentations (cf. Exercise 3.8).

4 The Fundamental Theorem for Lie group-valued

functions

In this section, we undertake a systematic study of Lie group-valued functions. In the
same way as a smooth function f : M → V on a connected manifold M with values
in a locally convex space V is determined by a value in one-point and the differential
form df ∈ Ω1(M,V ), we can associate to a smooth function f : M → G with values in
a Lie group a smooth 1-form δ(f) ∈ Ω1(M, g). We shall see that if M is connected,
then δ(f) determines f up to left multiplication by a constant. Conversely, we can ask
which g-valued 1-forms α are integrable in the sense that α = δ(f) for some smooth
function f : M → G. For the special case M = [0, 1], this leads to the concept of a
regular Lie group and finally the Fundamental Theorem for Lie group-valued functions
gives necessary and sufficient conditions for α ∈ Ω1(M, g) to be integrable in the sense
that it is of the form δ(f).

The main point of this setup is that g-valued 1-forms are much simpler objects than
Lie group-valued functions. In particular, each Lie algebra homomorphism
ϕ : L(G)→ L(H) defines an L(H)-valued 1-form on G which is integrable if and only if
there exists a Lie group homomorphism ψ : G→ H with L(ψ) = ϕ. If G is 1-connected
and H is regular, such a homomorphism always exists.
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4.1 Logarithmic derivatives and their applications

4.1.1 Equivariant differential forms and Lie algebra cohomology

Definition 4.1. Let G be a Lie group and V a smooth locally convex G-module, i.e., V
is a locally convex space and the action map ρV : G × V → V, (g, v) 7→ g.v is smooth.
We write ρV (g)(v) := g.v for the corresponding continuous linear automorphisms of V .

We call a p-form α ∈ Ωp(G, V ) equivariant if we have for each g ∈ G the relation

λ∗gα = ρV (g) ◦ α.

We write Ωp(G, V )G for the subspace of equivariant p-forms in Ωp(G, V ) and note that
this is the space of G-fixed elements with respect to the action given by1

g.α := ρV (g) ◦ (λg−1)∗α.

If V is a trivial module, then an equivariant form is a left invariant V -valued form
on G. An equivariant p-form α is uniquely determined by the corresponding element
α1 ∈ Cp

c (g, V ) = Altp(g, V ) (cf. Appendix C):

αg(g.x1, . . . , g.xp) = ρV (g) ◦ α1(x1, . . . , xp) for g ∈ G, xi ∈ g. (19)

Conversely, (19) provides for each ω ∈ Cp
c (g, V ) a unique equivariant p-form ωeq on G

with ωeq
1 = ω.

The following proposition shows that the complex of equivariant differential forms
is the same as the Lie algebra complex associated to the g-module V .

Proposition 4.2. For each ω ∈ Cp
c (g, V ), we have d(ωeq) = (dgω)eq. In particular, the

evaluation map
ev1 : Ωp(G, V )G → Cp

c (g, V ), ω 7→ ω1

defines an isomorphism from the chain complex (Ω•(G, V )G, d) of equivariant V -valued
differential forms on G to the continuous V -valued Lie algebra complex (C•c (g, V ), dg).

Proof. (cf. [ChE48, Th. 10.1]) For g ∈ G, we have

λ∗gdω
eq = dλ∗gω

eq = d(ρV (g) ◦ ωeq) = ρV (g) ◦ (dωeq),

showing that dωeq is equivariant.
For x ∈ g, we write xl(g) := g.x for the corresponding left invariant vector field on

G. In view of (19), it suffices to calculate the value of dωeq on (p + 1)-tuples of left
invariant vector fields in the identity element. From

ωeq(x1,l, . . . , xp,l)(g) = ρV (g).ω(x1, . . . , xp),

1The complex (Ω•(G,V )G, d) of equivariant differential forms has been introduced in the finite
dimensional setting by Chevalley and Eilenberg in [ChE48].
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we obtain (
x0,l.ω

eq(x1,l, . . . , xp,l)
)
(1) = x0.ω(x1, . . . , xp),

and therefore(
dωeq(x0,l, . . . , xp,l

))
(1)

=

p∑
i=0

(−1)ixi,l.ω
eq(x0,l, . . . , x̂i,l, . . . , xp,l)(1)

+
∑
i<j

(−1)i+jωeq([xi,l, xj,l], x0,l, . . . , x̂i,l, . . . , x̂j,l, . . . , xp,l)(1)

=

p∑
i=0

(−1)ixi.ω(x0, . . . , x̂i, . . . , xp) +
∑
i<j

(−1)i+jω([xi, xj], x0, . . . , x̂i, . . . , x̂j, . . . , xp)

= (dgω)(x0, . . . , xp).

This proves our assertion.

4.1.2 Maurer–Cartan forms and logarithmic derivatives

For the following definition, we recall from Lemma 3.4 that for each Lie group G, the
tangent bundle TG has a natural Lie group structure containing G as the zero section.
Restricting the multiplication of TG to G × TG, we obtain in particular a smooth left
action of G on TG which we simply write (g, v) 7→ g.v.

Definition 4.3. (a) For v ∈ Tg(G), we define

κG(v) := g−1.v ∈ g = T1(G)

and note that this defines a smooth 1-form κG ∈ Ω1(G, g) because the multiplication in
the Lie group TG is smooth. This form is called the (left) Maurer–Cartan form of G.
It is a left invariant g-valued 1-form on G.

(b) Let M be a smooth manifold and G a Lie group with Lie algebra L(G) = g. For
an element f ∈ C∞(M,G), we define the (left) logarithmic derivative as the g-valued
1-form

δ(f) := f ∗κG ∈ Ω1(M, g).

For v ∈ Tm(M), this means that δ(f)m(v) = f(m)−1.(df)m(v) = f(m)−1Tf(v).
We call α ∈ Ω1(M, g) G-integrable if there exists a smooth function f : M → G with

δ(f) = α.
(c) If M = I is an interval, then we identify Ω1(I, g) with C∞(I, g) by identifying

the smooth function ξ : I → g with the 1-form ξ · dt. In this sense, we can interprete for
a smooth curve γ : I → G the logarithmic derivative δ(γ) = γ∗κG as a smooth curve in
g. Explicitly, we have

δ(γ)(t) = γ(t)−1.γ′(t).
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We recall from Definition 2.28 that on the space Ω•(M, g) of g-valued differential
forms on M we have a natural bracket

Ωp(M, g)× Ωq(M, g)→ Ωp+q(M, g), (α, β) 7→ [α, β]

which for α, β ∈ Ω1(M, g) satisfies for v, w ∈ Tm(M)

[α, β]m(v, w) = [αm(v), βm(w)]− [αm(w), βm(v)] = 2[αm(v), βm(w)]

(Exercise 2.15).

Lemma 4.4. (Product and Quotient Rule) For smooth functions f, g : M → G, we
have

δ(fg) = δ(g) + Ad(g)−1.δ(f), (20)

where (Ad(g)−1.δ(f))m := Ad(g(m))−1 ◦ δ(f)m. In particular, we have

δ(f−1) = −Ad(f).δ(f). (21)

Proof. Clearly the pointwise product is a smooth function fg : M → G. With the Chain
Rule we obtain

d(fg)m = f(m).(dg)m + (df)m.g(m),

and this leads to

δ(fg)m = (fg)(m)−1.d(fg)m = g(m)−1.(dg)m + g(m)−1f(m)−1.(df)m.g(m)

= δ(g)m + Ad(g(m))−1 ◦ δ(f)m,

which is (20). Putting g = f−1, we obtain (21).

The following lemma provides a uniqueness result for the equation δ(f) = α.

Lemma 4.5. (Uniqueness Lemma) If two smooth functions f1, f2 : M → G have the
same left logarithmic derivative and M is connected, then there exists g ∈ G with f1 =
λg ◦ f2.

Proof. We have to show that the function x 7→ f1(x)f2(x)−1 is locally constant, hence
constant, because M is connected. First we obtain with Lemma 4.4

δ(f1f
−1
2 ) = δ(f−1

2 ) + Ad(f2)δ(f1) = δ(f−1
2 ) + Ad(f2)δ(f2) = δ(f2f

−1
2 ) = 0.

This implies that d(f1f
−1
2 ) vanishes, and hence that f1f

−1
2 is locally constant.

For the existence of a solution of the equation δ(f) = α, the following lemma provides
a necessary condition.
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Lemma 4.6. If α = δ(f) for some f ∈ C∞(M,G), then α satisfies the Maurer–Cartan
equation

dα +
1

2
[α, α] = 0. (MC)

Proof. We first show that κG satisfies the MC equation. For that, we observe that the
isomorphism of chain complexes

ev1 : Ωp(G, g)G → Cp
c (g, g), ω 7→ ω1,

corresponding to the trivial action of G on g is compatible with the bracket defined on
both sides (cf. Exercise 2.15). Since κG = (idg)

eq and

(dg idg)(x, y) = − idg([x, y]) = −[x, y] = −1

2
[idg, idg](x, y),

we derive

dg idg +
1

2
[idg, idg]

in C2
c (g, g), and with Proposition 4.2 this leads to

dκG +
1

2
[κG, κG] = 0.

Therefore α = f ∗κG satisfies

dα = f ∗dκG = −1

2
f ∗([κG, κG]) = −1

2
[f ∗κG, f

∗κG] = −1

2
[α, α],

which is the Maurer–Cartan equation for α.

Remark 4.7. If M is one dimensional, then each g-valued 2-form on M vanishes, so
that [α, β] = 0 = dα for α, β ∈ Ω1(M, g). Therefore all 1-forms trivially satisfy the
Maurer–Cartan equation.

Proposition 4.8. Let G and H be Lie groups.

(1) If ϕ : G→ H is a morphism of Lie groups, then δ(ϕ) = L(ϕ)◦κG. For any smooth
function f : M → G, we have δ(ϕ ◦ f) = L(ϕ) ◦ δ(f).

(2) If G is connected and ϕ1, ϕ2 : G → H are morphisms of Lie groups with
L(ϕ1) = L(ϕ2), then ϕ1 = ϕ2.

(3) Suppose that we are given a smooth action of the connected Lie group G on H by
automorphisms, so that we also obtain a smooth action of G on h = L(H). Then
for a smooth function f : G→ H with f(1) = 1 the following are equivalent:
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(a) δ(f) is an equivariant h-valued 1-form on G.

(b) f(gx) = f(g) · g.f(x) for g, x ∈ G, i.e., f is a crossed homomorphism.

Proof. (1) For g ∈ G, we have ϕ ◦ λg = λϕ(g) ◦ ϕ, so that

δ(ϕ)g = d(λ−1
ϕ(g) ◦ ϕ)g = d(ϕ ◦ λ−1

g )g = (dϕ)(1) ◦ dλ−1
g (g) = L(ϕ) ◦ (κG)g.

For any smooth function f : M → G, we now get

δ(ϕ ◦ f) = f ∗ϕ∗κH = f ∗(L(ϕ) ◦ κG) = L(ϕ) ◦ f ∗κG = L(ϕ) ◦ δ(f).

(2) In view of (1), δ(ϕ1) = δ(ϕ2), so that the assertion follows from ϕ1(1) = ϕ2(1)
and Lemma 4.4.

(3) We write g.x = ρh(g).x for the action of G on h and g.h = ρH(g).h for the action
of G on H and note that L(ρH(g)) = ρh(g) holds for each g ∈ G.

Let g ∈ G. Then the logarithmic derivative of λ−1
f(g) ◦ f ◦ λg is λ∗gδ(f), and, in view

of (1), the logarithmic derivative of ρH(g) ◦ f is ρh(g) ◦ δ(f). Since both functions map
1 to 1, they coincide if and only if their logarithmic derivatives coincide (Lemma 4.5).
This implies (3).

Corollary 4.9. If G is a connected Lie group, then ker Ad = Z(G).

Proof. Let cg(x) = gxg−1. In view of Proposition 4.8(2), for g ∈ G the conditions
cg = idG and L(cg) = Ad(g) = idg are equivalent. This implies the assertion.

Proposition 4.10. A connected Lie group G is abelian if and only if its Lie algebra is
abelian.

Proof. That the Lie algebra of an abelian Lie group is abelian is a direct consequence of
Lemma 3.6, which implies that in any chart the second order Taylor polynomial of the
multiplication has the form x+ y+ b(x, y) with [x, y] = b(x, y)− b(y, x). If G is abelian,
then b is symmetric, and therefore L(G) is abelian.

In view of the preceding corollary, we have to show that for each g ∈ G we have
Ad(g) = 1. Let x ∈ g and consider a smooth curve γ : [0, 1] → G with γ(0) = 1 and
γ(1) = g. For η(t) := Ad(γ(t)).x, we then have by Proposition 3.16

η′(t) = T Ad(γ(t).δ(γ)(t), 0) = Ad(γ(t)).[δ(γ)(t), x] = 0

for each t, so that η is constant. This implies that Ad(g).x = η(1) = η(0) = x.

Remark 4.11. One can generalize the preceding argument to show that a connected
Lie group G is nilpotent/solvable if and only if its Lie algebra g is nilpotent/solvable
([GN]).
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4.2 Regular Lie groups and the Fundamental Theorem

If M = I = [0, 1], then the Maurer–Cartan equation is satisfied by each ξ ∈ Ω1(I, g) ∼=
C∞(I, g), because each 2-form on I vanishes. The requirement that for each smooth
curve ξ ∈ C∞(I, g), the ordinary differential equation

γ′(t) = γ(t).ξ(t) for t ∈ I,

has a solution depending smoothly on ξ leads to the concept of a regular Lie group.

Definition 4.12. A Lie group G is called regular if for each ξ ∈ C∞(I, g) the initial
value problem (IVP)

γ(0) = 1, δ(γ) = ξ, (22)

has a solution γξ ∈ C∞(I,G) and the evolution map

evolG : C∞(I, g)→ G, ξ 7→ γξ(1)

is smooth.
For a regular Lie group G, we define the exponential function

exp: L(G) = g→ G by exp(x) := γx(1) = evolG(x),

where x ∈ g is considered as a constant function I → g. As a restriction of the smooth
function evolG, the exponential function is smooth.

For a general Lie group G, we call a smooth function expG : g → G an exponential
function for G if for each x ∈ g the curve γx(t) := exp(tx) is a solution of the IVP (22).
According to Lemma 4.5, such a solution is unique whenever it exists. Therefore a Lie
group has at most one exponential function.

Remark 4.13. (a) As a direct consequence of the existence of solutions to ordinary
differential equations on open domains of Banach spaces and their smooth dependence
on parameters, every Banach–Lie group is regular.

(b) Let A be a unital Banach algebra and A× its unit group. Since A is a cia, A× is
a Lie group. For x ∈ A, the corresponding left invariant vector field is given on A× by
xl(a) = ax, and the unique solutions of the IVP (22) are given by γ(t) = exp(tx), where

expA : A → A×, x 7→
∞∑
k=0

1

k!
xk

is the exponential function ofA. This implies that expA is a smooth exponential function
of the Lie group A.

This remains true for each Mackey complete cia A: For each x ∈ A, the exponential
series converges and expA defines a smooth exponential function of A× (cf. [Gl02b]).
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(c) Although it might be hard to verify it in concrete situations, all “known” Lie
groups modeled on Mackey complete spaces are regular. For example we do not know
if all unit groups of Mackey complete cias are regular, but we have just seen in (b) that
they always have a smooth exponential function.

If the model space is no longer assumed to be Mackey complete, one obtains non-
regular Lie groups as follows (cf. [Gl02b, Sect. 7]): Let A ⊆ C([0, 1],R) denote the
subalgebra of all rational functions, i.e., of all quotients p(x)/q(x), where q(x) is a
polynomial without zero in [0, 1]. We endow A with the induced norm

‖f‖ := sup
0≤t≤1

|f(t)|.

If an element f ∈ A is invertible in C([0, 1],R), then it has no zero in [0, 1], which
implies that it is also invertible in A, i.e.,

A× = C([0, 1],R)× ∩ A.

This shows that A× is open in A, and since the Banach algebra C([0, 1],R) is a cia, the
smoothness of the inversion is inherited by A, so that A is a cia. Hence A× is a Lie
group (Example 3.3).

If A× is regular, then it also has a smooth exponential function, and from Lemma 4.5
we derive that it is the restriction of the exponential function of C([0, 1],R)× to A, which
leads to

expA(f) = ef , t 7→ ef(t).

This contradicts the observation that for the function f(t) = t, the function ef is not
rational. Therefore the Lie group A× does not have an exponential function, hence is
not regular.

(d) If V is a locally convex space, then (V,+) is a regular Lie group if and only if
it is Mackey complete because this means that for each smooth curve ξ : I → V , there
is a smooth curve γξ : I → V with γ′ξ = ξ. Regularity is inherited by all abelian Lie
groups of the form Z = V/Γ, where Γ is a discrete subgroup of V (Exercise 3.4) (cf.
Corollary 3.24 for the Lie group structure on V/Γ).

(e) If K is a Lie group with a smooth exponential function expK : k → K and M
is a compact smooth manifold, then we obtain an exponential function of the group
C∞(M,K) by

expG : g = C∞(M, k)→ G = C∞(M,K), ξ 7→ expK ◦ξ.

The following theorem is an important tool to verify that given Lie groups are regular.

Theorem 4.14. Let Ĝ be a Lie group extension of the Lie groups G and N , i.e., there
exists a surjective morphism q : Ĝ → G with ker q ∼= N , where Ĝ carries the structure
of an N-principal bundle. Then the group Ĝ is regular if and only if the groups G and
N are regular.
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4.2.1 The Fundamental Theorem

Lemma 4.15. (Omori) If G is a regular Lie group, x ∈ g and ξ ∈ C∞(I, g), then the
initial value problem

(E1) η′(t) = [η(t), ξ(t)], η(0) = x

has a unique solution given by

(E2) η(t) = Ad(γξ(t))
−1x.

Proof. For γ(t) := γξ(t), we get with Lemma 4.4

δ(γ−1) = −Ad(γ).δ(γ) = −Ad(γ).ξ.

We define η by (E2). Then η is a smooth curve with

η′(t) = Ad(γ(t))−1[−Ad(γ(t))ξ(t), x] = [Ad(γ(t))−1x, ξ(t)] = [η(t), ξ(t)]

(Proposition 3.16).
Now let β be another solution of (E1) and consider the curve

β̃(t) := Ad(γ(t))β(t).

Then β̃(0) = β(0) = x, and Proposition 3.16 leads to

β̃′(t) = Ad(γ(t))[δ(γ)(t), β(t)] + Ad(γ(t))β′(t) = Ad(γ(t))
(
[ξ(t), β(t)] + β′(t)

)
= 0.

Therefore β̃ is constant equal to x, and we obtain

β(t) = Ad(γ(t))−1β̃(t) = Ad(γ(t))−1x = η(t).

Remark 4.16. Let G be regular. Then the map

S : I × C∞(I, g)→ C∞(I, g), S(s, ξ)(t) = sξ(st)

is smooth. For ξ ∈ C∞(I, g) and γξ,s(t) := γξ(st), 0 ≤ s ≤ 1, we have

δ(γξ,s)(t) = sξ(st) = S(s, ξ)(t).

Therefore
γξ(s) = evolG

(
S(s, ξ)

)
,

so that the map
evolG ◦S : I × C∞(I, g)→ G, (s, ξ) 7→ γξ(s)

is smooth.
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Remark 4.17. Now we consider smooth functions I2 → G, where I = [0, 1] is the unit
interval and G is a regular Lie group. A smooth g-valued 1-form α ∈ Ω1(I2, g) can be
written as

α = v · dx+ w · dy with v, w ∈ C∞(I2, g).

To evaluate the Maurer–Cartan equation for α, we first observe that

1

2
[α, α]

( ∂
∂x
,
∂

∂y

)
=
[
α
( ∂
∂x

)
, α
( ∂
∂y

)]
= [v, w] ∈ C∞(I2, g),

and obtain

dα +
1

2
[α, α] =

∂v

∂y
dy ∧ dx+

∂w

∂x
dx ∧ dy + [v, w]dx ∧ dy =

(∂w
∂x
− ∂v

∂y
+ [v, w]

)
dx ∧ dy.

Therefore the MC equation for α is equivalent to the partial differential equation

∂v

∂y
− ∂w

∂x
= [v, w]. (23)

Suppose that the two smooth functions v, w : I2 → g satisfy (23). Then we define a
smooth function f : I2 → G by

f(x, 0) := γv(·,0)(x) and f(x, y) := f(x, 0) · γw(x,·)(y).

Since the map I → C∞(I, g), x 7→ w(x, ·) is smooth (Exercise!), f is a smooth function.
We have

δ(f) = v̂ · dx+ w · dy with v̂(x, 0) = v(x, 0), x ∈ I.

The Maurer–Cartan equation for δ(f) reads ∂v̂
∂y
− ∂w

∂x
= [v̂, w], so that subtraction of this

equation from (23) leads to
∂(v − v̂)

∂y
= [v − v̂, w].

As (v−v̂)(x, 0) = 0, the uniqueness assertion of Lemma 4.15, applied with ξ(t) := w(x, t),
implies that (v − v̂)(x, y) = 0 for all x, y ∈ I. We conclude that v = v̂, which means
that δ(f) = v · dx+ w · dy.

Lemma 4.18. Let U be an open convex subset of the locally convex space V , G a regular
Lie group and and α ∈ Ω1(U, g) satisfy the Maurer–Cartan equation. Then there exists
a smooth function f : U → G satisfying δ(f) = α.

Proof. We may w.l.o.g. assume that x0 = 0 ∈ U . For x ∈ U , we then consider the
smooth curve

ξx : I → g, t 7→ α(tx)(x).
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Then the map U → C∞(I, g) is smooth (Exercise), so that the function

f : U → G, x 7→ evolG(ξx)

is smooth.
First we show that f(sx) = γξx(s) holds for each s ∈ I. From Remark 4.16 we derive

that
S(s, ξx)(t) = sξx(st) = α(stx)(sx) = ξsx(t),

hence S(s, ξx) = ξsx, which leads to f(sx) = γξx(s).
For x, x+ h ∈ U , we consider the smooth map

ϕ : I × I → U, (s, t) 7→ t(x+ sh)

and the smooth function F := f ◦ϕ. Then the preceding considerations imply F (s, 0) =
f(0) = 1,

∂F

∂t
(s, t) =

d

dt
f(t(x+ sh)) =

d

dt
γξx+sh

(t) = F (s, t).ξx+sh(t)

= F (s, t).α(t(x+ sh))(x+ sh) = F (s, t).(ϕ∗α)(s,t)

( ∂
∂t

)
.

As we have seen in Remark 4.16, these relations imply already that δ(F ) = ϕ∗α holds
on the square I2. We therefore obtain

∂

∂s
f(x+ sh) =

∂

∂s
F (s, 1) = F (s, 1).αx+sh(h) = f(x+ sh).αx+sh(h),

and for s = 0, this leads to (df)x(h) = f(x).αx(h), which means that δ(f) = α.

The following theorem is a version of the Fundamental Theorem of calculus for
functions with values in regular Lie groups.

Theorem 4.19. (Fundamental Theorem for Lie group valued functions) Let M be a
simply connected manifold and G a regular Lie group. Then α ∈ Ω1(M, g) is integrable
if and only if

dα +
1

2
[α, α] = 0. (MC)

Proof. We have already seen in Lemma 4.6 that the MC equation is necessary for the
existence of a smooth function f : M → G with δ(f) = α.

We consider the product set P := M ×G with the two projection maps F : P → G
and q : P → M . We define a topology on P as follows. For each pair (U, f), consisting
of an open subset U ⊆M and a smooth function f : U → G with δ(f) = α|U , the graph
Γ(f, U) := {(x, f(x)) : x ∈ U} is a subset of P . These sets form a basis for a topology
τ on P .
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With respect to this topology, the mapping q : P → M is a covering map. To see
this, let x ∈ M . Since M is a manifold, there exists a neighborhood U of x which is
diffeomorphic to a convex subset of a locally convex space. In view of Lemmas 4.18 and
4.5, for each g ∈ G and each x ∈ U , the equation δ(f) = α|U has a unique solution fg
with fg(x) = g. Now q−1(U) = U×G =

⋃
g∈G Γ(fg, U) is a disjoint union of open subsets

of P (here we use the connectedness of U), and therefore q is a covering. We conclude
that P carries a natural manifold structure, for which q is a local diffeomorphism. For
this manifold structure, the function F : P → G is smooth with δ(F ) = q∗α.

Now we fix a point x0 ∈ M and an element g ∈ G. Then the connected component
M̂ of (x, g) in P is a connected covering manifold of M , hence diffeomorphic to M , so
that we may put f := F ◦ (q|M̂)−1.

Remark 4.20. (a) If M is a complex manifold, G is a complex regular Lie group and α ∈
Ω1(M, g) is a holomorphic 1-form, then for any smooth function
f : M → G with δ(f) = α, the differential of f is complex linear in each point, so
that f is holomorphic. Conversely, the left logarithmic derivative of any holomorphic
function f is a holomorphic 1-form.

If, in addition, M is a complex curve, i.e., a one dimensional complex manifold, then
for each holomorphic 1-form α ∈ Ω1(M, g) the 2-forms dα and [α, α] are holomorphic,
which implies that they vanish, because M is a one dimensional. Therefore the Maurer–
Cartan equation is automatically satisfied by all holomorphic 1-forms.

One of the main points of the notion of regularity is provided by the following
theorem.

Theorem 4.21. If H is a regular Lie group, G is a simply connected Lie group, and
ϕ : L(G) → L(H) is a continuous homomorphism of Lie algebras, then there exists a
unique Lie group homomorphism f : G→ H with L(f) = ϕ.

Proof. This is Theorem 8.1 in [Mil83] (see also [KM97, Th. 40.3]). The uniqueness
assertion follows from Lemma 4.5 and does not require the regularity of H.

On G, we consider the smooth h-valued 1-form given by α := ϕ◦κG. That it satisfies
the Maurer–Cartan equation follows from

dα = ϕ ◦ dκG = −1

2
ϕ ◦ [κG, κG] = −1

2
[ϕ ◦ κG, ϕ ◦ κG] = −1

2
[α, α].

Therefore the Fundamental Theorem implies the existence of a unique smooth function
f : G→ H with δ(f) = α and f(1G) = 1H . In view of Proposition 4.8(3), the function
f is a morphism of Lie groups, and we clearly have L(f) = α1 = ϕ.

Corollary 4.22. If G1 and G2 are regular simply connected Lie groups with isomorphic
Lie algebras, then G1 and G2 are isomorphic.
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4.2.2 The non-simply connected case

For a locally convex Lie algebra g, we write

Z1
dR(M, g) := {α ∈ Ω1(M, g) : dα + 1

2
[α, α] = 0}

for the set of solutions of the MC equation. Note that if g is abelian, then Z1
dR(M, g)

is the space of closed g-valued 1-forms, but that for non-abelian Lie algebras g, the set
Z1

dR(M, g) does not have any natural vector space structure.
We are now looking for a sufficient condition on α ∈ Z1

dR(M, g) to be G-integrable. In
the remainder of this section, we shall assume that G is regular and that M is connected,
but not that M is simply connected. We fix a base point m0 ∈M .

Let α ∈ Z1
dR(M, g). If γ : I = [0, 1] → M is a piecewise smooth loop, then γ∗α ∈

Ω1(I, g) ∼= C∞(I, g), so that evolG(γ∗α) ∈ G is defined, because G is regular.

Lemma 4.23. If α satisfies the MC equation, then evolG(γ∗α) does not change under
homotopies with fixed endpoints and

perm0
α : π1(M,m0)→ G, [γ] 7→ evolG(γ∗α)

is a group homomorphism.

Proof. Let qM : M̃ → M denote a universal covering manifold of M and choose a base
point m̃0 ∈ M̃ with qM(m̃0) = m0. Then the g-valued 1-form q∗Mα on M̃ also satisfies
the Maurer–Cartan equation, so that the Fundamental Theorem for simply connected
manifolds (Theorem 4.19) implies the existence of a unique smooth function f̃ : M̃ → G

with δ(f̃) = q∗Mα and f̃(m̃0) = 1.
We write

σ : π1(M,m0)× M̃ → M̃, (d,m) 7→ d.m = σd(m)

for the left action of the fundamental group π1(M,m0) on M̃ . Then σ∗dq
∗
Mα = q∗Mα for

each d ∈ π1(M,m0) implies the existence of a function

ϕ : π1(M,m0)→ G with f̃ ◦ σd = ϕ(d) · f̃ , d ∈ π1(M,m0),

because
δ(f̃ ◦ σd) = σ∗dq

∗
Mα = q∗Mα = δ(f̃).

For d1, d2 ∈ π1(M,m0), we then have

f̃ ◦ σd1d2 = f̃ ◦ σd1 ◦ σd2 = (ϕ(d1) · f̃) ◦ σd2 = ϕ(d1) · (f̃ ◦ σd2) = ϕ(d1)ϕ(d2) · f̃ ,

so that ϕ is a group homomorphism.
We now pick a continuous lift γ̃ : I → M̃ with qM ◦ γ̃ = γ and observe that

δ(f̃ ◦ γ̃) = γ̃∗q∗Mα = γ∗α,
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which entails that
ϕ([γ]) = f̃([γ].m̃0) = f̃(γ̃(1)) = evol(γ∗α).

This completes the proof.

Definition 4.24. For α ∈ Z1
dR(M, g), the homomorphism

perm0
α : π1(M,m0)→ G with perm0

α ([γ]) = evol(γ∗α)

for each piecewise smooth loop γ : I → M in m0 is called the period homomorphism of
α with respect to m0.

Clearly, the function f̃ in the proof of Lemma 4.23 factors through a smooth function
on M if and only if the period homomorphism is trivial. This leads to the following
version of the fundamental theorem for manifolds which are not simply connected.

Theorem 4.25. (Fundamental Theorem; non-simply connected case) Let M be a con-
nected manifold, m0 ∈ M , G a regular Lie group and α ∈ Ω1(M, g). There exists a
smooth function f : M → G with α = δ(f) if and only if α satisfies

dα +
1

2
[α, α] = 0 and perm0

α = 1.

4.3 Exercises for Section 4

Exercise 4.1. Let V be a Mackey complete space and Γ ⊆ V a discrete subgroup.
Show that the quotient Lie group V/Γ is regular.

Exercise 4.2. Let M be a smooth manifold, H a regular Lie group and α ∈ Z1
dR(M, h).

Show that:

(1) For any diffeomorphism ϕ ∈ Diff(M), we have

perm0
α (ϕ∗α) = perϕ(m0)

α (α) ◦ π1(ϕ,m0) : π1(M,m0)→ H.

(2) Let G be a Lie group, acting smoothly on M from the left by g.m = σg(m) and also
on H, resp., h, by automorphisms ρH(g), resp., ρh(g). We call α an equivariant
form if

σ∗gα = ρh(g) ◦ α
holds for each g ∈ G. Show that if α is equivariant, then

ρH(g) ◦ perm0
α (α) = perg.m0

α (α) ◦ π1(σg,m0) : π1(M,m0)→ G.

If, in addition, m0 is fixed by G and G is connected, then

im(perm0
α ) ⊆ HG.
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5 Locally exponential Lie groups and Lie subgroups

In this section, we turn to Lie groups with an exponential function exp: L(G) → G
which is well-behaved in the sense that it maps a 0-neighborhood in L(G) diffeomorphi-
cally onto a 1-neighborhood in G. We call such Lie groups locally exponential.

The assumption of local exponentiality has important structural consequences, the
most important ones of which are that it permits us to develop a good theory of Lie
subgroups and that there even is a characterization of those subgroup for which we may
form Lie group quotients.

Unfortunately, not all regular Lie groups are locally exponential. As an important
example we discuss the group Diff(S1) in some detail.

5.1 Locally exponential Lie groups

Definition 5.1. We call a Lie group G locally exponential if it has a smooth exponential
function exp: g = L(G)→ G and there exists an open 0-neighborhood U ⊆ g such that
exp |U : U → exp(U) is a diffeomorphism onto an open 1-neighborhood of G. A Lie
group is called exponential if it has an exponential function which is a diffeomorphism
g→ G.

Lemma 5.2. If G is a Lie group with exponential function exp: g→ G, then

d exp(0) = idg .

Proof. For x ∈ g, we have exp(x) = γx(1), where γx is a solution of the IVP

γ(0) = 1, δ(γ) = x.

This implies in particular that exp(tx) = γtx(1) = γx(t) (Remark 4.16), and hence

(d exp)(0)(x) = γ′x(0) = x.

The preceding lemma is not as useful in the infinite dimensional context as it is
in the finite dimensional or Banach context. For Banach–Lie groups, it follows from
the Inverse Function Theorem that exp restricts to a diffeomorphism of some open 0-
neighborhood in g to an open 1-neighborhood in G, so that we can use the exponential
function to obtain charts around 1. We will see below that this conclusion does not
work for Fréchet–Lie groups, because in this context there is no general Inverse Function
Theorem. This observation also implies that to integrate Lie algebra homomorphisms
to group homomorphisms, it is in general not enough to start with the prescription
α(expG x) := expH ϕ(x) to prove Theorem 4.21, because the image of expG need not
contain an identity neighborhood in G (cf. Theorem 5.5 below).
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Remark 5.3. (a) In view of Lemma 5.2, the Inverse Function Theorem implies that
each Banach–Lie group is locally exponential. This also covers all finite dimensional Lie
groups.

(b) Unit groups of Mackey complete cias are locally exponential (cf. [Gl02b]). In
fact, if A is a Mackey complete complex cia, then the fact that A× is open implies that
for each a ∈ A, the spectrum Spec(a) is a compact subset (which also is non-empty),
and it is shown in [Gl02b] that the holomorphic calculus works as for Banach algebras.
We only have to use partially smooth countours around spectra. We thus obtain an
exponential function

expA : A → A×, x 7→ 1

2πi

∮
Γ

eζ(ζ1− x)−1 dζ,

where Γ is a piecewise smooth contour around Spec(x). Then exp is a holomorphic
function A → A×.

Let ρ(a) := sup{|λ| : λ ∈ Spec(a)} denote the spectral radius of a ∈ A. Then

Ω := {a ∈ A : ρ(a− 1) < 1}

is an open 1-neighborhood in A×, and with the complex logarithm function

log : {z ∈ C : |1− z| < 1} → C

satisfying log(1) = 0, we get the holomorphic function

logA : Ω→ A, x 7→ 1

2πi

∮
Γ

log(ζ)(ζ1− x)−1 dζ,

where Γ is a contour around Spec(x), lying in the open disc of radius 1 around 1. Now
functional calculus implies that (logA ◦ expA)(x) = x for ρ(x) sufficiently small, and
(expA ◦ logA)(x) = x for each x ∈ Ω. We conclude that the unit group A× is locally
exponential.

If A is a real cia, then one uses the fact that its complexification AC is a cia to
see that logAC

(Ω ∩ A×) ⊆ A, and that logA := logAC
|Ω is a smooth local inverse to

expA := expAC
|A.

(c) If K is a locally exponential Lie group and M is a compact manifold, then the
Lie group G := C∞(M,K) (Example 3.12) is locally exponential.

In fact, if expK : k→ K is an exponential function of K, then

expG : g = C∞(M, k)→ G = C∞(M,K), ξ 7→ expK ◦ξ

is a smooth exponential function of G. Since we may use the exponential function
expK : k→ K to get a local chart of K, the construction of the local charts of G implies
that G is locally exponential.
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(d) Results of Ch. Wockel ([Wo07]) imply that the preceding theorem generalizes even
to gauge groups: If K is locally exponential and q : P → M is a smooth principal K-
bundle over the compact manifold M , then Gau(P ) carries a natural Lie group structure,
turning it into a locally exponential Lie group. In fact, one shows that

gau(P ) := C∞(P, k)K → C∞(P,K)K ∼= Gau(P ), ξ 7→ expK ◦ξ

is a local homeomorphism, and that it can be used to define a Lie group structure on
Gau(P ).

(e) If g is a nilpotent locally convex Lie algebra, then we can use the BCH series
x ∗ y := x + y + 1

2
[x, y] + · · · to define a polynomial Lie group structure (g, ∗) with

L(g, ∗) = g.
More generally, if g = lim

←−
gj is a projective limit of a family of nilpotent Lie algebras

(gj)j∈J (a so-called pro-nilpotent Lie algebra), then the corresponding morphisms of Lie
algebras are also morphisms for the corresponding group structures, so that

(g, ∗) := lim
←−

(gj, ∗)

defines on the space g a Lie group structure with L(g, ∗) = g. We thus obtain an
exponential Lie group G = (g, ∗) with expG = idg.

This construction can be used in many situations to see that certain groups can be
turned into Lie groups. An important class of examples arises as follows. Let V be
a finite dimensional K-vector space, let Pd(V, V ) denote the space of all polynomials
functions V → V of degree d. Then for each n ≥ 2, the space gn :=

⊕n
k=2 Pk(V, V )

carries a natural Lie algebra structure given for f ∈ Pi(V, V ) and g ∈ Pj(V, V ) by

[f, g](x) :=

{
dg(x)f(x)− df(x)g(x) for i+ j − 1 ≤ n

0 for i+ j − 1 > n

This is a modification of the natural Lie bracket on the space C∞(V, V ) ∼= V(V ), ob-
tained by cutting of all terms of degree > n. From

[Pi(V, V ), Pj(V, V )] ⊆ Pi+j−1(V, V )

it immediately follows that each gn is a nilpotent Lie algebra. For n < m, we have
natural projections

ϕnm : gm → gn,

which are actually homomorphisms of Lie algebras. The projective limit Lie algebra
g := lim

←−
gn can be identified with the space of V -valued formal power series starting in

degree 2.
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A natural Lie group corresponding to gn is the set of all polynomial maps f : V → V
with f − idV ∈ gn. The group structure is given by composition and then omitting all
terms of order > n:

f ∗ g = (f ◦ g)≤n.

This turns Gn into a nilpotent Lie group with Lie algebra gn. The corresponding expo-
nential function

expGn
: gn → Gn

is given by “integrating” a vector field X ∈ gn modulo terms of order > n. Since Gn is
diffeomorphic to a vector space, its exponential function is a diffeomorphism gn → Gn.

We can now form the projective limit group G := lim
←−

Gn whose manifold structure

is obtained from the fact that it is an affine space with translation group g. Since the
exponential functions are compatible with the limiting process, we see that G is an
exponential Lie group with a pro-nilpotent Lie algebra. The group G can be defined
with the set of all formal diffeomorphisms of V fixing 0 and with first order term given
by idV . Likewise, g can be identified with a Lie algebra of formal vector fields.

(f) We describe a Fréchet–Lie group G which is analytic, for which exp: g→ G is a
diffeomorphism and analytic, but exp−1 is not an analytic map, and the corresponding
multiplication on g is not analytic.

Let Aff(R) denote the affine group of R, which is isomorphic to R2, endowed with
the multiplication

(x, y)(x′, y′) = (x+ eyx′, y + y′)

and the exponential map

exp: R2 → R2, exp(x, y) =
(ey − 1

y
x, y
)
,

whose inverse is given by

log : R2 → R2, log(x, y) =
( y

ey − 1
x, y
)
.

On the Lie algebra level, we have

[(x, y), (x′, y′)] = (yx′ − y′x, 0).

This means that
ad(0, y)n.(x′, y′) = (ynx′, 0),

so that
∑∞

n=1 ad(0, y)n converges if and only if |y| < 1.
We put

G := Aff(R)N ∼= (R2)N
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with the multiplication

(xn, yn)n∈N(x′n, y
′
n)n∈N := (xn + eynx′n, yn + y′n)n∈N.

We endow G with the manifold structure we obtain by identifying it with the product
space (R2)N which is a Fréchet space (cf. Exercise 2.8). This turns G into an analytic
manifold. As the power series defining the multiplication converges globally, the multi-
plication of G is analytic, and the same holds for the inversion map, because in Aff(R)
we have

(x, y)−1 = (−e−yx,−y).

Therefore G is an analytic Lie group.
The exponential map of G is given by

exp((xn, yn))n =
(eyn − 1

yn
xn, yn

)
,

and again we see that exp is analytic because the corresponding power series converges
globally. For the inverse function, we obtain

exp−1((xn, yn))n =
( yn
eyn − 1

xn, yn

)
,

but this map is not analytic, because the power series of the real analytic function
y 7→ y

ey−1
converges only on the interval from −2π to 2π, and the product of infinitely

many such intervals is not an open subset in g ∼= (R2)N.
For the multiplication on the Lie algebra aff(R) obtained from the exponential chart,

we have

(x, y) ∗ (x′, y′) = log(exp(x, y) exp(x′, y′)) = log
(ey − 1

y
x+ ey

ey
′ − 1

y′
x′, y + y′

)
=
( y + y′

ey+y′ − 1

(ey − 1

y
x+ ey

ey
′ − 1

y′
x′
)
, y + y′

)
and in particular

(0, y) ∗ (1, 0) = log(ey, y) =
( yey

ey − 1
, y
)

=
( y

1− e−y
, y
)
.

Therefore the argument form above also shows that the multiplication on the product
Lie algebra g is not analytic.

For the following results we refer to [GN].

Theorem 5.4. Each continuous homomorphism ϕ : G→ H between locally exponential
groups is smooth.
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Proof. (Idea) Using exponential charts, we obtain open 0-neighborhoods Ug ⊆ g = L(G)
and Uh ⊆ h = L(H) together with a continuous map ψ : Ug → Uh satisfying

ψ(x ∗ y) = ψ(x) ∗ ψ(y), x, y ∈ Ug.

Then one shows that
f(x) := lim

n→∞
n · ψ( 1

n
x)

converges for each x ∈ g, that f coincides on a 0-neighborhood with ψ, and that f is
linear. As f is continuous in a 0-neighborhood, it is smooth, and from expH ◦f = ϕ◦expG
on a 0-neighborhood in Ug, we derive that ϕ is smooth.

Theorem 5.5. Let G and H be locally exponential groups, ψ : L(G)→ L(H) a contin-
uous homomorphism of Lie algebras, and assume that G is connected and simply con-
nected. Then there exists a unique morphism of Lie groups ϕ : G→ H with L(ϕ) = ψ.

Proof. (Idea) Let Ug ⊆ g = L(G) be a convex balanced 0-neighborhood mapped diffeo-
morphically by the exponential function to an open subset of G.

First one shows that the local Maurer–Cartan form on Ug is given by

(κg)x := (exp∗ κG)x =

∫ 1

0

e−t adx dt.

This implies that ψ∗κh = ψ ◦ κg on some 0-neighborhood in g. For the map

f : UG → H, x 7→ expH(ψ(x)),

this leads to
f ∗κH = ψ ◦ κG,

showing that the h-valued 1-form ψ ◦ κG is locally integrable. Since this form on G is
left invariant and G is simply connected, it is globally integrable (for that one can argue
as in the proof of the Fundamental Theorem 4.19), so that we find a smooth function
ϕ : G→ H with ϕ(1) = 1 and δ(ϕ) = ψ ◦ κG. Now Proposition 4.8(3) implies that ϕ is
a group homomorphism with L(ϕ) = α1 = ψ.

Corollary 5.6. If G1 and G2 are locally exponential simply connected Lie groups with
isomorphic Lie algebras, then G1 and G2 are isomorphic.

It is instructive to compare the preceding corollary with Corollary 4.22, which makes
a similar statement for regular Lie groups. Although all known Lie groups are regular,
there is no theorem saying that all locally exponential groups are regular. That the
converse is false is clear from the example G = Diff(S1), which is regular but not locally
exponential.
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5.1.1 Diff(S1) is not locally exponential

Below we show that the exponential function

exp: V(S1)→ Diff(S1)

is not a local diffeomorphism by proving that every identity neighborhood of Diff(S1)
contains elements which do not lie on a one-parameter group, hence are not contained
in the image of exp. Our argument follows [Mil83]. A generalization to general smooth
manifolds was obtain in [Gr88].

Let G := Diff+(S1) denote the group of orientation preserving diffeomorphisms of
S1, i.e., the identity component of Diff(S1). To get a better picture of this group, we

first construct its universal covering group G̃. Let

G̃ := {ϕ ∈ Diff(R) : (∀x ∈ R) ϕ(x+ 2π) = ϕ(x), ϕ′ > 0}.

We consider the map

q : R→ S1 := R/2πZ, x 7→ x+ 2πZ

as the universal covering map of S1. Then every orientation preserving diffeomorphism
ψ ∈ Diff+(S1) lifts to a diffeomorphism ψ̃ of R, commuting with the translation ac-

tion of the group 2πZ ∼= π1(S1), which means that ψ̃(x + 2π) = ψ̃(x) + 2π for each

x ∈ R. The diffeomorphism ψ̃ is uniquely determined by the choice of an element in
q−1(ψ(q(0))). That ψ is orientation preserving means that ψ̃′ > 0. Hence we have a
surjective homomorphism

qG : G̃→ G, qG(ϕ)(q(x)) := q(ϕ(x))

with kernel isomorphic to Z.
The Lie group structure of G̃ is rather simple. It can be defined by a global chart.

Let C∞2π(R,R) denote the Fréchet space of 2π-periodic smooth functions on R, which is
considered as a closed subspace of the Fréchet space C∞(R,R). In this space,

U := {ϕ ∈ C∞2π(R,R) : ϕ′ > −1}

is an open convex subset, and the map

Φ: U → G̃, Φ(f)(x) := x+ f(x)

is a bijection.
In fact, let f ∈ U . Then Φ(f)(x + 2π) = Φ(f)(x) + 2π follows directly from the

requirement that f is 2π-periodic, and Φ(f)′ > 0 follows from f ′ > −1. Therefore Φ(f)

78



is strictly increasing, hence a diffeomorphism of R onto the interval Φ(f)(R). As the
latter interval is invariant under translation by 2π, we see that Φ(f) is surjective and

therefore Φ(f) ∈ G̃. Conversely, it is easy to see that Φ−1(ψ)(x) = ψ(x) − x yields an

inverse of Φ. We define the manifold structure on G̃ by declaring Φ to be a global chart.
With respect to this chart, the group operations in G̃ are given by

m(f, g)(x) := f(g(x) + x)− x and η(f)(x) = (f + idR)−1(x)− x,

which can be shown directly to be smooth maps. We thus obtain on G̃ the structure of a
Lie group such that Φ: U → G̃ is a diffeomorphism. In particular, G̃ is contractible and
therefore simply connected, so that the map qG : G̃ → G turns out to be the universal
covering map of G.

Theorem 5.7. Every identity neighborhood in Diff(S1) contains elements not contained
in the image of the exponential function.

Proof. First we construct certain elements in G̃ which are close to the identity. For
0 < ε < 1

n
, we consider the function

f : R→ R, x 7→ x+
π

n
+ ε sin2(nx)

and observe that f ∈ G̃ follows from

f ′(x) = 1 + 2εn sin(nx) cos(nx) = 1 + εn sin(2nx) > 0.

Step 1. For n large fixed and ε → 0, we get elements in G̃ which are arbitrarily close
to idR.
Step 2. qG(f) has a unique periodic orbit of order 2n on S1: Under qG(f), the point
q(0) ∈ S1 is mapped to π

n
etc., so that we obtain the orbit

q(0)→ q(π
n
)→ q(2π

n
)→ . . .→ q( (2n−1)π

n
)→ q(0).

For 0 < x0 <
π
n
, we have for x1 := f(x0):

x0 +
π

n
< x1 <

2π

n
,

and for xn := f(xn−1), the relations

0 < x0 < x1 −
π

n
< x2 −

2π

n
< · · · < π

n
.

Therefore xk − x0 6∈ 2πZ for each k ∈ N, and hence the orbit of q(x0) under qG(f) is
not finite. This proves that qG(f) has a unique periodic orbit and that the order of this
orbit is 2n.
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Step 3. qG(f) 6= g2 for all g ∈ Diff(S1): We analyze the periodic orbits. Every periodic
point of g is a periodic point of g2 and vice versa. If the period of x under g is odd, then
the period of x under g and g2 is the same. If the period of x is 2m, then its orbit under
g breaks up into two orbits under g2, each of order m. Therefore g2 can never have
a single periodic orbit of even order, and this proves that qG(f) has no square root in
Diff(S1). It follows in particular that qG(f) does not lie on any one-parameter subgroup,
i.e., qG(f) 6= expX for each X ∈ V(M).

Remark 5.8. (a) If M is a compact manifold, then one can show that the identity
component Diff(M)0 of Diff(M) is a simple group (Epstein, Hermann and Thurston; see
[Ep70]). Being normal in Diff(M)0, the subgroup 〈expV(M)〉 coincides with Diff(M)0.
Hence every diffeomorphism homotopic to the identity is a finite product of exponentials.

(b) Although Diff(M)0 is a simple Lie group, its Lie algebra V(M) is far from being
simple. For each subset K ⊆M , the set VK(M) of all vector fields supported in the set
K is a Lie algebra ideal which is proper if K is not dense.

5.1.2 The structure of abelian Lie groups

Proposition 5.9. (Michor–Teichmann [MT99]) Let A be a connected abelian Lie group
modeled on a Mackey complete space a. Then A has a smooth exponential function if
and only if A ∼= a/ΓA holds for a discrete subgroup ΓA of a.

Proof. For each abelian Lie group of the form A = a/ΓA, the Lie algebra is L(A) = a
and the quotient map a→ A is a smooth exponential function.

Therefore it remains to see that the existence of a smooth exponential function
implies that A is of the form a/ΓA. First we claim that expA is surjective. Since the
adjoint action of A is trivial (Corollary 4.9), Lemma 4.4 implies that exp: (a,+) → A
is a group homomorphism, hence a morphism of Lie groups. Let a ∈ A and consider a
smooth path γ : [0, 1]→ A with γ(0) = 1 and γ(1) = a. Then the logarithmic derivative
ξ := δ(γ) is a smooth map [0, 1]→ a, and we consider the smooth path

η(t) := expA

(∫ t

0

ξ(s) ds
)

that also satisfies δ(η) = ξ (Proposition 4.8(1)). Here we have used the Mackey com-
pleteness of a to ensure the existence of the Riemann integral of the smooth curve ξ.
Now η(0) = γ(0) = 1 implies that

a = γ(1) = η(1) = exp
(∫ 1

0

ξ(s) ds
)
∈ im(exp)

(Lemma 4.5).
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Let qA : Ã→ A denote a universal covering homomorphism with L(qA) = ida. Then

the exponential function of A lifts to a smooth exponential function expÃ : a→ Ã with

expA = qA◦expÃ. Since Ã is simply connected, the Lie algebra homomorphism ida : a→
a integrates to a Lie group homomorphism L : Ã→ a with L(L) = ida (Theorem 4.21).
We now have

L ◦ expÃ = expa ◦L(L) = ida ◦ ida = ida,

and hence expÃ ◦L restricts to the identity on im(expÃ) = a (apply the reasing above

to Ã), which also leads to
expÃ ◦L = idÃ .

Hence Ã ∼= a as Lie groups, which implies that expA is a covering morphism and therefore
that ΓA := ker(expA) ⊆ a is discrete with A ∼= a/ΓA.

5.1.3 Lie subgroups

It is a well known result in finite dimensional Lie theory that for each subalgebra h of
the Lie algebra g of a finite dimensional Lie group G, there exists a Lie group H with
Lie algebra h together with an injective morphism of Lie groups ι : H → G for which
L(ι) : h → g is the inclusion map. As a group H coincides with 〈exp h〉, the analytic
subgroup corresponding to h, and h can be recovered from this subgroup as the set

{x ∈ g : exp(Rx) ⊆ H}.

This nice and simple theory of analytic subgroups is no longer valid in full generality
for infinite dimensional Lie groups, not even for locally exponential ones. As we shall
see below, it has to be refined in several respects.

Proposition 5.10. Let G be a locally exponential Lie group. For x, y ∈ L(G), we have
the Trotter Product Formula

exp(x+ y) = lim
n→∞

(
exp

(x
n

)
exp

(y
n

))n
and the Commutator Formula

exp([x, y]) = lim
n→∞

(
exp

(x
n

)
exp

(y
n

)
exp

(
− x

n

)
exp

(
− y

n

))n2

.

As an immediate consequence, we can assign to each closed subgroup H ≤ G a Lie
subalgebra of L(G):

Corollary 5.11. For every closed subgroup H of the locally exponential Lie group G
the subset

L(H) := {X ∈ L(G) : exp(RX) ⊆ H}
is a closed Lie subalgebra of L(G).
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Since the range of a morphism of Lie algebras need not be closed, it is quite restrictive
to consider only closed subgroups, resp., closed Lie subalgebras.

Definition 5.12. A closed subgroup H of a locally exponential Lie group G is called
a Lie subgroup if there exists an open 0-neighborhood V ⊆ L(G) such that exp |V is a
diffeomorphism onto an open subset exp(V ) of G and

exp(V ∩ L(H)) = (expV ) ∩H.

Remark 5.13. (a) In [La99], S. Lang calls a subgroup H of a Banach–Lie group G
a Lie subgroup if H carries a Lie group structure for which there exists an immersion
η : H → G. In view of the definition of an immersion, this concept requires the Lie
algebra h = L(H) of g = L(G) to be a closed subalgebra of g which is complemented in
the sense that there exists a closed vector space complement. Conversely, it is shown in
[La99] that for every complemented closed subalgebra h ⊆ g, there exists a Lie subgroup
in this sense ([La99, Th. VI.5.4]). For a finite dimensional Lie group G, this concept
describes the analytic subgroups of G, because every subalgebra of a finite dimensional
Lie algebra is closed and complemented. As the dense wind in the two dimensional torus
G = T2 shows, subgroups of this type need not be closed. We also note that the closed
subspace

c0(N,R) ⊆ `∞(N,R)

of sequences converging to 0 is not complemented (see [Wer95, Satz IV.6.5] for an
elementary proof), hence not a Lie subgroup in the sense of Lang.

(b) The most restrictive concept of a Lie subgroup is the one used in [Bou89, Ch. 3].
Here a Lie subgroup H is required to be a submanifold, which implies in particular that
it is locally closed and therefore closed. On the other hand, this implies that the quotient
space G/H has a natural manifold structure for which the quotient map q : G → G/H
is a submersion ([Bou89, Ch. 3, §1.6, Prop. 11]).

(c) For finite dimensional Lie groups, closed subgroups are Lie subgroups, but for
Banach–Lie groups this is no longer true. What remains true is that locally compact
subgroups (which are in particular closed) are Lie subgroups (cf. [HM98, Th. 5.41(vi)]).
How bad closed subgroups may behave is illustrated by the following example due to
K. H. Hofmann: We consider the real Hilbert space G := L2([0, 1],R) as a Banach–
Lie group. Then the subgroup H := L2([0, 1],Z) of all those functions which almost
everywhere take values in Z is a closed subgroup. Since the one-parameter subgroups of
G are of the form Rf , f ∈ G, we have L(H) = {0}. On the other hand, the group H is
arcwise connected and even contractible,because the map F : [0, 1]×H → H given by

F (t, f)(x) :=

{
f(x) for 0 ≤ x ≤ t

0 for t < x ≤ 1

is continuous with F (1, f) = f and F (0, f) = 0.
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The following proposition shows that Lie subgroups carry natural Lie group struc-
tures.

Proposition 5.14. Let G be a locally exponential Lie group and H ⊆ G a Lie subgroup.
Then H carries a natural locally exponential Lie group structure such that L(H) is the
Lie algebra of H,and the exponential map of H is given by the restriction

expH = expG |L(H) : L(H)→ H.

Moreover, the inclusion map ι : H → G is a morphism of Lie groups which is a homeo-
morphism onto its image, and L(ι) : L(H)→ L(G) is the inclusion map.

Proof. (Idea) The idea is to apply Theorem 3.20 to the subgroup H where U = expV
holds for some suitable open symmetric subset V ⊆ L(H).

Proposition 5.15. If ϕ : G′ → G is a morphism of locally exponential Lie groups and
H ⊆ G is a Lie subgroup, then H ′ := ϕ−1(H) is a Lie subgroup. In particular, kerϕ is
a Lie subgroup of G′.

Corollary 5.16. If N E G is a normal subgroup of the locally exponential Lie group
G such that the quotient group G/N carries a locally exponential Lie group structure
for which the quotient map q : G→ G/N is a morphism of Lie groups, then N is a Lie
subgroup.

Theorem 5.17. (Quotient Theorem for locally exponential groups, [GN03]) Let N E G
be a normal Lie subgroup and n ⊆ g = L(G) its Lie algebra. Then the quotient group
G/N is a locally exponential Lie group if and only if there exists a 0-neighborhood U ⊆ g
such that the operator

κg(x) :=

∫ 1

0

e−t adx dt

on g satisfies
κg(x)(n) = n for all x ∈ U.

Corollary 5.18. (Quotient Theorem for Banach–Lie groups) Let N E G be a closed
subgroup of the Banach–Lie group G. Then the quotient group G/N is a Banach–Lie
group if and only N is a normal Lie subgroup.

Proof. Since g = L(G) is a Banach–Lie algebra, the ideal n = L(N) is invariant under
all operators

κg(x) =

∫ 1

0

e−t adx dt =
1− e− adx

adx
=
∞∑
n=0

1

(n+ 1)!
(−1)n(adx)n.

For Spec(ad x) ⊆ B2π(0) (which is the case on some 0-neighborhood of g), this operator
is invertible, and its inverse can be expressed by a power series in adx. Therefore we
also get κg(x)−1(n) ⊆ n, which implies κg(x)(n) = n.
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5.1.4 Algebraic subgroups

We will now discuss a very convenient criterion which in many concrete cases can be
used to verify that a closed subgroup H of a Banach–Lie group is a Lie subgroup. To
this end, we will need the concept of a polynomial function and of an algebraic subgroup.

Definition 5.19. Let A be a Banach algebra. A subgroup G ⊆ A× is called algebraic
if there exists a d ∈ N0 and a set F of Banach space valued polynomial functions on
A×A of degree ≤ d such that

G = {g ∈ A× : (∀f ∈ F) f(g, g−1) = 0}.

Theorem 5.20. (Harris/Kaup) [Ne04b, Prop. IV.14] Every algebraic subgroup G ⊆ A×
of the unit group A× of a Banach algebra A is a Lie subgroup.

Proposition 5.21. Let E be a Banach space and F ⊆ E a closed subspace. Then

H := {g ∈ GL(E) : g.F ⊆ F}

is a Lie subgroup of GL(E).

Proof. Let V ⊆ g be an open 0-neighborhood such that exp |V : V → expV is a diffeo-
morphism and ‖ expx− 1‖ < 1 for all x ∈ V . Then the inverse function

log : = (exp |V )−1 : expV → g

is given by the convergent power series

log(g) =
∞∑
n=1

(−1)n+1

n
(g − 1)n

(this requires a proof!). For g = expx ∈ (expV ) ∩H, we then obtain x.F ⊆ F directly
from the power series.

5.1.5 Analytic subgroups

Definition 5.22. Let G be a Lie group with an exponential function, so that we obtain
for each x ∈ g := L(G) an automorphism eadx := Ad(expx) ∈ Aut(g). A subalgebra
h ⊆ g is called stable if

eadxh = Ad(expx)h = h for all x ∈ h.

An ideal n E g is called a stable ideal if

eadxn = n for all x ∈ g.
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The following lemma shows that stability of kernel and range is a necessary reqire-
ment for the integrability of a homomorphism of Lie algebras.

Lemma 5.23. If ϕ : G→ H is a morphism of Lie groups with an exponential function,
then im(L(ϕ)) is a stable subalgebra of L(H), and ker(L(ϕ)) is a stable ideal of L(G).

Proof. For α := L(ϕ), we have ϕ ◦ expG = expH ◦α, which leads to

α ◦ eadx = L(ϕ) ◦ Ad(expx) = L(ϕ ◦ cexpx) = L(cϕ(expx) ◦ ϕ)

= Ad(exp L(ϕ).x) ◦ L(ϕ) = eadα(x) ◦ α.

We conclude in particular that im(α) is a stable subalgebra and that kerα is a stable
ideal.

Example 5.24. Let V := C∞(R,R) and consider the one-parameter group
α : R→ GL(V ), given by αt(f)(x) = f(x+ t). Then R acts smoothly on V , so that we
may form the corresponding semidirect product group

G := V oα R.

This is a Lie group with a smooth exponential function given by

exp(v, t) =
(∫ 1

0

αstv ds, t
)
,

where (∫ 1

0

αstv ds
)

(x) =

∫ 1

0

v(x+ st) ds.

The Lie algebra g has the corresponding semidirect product structure g = V oD R
with Dv = v′, i.e.,

[(f, t), (g, s)] = (tg′ − sf ′, 0).

In g ∼= V oR, we now consider the subalgebra h := V[0,1] oR, where

V[0,1] := {f ∈ V : supp(f) ⊆ [0, 1]}.

Then h clearly is a closed subalgebra of g. It is not stable because α−tV[0,1] = V[t,t+1].
The subgroup of G generated by exp h contains {0}oR, V[0,1], and hence all intervales
V[t,t+1], which implies that 〈exp h〉 = C∞c (R) oR.

The preceding lemma implies that the inclusion h ↪→ g does not integrate to a
homomorphism ϕ : H → G of Lie group with an exponential function, for which L(ϕ)
is the inclusion h ↪→ g.
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Definition 5.25. Let G be a locally exponential Lie group. An analytic subgroup is an
injective morphism ι : H → G of locally exponential Lie groups for which H is connected
and the differential L(ι) of ι is injective.

Remark 5.26. If ι : H → G is an analytic subgroup, then the relation

expG ◦L(ι) = ι ◦ expH (24)

implies that
ker(L(ι)) = L(ker ι) = {0},

so that L(ι) : L(H) → L(G) is an injective morphism of locally exponential Lie al-
gebras, which implies in particular that h := im(L(ι)) is a stable subalgebra of L(G)
(Lemma 5.23). Moreover, (24) shows that the subgroup ι(H) of G coincides, as a set,
with the subgroup 〈expG h〉 of G generated by expG h. Therefore an analytic subgroup
can be viewed as a locally exponential Lie group structure on the subgroup of G gener-
ated by expG h.

Definition 5.27. A locally convex Lie algebra g is called locally exponential if there
exists a symmetric convex open 0-neighborhood U ⊆ g and an open subset D ⊆ U × U
on which we have a smooth map

mU : D → U, (x, y) 7→ x ∗ y

such that (U,D,mU , 0) is a local Lie group with the additional property that

(E1) For x ∈ U and |t|, |s|, |t+ s| ≤ 1, we have (tx, sx) ∈ D with

tx ∗ sx = (t+ s)x.

(E2) The second order term in the Taylor expansion of mU is b(x, y) = 1
2
[x, y].

Since any local Lie group (U,D,mU , 0) on an open subset of a locally convex space
V leads to a Lie algebra structure on V (Remark 3.14), condition (E2) only insures that
g is the Lie algebra of the local group.

Lemma 5.28. The Lie algebra of a locally exponential Lie group is locally exponential.

Theorem 5.29. (Analytic Subgroup Theorem) Let G be a locally exponential Lie group
and g its Lie algebra. Then an injective morphism α : h → g of locally convex Lie
algebras integrates to an analytic subgroup if and only if h is a locally exponential Lie
algebra.
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The condition that a closed subalgebra h ⊆ g is locally exponential is quite subtle. It
means that for x, y sufficiently close to 0 in h, we have x∗y ∈ h. To verify this condition,
one would like to show that the integral curve γ(t) := x ∗ ty of the left invariant vector
field yl through x does not leave the closed subspace h of g. This leads to the additional
condition that dλx(0)(h) ⊆ h, which, under the assumption that h is stable, means that

the operator κg(x) =
∫ 1

0
e−t adx dt satisfies κg(x)(h) = h for x ∈ h sufficiently close to 0

(Theorem 5.17). For a closed ideal n E g of the locally exponential Lie algebra g, the
corresponding condition κg(x)(n) = n for all x sufficiently close 0 is sufficient for n to
be locally exponential. This result is used in the proof of the Quotient Theorem 5.17.

Corollary 5.30. (Analytic Subgroup Theorem for Banach–Lie groups) Let G be a locally
exponential Lie group and g its Lie algebra. Then an injective morphism α : h → g of
Banach algebras always integrates to an analytic subgroup.

Proof. Using the BCH multiplication on a 0-neighborhood of h, it follows that h is
locally exponential.

Remark 5.31. If G is a Banach–Lie group and h ⊆ g := L(G) a closed separable
subalgebra, then the analytic subgroup H := 〈exp h〉 ⊆ G satisfies

L(H) = {x ∈ g : exp(Rx) ⊆ H} = h,

i.e., expRx ⊆ H implies x ∈ h ([HM98, Thm. 5.52]).
For non-separable subalgebras h, this is no longer true in general, as the following

counterexample shows ([HM98, p.157]): We consider the abelian Lie group

g := `1(R,R)× R,

where the group structure is given by the addition. We write (er)r∈R for the canonical
topological basis elements of `1(R,R). Then the subgroup D generated by the pairs
(er,−r), r ∈ R, is closed and discrete, so that G := g/D is an abelian Lie group.
Now we consider the closed subalgebra h := `1(R,R) of g. As h + D = g, we have
H := exp h = G, and therefore (0, 1) ∈ L(H) \ h.

5.2 Exercises for Section 5

Exercise 5.1. Let V be a locally convex space. Show that every continuous group
homomorphism γ : (R,+)→ (V,+) can be written as γ(t) = tv for some v ∈ E.

Exercise 5.2. Let E be a Banach space.

(1) If F is a closed subspace of E and H := {g ∈ GL(E) : g(F ) ⊆ F} (cf. Proposi-
tion 5.21), then

L(H) = {Y ∈ L(E) : Y (F ) ⊆ F}.
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(2) For each v ∈ E and H := {g ∈ GL(E) : g(v) = v}, we have

L(H) = {Y ∈ L(E) : Y v = 0}.

Exercise 5.3. Let A be a Banach space and m : A×A→ A a continuous bilinear map.
Then the group

Aut(A,m) := {g ∈ GL(A) : (∀a, b ∈ A) m(ga, gb) = gm(a, b)}

of automorphisms of the (not necessarily associative) algebra (A,m) is a Lie group whose
Lie algebra is the space

der(A,m) := {X ∈ L(A) : (∀a, b ∈ A)Xm(a, b) = m(Xa, b) +m(a,Xb)}

of derivations of (A,m). Hint: Theorem 5.20.

Exercise 5.4. Let J be a set. For a tuple x = (xj)j∈J ∈ (R+)J , we define∑
j∈J

xj := sup
{∑
j∈F

xj : F ⊆ J finite
}
.

Show that
`1(J,R) :=

{
x = (xj)j∈J :

∑
j∈J

|xj| <∞
}

is a Banach space with respect to the norm ‖x‖1 :=
∑

j∈J |xj|. Define ej ∈ `1(J,R) by
(ej)i = δij. Show that the subgroup Γ generated by {ej : j ∈ J} is discrete.

6 Integrability of Lie algebras

We recall that a locally convex Lie algebra g is said to integrable if there exists some
Lie group G with L(G) = g (Definition 3.10).

Example 6.1. If g is a finite dimensional Lie algebra, endowed with its unique locally
convex topology, then g is integrable. This is Lie’s Third Theorem. One possibility to
prove this is first to use Ado’s Theorem to find an embedding g ↪→ gln(R) and then to
endow the analytic subgroup G := 〈exp g〉 ⊆ GLn(R) with a Lie group structure such
that L(G) = g (cf. Corollary 5.30).

Proposition 6.2. Let G be a connected complex Lie group. Then each closed ideal of
L(G) is invariant under Ad(G).
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Proof. Let a E g = L(G) be a closed ideal. Since G is assumed to be connected, it
suffices to show that there exists a 1-neighborhood U ⊆ G with Ad(U)a ⊆ a. We may
w.l.o.g. assume that U is diffeomorphic to an open convex 0-neighborhood in g. Then
we find for every g ∈ U a connected open subset V ⊆ C with 0, 1 ∈ V and a holomorphic
map p : V → G with p(0) = 1 and p(1) = g.

Let w0 ∈ a and w(t) := Ad(p(t))w0 for t ∈ V . We have to show that w(1) =
Ad(g)w0 ∈ a. For the right logarithmic derivative v := Ad(p)δ(p) : V → g, we obtain
the differential equation

w′(t) = Ad(p(t))[p−1(t).p′(t), w0] = Ad(p(t))[δ(p)(t), w0] = [v(t), w(t)] (25)

Since the maps v and w are holomorphic, their Taylor expansions converge for t close
to 0:

v(t) =
∞∑
n=0

vnt
n and w(t) =

∞∑
n=0

wnt
n

in g. Then the differential equation (25) for w can be written as

∞∑
n=0

(n+ 1)wn+1t
n = w′(t) = [v(t), w(t)] =

∞∑
n=0

tn
n∑
k=0

[vk, wn−k].

Comparing coefficients now leads to

wn+1 =
1

n+ 1

n∑
k=0

[vk, wn−k],

so that we obtain inductively wn ∈ a for each n ∈ N. Since a is closed, we get w(t) ∈ a
for t close to 0. Applying the same argument in other points t0 ∈ V , we see that the set
w−1(a) is an open closed subset of V , and therefore that a(1) ∈ a because a(0) ∈ a and
V is connected.

Corollary 6.3. If g is a complex Fréchet–Lie algebra containing a closed ideal which is
not stable, then g is not integrable to a complex Lie group with an exponential function.

Remark 6.4. The preceding proposition can be generalized to the larger class of real
analytic Lie groups, where it can be used to conclude that the Lie group Diff(M) does
not possess an analytic Lie group structure. Indeed, for each non-dense open subset
K ⊆M , the subspace

V(M)K := {X ∈ V(M) : X|K = 0}

is a closed ideal of V(M) not invariant under Diff(M) because Ad(ϕ).V(M)K = V(M)ϕ(K)

for ϕ ∈ Diff(M).
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Theorem 6.5. (Lempert [Le97]) If M is a compact manifold, then the Fréchet–Lie
algebra V(M)C is not integrable to a regular complex Lie group.

Proof. (Sketch; see [Mil83]) Let g := V(M)C and K ⊆M be an open non-empty subset
of M which is not dense. Then

iK := {x ∈ g : x|K = 0}

is a closed ideal of g.
Let G be a regular complex Lie group with Lie algebra g and let

q : D̃iff(M)→ Diff(M)0

denote the universal covering homomorphism of Diff(M)0. Then the inclusion homo-

morphism V(M) ↪→ g can be integrated to a Lie group homomorphism ϕ : D̃iff(M)→ G.

For g ∈ D̃iff(M), we then have

Ad(ϕ(g)).iK = iϕ(g)(K),

contradicting the invariance of iK under Ad(G) (Proposition 6.2).

Remark 6.6. (a) In [Omo81], Omori shows that for any non-compact smooth manifold
M , the Lie algebra V(M) is not integrable.

(b) Theorem 6.5 holds without the regularity assumption, resulting in the fact that
V(M)C is not integrable to any group G with an exponential function. The main point is
that for any such group G and X ∈ V(M) ⊆ g, the one-parameter group exp(RX) acts
on g precisely as the corresponding one-parameter group of Diff(M). This argument
requires a uniqeness lemma for “smooth” maps with values in Aut(g), which is far from
being a Lie group (cf. [GN]).

Example 6.7. To construct an example of a non-integrable Banach–Lie algebra, we
proceed as follows.

Let H be an infinite dimensional complex Hilbert space and U(H) its unitary group.
This is a Banach–Lie group with Lie algebra

L(U(H)) = u(H) := {X ∈ L(H) : X∗ = −X}.

The center of this Lie algebra is given by z(u(H)) = Ri1. We consider the Banach–Lie
algebra

g :=
(
u(H)⊕ u(H)

)
/Ri(1,

√
21).

We claim that g is not integrable. Let us assume to the contrary that G is a connected
Lie group with Lie algebra g. Let

q : u(H)⊕ u(H)→ g
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denote the quotient homomorphism. According to Kuiper’s Theorem, the group U(H)
and hence the group G1 := U(H)×U(H) is contractible [Ku65] and therefore in partic-
ular simply connected. Hence there exists a unique Lie group homomorphism

f : G1 → G with L(f) = q.

We then have expG ◦q = f ◦ expG1
, and in particular exp(ker q) ⊆ ker f. As Z(G1) ∼= T2

is a two dimensional torus and exp(ker q) is a dense one-parameter subgroup of Z(G1),
the continuity of f implies that Z(G1) ⊆ ker f and hence that z(g1) ⊆ ker L(f) = ker q,
which is a contradiction.

The following theorem is an immediate consequence of Corollary 5.30.

Theorem 6.8. (van Est–Korthagen, 1964) Let h and g be Banach–Lie algebras. If g is
integrable and ϕ : h ↪→ g is injective, then h is integrable.

Corollary 6.9. If g is a Banach–Lie algebra, then g/ ad z(g) ∼= ad g is integrable.

Proof. The adjoint representation ad: g→ der g factors through an injective homomor-
phism g/z(g) ↪→ der g, and

der g := {D ∈ L(g) : (∀x, y ∈ g) D([x, y]) = [D(x), y] + [x,D(y)]}

is the Lie algebra of the Banach–Lie group Aut(g) (cf. Exercise 5.3).

The following theorem generalizes Corollary 6.9. It requires more refined machinery
because for a locally convex Lie algebra g the group Aut(g) carries no natural Lie
group structure. Nevertheless, the technique of the proof is to endow the subgroup
generated by ead g, which makes sense for locally exponential Lie algebras, with a Lie
group structure.

Theorem 6.10. For any locally exponential Lie algebra g, the quotient g/z(g) is inte-
grable to a locally exponential Lie group.

The preceding corollary reduces the integrability problem for Banach–Lie algebras,
and even for locally exponential Lie algebras, to the question when a central extension
of an integrable Lie algebra is again integrable. In this context, a central extension is
a quotient morphism q : ĝ → g of Lie algebras for which z := ker q is central in ĝ. Now
the question is the following: given a connected Lie group G with Lie algebra g, when
is there a central group extension Z ↪→ Ĝ → G “integrating” the corresponding Lie
algebra extension? Without going too much into details, we cite the following theorem
which points into a direction which can be followed with success for general Lie groups
(see [Ne02a]). Earlier versions of the following theorem for Banach–Lie algebras have
been obtained by van Est and Korthagen in their systematic discussion of the non-
integrability problem for Banach–Lie algebras in [EK64].
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Theorem 6.11. Let G be a simply connected locally exponential Lie group with Lie
algebra g. Then one can associate to each central Lie algebra extension z ↪→ ĝ → g a
singular cohomology class c ∈ H2(G, z) ∼= Hom(π2(G), z) which we interpret as a period
homomorphism

perc : π2(G)→ z.

Then a corresponding central extension Z ↪→ Ĝ→→ G exists for a Lie group Z with Lie
algebra z if and only if im(perc) ⊆ z is discrete.

Remark 6.12. (a) Let g be a locally exponential Lie algebra and Gad a simply connected
Lie group with Lie algebra g/z(g) (Corollary 6.9). Then the preceding theorem implies
in particular that g is integrable if and only if the period homomorphism

perg : π2(Gad)→ z(g)

associated to the central extension ad: g→ g/z(g) has discrete image.
The problem with this characterization is that in general it might be quite hard to

determine the image of the period homomorphism.
(b) For any quotient morphism G→ G/N of Banach–Lie groups, Michael’s Selection

Theorem [Mi59] implies that G is a locally trivial topological N -principal bundle over
G/N , which implies the existence of a corresponding long exact homotopy sequence.

If g is an integrable Banach–Lie algebra and G is a simply connected Banach–Lie
group with Lie algebra g, then the long exact homotopy sequence associated to the
homomorphism q : G → Gad with kernel Z(G)0 induces a surjective connecting homo-
morphism

π2(Gad)→ π1(Z(G)),

and by identifying the universal covering group of Z(G)0 with (z(g),+), one can show
that this connecting homomorphism coincides with the period map. Its image is the
group π1(Z(G)), considered as a subgroup of z. With this picture in mind, one may think
that the non-integrability on a Banach–Lie algebra g is caused by the non-existence of
a Lie group Z with Lie algebra z(g) and fundamental group im(perg).

(c) If g is finite dimensional, then Gad is also finite dimensional, and therefore π2(Gad)
vanishes by a theorem of E. Cartan ([Mi95, Th. 3.7]). Hence the period homomorphism
perg is trivial for every finite dimensional Lie algebra g.

Example 6.13. We consider the Lie algebra

g :=
(
u(H)⊕ u(H)

)
/Ri(1,

√
21)

from Example 6.7. Then z(g) ∼= iR, and one can show that the image of the period map
is given by

2πi(Z +
√

2Z) ⊆ iR,
which is not discrete.
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A Characters of the algebra of smooth functions

Theorem A.1. Let M be a finite dimensional smooth paracompact manifold and A :=
C∞(M,R) the unital Fréchet algebra of smooth functions on M .

(1) If M is compact, then each maximal ideal of A is closed.

(2) Each closed maximal ideal of A is the kernel of an evaluation homomorphism
δp : A → R, f 7→ f(p).

(3) Each character χ : A → R is an evaluation in some point p ∈M .

Proof. (1) If M is compact, then the unit group A× = C∞(M,R×) is an open subset
of A. If I ⊆ A is a maximal ideal, then I intersects A× trivially, and since A× is open,
the same holds for the closure I. Hence I also is a proper ideal, so that the maximality
of I implies that I is closed.

(2) Let I ⊆ A be a closed maximal ideal. If all functions in I vanish in the point
p ∈M , then the maximality of I implies that I = ker δp. So we have to show that such
a point exists. Let us assume that this is not the case. From that we shall derive the
contradiction I = A.

Let K ⊆ M be a compact set. Then for each p ∈ K, there exists a function fp ∈ I
with fp(p) 6= 0. The family (f−1

p (R×))p∈K is an open cover of K, so that there exist
p1, . . . , pn ∈ K with fK :=

∑
j f

2
pj
> 0 on K.

If M is compact, then we thus obtain a function fM ∈ I with no zeros, which leads
to the contradiction fM ∈ A× ∩ I. Suppose that M is non-compact. Then there exists
a sequence (Mn)n∈N of compact subsets with M =

⋃
nMn and Mn ⊆M0

n+1. Let fn ∈ I
be a non-negative function supported by Mn+1 \M0

n−1 with fn > 0 on the compact set
Mn \M0

n−1. Here the requirement on the support can be achieved by multiplying with
a smooth function supported by Mn+1 \ M0

n−1 which equals 1 on Mn \ M0
n−1. Then

the series
∑

n fn converges, because on each set Mn it is eventually constant and each
compact subset of M is contained in some Mn. Now f :=

∑
n fn is a smooth function

in I = I with f > 0. Hence f is invertible, which is a contradiction.
(3) Let χ : A → R be a character. If f ∈ A is non-negative, then for each c > 0 we

have f+c = h2 for some h ∈ A×, and this implies that χ(f)+c = χ(f+c) = χ(h)2 ≥ 0,
which leads to χ(f) ≥ −c, and consequently χ(f) ≥ 0.

Now let F : M → R be a smooth function for which the sets F−1(]−∞, c]), c ∈ R,
are compact. Such a function can easily be constructed from a sequence (Mn)n∈N as
above using a smooth version of Urysohn’s Lemma (Exercise).

We consider the ideal I := kerχ. If I has a zero, then I = ker δp for some p ∈ M
and this implies that χ = δp. Hence we may assume that I has no zeros. Then the
argument under (2) provides for each compact subset K ⊆ M a compactly supported
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function fK ∈ I with fK > 0 on K. If h ∈ A is supported by K, we therefore find a
λ > 0 with λfK − h ≥ 0, which leads to

0 ≤ χ(λfK − h) = χ(−h),

and hence to χ(h) ≥ 0. Replacing h by −h, we also get χ(h) ≤ 0 and hence χ(h) = 0.
Therefore χ vanishes on all compactly supported functions.

For c > 0, we now pick fc ∈ I with fc > 0 on the compact subset F−1(]−∞, c]) and
fc ≥ 0. Then there exists a µ > 0 with µfc +F ≥ c on F−1(]−∞, c]). Now µfc +F ≥ c
holds on all of M , and therefore

χ(F ) = χ(F + µfc) ≥ c.

Since c > 0 was arbitrary, we arrive at a contradiction.

B The compact open topology

In this appendix, we discuss some properties of the compact open topology on the space
C(X, Y ) of continuous maps between two topological spaces X and Y .

Definition B.1. If X and Y are topological spaces, then the topology on C(X, Y )
generated by the sets

W (K,O) := {f ∈ C(X, Y ) : f(K) ⊆ O},

K ⊆ X compact and O ⊆ Y open, is called the compact open topology.

The following lemma is extremely useful to construct group topologies from a filter
basis of identity neighborhoods. Here we shall use it to see that for a topological group
G, the compact open topology turns C(X,G) into a topological group.

Lemma B.2. Let G be a group and F a filter basis of subsets of G satisfying

(U0)
⋂
F = {1}.

(U1) (∀U ∈ F)(∃V ∈ F) V V ⊆ U.

(U2) (∀U ∈ F)(∃V ∈ F) V −1 ⊆ U.

(U3) (∀U ∈ F)(∀g ∈ G)(∃V ∈ F) gV g−1 ⊆ U.

Then there exists a unique group topology on G such that F is a basis of 1-neighborhoods
in G. This topology is given by {U ⊆ G : (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.
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Proof. ([Bou88, Ch. III, §1.2, Prop. 1]) Let

τ := {U ⊆ G : (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.

First we show that τ is a topology. Clearly ∅, G ∈ τ . Let (Uj)j∈J be a family of elements
of τ and U :=

⋃
j∈J Uj. For each g ∈ U , there exists a j0 ∈ J with g ∈ Uj and a V ∈ F

with gV ⊆ Uj0 ⊆ U . Thus U ∈ τ , and we see that τ is stable under arbitrary unions.
If U1, U2 ∈ τ and g ∈ U1 ∩ U2, then there exist V1, V2 ∈ F with gVi ⊆ Ui. Since F

is a filter basis, there exists V3 ∈ F with V3 ⊆ V1 ∩ V2, and then gV3 ⊆ U1 ∩ U2. We
conclude that U1 ∩ U2 ∈ τ , and hence that τ is a topology on G.

We claim that the interior of a subset U ⊆ G is given by

U0 = U1 := {u ∈ U : (∃V ∈ F) uV ⊆ U}.

In fact, if there exists a V ∈ F with uV ⊆ U , then we pick a W ∈ F with WW ⊆ V
and obtain uWW ⊆ U , so that uW ⊆ U1. Hence U1 is open, and it clearly is the
largest open subset contained in U , i.e., U1 = U0. It follows in particular that U is a
neighborhood of g if and only if g ∈ U0, and we see in particular that F is a basis of the
neighborhood filter of 1. The property

⋂
F = {1} implies that for x 6= y, there exists

U ∈ F with y−1x 6∈ U . For V ∈ F with V V ⊆ U and W ∈ F with W−1 ⊆ V , we then
obtain y−1x 6∈ WW−1, i.e., xW ∩ yW = ∅. Thus (G, τ) is a Hausdorff space.

To see that G is a topological group, we have to verify that the map

f : G×G→ G, (x, y) 7→ xy−1

is continuous. So let x, y ∈ G, U ∈ F and pick V ∈ F with yV y−1 ⊆ U and W ∈ F
with WW−1 ⊆ V . Then

f(xW, yW ) = xWW−1y−1 = xy−1y(WW−1)y−1 ⊆ xy−1yV y−1 ⊆ xy−1U,

implies that f is continuous in (x, y).

Lemma B.3. Let X be a non-empty topological space and G a topological group. Then
the set C(X,G) of all continuous maps X → G is a group with respect to pointwise
multiplication. The unit element of this group is the constant function 1. The system
F of all sets W (K,U) ⊆ C(X,G), where K ⊆ X is compact and U ⊆ G is an open
1-neighborhood, is a filter basis, and there exists a unique group topology on C(X,G)
for which F is a basis of 1-neighborhoods.

This topology is called the topology of compact convergence or the topology of uniform
convergence on compact sets.
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Proof. First we show that F is a filter basis:
For each x ∈ X, the set W ({x}, G) is contained in F , so that F is not empty.

Since each set W (K,U) contains the constant map 1, it is non-empty. We further have
W (K1, U1) ∩W (K2, U2) ⊇ W (K1 ∪K2, U1 ∩ U2). This proves that F is a filter basis of
subsets of G. We now verify the conditions in Lemma B.2:

(U0): If f ∈ C(X,G) is contained in W ({x}, U) for all 1-neighborhoods U in G, it
follows from the fact that G is Hausdorff that f(x) = 1, so that

⋂
F consists only of

the constant function 1.
(U1): For each W (K,U) ∈ F , we find a 1-neighborhood V ⊆ G with V V ⊆ U .

Then W (K,V )W (K,V ) ⊆ W (K,U).
(U2): W (K,U)−1 = W (K,U−1).
(U3): For f ∈ C(X,G) and W (K,U) ∈ F , we consider the open set

E := {(x, g) ∈ X ×G : f(x)gf(x)−1 ∈ U}.

Then K ×{1} ⊆ E and the compactness of K imply the existence of a 1-neighborhood
V in G with K × V ⊆ E. Then fW (K,V )f−1 ⊆ W (K,U).

Now Lemma B.2 shows that there exists a unique group topology on C(X,G) for
which F is a basis of 1-neighborhoods.

Proposition B.4. For a topological space X and a topological group G, the compact
open topology coincides on C(X,G) with the topology of compact convergence for which
the sets W (K,O), K ⊆ X compact and O an open 1-neighborhood in G, form a basis
of identity neighborhoods.

Proof. Step 1: The topology of compact convergence is finer than the compact open
topology because each set W (K,O) is open in the topology of compact convergence.
In fact, for f ∈ W (K,O) the set f(K) ⊆ O ⊆ G is compact, so that there exists a
1-neighborhood U ⊆ G with f(K)U ⊆ O. This implies that f ·W (K,U) ⊆ W (K,O),
and hence that W (K,O) is open in the topology of uniform convergence on compact
subsets of X.

Step 2: Let f0 ∈ C(X,G). We claim that each set of the form f0W (K,V ) contains
a neighborhood of f0 in the compact open topology.

Let W = W−1 ⊆ G be an open 1-neighborhood. Since f0 is continuous, each
k ∈ K has a compact neighborhood Uk in K with f0(Uk) ⊆ f0(k)W . The compactness
of K implies that it is covered by finitely many of the sets Uk, so that there exist
k1, . . . , kn ∈ K with

K ⊆ Uk1 ∪ . . . ∪ Ukn .

Then the sets Qj := f0(Ukj)W are open in G with f0 ∈ W (Ukj , Qj). Therefore P :=⋂n
j=1W (Ukj , Qj) is a neighborhood of f0 with respect to the compact open topology.
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For f ∈ P and x ∈ Ukj , we have f0(x) ∈ Qj and f(x) ∈ Qj, which implies that

f0(x)−1f(x) ∈ Q−1
j Qj ⊆ W−1f0(Ukj)

−1f0(Ukj)W

⊆ W−1W−1f0(kj)
−1f0(kj)WW ⊆ W 4 ⊆ V.

We conclude that f ∈ f0W (K,V ) and therefore P ⊆ f0W (K,V ). This completes the
proof.

Remark B.5. (a) If G is a fixed topological group, then C(·, G) is a contravariant
functor from the category of Hausdorff topological spaces and continuous maps to the
category of topological groups.

In fact, for each continuous map f : X → Y , we have a group homomorphism

f ∗ = C(f,G) : C(Y,G)→ C(X,G), ξ 7→ ξ ◦ f.

For each compact subset K ⊆ X and each open subset O ⊆ G, we have

(f ∗)−1(W (K,O)) ⊇ W (f(K), O),

which implies the continuity of C(f,G).
(b) If X is a fixed Hausdorff space and ϕ : G→ H a morphism of topological groups,

then the map
ϕ∗ = C(X,ϕ) : C(X,G)→ C(X,H), ξ 7→ ϕ ◦ ξ

is a group homomorphism. For each compact subset K ⊆ X and each open subset
O ⊆ H, we have

(ϕ∗)
−1(W (K,O)) ⊇ W (K,ϕ−1(O)),

which implies the continuity of C(X,ϕ).

Proposition B.6. Let X and Y be topological spaces. On C(X, Y ), the compact open
topology coincides with the graph topology, i.e., the topology generated by the sets of the
form

C(X, Y )U,K := {f ∈ C(X, Y ) : Γ(f |K) ⊆ U},

where U ⊆ X × Y is open, K ⊆ X is compact, and Γ(f) ⊆ X × Y is the graph of f .
If, in addition, X is compact, then a basis for the graph topology is given by the sets

C(X, Y )U := {f ∈ C(X, Y ) : Γ(f) ⊆ U},

where U ⊆ X × Y is open.

Proof. Let f ∈ C(X, Y ), K ⊆ X compact and U ⊇ Γ(f |K) be an open subset of X×Y .
Then there exists for each x ∈ X a compact neighborhood Kx of x in K and an open
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neighborhood Uf(x) of f(x) in Y with Kx × Uf(x) ⊆ U and f(Kx) ⊆ Uf(x). Covering K
with finitely many sets Kxi , i = 1, . . . , n, we see that

n⋂
i=1

W (Kxi , Uf(xi)) ⊆ C(X, Y )U,K .

This implies that each set C(X, Y )U,K is open in the compact open topology.
Conversely, let K ⊆ X be compact and O ⊆ Y open. Then

W (K,O) = {f ∈ C(X, Y ) : Γ(f |K) ⊆ X ×O} = C(X, Y )X×O,K

is open in the graph topology. We conclude that the graph topology coincides with the
compact open topology.

Assume, in addition, that X is compact. The system of the sets C(X, Y )U is stable
under intersections, hence a basis for the topology it generates. Each set C(X, Y )U =
C(X, Y )U,X is open in the graph topology. If, conversely, K ⊆ X is compact and
U ⊆ X × Y is open with f ∈ C(X, Y )U,K , then V :=

(
(X \ K) × Y

)
∪ U is an open

subset of X × Y with f ∈ C(X, Y )V ⊆ C(X, Y )U,K . This completes the proof.

C Lie algebra cohomology

The cohomology of Lie algebras is the natural tool to understand how we can build new
Lie algebras ĝ from given Lie algebras g and a in such a way that a E ĝ and ĝ/a ∼= g.
An important special case of this situation arises if a is assumed to be abelian. We will
see in particular how the abelian extensions of Lie algebras can be parametrized by a
certain cohomology space.

C.1 Cohomology with values in topological modules

Let K be a topological field of characteristic zero (all field operations are assumed to be
continuous). A topological Lie algebra g is a K-Lie algebra which is a topological vector
space for which the Lie bracket is a continuous bilinear map. A topological g-module is a
g-module V which is a topological vector space for which the module structure, viewed
as a map g × V → V , (x, v) 7→ x.v is continuous. Note that every module V of a Lie
algebra g over a field K becomes a topological module if we endow K, g and V with
the discrete topology. In this sense, all the following applies in particular to general
modules of Lie algebra over fields of characteristic zero.

Definition C.1. Let V be a topological module of the topological Lie algebra g. For
p ∈ N0, let Cp

c (g, V ) denote the space of continuous alternating maps gp → V , i.e., the
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Lie algebra p-cochains with values in the module V . We write

C•(g, V ) :=
⊕
p∈N0

Cp
c (g, V ).

Note that C1
c (g, V ) = L(g, V ) is the space of continuous linear maps g → V . We use

the convention C0
c (g, V ) = V . We then obtain a chain complex with the differential

dg : Cp
c (g, V )→ Cp+1

c (g, V )

given on f ∈ Cp
c (g, V ) by

(dgf)(x0, . . . , xp) :=

p∑
j=0

(−1)jxj.f(x0, . . . , x̂j, . . . , xp)

+
∑
i<j

(−1)i+jf([xi, xj], x0, . . . , x̂i, . . . , x̂j, . . . , xp),

where x̂j indicates omission of xj. Note that the continuity of the bracket on g and the
action on V imply that dgf is continuous and an element of Cp+1

c (g, V ).
For elements of low degree, we have in particular:

p = 0 : dgf(x) = x.f

p = 1 : dgf(x, y) = x.f(y)− y.f(x)− f([x, y])

p = 2 : dgf(x, y, z)

= x.f(y, z)− y.f(x, z) + z.f(x, y)− f([x, y], z) + f([x, z], y)− f([y, z], x)

=
∑
cyc.

x.f(y, z)− f([x, y], z),

where we have used the notation∑
cyc.

γ(x, y, z) := γ(x, y, z) + γ(y, z, x) + γ(z, x, y).

In this sense, the Jacobi identity reads
∑

cyc.[[x, y], z] = 0.

Below we shall show that d2
g = 0, so that the space Zp

c (g, V ) := ker(dg|Cp
c (g,V )) of p-

cocycles contains the space Bp
c (g, V ) := dg(C

p−1
c (g, V )) of p-coboundaries. The quotient

Hp
c (g, V ) := Zp

c (g, V )/Bp
c (g, V )

is the p-th continuous cohomology space of g with values in the g-module V . We write
[f ] := f +Bp

c (g, V ) for the cohomology class of the cocycle f .
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On C•c (g, V ), we have a natural representation of g, given for x ∈ g and f ∈ Cp
c (g, V )

by the Lie derivative

(Lxf)(x1, . . . , xp) = x.f(x1, . . . , xp)−
p∑
j=1

f(x1, . . . , [x, xj], . . . , xp)

= x.f(x1, . . . , xp) +

p∑
j=1

(−1)jf([x, xj], x1, . . . , x̂j, . . . , xp).

We further have for each x ∈ g an insertion map

ix : Cp
c (g, V )→ Cp−1

c (g, V ),
(
ix.f

)
(x1, . . . , xp−1) = f(x, x1, . . . , xp−1),

where we define ix to be 0 on C0
c (g, V ) ∼= V .

Lemma C.2. For x, y ∈ g, we have the following identities:

(1) Lx = dg ◦ ix + ix ◦ dg (Cartan formula).

(2) [Lx, iy] = i[x,y].

(3) [Lx, dg] = 0.

(4) d2
g = 0.

(5) Lx(Zp
c (g, V )) ⊆ Bp

c (g, V ). In particular, the natural g-action on Hp
c (g, V ) is trivial.

Proof. (1) Using the insertion map ix0 , we can rewrite the formula for the coboundary
operator as(

ix0 .dgf
)
(x1, . . . , xp) =x0.f(x1, . . . , xp)−

p∑
j=1

(−1)j−1xj.f(x0, . . . , x̂j, . . . , xp)

+

p∑
j=1

(−1)jf([x0, xj], x1, . . . , x̂j, . . . , xp)

+
∑

1≤i<j

(−1)i+jf([xi, xj], x0, . . . , x̂i, . . . , x̂j, . . . , xp)

=x0.f(x1, . . . , xp)−
p∑
j=1

(−1)j−1xj.f(x0, . . . , x̂j, . . . , xp)

−
p∑
j=1

f(x1, . . . , xj−1, [x0, xj], xj+1, . . . , xp)

−
∑

1≤i<j

(−1)i+jf(x0, [xi, xj], . . . , x̂i, . . . , x̂j, . . . , xp)

=(Lx0f)(x1, . . . , xp)− dg
(
ix0f

)
(x1, . . . , xp).
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This proves our assertion.
(2) The explicit formula for Lx implies that for y = x1, we have iyLx = Lxiy − i[x,y].
(3),(4) Let ϕ : C•c (g, V ) → C•c (g, V ) be a linear map for which there exists an ε ∈

{±1} with ϕ ◦ ix = εix ◦ ϕ for all x ∈ g and a k ∈ N with ϕ(Cp
c (g, V )) ⊆ Cp+k

c (g, V )
for each p ∈ N0. We claim that ϕ = 0. Since the operators ix : Cp

c (g, V )→ Cp−1
c (g, V ),

x ∈ g, separate the points, it suffices to show that ix ◦ ϕ = εϕ ◦ ix vanishes for each
x ∈ g. On C0

c (g, V ), this follows from the definition of ix, and on Cp
c (g, V ), p ∈ N, we

obtain it by induction.
Now we prove (3). From (2) we get

L[x,y] = [Lx,Ly] = [dg ◦ ix,Ly] + [ix ◦ dg,Ly]
= [dg,Ly] ◦ ix + dg ◦ i[x,y] + i[x,y] ◦ dg + ix ◦ [dg,Ly]
= [dg,Ly] ◦ ix + L[x,y] + ix ◦ [dg,Ly],

so that ϕ := [dg,Ly] anticommutes with the operators ix (ε = −1 and k = 1). Therefore
the argument in the preceding paragraph shows that ϕ vanishes, which is (3).

To obtain (4), we consider the operator ϕ = d2
g. Combining (3) with the Cartan

Formula, we get

(C.2) 0 = [dg,Lx] = d2
g ◦ ix − ix ◦ d2

g,

so that the argument above applies with ε = 1 and k = 2. This proves that d2
g = 0.

(5) follows immediately from the Cartan formula (1).

Definition C.3. A linear subspace W of a topological vector space V is called (topolog-
ically) split if it is closed and there is a continuous linear map σ : V/W → V for which
the map

W × V/W → V, (w, x) 7→ w + σ(x)

is an isomorphism of topological vector spaces. Note that the closedness of W guarantees
that the quotient topology turns V/W into a Hausdorff space which is a topological
vector space with respect to the induced vector space structure. A continuous linear
map f : V → W between topological vector spaces is said to be (topologically) split if
the subspaces ker(f) ⊆ V and im(f) ⊆ W are topologically split.

Remark C.4. Let g be a Lie algebra and

0→ V1
α−−→V2

β−−→V3 → 0

be a topologically split short exact sequence of g-modules. Identifying V1 with
α(V1) ⊆ V2, we then obtain injective maps αp : Cp

c (g, V1) → Cp
c (g, V2) and surjective

maps βp : Cp
c (g, V2)→ Cp

c (g, V3) which lead a short exact sequence

0→ C•c (g, V1)
α∗−−→C•c (g, V2)

β∗−−→C•c (g, V3)→ 0
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of cochain complexes. These maps can be combined to a long exact sequence

0→ H0
c (g, V1)→ H0

c (g, V2)→ H0
c (g, V3)→ H1

c (g, V1)→ H1
c (g, V2)→ H1

c (g, V3)→ . . . ,

where, for p ∈ N0, the connecting map

δ : Hp
c (g, V3)→ Hp+1(g, V1)

is defined by δ([f ]) = [dgf̃ ], where f̃ ∈ Cp(g, V2) satisfies β ◦ f̃ = f , which implies that

im(dgf̃) ⊆ V1 if f is a cocycle.

C.2 Affine actions of Lie algebras and 1-cocycles

Definition C.5. Let g be a (topological) Lie algebra and n another (topological) Lie
algebra, which is a (topological) g-module on which g acts by derivations. A linear map
f : g→ n is called a crossed homomorphism if

f([x, y]) = x.f(y)− y.f(x) + [f(x), f(y)]

holds for x, y ∈ g. With respect to the bracket on C•(g, n), this is the Maurer Cartan
equation

dgf +
1

2
[f, f ] = 0

(cf. Exercise 2.14).
If V := n is abelian, hence simply a g-module, then the crossed homomorphisms are

the 1-cocycles. The elements of the subspace B1(g, V ) (the 1-coboundaries) are called
principal crossed homomorphisms.

In the following, we write aff(V ) = V o gl(V ) for the affine Lie algebra of V , where
gl(V ) := L(V ), endowed with the commutator bracket. A continuous affine action of a
Lie algebra g on V is a homomorphism π : g→ aff(V ) satisfying the following continuity
condition: We associate to each pair (v,A) ∈ aff(V ) the affine map x 7→ A.x + v and
we require the map

g× V → V, (x, v) 7→ π(x).v

to be continuous.

Proposition C.6. Let (ρ, V ) be a topological g-module. An element f ∈ C1
c (g, V ) is in

Z1
c (g, V ) if and only if the map

ρf = (f, ρ) : g→ aff(V ) ∼= V o gl(V ), x 7→
(
f(x), ρ(x)

)
is a homomorphism of Lie algebras. The space H1

c (g, V ) parametrizes the eadV -conjugacy
classes of continuous affine actions of g on V whose corresponding linear action coincides
with ρ.
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The coboundaries correspond to those affine actions which are conjugate to a linear
action, i.e., which have a fixed point. The relation f = −dgv is equivalent to ρf (x).v = 0
for all x ∈ g.

Proof. The first assertion is easily checked. For v ∈ V , we consider the automorphism
of aff(V ) given by ηv = ead v = 1 + ad v. Then ηv(w, x) = (w − x.v, x), showing that
ηv ◦ ρf = ρf−dgv, where dgv(x) = x.v. Thus two affine actions ρf and ρf ′ are conjugate
under some ηv if and only if the cohomology classes of f and f ′ coincide. In this sense,
H1
c (g, V ) parametrizes the eadV -conjugacy classes of affine actions of g on V whose

corresponding linear action coincides with ρ, and the coboundaries correspond to those
affine actions which are conjugate to a linear action. Moreover, it is clear that an affine
action ρf is linearizable, i.e., conjugate to a linear action, if and only if there exists a
fixed point v ∈ V , i.e., ρf (x).v = 0 holds for all x ∈ g. This condition means that
f = −dgv.

C.3 Abelian extensions and 2-cocycles

Definition C.7. Let g and n be topological Lie algebras. A topologically split short
exact sequence

n ↪→ ĝ→→ g

is called a (topologically split) extension of g by n. We identify n with its image in ĝ, and
write ĝ as a direct sum ĝ = n⊕ g of topological vector spaces. Then n is a topologically
split ideal and the quotient map q : ĝ → g corresponds to (n, x) 7→ x. If n is abelian,
then the extension is called abelian.

Two extensions n ↪→ ĝ1 →→ g and n ↪→ ĝ2 →→ g are called equivalent if there exists a
morphism ϕ : ĝ1 → ĝ2 of topological Lie algebras such that the diagram

n ↪→ ĝ1 →→ gyidn

yϕ yidg

n ↪→ ĝ2 →→ g

commutes. It is easy to see that this implies that ϕ is an isomorphism of topological
Lie algebras, hence defines an equivalence relation. We write Ext(g, n) for the set of
equivalence classes of extensions of g by n.

We call an extension q : ĝ→ g with ker q = n trivial, or say that the extension splits,
if there exists a continuous Lie algebra homomorphism σ : g → ĝ with q ◦ σ = idg. In
this case, the map

noS g→ ĝ, (n, x) 7→ n+ σ(x)

is an isomorphism, where the semi-direct sum is defined by the homomorphism

S : g→ der(n), S(x)(n) := [σ(x), n].
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Definition C.8. Let a be a topological g-module. To each continuous 2-cocycle ω ∈
Z2
c (g, a), we associate a topological Lie algebra a⊕ω g as the topological product vector

space a× g endowed with the Lie bracket

[(a, x), (a′, x′)] := (x.a′ − x′.a+ ω(x, x′), [x, x′]).

The quotient map q : a ⊕ω g → g, (a, x) 7→ x is a continuous homomorphism of Lie
algebras with kernel a, hence defines an a-extension of g. The map

σ : g→ a⊕ω g, x 7→ (0, x)

is a continuous linear section of q.

Proposition C.9. Let (a, ρa) be a topological g-module and write Extρa(g, a) for the set
of all equivalence classes of a-extensions ĝ of g for which the adjoint action of ĝ on a
induces the given g-module structure on a. Then the map

Z2
c (g, a)→ Extρa(g, a), ω 7→ [a⊕ω g]

factors through a bijection

H2
c (g, a)→ Extρa(g, a), [ω] 7→ [a⊕ω g].

Proof. Suppose that q : ĝ → g is an a-extension of g for which the induced g-module
structure on a coincides with ρa. Let σ : g → ĝ be a continuous linear section, so that
q ◦ σ = idg. Then

ω(x, y) := [σ(x), σ(y)]− σ([x, y])

has values in the subspace a = ker q of ĝ and the map

a× g→ ĝ, (a, x) 7→ a+ σ(x)

defines an isomorphism of topological Lie algebras a⊕ω g→ ĝ.
It is easy to verify that a ⊕ω g ∼ a ⊕η g if and only if ω − η ∈ B2

c (g, a). Therefore
the quotient space H2

c (g, a) classifies the equivalence classes of a-extensions of g by the
assignment [ω] 7→ [a⊕ω g].
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