The Preservativity Logic

S. Mojtaba Mojtahedi

University of Tehran

Joint work with: Mohammad Ardeshir

May 12, 2016

- 1 Survey on modal logics: Provabilty and extensions
 - Provability
 - Interpretability
 - Conservativity
 - Preservativity
- 2 The Decision Algorithm for iH^{σ}
 - TNNIL Propositions
 - LC
- 3 Examples
 - First Example
 - Second Example
 - Third Example

The languages

Propositional languages: \mathcal{L}_0 , \mathcal{L}_{\square} and $\mathcal{L}_{\triangleright}$.

- $\mathcal{L}_0 := \{ \land, \lor, \rightarrow, \bot \}$ and $\neg A$ is defined as $A \rightarrow \bot$.
- $\mathcal{L}_{\square} := \mathcal{L}_0$ with the unary modal operator \square .
- $\mathcal{L}_{\triangleright} := \mathcal{L}_0$ with the addition of the binary modal operator \triangleright .

The theories IPC and CPC are intuitionistic and classical propositional calculi.

First-order language of arithmetic: S, +, ., =, 0

PA and HA

The theory PA is the first-order axiomatization of number theory and HA is the same theory over intuitionistic logic instead of classical logic.

Provability Logic

Roughly speaking, the Provability Logic of a first-order theory T, $\mathcal{PL}(T)$, is the set of all valid (in T) modal propositions, in which \square interpreted as provability predicate. T should be strong enough to define provability predicate $\Pr_T(x)$.

More precisely, $\mathcal{PL}(T)$ contains all $A \in \mathcal{L}_{\square}$ such that for all arithmetical interpretations $(.)^*$, $T \vdash A^*$. $(.)^*$ commutes with all connectives except for \square :

$$(\Box A)^* := \Pr_T(\ulcorner A^* \urcorner)$$

Why it is interesting?

From a philosophical point of view, provability logic is interesting because:

- The concept of provability in a fixed theory of arithmetic has a unique and non-problematic meaning, other than concepts like necessity and knowledge studied in modal and epistemic logic.
- Provability logic provides tools to study the notion of self-reference.

Review of results

- Gödel 1931: $\neg \Box \bot \not\in \mathcal{PL}(\mathsf{PA})$
- Löb 1953: Lob := $\Box(\Box A \to A) \to \Box A \in \mathcal{PL}(\mathsf{PA})$
- Leivant 1975: $\Box(A \lor B) \to \Box(\Box A \lor B) \in \mathcal{PL}(\mathsf{HA})$
- Solovay 1976: $\mathcal{PL}(PA) = K4 + Lob = GL$
- Visser 1981: $\Box \neg \neg \Box A \rightarrow \Box \Box A \in \mathcal{PL}(\mathsf{HA})$
- Visser 1981: Provides decision algorithm for closed fragment (i.e. modal propositions with no atomic variables) of PL(HA)
- Iemhoff 2001: Provides some uniform axiomatization in an extended language and Kripke model-theory for all the known principles of $\mathcal{PL}(\mathsf{HA})$.
- We do not know that $\mathcal{PL}(\mathsf{HA})$ is decidable.

The Interpretations of first-order theories

Interpretations

We say that i is an interpretation of S in T (or T interprets S via i or $T \triangleright_i S$) if for all φ with $S \vdash \varphi$ we have $T \vdash \varphi^i$.

Example

 $\mathsf{ZFC} \rhd_{int} \mathsf{PA} \text{ and } \mathsf{PA} \rhd_{int} I\Sigma_n$

Formalization of interpretability (Orey)

$$T \rhd_{int} S \Leftrightarrow \forall x \Box_T \mathsf{Con}(S_x)$$

The Interpretability Logic

The Interpretability logic of PA

 $A \triangleright_{int} B$ iff PA + A interprets the theory PA + B.

The Theory ILM

- $\mathsf{GL} := \mathsf{K4} + \Box(\Box A \to A) \to \Box A, \ (\Box A := \neg A \rhd \bot)$
- $\bullet \Box (A \to B) \to (A \rhd B),$
- $A \triangleright B \land B \triangleright C \rightarrow A \triangleright C$,
- $[(B \rhd A) \land (C \rhd A)] \rightarrow [(B \lor C) \rhd A],$
- $A \rhd B \to (\Diamond A \to \Diamond B),$
- $\bullet \Diamond A \rhd A,$
- $A \triangleright B \to (A \land \Box C) \triangleright (B \land \Box C)$. (Montagna's Principle)

the interpretability Logic of 17

The interpretability logic of PA:=

$$\mathcal{IL}(\mathsf{PA}) := \{ A \in \mathcal{L}_{\triangleright} | \forall * (\mathsf{PA} \vdash A^*) \}$$

in which $(A \triangleright B)^* := \forall x \square_{PA} (A^* \to Con(PA_x + B^*))$

Alessandro Berarducci- Vladimir Shavrukov 1990

$$\mathsf{ILM} = \mathcal{IL}(\mathsf{PA}).$$

Σ_1 -Formulas and Π_1 -formulas

 Σ_1 -formulas are exactly those formulas A(x) such that the set $\{x|A(x)\}$ is recursively enumerable.

More precisely $A(x) = \exists y B(x, y)$, such that every quantifier in B is bounded, i.e. in the form $\exists x \leq t$ or $\forall x \leq t$. A Π_1 -formula is the negation of a Σ_1 -formula.

The Conservativity Logic

- $A \rhd_{conser} B \equiv \forall C \in \Pi_1(\Box(A \to C) \to \Box(B \to C)).$
- $\mathcal{CL}(\mathsf{PA}) := \{ A \in \mathcal{L}_{\triangleright} | \forall * \mathsf{PA} \vdash A^* \}.$
- In above item $(A \rhd B)^* := \forall C \in \Pi_1(\Box(A^* \to C^*) \to \Box(B^* \to C^*))$ and * commutes with other connectives.
- $\bullet \ \Box A := \bot \rhd \neg A$

Petr Hajek and Franco Montagna 1990

$$CL(PA) = ILM(PA) = ILM.$$

The Σ -Preservativity Logic

$$A \rhd_{pre} B \equiv \forall C \in \Sigma_1(\Box(C \to A) \to \Box(C \to B))$$

In classical theories we have

$$A \rhd_{pre} B$$
 iff $\neg A \rhd_{conser} \neg B$

The preservativity logic:= $\mathcal{PSL}(T) := \{A \in \mathcal{L}_{\triangleright} | \forall *T \vdash A^* \}$

The Preservativity Logic of HA: Known Axioms iPH

- $\bullet \Box A \equiv \top \rhd A,$
- Taut All Tautologies of IPC,

P1
$$(A \triangleright B \land B \triangleright C) \rightarrow A \triangleright C$$
,

P2
$$(A \rhd B \land A \rhd C) \to A \rhd (B \land C)$$
,

$$\mathrm{Dp}\ (B \rhd A \land C \rhd A) \to (B \lor C) \rhd A,$$

$$4p A \rhd \Box A$$
,

$$\operatorname{Lp} (\Box A \to A) \rhd A,$$

Mp
$$A \triangleright B \rightarrow (C \rightarrow A) \triangleright (C \rightarrow B)$$
, For Boxed propositions $C := \Box C'$,

Vp
$$(A \to (F_{n+1} \lor F_{n+2})) \rhd \{B\}(F_1, ..., F_{n+2})$$
 in which

$$A = \bigwedge_{i=1}^{n} (E_i \to F_i) \quad \{B\}(C_1, \dots, C_n) := \bigvee_{i=1}^{n} \{B\}(C_i)$$

Some results

- Visser and de Jongh showed that iPH is sound for arithmetical interpretations in HA. (1994)
- Iemhoff proved completeness of iPH for some frame property of Kripke models. (PhD Thesis, 2001)
- Iemhoff Conjectured that iPH is the preservativity logic of HA, i.e. iPH is also complete for arithmetical interpretations in HA.
- Iemhoff showed that based on iPH one could characterize the admissible rules of IPC. (PhD Thesis, 2001)
- Visser showed that based on iPH one could characterize the propositional admissible rules of HA. (2002)

Preservativity Logic of HA for Σ -substitutions: iPH $^{\sigma}$

- $\bullet \ \Box A \equiv \top \rhd A,$
- Taut All Tautologies of IPC, $p \to \Box p$

P1
$$(A \triangleright B \land B \triangleright C) \rightarrow A \triangleright C$$
,

P2
$$(A \rhd B \land A \rhd C) \to A \rhd (B \land C)$$
,

$$\mathrm{Dp}\ (B \rhd A \land C \rhd A) \to (B \lor C) \rhd A,$$

$$4p A \rhd \Box A$$
,

$$\operatorname{Lp} (\Box A \to A) \rhd A,$$

Mp
$$A \triangleright B \to (C \to A) \triangleright (C \to B)$$
, For Boxed propositions $C := \Box C'$ and also for atomic C ,

Vp
$$(A \to (F_{n+1} \lor F_{n+2})) \rhd [B](F_1, ..., F_{n+2})$$
 in which

$$A = \bigwedge_{i=1}^{n} (E_i \to F_i) \quad \{B\}(C_1, \dots, C_n) := \bigvee_{i=1}^{n} [B](C_i)$$

Results on iPH^{σ}

Visser 2002

The propositional part of the admissible rules of HA for Σ -substitutions are all $A \rhd B \in \mathsf{iPH}^{\sigma}$ in which $A, B \in \mathcal{L}_0$.

Ardeshir-Mojtahedi 2013

The provability logic of HA for Σ -substitutions is

$$\mathsf{iH}^{\sigma} := \{ A \in \mathcal{L}_{\square} | \mathsf{iPH}^{\sigma} \vdash A \}$$

Moreover $\mathsf{iPH}^{\sigma} \vdash A$ is decidable for $A \in \mathcal{L}_{\square}$.

TNNIL

We call a formula in \mathcal{L}_{\square} to be TNNIL, if there is no \rightarrow in the left side of a \rightarrow , except in the scope of some \square . For example the following propositions are TNNIL:

- $\bullet \Box (p \to \bot) \to q$
- $\bullet \Box \bot \to (p \to q)$

And the following are not:

- \bullet $(p \to \bot) \to \bot$
- $\bullet \ \Box((p \to \bot) \to \bot) \to q$

Visser's Algorithm

Visser in his PhD thesis invented an algorithm such that assign a TNNIL proposition to each \mathcal{L}_0 -proposition, such that it is best TNNIL approximation from below (in IPC). We can extend this method to the language \mathcal{L}_{\square} in an straightforward way. Let A^+ denote the result of TNNIL algorithm for A as input. Let's see some examples:

- $(\neg \neg p)^+ = p$. As a result of Visser's Theorem, this means that $\mathsf{IPC} \vdash p \to \neg \neg p$ and moreover for any TNNIL proposition $A \in \mathcal{L}_0$ such that $\mathsf{IPC} \vdash A \to \neg \neg p$, we have $\mathsf{IPC} \vdash A \to p$.
- $(\neg p \to q)^+ = p \lor q$
- $\bullet (\neg \neg \Box (\neg p \to q))^+ = \Box (p \lor q)$

The theory LC

LC has the following axioms and rules:

• Axioms and rules of

$$i$$
K4 := IPC + \square ($A \to B$) \to (\square A \to \square B) + \square A \to \square \sum A.

- Completeness: $A \to \Box A$.
- Löb's axiom: $\Box(\Box A \to A) \to \Box A$.

The theory LC

LC has the following axioms and rules:

- Axioms and rules of $iK4 := IPC + \Box(A \to B) \to (\Box A \to \Box B) + \Box A \to \Box\Box A$.
- Completeness: $A \to \Box A$.
- Löb's axiom: $\Box(\Box A \to A) \to \Box A$.

Finite Model Property for LC

LC is sound and complete for finite *perfect* Kripke models (definition comes next) and hence it is decidable.

The theory LC

LC has the following axioms and rules:

• Axioms and rules of

$$i\mathsf{K4} := \mathsf{IPC} + \square(A \to B) \to (\square A \to \square B) + \square A \to \square \square A.$$

- Completeness: $A \to \Box A$.
- Löb's axiom: $\Box(\Box A \to A) \to \Box A$.

Finite Model Property for LC

LC is sound and complete for finite *perfect* Kripke models (definition comes next) and hence it is decidable.

A salient fact

LC and iPH^{σ} prove the same TNNIL-propositions.

Decision Algorithm for $\mathcal{PL}_{\Sigma}(\mathsf{HA})$

Let A be given in a modal language. We decide $A \in \mathcal{PL}_{\Sigma}(\mathsf{HA})$ in the following 2 steps:

- Compute A^+ , by Visser's algorithm.
- ② Decide LC $\vdash A^+$. If LC $\vdash A^+$ then we have $A \in \mathcal{PL}_{\Sigma}(\mathsf{HA})$, else $A \notin \mathcal{PL}_{\Sigma}(\mathsf{HA})$.

Main Theorem

Let LC $\nvdash A$ for some TNNIL proposition $A \in \mathcal{L}_{\square}$. Then there exists some Σ_1 -substitution such that $\mathsf{HA} \nvdash A^*$.

Perfect Kripke models

Let $\mathcal{K} = (K, \leq, \mathcal{R}, \Vdash)$. We call \mathcal{K} to be a *perfect* Kripke model if

- (K, \leq) is a partially ordered set,
- \mathcal{R} is an irreflexive binary relation over K, (Löb's axiom)
- $\mathcal{R} \subseteq \leq$, (Completeness axiom)
- $(\leq; \mathcal{R}) \subseteq \mathcal{R}$, in which $u(\leq; \mathcal{R})v$ iff $u \leq w \mathcal{R} v$ for some $w \in K$, (Guaranties the persistence of $A \rhd B$ over Kripke model)
- $u \Vdash p$ and $u \leq v$ implies $v \Vdash p$ for atomic p.

We extend \vdash to the modal language in the following way:

- $u \Vdash A \to B$ iff for all $v \ge u, v \Vdash A$ implies $v \Vdash B$,
- $u \Vdash \Box A$ iff for all v such that $u \mathrel{\mathcal{R}} v$, we have $v \Vdash A$.

$$A := (p \to q) \lor (q \to p)$$

$$\beta \Vdash p \quad , \quad \beta \nVdash q \quad , \quad \gamma \Vdash q \quad , \quad \gamma \nVdash p$$

$$\alpha \leq \beta, \gamma \quad , \quad \alpha \nVdash p, q$$

$$B := \exists x (F(x) = \beta)$$
 and $C := \exists x (F(x) = \gamma)$
$$\mathfrak{M}_{\delta} \models T_{\delta} , \quad T_{\delta} := \mathsf{PA} + (\lim_{x \to \infty} F(x) = \delta)$$

$$A = \Box(p \lor q) \to (\Box p \lor \Box q)$$

$$\beta \Vdash p, \, \beta \nVdash q, \, \gamma \Vdash q, \, \gamma \nVdash p$$

$$\alpha \mathcal{R} \beta, \gamma$$
, $\alpha \leq \beta, \gamma$

$$\alpha_0 \mathcal{R} \alpha, \beta, \gamma, \quad \alpha_0 \le \alpha, \beta, \gamma, \quad \alpha, \alpha_0 \not\vdash p, q$$

$$\begin{split} B := \exists x (F(x) = \beta) \quad \text{and} \quad C := \exists x (F(x) = \gamma) \\ T_{\delta} := \mathsf{PA} + (\lim_{x \to \infty} F(x) = \delta) + \mathsf{Prov}_{\mathsf{HA}}(\ulcorner \varphi_{\delta} \urcorner) \\ \varphi_{\alpha} := B \lor C, \varphi_{\beta} := \varphi_{\gamma} := B \land C \end{split}$$

$$A := \Box(p \lor q) \to [(\Box p \to (p \lor q \lor \Box q)) \lor (\Box q \to (p \lor q \lor \Box p))]$$

$$\alpha_0 \leq \alpha, \beta_1, \beta_2, \gamma_1, \gamma_2 \quad \alpha_0 \, \mathcal{R} \, \alpha, \beta_1, \beta_2, \gamma_1$$

$$\alpha \leq \beta_1, \beta_2, \gamma_1, \gamma_2 \quad \alpha \, \mathcal{R} \, \gamma_1, \gamma_2 \quad \beta_i \leq \gamma_i$$

$$\beta_i \, \mathcal{R} \, \gamma_i \quad \alpha \, \mathcal{R} \beta_1 \quad \alpha \, \mathcal{R} \beta_2$$

$$B := (\exists x F(x) = \gamma_1)$$
 $C := (\exists x F(x) = \gamma_2)$

$$\begin{split} \varphi_\alpha := B \vee C \quad \varphi_{\beta_1} := B \quad \varphi_{\beta_2} := C \\ \varphi_{\gamma_1} := \varphi_{\gamma_2} := B \wedge C \quad T_\delta := \mathsf{PA} + \lim_{x \to \infty} F(x) = \delta + \mathsf{Prov}_{\mathsf{HA}}(\ulcorner \varphi_\delta \urcorner) \end{split}$$

- $F(0) := \alpha_0$. Let $F(n) := \delta$, define $F(n+1) := \delta'$ if one of the following cases occurs, otherwise we define $F(n+1) := F(n) = \delta$.
 - $\delta \mathcal{R} \delta'$ and there exists some witness (which is less than or equal to n+1) for the inconsistency of $T_{\delta'}$, or in other words, there exists some proof (in PA) with the Gödel number $\leq n+1$ for the statement

$$\neg[\lim_{x\to\infty}F(x)=\delta'\wedge \mathsf{Prov}_{\mathsf{HA}}(\ulcorner\varphi_{\delta'}\urcorner)]$$

- All of the following conditions hold:
 - $\delta \mathcal{R} \delta'$ and $\delta \leq \delta'$,
 - There exists some witness (which is less than or equal to n+1) for the inconsistency of $T_{\delta'}$,
 - The n+1-inconsistency rank of $T_{\delta'}$ (we call it $r(\delta', n+1)$) is less than the n+1-inconsistency rank of T_{δ} (we call it $r(\delta, n+1)$),
 - $F(r(\delta', n+1)) \mathcal{R} \delta$.

The Inconsistency rank

The inconsistency rank of T_{δ} is defined to be the minimum k such that there exists a witness (less than or equal to n+1) for the inconsistency of

$$\mathsf{PA}_k + \lim_{x \to \infty} F(x) = \delta + \mathsf{Prov}_{\mathsf{HA}}(\lceil \varphi_\delta \rceil)$$

In above definition, PA_k is the theory $I\Sigma_1$ plus induction axiom for those formulas with Gödel number less than k.

Thanks For Your Attention