Thomas Studer

Institute of Computer Science University of Bern Bern, Switzerland

Modal logic adds a new connective \Box to the language of logic.

Two traditions:

Epistemic logic:

 $\Box A$ means A is known / believed

Proof theory:

 $\Box A$ means A is provable in system S

 $\Box A \quad \wedge \quad \Box (A \to B) \quad \to \quad \Box B$

Problems: Epistemic Tradition

Plato:

Knowledge is justified true belief

True belief is modeled by $\Box A \to A$ but

where are the justifications in modal logic?

Problems: Proof-Theoretic Tradition

 $\Box \bot \to \bot \text{ is an axiom, which means}$ $\neg \Box \bot \text{ is provable. Hence, by necessitation}$ $\Box \neg \Box \bot \text{ is provable.}$ $\Box \bot \to \bot$ is an axiom, which means

 $\neg\Box\bot$ is provable. Hence, by necessitation

 $\Box \neg \Box \bot$ is provable.

 $\Box \bot$ means S proves \bot .

 $\neg\Box\bot$ means S does not prove $\bot,$ that is

 $\neg \Box \bot$ means S is consistent.

 $\Box \neg \Box \bot$ means S proves that S is consistent.

 $\Box\bot\rightarrow\bot$ is an axiom, which means

 $\neg\Box\bot$ is provable. Hence, by necessitation

 $\Box \neg \Box \bot$ is provable.

 $\Box \bot$ means S proves \bot .

 $\neg \Box \bot$ means S does not prove \bot , that is

 $\neg \Box \bot$ means S is consistent.

 $\Box \neg \Box \bot$ means S proves that S is consistent.

Gödel: if S has a certain strength, it cannot prove its own consistency.

 $r{:}A \quad \wedge \quad s{:}(A \to B) \quad \to \quad s{\cdot}r{:}B$

Logic

The logic of proofs LP_{CS} is the justification counterpart of the modal logic S4.

Justification terms Tm

$$t ::= x \mid c \mid (t \cdot t) \mid (t+t) \mid !t$$

Formulas \mathcal{L}_j

$$A ::= p \mid \neg A \mid (A \to A) \mid t:A$$

• all propositional tautologies

•
$$t:(A \to B) \to (s:A \to (t \cdot s):B)$$
 (J)

•
$$t:A \to (t+s):A$$
, $s:A \to (t+s):A$

•
$$t: A \to A$$
 (jt)

•
$$t:A \rightarrow !t:t:A$$

(

Constant specification

A constant specification CS is any subset

 $\mathsf{CS} \subseteq \{(c, A) \mid c \text{ is a constant and } A \text{ is an axiom}\}.$

The deductive system $\mbox{LP}_{\mbox{CS}}$ consists of the above axioms and the rules of modus ponens and axiom necessitation.

$$\frac{A \quad A \to B}{B} \qquad \qquad \frac{(c,A) \in \mathsf{CS}}{c:A}$$

Definition

A constant specification CS for LP is called *axiomatically* appropriate if for each axiom F of LP, there is a constant c such that $(c, F) \in CS$.

Lemma (Constructive Necessitation)

Let CS be an axiomatically appropriate constant specification. For any formula A, if

 $\mathsf{LP}_{\mathsf{CS}} \vdash A$,

then

$$\mathsf{LP}_{\mathsf{CS}} \vdash t{:}A$$

for some term t.

Definition (Forgetful projection)

The mapping \circ from justified formulas to modal formulas is defined as follows

• $P^{\circ} := P$ for P atomic;

$$(\neg A)^{\circ} := \neg A^{\circ};$$

$$(A \to B)^{\circ} := A^{\circ} \to B^{\circ};$$

$$(t:A)^{\circ} := \Box A^{\circ}$$

Lemma (Forgetful projection)

For any constant specification CS and any formula F we have

 $LP_{CS} \vdash F$ implies $S4 \vdash F^{\circ}$.

Definition (Realization)

A realization is a mapping r from modal formulas to justified formulas such that $(r(A))^{\circ} = A$.

Definition

We say a justification logic LP_{CS} realizes S4 if there is a realization r such that for any formula A we have

 $S4 \vdash A$ implies $LP_{CS} \vdash r(A)$.

Definition (Schematic CS)

We say that a constant specification is *schematic* if it satisfies the following: for each constant c, the set of axioms $\{A \mid (c, A) \in \mathsf{CS}\}$ consists of all instances of one or several (possibly zero) axiom schemes of LP.

Theorem (Realization)

Let CS be an axiomatically appropriate and schematic constant specification. There exists a realization r such that for all formulas A

$$\mathsf{S4} \vdash A \implies \mathsf{LP}_{\mathsf{CS}} \vdash r(A)$$
.

Definition (Self-referential CS)

A constant specification CS is called *self-referential* if $(c, A) \in CS$ for some axiom A that contains at least one occurrence of the constant c.

S4 and LP_{CS} describe self-referential knowledge. That means if LP_{CS} realizes S4 for some constant specification CS, then that constant specification must be self-referential.

Lemma

Consider the S4-theorem $G := \neg \Box((P \rightarrow \Box P) \rightarrow \bot)$ and let F be any realization of G. If $LP_{CS} \vdash F$, then CS must be self-referential. Originally, LP_{CS} was developed to provide classical provability semantics for intuitionistic logic.

Arithmetical Semantics for LP_{CS}: Justification terms are interpreted as proofs in Peano arithmetic and operations on terms correspond to computable operations on proofs in PA.

Int $\xrightarrow{\text{Gödel}}$ S4 $\xrightarrow{\text{Realization}}$ JL $\xrightarrow{\text{Arithm. sem.}}$ CL + proofs

Definition (Basic Evaluation)

A basic evaluation * for LP_{CS} is a function:

 $*: \mathsf{Prop} \to \{0,1\}$ and $*: \mathsf{Tm} \to \mathcal{P}(\mathcal{L}_j)$, such that

1
$$F \in (s \cdot t)^*$$
 if $(G \to F) \in s^*$ and $G \in t^*$ for some G

2
$$F \in (s+t)^*$$
 if $F \in s^*$ or $F \in t^*$

•
$$F \in t^*$$
 if $(t, F) \in \mathsf{CS}$

•
$$s:F \in (!s)^*$$
 if $F \in s^*$

Definition (Quasimodel)

A quasimodel is a tuple $\mathcal{M} = (W, R, *)$ where $W \neq \emptyset$, $R \subseteq W \times W$, and the evaluation * maps each world $w \in W$ to a basic evaluation $*_w$.

Definition (Truth in quasimodels)

 $\mathcal{M}, w \Vdash p \text{ if and only if } p_w^* = 1 \text{ for } p \in \mathsf{Prop};$ $\mathcal{M}, w \Vdash F \to G \text{ if and only if } \mathcal{M}, w \nvDash F \text{ or } \mathcal{M}, w \Vdash G;$ $\mathcal{M}, w \Vdash \neg F \text{ if and only if } \mathcal{M}, w \nvDash F;$ $\mathcal{M}, w \Vdash t:F \text{ if and only if } F \in t_w^*.$

Model

Given $\mathcal{M} = (W, R, *)$ and $w \in W$, we define

 $\square_w := \{ F \in \mathcal{L}_j \mid \mathcal{M}, v \Vdash F \text{ whenever } R(w, v) \} .$

(JYB)

Definition (Modular Model)

A modular model $\mathcal{M} = (W, R, *)$ is a quasimodel with

- $t_w^* \subseteq \Box_w$ for all $t \in \mathsf{Tm}$ and $w \in W$;
- **2** R is reflexive;
- \bigcirc R is transitive.

Theorem (Soundness and Completeness)

For all formulas $F \in \mathcal{L}_j$,

 $\mathsf{LP}_{\mathsf{CS}} \vdash F \qquad \Longleftrightarrow \qquad \mathcal{M} \Vdash F \text{ for all modular models } \mathcal{M}.$

In modal logic, decidability is a consequence of the finite model property. For LP_{CS} the situation is more complicated since CS usually is infinite.

Theorem

LP_{CS} is decidable for decidable schematic constant specifications CS.

A decidable CS is not enough:

Theorem

There exists a decidable constant specification CS such that LP_{CS} is undecidable.

Theorem

Let CS be a schematic constant specification. The problem whether $LP_{CS} \vdash t:B$ belongs to NP.

Theorem

Let CS be a schematic constant specification. The problem whether $LP_{CS} \vdash t:B$ belongs to NP.

Definition

A constant specification is called *schematically injective* if it is schematic and each constant justifies no more that one axiom scheme.

Theorem

Let CS be a schematically injective and axiomatically appropriate constant specification. The derivability problem for LP_{CS} is Π_2^p -complete.

Logical Omniscience

Modal logic of knowledge contains the epistemic closure principle in the form of axiom

$$\Box(A \to B) \to (\Box A \to \Box B)$$
 ,

which yields an unrealistic feature called *logical omniscience* whereby an agent knows all logical consequences of her assumptions.

Definition

A proof system for a logic L is a binary relation $E \subset \Sigma^* \times L$ between words in some alphabet, called proofs, and theorems of L such that

- 0 E is computable in polynomial time and
- ② for all formulas F, L ⊢ F if and only if there exists y with E(y, F).

Knowledge assertion \boldsymbol{A} is a provable formula of the form

 $\Box B$ for S4 or t:B for LP_{CS}

with the object of knowledge function OK(A) := B.

Definition (Logical Omniscience Test (LOT))

An proof system E for an epistemic logic L is *not logically omniscient*, or *passes LOT*, if there exists a polynomial P such that for any knowledge assertion A, there is a proof of OK(A) in Ewith the size bounded by P(size(A)).

Theorem (S4 is logically omniscient)

There is no proof system for S4 that passes LOT unless NP=PSPACE.

Theorem (LP_{CS} is not logically omniscient)

Let CS be a schematic constant specification. There is a proof system for LP_{CS} that passes LOT.

After the announcement of A, the agent believes A, i.e. $[A]\Box A$

After the announcement of A, the agent believes A, i.e. $[A]\Box A$

Problem

The \Box -operator does not tell us whether A is believed because of the announcement or whether A is believed independent of it.

Fundamental principle

After the announcement of A,

the announcement itself justifies the agent's belief in A.

Fundamental principle

After the announcement of $\boldsymbol{A}_{\text{r}}$

the announcement itself justifies the agent's belief in A.

For each formula A we add a new justification term up(A).

Some axioms of JUP:

• Success: [A] up(A):A

Fundamental principle

After the announcement of $\boldsymbol{A}_{\text{r}}$

the announcement itself justifies the agent's belief in $\boldsymbol{A}.$

For each formula A we add a new justification term up(A).

Some axioms of JUP:

- Success: [A] up(A):A
- Persistence: $t:B \to [A]t:B$.
- Reduction axioms
- Minimal change
- Iterated updates

Lemma (Minimal change)

Let t be a term that does not contain up(A) as a subterm. Then

 $\mathsf{JUP}_{\mathsf{CS}} \vdash [A]t{:}B \leftrightarrow t{:}B$.

Lemma (Minimal change)

Let t be a term that does not contain up(A) as a subterm. Then

 $\mathsf{JUP}_\mathsf{CS} \vdash [A]t{:}B \leftrightarrow t{:}B$.

Lemma (Ramsey I)

 $\mathsf{JUP}_{\mathsf{CS}} \vdash t {:} (A \to B) \to [A](t {\cdot} \mathsf{up}(A)) {:} B.$

Lemma (Ramsey II)

Let CS be an axiomatically appropriate constant specification. For each term t there exists a term s such that

$$\mathsf{JUP}_\mathsf{CS} \vdash [A]t{:}B \to s{:}(A \to B)$$
 .

A Justified Version of $\Box A \lor \Box B \to \Box (A \lor B)$

Assume we are given $\mathsf{LP}_{\mathsf{CS}}$ with

 $(a,A \to (A \lor B)) \in \mathsf{CS} \quad \text{and} \quad (b,B \to (A \lor B)) \in \mathsf{CS} \ .$

By axiom necessitation we get

$$\begin{split} \mathsf{LP}_{\mathsf{CS}} &\vdash a {:} (A \to (A \lor B)) \quad \text{and} \quad \mathsf{LP}_{\mathsf{CS}} \vdash b {:} (B \to (A \lor B)) \ . \end{split}$$
 Using (J) and (MP) we obtain $\mathsf{LP}_{\mathsf{CS}} \vdash x {:} A \to (a {\cdot} x) {:} (A \lor B) \quad \text{and} \quad \mathsf{LP}_{\mathsf{CS}} \vdash y {:} B \to (b {\cdot} y) {:} (A \lor B) \ . \end{split}$ Finally, from (+) we have

$$\begin{split} \mathsf{LP}_{\mathsf{CS}} \vdash (a \cdot x) &: (A \lor B) \to (a \cdot x + b \cdot y) : (A \lor B) \text{ and } \\ \mathsf{LP}_{\mathsf{CS}} \vdash (b \cdot y) &: (A \lor B) \to (a \cdot x + b \cdot y) : (A \lor B) \end{split}$$

Using propositional reasoning, we obtain

$$\mathsf{LP}_{\mathsf{CS}} \vdash (x:A \lor y:B) \to (a \cdot x + b \cdot y):(A \lor B)$$