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Modal Logic

Modal logic adds a new connective � to the language of logic.

Two traditions:

Epistemic logic:

�A means A is known / believed

Proof theory:

�A means A is provable in system S
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Modal Logic: How It Works

A

and

A→ B

thus

B

�A ∧ �(A→ B) → �B
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Problems: Epistemic Tradition

Plato:

Knowledge is justified true belief

True belief is modeled by �A→ A but

where are the justifications in modal logic?

Thomas Studer Justification Logic



Problems: Proof-Theoretic Tradition

�⊥ → ⊥ is an axiom, which means

¬�⊥ is provable. Hence, by necessitation

�¬�⊥ is provable.

�⊥ means S proves ⊥.

¬�⊥ means S does not prove ⊥, that is

¬�⊥ means S is consistent.

�¬�⊥ means S proves that S is consistent.

Gödel: if S has a certain strength, it cannot prove its own
consistency.
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Justification Logic

A
since r

and

A→ B
since s

thus

B
since s·r

r:A ∧ s:(A→ B) → s·r:B
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Syntax of the Logic of Proofs

Logic

The logic of proofs LPCS is the justification counterpart of the
modal logic S4.

Justification terms Tm

t ::= x | c | (t · t) | (t + t) | !t

Formulas Lj

A ::= p | ¬A | (A→ A) | t:A

Thomas Studer Justification Logic



Axioms for LP

all propositional tautologies

t:(A→ B)→ (s:A→ (t·s):B) (J)

t:A→ (t + s):A, s:A→ (t + s):A (+)

t:A→ A (jt)

t:A→!t:t:A (j4)
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Deductive System

Constant specification

A constant specification CS is any subset

CS ⊆ {(c, A) | c is a constant and A is an axiom}.

The deductive system LPCS consists of the above axioms and the
rules of modus ponens and axiom necessitation.

A A→ B

B

(c, A) ∈ CS

c:A
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Necessitation

Definition

A constant specification CS for LP is called axiomatically
appropriate if for each axiom F of LP, there is a constant c such
that (c, F ) ∈ CS.

Lemma (Constructive Necessitation)

Let CS be an axiomatically appropriate constant specification. For
any formula A, if

LPCS ` A,

then
LPCS ` t:A

for some term t.
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Forgetful Projection

Definition (Forgetful projection)

The mapping ◦ from justified formulas to modal formulas is
defined as follows

1 P ◦ := P for P atomic;

2 (¬A)◦ := ¬A◦;

3 (A→ B)◦ := A◦ → B◦;

4 (t:A)◦ := �A◦.

Lemma (Forgetful projection)

For any constant specification CS and any formula F we have

LPCS ` F implies S4 ` F ◦ .
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Realization

Definition (Realization)

A realization is a mapping r from modal formulas to justified
formulas such that (r(A))◦ = A.

Definition

We say a justification logic LPCS realizes S4 if there is a
realization r such that for any formula A we have

S4 ` A implies LPCS ` r(A) .
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Realization Theorem

Definition (Schematic CS)

We say that a constant specification is schematic if it satisfies the
following: for each constant c, the set of axioms {A | (c, A) ∈ CS}
consists of all instances of one or several (possibly zero) axiom
schemes of LP.

Theorem (Realization)

Let CS be an axiomatically appropriate and schematic constant
specification. There exists a realization r such that for all
formulas A

S4 ` A =⇒ LPCS ` r(A) .
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Self-referentiality

Definition (Self-referential CS)

A constant specification CS is called self-referential if (c, A) ∈ CS
for some axiom A that contains at least one occurrence of the
constant c.

S4 and LPCS describe self-referential knowledge. That means if
LPCS realizes S4 for some constant specification CS, then that
constant specification must be self-referential.

Lemma

Consider the S4-theorem G := ¬�((P → �P )→ ⊥) and let F be
any realization of G.
If LPCS ` F , then CS must be self-referential.
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Arithmetical Semantics

Originally, LPCS was developed to provide classical provability
semantics for intuitionistic logic.

Arithmetical Semantics for LPCS: Justification terms are
interpreted as proofs in Peano arithmetic and operations on terms
correspond to computable operations on proofs in PA.

Int
Gödel−−−→ S4

Realization−−−−−−→ JL
Arithm. sem.−−−−−−−→ CL + proofs

Thomas Studer Justification Logic



Basic evaluation

Definition (Basic Evaluation)

A basic evaluation ∗ for LPCS is a function:

∗ : Prop→ {0, 1} and ∗ : Tm→ P(Lj), such that

1 F ∈ (s·t)∗ if (G→ F ) ∈ s∗ and G ∈ t∗ for some G

2 F ∈ (s + t)∗ if F ∈ s∗ or F ∈ t∗

3 F ∈ t∗ if (t, F ) ∈ CS

4 s:F ∈ (!s)∗ if F ∈ s∗
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Quasimodel

Definition (Quasimodel)

A quasimodel is a tuple M = (W,R, ∗) where W 6= ∅,
R ⊆W ×W , and the evaluation ∗ maps each world w ∈W to a
basic evaluation ∗w.

Definition (Truth in quasimodels)

M, w  p if and only if p∗w = 1 for p ∈ Prop;

M, w  F → G if and only if M, w 1 F or M, w  G;

M, w  ¬F if and only if M, w 1 F ;

M, w  t:F if and only if F ∈ t∗w.
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Model

Given M = (W,R, ∗) and w ∈W , we define

�w := {F ∈ Lj | M, v  F whenever R(w, v)} .

Definition (Modular Model)

A modular model M = (W,R, ∗) is a quasimodel with

1 t∗w ⊆ �w for all t ∈ Tm and w ∈W ; (JYB)

2 R is reflexive;

3 R is transitive.

Theorem (Soundness and Completeness)

For all formulas F ∈ Lj ,

LPCS ` F ⇐⇒ M  F for all modular models M.
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Decidability

In modal logic, decidability is a consequence of the finite model
property. For LPCS the situation is more complicated since CS
usually is infinite.

Theorem

LPCS is decidable for decidable schematic constant
specifications CS.

A decidable CS is not enough:

Theorem

There exists a decidable constant specification CS such that LPCS

is undecidable.
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Complexity

Theorem

Let CS be a schematic constant specification.
The problem whether LPCS ` t:B belongs to NP.

Definition

A constant specification is called schematically injective if it is
schematic and each constant justifies no more that one axiom
scheme.

Theorem

Let CS be a schematically injective and axiomatically appropriate
constant specification.
The derivability problem for LPCS is Πp

2-complete.
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Logical Omniscience

Modal logic of knowledge contains the epistemic closure principle
in the form of axiom

�(A→ B)→ (�A→ �B) ,

which yields an unrealistic feature called logical omniscience
whereby an agent knows all logical consequences of her
assumptions.

Definition

A proof system for a logic L is a binary relation E ⊂ Σ? × L
between words in some alphabet, called proofs, and theorems of L
such that

1 E is computable in polynomial time and

2 for all formulas F , L ` F if and only if there exists y with
E(y, F ).

Thomas Studer Justification Logic



Logical Omniscience II

Knowledge assertion A is a provable formula of the form

�B for S4 or t:B for LPCS

with the object of knowledge function OK(A) := B.

Definition (Logical Omniscience Test (LOT))

An proof system E for an epistemic logic L is not logically
omniscient, or passes LOT, if there exists a polynomial P such
that for any knowledge assertion A, there is a proof of OK(A) in E
with the size bounded by P (size(A)).
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Logical Omniscience III

Theorem (S4 is logically omniscient)

There is no proof system for S4 that passes LOT unless
NP=PSPACE.

Theorem (LPCS is not logically omniscient)

Let CS be a schematic constant specification. There is a proof
system for LPCS that passes LOT.
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Dynamic Epistemic Logic

A A

After the announcement of A, the agent believes A, i.e. [A]�A

Problem

The �-operator does not tell us whether A is believed because of
the announcement or whether A is believed independent of it.
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Update as Evidence: the Logic JUPCS for Belief Expansion

Fundamental principle

After the announcement of A,

the announcement itself justifies the agent’s belief in A.

For each formula A we add a new justification term up(A).

Some axioms of JUP:

Success: [A] up(A):A

Persistence: t:B → [A]t:B.

Reduction axioms

Minimal change

Iterated updates
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Basic Properties of JUPCS

Lemma (Minimal change)

Let t be a term that does not contain up(A) as a subterm. Then

JUPCS ` [A]t:B ↔ t:B .

Lemma (Ramsey I)

JUPCS ` t:(A→ B)→ [A](t·up(A)):B.

Lemma (Ramsey II)

Let CS be an axiomatically appropriate constant specification. For
each term t there exists a term s such that

JUPCS ` [A]t:B → s:(A→ B) .
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Thank you!
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A Justified Version of �A ∨�B → �(A ∨B)

Assume we are given LPCS with

(a,A→ (A ∨B)) ∈ CS and (b, B → (A ∨B)) ∈ CS .

By axiom necessitation we get

LPCS ` a:(A→ (A ∨B)) and LPCS ` b:(B → (A ∨B)) .

Using (J) and (MP) we obtain

LPCS ` x:A→ (a ·x):(A∨B) and LPCS ` y:B → (b ·y):(A∨B) .

Finally, from (+) we have

LPCS ` (a · x):(A ∨B)→ (a · x + b · y):(A ∨B) and

LPCS ` (b · y):(A ∨B)→ (a · x + b · y):(A ∨B) .

Using propositional reasoning, we obtain

LPCS ` (x:A ∨ y:B)→ (a · x + b · y):(A ∨B) .
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