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Abstract

The fuzzy modal logic S5(C ), which was constructed by Hájek, used a
schematic extension of BL-algebras in order to establish the fuzzy modal logic
of S5 [15].

The algebraic view of BL-logics has been studied and investigated by some
authors [1, 6]. In order to answer the question, ”what is an algebraic
counterpart of a fuzzy modal logic in Hájek’s sense?”.
We must firstly construct the algebraic counterpart of fuzzy minimal modal
logic K , as the minimal modal logic is that of modal logic that satisfies only the
axiom K :�(φ⇒ ψ)⇒ (�φ⇒ �ψ) among modal axioms. Moreover, every
other modal logic can be obtained by extending this system through a
(possibly infinite) set of extra axioms [12].
The above idea motivated us to introduce an algebraic structure satisfying
only the algebraic property of modal principle K . Therefore we enrich
BL-algebras by modal operators to get algebras named K -modal BL-algebras,
which is the algebraic counterpart of fuzzy minimal modal logic [9]. Then we
construct a logic which corresponds to K -modal BL-algebra named K -modal
BL-logic. Furthermore, we will introduce two schematic extensions of
K -modal BL-logic, such as T -modal BL-logic and S4-modal BL-logic.
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schematic extension of BL-algebras in order to establish the fuzzy modal logic
of S5 [15].
The algebraic view of BL-logics has been studied and investigated by some
authors [1, 6]. In order to answer the question, ”what is an algebraic
counterpart of a fuzzy modal logic in Hájek’s sense?”.
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Abtract

In fact, we introduce the fuzzy minimal modal algebra in Hajek’s view which it
is called K -modal BL-algebra for abbreviation.The properties of this algebra
and some types of it’s filters are introduced.
Then we obtain the logic corresponding to this algebra.
We introduce some extensions of the K -modal BL-logic such as T -modal
BL-logic and S4-modal BL-logic. Properties of these logics are verified. We
obtain the algebraic semantics of these logics. The algebraic semantics of
T -modal BL-logic and S4-modal BL-logic is called T -modal BL-algebra and
S4-modal BL-algebra, respectively. Then we get some properties of these
algebras and the relationship between them is obtained.
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Definition of K-modal BL-algebra

Definition

Consider a BL-algebra A = (A,∪,∩, ∗,→,0,1), we define a unary operator �
on A , where � : A→ A satisfies the following conditions:

(�1) �x ∗�y 6 �(x ∗ y);

(�2) If x 6 y then �x 6 �y ;
(�3) 1 6 �1;

where 6 is defined as x 6 y iff x ∩ y = x , for all x , y ∈ A.
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Lemma

Let M = (A ,�) such that the operator � : A→ A satisfies the conditions,
(�3)- (�1) for all x , y ∈ A, then

�(x → y) 6 �x → �y .
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Remark.
The relation �(x → y) 6 (�x → �y) is the algebraic properties of the normal
principle K : �(φ⇒ ψ)⇒ (�φ⇒ �ψ) of modal logics, where φ and ψ are
formulas of the related language.
Since the algebra M = (A ,�) satisfies the algebraic counterpart of principle
K , we used the sign K for the name of the algebra M .

The algebra M = (A ,�), is called a K -modal BL-algebra provided that �
satisfies the conditions (�1)-(�3).
From now on, we denote the K -modal BL-algebra by M = (A ,�).
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Example

Example

Consider A = ({0,a,b, c,1},∩,∪, ∗,→,0,1) with lattice oreder 0 < a < b < 1
and a < c < 1. This structure together with the following operations is a
BL-algebra:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

We define the unary operation � on A as:

x 0 a b c 1
� 0 c 1 c 1

Then the structure (A ,�) is a K-modal BL-algebra.

Omid Yousefi Kia K -modal BL-logic and Some of it’s extensions Esfahan 12 May 2016 7 / 47



Example

Example

Consider A = ({0,a,b, c,1},∩,∪, ∗,→,0,1) with lattice oreder 0 < a < b < 1
and a < c < 1. This structure together with the following operations is a
BL-algebra:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

We define the unary operation � on A as:

x 0 a b c 1
� 0 c 1 c 1

Then the structure (A ,�) is a K-modal BL-algebra.

Omid Yousefi Kia K -modal BL-logic and Some of it’s extensions Esfahan 12 May 2016 7 / 47



Example

Example

Consider A = ({0,a,b, c,1},∩,∪, ∗,→,0,1) with lattice oreder 0 < a < b < 1
and a < c < 1. This structure together with the following operations is a
BL-algebra:

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

We define the unary operation � on A as:

x 0 a b c 1
� 0 c 1 c 1

Then the structure (A ,�) is a K-modal BL-algebra.

Omid Yousefi Kia K -modal BL-logic and Some of it’s extensions Esfahan 12 May 2016 7 / 47



Example 1.2.

Example

Define on the real unit interval I = [0,1] the binary operations ∗ and→ as
follows:

x ∗ y = max(0, x + y − 1)

x → y = min(1,1− x + y)

Then (I,∩,∪, ∗,→,0,1) is a BL-algebra (called Lukasiewicz structure)

Now, we define an operator � on this structure as follow:

�x =

{
1 if x = 1
1
2 x if x 6= 1

Let x , y 6= 1 then we get �x ∗�y = 1
2 x ∗ 1

2 y = max(0, 1
2 x + 1

2 y − 1) = 0 6
1
2 max(0, x + y − 1) = 1

2 (x ∗ y) = �(x ∗ y). This shows that the �1 holds. If
x = 1 or y = 1 then clearly the axiom �1 holds.
We can easily verify that the axioms �2 and �3 hold.
Then the structure (I,6, ∗,→,0,1,�) is a K -modal BL-algebra.
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Remark

1 If �4: �(x ∗ y) = �x ∗�y , then �4 implies �1 and �2. But �1 and �2
do not imply �4 generally. Indeed, if �4 holds then clearly �4 implies �1.
If in the previous Examplewe take x = 1

2 and y = 3
4 then

�x ∗�y 6= �(x ∗ y), but �1 and �2 hold.

1 If A = (A,∩,∪, ∗,→,0,1) is a BL-algebra and B(A) is the set of all
complemented elements of BL-algebra A then
e ∗ x = e ∩ x for each e ∈ B(A) and x ∈ A.
Hence the condition �4 : �(x ∗ y) = �x ∗�y reduces to the condition
(1) : �(x ∩ y) = �x ∩�y of the Definition of modal algebra.
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Example

Example

Consider the structure A of example 1.2.
Case1. Define the unary operation � on A as:

x 0 a b c 1
� 0 0 a a 1

Then the structure ({0,a,b, c,1},∩,∪, ∗,→,0,1,�), i.e. (A ,�) is not a
K -modal BL-algebra.
We can easily check that �2 and �3 are verified, but �1 does not hold. In fact
if x = b and y = c, we have x ∗ y = b ∗ c = a, �(x ∗ y) = �a = 0,
�x ∗�y = �b ∗�c = a ∗ a = a and a 
 0. This shows that the axiom �1 is
independent of the other axioms.
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Example

Case2. Define the unary operator � on A as:

x 0 a b c 1
� 0 0 0 0 0

The axioms BL, �1, �2 hold, but the axiom �3 does not hold, i.e., this case
shows that the axiom �3 is independent of the other axioms.
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Example

Case3. If the unary operator � on A is defined as:

x 0 a b c 1
� 0 b a b 1

Then the axioms BL, �1, �3 hold, but the axiom �2 does not hold for x = a
and y = b. This case shows that the axiom �2 is independent of the other
axioms.
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Lemma

Lemma
The following identity is true in each K -modal BL-algebra.

�(x ∩ y) ∩�x = �(x ∩ y)

Theorem
The class of all K-modal BL-algebras is a variety of algebras.
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Some properties of K -modal BL-algebras

In each K-modal BL-algebra the following properties hold:
(1) �(x ∩ y) 6 �x ∩�y ;

(2) �x ∪�y 6 �(x ∪ y);
(3) �(x → y) ∗�(y → z) 6 �x → �z;
(4) �((x ∩ y)→ y) = 1;
(5) �x → �(y → x) = 1;
(6) �x → (�y → �x) = 1;
(7) (�(x → y) ∪�(z → y)) ∗�(x ∩ z) 6 �y ;
(8) �x ∗�(y ∩ z) 6 �(x ∗ y) ∩�(x ∗ z);
(9) �((x → y)→ y) ∗�((y → x)→ x) 6 �(x ∪ y);

(10) �((y → x)→ z) 6 �((x → y)→ z)→ �z.
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BL-Logic
The following formulas are axioms of the basic logic BL:

(A1) (φ⇒ ψ)⇒ ((ψ ⇒ χ)⇒ (φ⇒ χ)

(A2) (φ&ψ)⇒ φ
(A3) (φ&ψ)⇒ (ψ&φ)
(A4) (φ&(φ⇒ ψ))⇒ (ψ&(ψ ⇒ φ))

(A5a) (φ⇒ (ψ ⇒ χ))⇒ ((φ&ψ)⇒ χ)
(A5b) ((φ&ψ)⇒ χ)⇒ (φ⇒ (ψ ⇒ χ))

(A6) ((φ⇒ ψ)⇒ χ)⇒ (((ψ ⇒ φ)⇒ χ)⇒ χ)
(A7) 0̄⇒ φ

The deduction rule of BL is modus ponens. Given this, the notions of a proof
and provable formula in BL are defined in the obvious way. Needless to say
the connectives are⇒ and &. Further connectives are defined as follows:

φ ∧ ψ is φ&(φ⇒ ψ);

φ ∨ ψ is ((φ⇒ ψ)⇒ ψ) ∧ ((ψ ⇒ φ)⇒ φ);

¬φ is φ⇒ 0̄;

φ ≡ ψ is (φ⇒ ψ)&(ψ ⇒ φ).
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Language of K -modal BL-logic

The language of the K -modal BL-logic (KMBL-logic, for short), L , is the
language of BL-logic expanded by the unary connective �.

Axioms of
K -modal BL-logic are those of BL-logic plus

(KMBL1) �φ&�ψ ⇒ �(φ&ψ);
(KMBL2) (φ⇒ ψ)⇒ (�φ⇒ �ψ);
(KMBL3) �1̄.

Deduction rules of K -modal BL-logic are modus ponens and necessitation,
i.e., from φ we derive �φ.
Let FL be the set of all formulas in the language L and let M = (A ,�).
A truth evaluation of formulas is a mapping e : FL → A, defined as follows:
If φ is a propositional variable p then e(p) ∈ A.
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This extends in the obvious way to an evaluation of all formulas using the
operations on M as truth functions, i.e.,

e(0̄) = 0,

e(1̄) = 1,
e(φ⇒ ψ) = e(φ)→ e(ψ),

e(φ&ψ) = e(φ) ∗ e(ψ),

e(φ ∧ ψ) = e(φ) ∩ e(ψ),

e(φ ∨ ψ) = e(φ) ∪ e(ψ),

e(¬φ) = e(φ)→ 0,
e(�φ) = �e(φ)

for all formulas φ, ψ ∈ FL .
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K -modal BL-logic, satisfies normal principle

Theorem
The (modal) principle

K : �(φ⇒ ψ)⇒ (�φ⇒ �ψ)

is provable in the K -modal BL-logic.

Lemma

The axiom (KMBL1) together with axiom (KMBL2) implies (modal) principle K
and vice versa.

Remark. The axiom (KMBL1) together with axiom (KMBL2) can be replaced
with (modal) principle K , by previous Lemma We prefer to use the axioms
(KMBL1) and (KMBL2) rather than axiom K .
Since the connectives & and⇒ are used in the two axioms but in the axiom K
the connective⇒ is only used.
Needless to say that the existence of axiom (KMBL3) in previous Definition is
necessary, because necessity of any tautology is a tautology.
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The classes of provably equivalent of formulas
Now, we show that the classes of provably equivalent formulas form a
K -modal BL-algebra.

Let T be a theory over K -modal BL-logic. For each formula φ, let [φ]T be the
set of all formulas ψ such that T ` φ ≡ ψ and MT be the set of all the classes
[φ]T .
We define:
0 = [0̄]T , 1 = [1̄]T ,
[φ]T ∗ [ψ]T = [φ&ψ]T ,
[φ]T → [ψ]T = [φ⇒ ψ]T ,
[φ]T ∩ [ψ]T = [φ ∧ ψ]T ,
[φ]T ∪ [ψ]T = [φ ∨ ψ]T ,
�[φ]T = [�φ]T .
This algebra is denoted by MT .

Lemma
Lemma 2.8. MT is a K -modal BL-algebra.

Lemma 2.9. All axioms of KMBL-logic are M -tautology, for every K -modal
BL-algebra M .
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Lemma 2.8. MT is a K -modal BL-algebra.

Lemma 2.9. All axioms of KMBL-logic are M -tautology, for every K -modal
BL-algebra M .
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Soundness and Completeness

(Soundness).
Lemma 2.10. The inference rules of KMBL-logic are sound in the following
sense.

Let e : FL → A be a truth evaluation:

(1) If e(φ) = 1 and e(φ⇒ ψ) = 1 then e(ψ) = 1;
(2) If e(φ) = 1 then e(�φ) = 1, for any formula φ and ψ.

(Completeness).
Theorem 2.11. The K -modal BL-logic is complete, i.e., the following are
equivalent for every formula φ:
(1) KMBL ` φ;
(2) for each K -modal BL-algebra M , φ is an M -tautology.
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T -modal BL-logic

In this section we introduce the T -modal BL-logic (TMBL-logic, for short). In
fact the T -modal BL-logic is an extension of the K -modal BL-logic by adding
two extra axioms to the axioms of K -modal BL-logic as follows:

(TMBL1) �(φ&ψ)⇒ �φ&�ψ;

(TMBL2) �φ⇒ φ.

The language of TMBL-logic is the same language of KMBL-logic and the
truth evaluation e and the set of formulas FL are defined in the same way.
Deduction rules are modus ponens and necessitation.
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Algebraic semantics of T -modal BL-logics

Definition 3.2. A T -modal BL-algebra, (TMBL-algebra, for short) is a
KMBL-algebra M = (A ,�), in which the following formulas are true:

(�4) �(x ∗ y) = �x ∗�y ;

(�5) �x 6 x .

Clearly, every TMBL-algebra is a KMBL-algebra but the converse is not true
generally.
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Example

Example

Consider A = ({−1,0,a,b, c,d ,1},∩,∪, ∗,→,0,1). This structure together
with the following operations is a BL-algebra
→ -1 0 a b c d 1
-1 1 1 1 1 1 1 1
0 -1 1 1 1 1 1 1
a -1 d 1 d 1 d 1
b -1 c c 1 1 1 1
c -1 b c d 1 d 1
d -1 a a c c 1 1
1 -1 0 a b c d 1
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Example

∗ -1 0 a b c d 1
-1 -1 -1 -1 -1 -1 -1 -1
0 -1 0 0 0 0 0 0
a -1 0 a 0 a 0 a
b -1 0 0 0 0 b b
c -1 0 a 0 a b c
d -1 0 0 b b d d
1 -1 0 a b c d 1

We define the unary operation � on A as:

x -1 0 a b c d 1
� -1 -1 -1 -1 c -1 1

We can easily verify that the K -modal BL-algebra M = (A ,�) is a T -modal
BL-algebra.
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Example

Example

Consider A = ({0,a,b, c,d ,1},∩,∪, ∗,→,0,1). This structure together with
the following operations is a BL-algebra:

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

∗ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1
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Example

Hasse diagram of BL-algebra A is as:

0

b

d

1

c

a

0

We define the unary operation � on A as:

x 0 a b c d 1
� 0 1 0 1 0 1

We can easily verify that M = (A ,�) is a K -modal BL-algebra which satisfies
all of the conditions (�1)-(�4) but the condition (�5) does not hold. Hence
the K -modal BL-algebra M = (A ,�) is not T -modal BL-algebra. Moreover,
this example shows that the condition (�5) is independent of other conditions.
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Example 3.5.

Example

Consider A = ({−2,−1,0,a,b, c,d ,1},∩,∪, ∗,→,0,1). This structure
together with the following operations is a BL- algebra:
→ -2 −1 0 a b c d 1
-2 1 1 1 1 1 1 1 1
-1 -1 1 1 1 1 1 1 1
0 -2 -1 1 1 1 1 1 1
a -2 -1 d 1 d 1 d 1
b -2 -1 a a 1 1 1 1
c -2 -1 0 a d 1 d 1
d -2 -1 a a c c 1 1
1 -2 -1 0 a b c d 1
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Example

∗ -2 -1 0 a b c d 1
-2 -2 -2 -2 -2 -2 -2 -2 -2
-1 -2 -2 -1 -1 -1 -1 -1 -1
0 -2 -1 0 0 0 0 0 0
a -2 -1 0 a 0 a 0 a
b -2 -1 0 0 b b b b
c -2 -1 0 a b c b c
d -2 -1 0 0 b b d d
1 -2 -1 0 a b c d 1

Hasse diagram of BL- algebra A is as:

−2

−1

0

b

d

1

c

a

0
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Example

We define the unary operation � on A as:

x -2 -1 0 a b c d 1
� -2 -1 0 a -1 a d 1

We can easily verify that M = (A ,�) is a K -modal BL-algebra which satisfies
all of the conditions (�1)-(�5) except (�4), since
�(c ∗ d) = �b = −1 6= 0 = �c ∗�d .
Moreover, this example shows that the condition (�4) is independent of other
conditions.
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Soundness and Completeness
T -modal BL-logic

(Completeness). TMBL-logic is complete, i.e., For every formula φ ∈ FL , the
following are equivalent:
(1) TMBL ` φ;

(2) for each T -modal BL-algebra M , φ is an M -tautology.
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S4-modal BL-logic

In this section we introduce the S4-modal BL-logic (S4MBL-logic, for short).
In fact, the S4-modal BL-logic is an extension of the K -modal BL-logic by
adding five extra axioms to the axioms of K -modal BL-logic as follows:

(TMBL1) �(φ&ψ)⇒ �φ&�ψ;

(TMBL2) �φ⇒ φ;

(S4MBL3) �φ⇒ ��φ;

(S4MBL4) �(φ ∨ ψ)⇒ �φ ∨�ψ;

(S4MBL5) (�φ ∨�ψ)⇒ �(φ ∨ ψ).

The language of S4MBL-logic is the same language of KMBL-logic and the
truth evaluation e and the set of formulas FL are defined in the same way.
Deduction rules are modus ponens and necessitation.
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Algebraic semantics of S4-modal BL-logics
A S4-modal BL-algebra, (S4MBL-algebra, for short) is a KMBL-algebra
M = (A ,�), in which the following formulas are true:

(�4) �(x ∗ y) = �x ∗�y ;

(�5) �x 6 x ;

(�6) �x 6 ��x ;

(�7) �(x ∪ y) = �x ∪�y .

Example

Consider the unit interval I = [0,1]. We define binary operations ∗ ,→ and
unary operator � on I as follow: x ∗ y = x ∩ y ,

x → y =

{
1, x 6 y
y , otherwise.
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Example

and

�x =


0, 0 6 x < 1

3
1
3 ,

1
3 6 x < 1

2
1
2 ,

1
2 6 x < 1

1, x = 1.

We can easily verify that I = (I,�) is a K -modal BL-algebra which satisfies
the conditions (�4)-(�7). Hence I = (I,�) is a S4-modal BL-algebra.
Every S4MBL-algebra is a TMBL-algebra but the converse is not true
generally.
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Example

Consider A = ({−1,0,a,b, c,d ,1},∩,∪, ∗,→,0,1). This structure together
with the following operations is a BL-algebra:
→ -1 0 a b c d 1
-1 1 1 1 1 1 1 1
0 -1 1 1 1 1 1 1
a -1 d 1 d 1 d 1
b -1 c c 1 1 1 1
c -1 b c d 1 d 1
d -1 a a c c 1 1
1 -1 0 a b c d 1
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Example

∗ -1 0 a b c d 1
-1 -1 -1 -1 -1 -1 -1 -1
0 -1 0 0 0 0 0 0
a -1 0 a 0 a 0 a
b -1 0 0 0 0 b b
c -1 0 a 0 a b c
d -1 0 0 b b d d
1 -1 0 a b c d 1
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Example 4.6.

Example

Hasse diagram of the BL-algebra A is as :

−1

0

b

d

1

c

a

0

We define the unary operation � on A as:

x -1 0 a b c d 1
� -1 -1 -1 -1 c -1 1
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Example

We can easily verify that M = (A ,�) is a K -modal BL-algebra which satisfies
all of the conditions (�4)-(�6) but the condition (�7) does not hold. Since
�(a ∪ b) = �c = c 6= −1 = �a ∪�b.

Therefore the K -modal BL-algebra M = (A ,�) is a T -modal BL-algebra, but
it is not S4-modal BL-algebra.
Moreover, this example shows that (�7) is independent of other conditions.

Example

Example 3.6. In the BL-algebra
A = ({−2,−1,0,a,b, c,d ,1},∩,∪, ∗,→,0,1) of Example 3.5.
we define the unary operation � on A as:

x -2 -1 0 a b c d 1
� -2 -2 -1 a 0 a d 1

We can easily verify that M = (A ,�) is a K -modal BL-algebra which satisfies
all of the conditions (�4)-(�7) except (�6), since �0 = −1 
 −2 = ��0.
Moreover, this example shows that (�6) is independent of other conditions.
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Soundness and Completeness
S4-modal BL-algebra

Lemma
Lemma 4.8. The algebra MT is a S4MBL-algebra.

Lemma
Lemma 4.9. All axioms of S4MBL-logic are M -tautologies, for every
S4-modal BL-algebra M .

Theorem
(Completeness). S4MBL-logic is complete, i.e., For every formula φ ∈ FL ,
the following are equivalent:
(1) ` φ;
(2) for each linearly ordered S4-modal BL-algebra M , φ is an M –tautology;
(3) for each S4-modal BL-algebra M , φ is an M -tautology.
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Theorem
Theorem 1.10.

Theorem

Theorem1.10. Suppose that M = (A ,�) be a K -modal BL-algebra and F be
a filter on M such that 1 6= a /∈ F . Then there exists a K -modal prim filter F ′

on M containing F and a /∈ F ′, provided that � satisfies four extra conditions:
�4 : �x ∗�y = �(x ∗ y);

�5 : �x 6 x;
�6 : �x 6 ��x;
�7 : �(x ∪ y) = �x ∪�y.

Corollary

Corollary1.11. Let A be a BL-algebra with unary operator � satisfying �3-�7.
The construction M = (A ,�) as a special K -modal BL-algebra is a
subdirect product of linearly ordered K -modal BL-algebras.

Omid Yousefi Kia K -modal BL-logic and Some of it’s extensions Esfahan 12 May 2016 39 / 47



Theorem
Theorem 1.10.

Theorem

Theorem1.10. Suppose that M = (A ,�) be a K -modal BL-algebra and F be
a filter on M such that 1 6= a /∈ F . Then there exists a K -modal prim filter F ′

on M containing F and a /∈ F ′, provided that � satisfies four extra conditions:
�4 : �x ∗�y = �(x ∗ y);
�5 : �x 6 x;

�6 : �x 6 ��x;
�7 : �(x ∪ y) = �x ∪�y.

Corollary

Corollary1.11. Let A be a BL-algebra with unary operator � satisfying �3-�7.
The construction M = (A ,�) as a special K -modal BL-algebra is a
subdirect product of linearly ordered K -modal BL-algebras.

Omid Yousefi Kia K -modal BL-logic and Some of it’s extensions Esfahan 12 May 2016 39 / 47



Theorem
Theorem 1.10.

Theorem

Theorem1.10. Suppose that M = (A ,�) be a K -modal BL-algebra and F be
a filter on M such that 1 6= a /∈ F . Then there exists a K -modal prim filter F ′

on M containing F and a /∈ F ′, provided that � satisfies four extra conditions:
�4 : �x ∗�y = �(x ∗ y);
�5 : �x 6 x;
�6 : �x 6 ��x;

�7 : �(x ∪ y) = �x ∪�y.

Corollary

Corollary1.11. Let A be a BL-algebra with unary operator � satisfying �3-�7.
The construction M = (A ,�) as a special K -modal BL-algebra is a
subdirect product of linearly ordered K -modal BL-algebras.

Omid Yousefi Kia K -modal BL-logic and Some of it’s extensions Esfahan 12 May 2016 39 / 47



Theorem
Theorem 1.10.

Theorem

Theorem1.10. Suppose that M = (A ,�) be a K -modal BL-algebra and F be
a filter on M such that 1 6= a /∈ F . Then there exists a K -modal prim filter F ′

on M containing F and a /∈ F ′, provided that � satisfies four extra conditions:
�4 : �x ∗�y = �(x ∗ y);
�5 : �x 6 x;
�6 : �x 6 ��x;
�7 : �(x ∪ y) = �x ∪�y.

Corollary

Corollary1.11. Let A be a BL-algebra with unary operator � satisfying �3-�7.
The construction M = (A ,�) as a special K -modal BL-algebra is a
subdirect product of linearly ordered K -modal BL-algebras.

Omid Yousefi Kia K -modal BL-logic and Some of it’s extensions Esfahan 12 May 2016 39 / 47



Theorem
Theorem 1.10.

Theorem

Theorem1.10. Suppose that M = (A ,�) be a K -modal BL-algebra and F be
a filter on M such that 1 6= a /∈ F . Then there exists a K -modal prim filter F ′

on M containing F and a /∈ F ′, provided that � satisfies four extra conditions:
�4 : �x ∗�y = �(x ∗ y);
�5 : �x 6 x;
�6 : �x 6 ��x;
�7 : �(x ∪ y) = �x ∪�y.

Corollary

Corollary1.11. Let A be a BL-algebra with unary operator � satisfying �3-�7.
The construction M = (A ,�) as a special K -modal BL-algebra is a
subdirect product of linearly ordered K -modal BL-algebras.

Omid Yousefi Kia K -modal BL-logic and Some of it’s extensions Esfahan 12 May 2016 39 / 47



Corollary

Corollary 4.3. Each S4-modal BL-algebra is a sub-direct product of a system
of linearly ordered S4-modal BL-algebras.
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