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Recap: Dynamic Topological Logic

Dynamical system: (X ,S) where X is a topologial space and
S : X → X is continuous.

Language (L�◦�):

p | ¬ϕ | ϕ ∧ ψ | �ϕ | ◦ϕ | �ϕ

Semantics:
I J·K commutes with Booleans.

I J�ϕK = JϕK◦ (interior)

I J◦ϕK = S−1 JϕK (next)

I J�ϕK =
⋂

n<ω S−n JϕK (henceforth).
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Recap: Main results

I The �-free fragment is finitely axiomatizable and has the
finite model property, both over the class of all dynamical
systems and over the class of systems with a
homeomorphism.

I The full logic over the class of dynamical systems with a
homeomorphism is non-axiomatizable.

I The full logic over the class of all dynamical systems is
undecidable.

I The formula ��p → ��p is Kripke-valid, but not
topologically valid.

I A formula is satisfiable iff it is satisfiable on a
non-deterministic quasimodel.
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Today

1. Extend the language of DTL to obtain a natural
axiomatization

2. Exhibit a decidable sub-language which remains
expressive enough to reason about asymptotic behaviour
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A completeness proof sketch for LTL

Fix a consistent formula ϕ. We construct a model for ϕ.
1. Assign a characteristic formula to each possible moment

m.
In this case, m is a Σ-type and χ(m) =

∧
m+ ∧ ¬

∨
m−.

2. Definition: A moment m is possible iff χ(m) is consistent.

3. Prove that the set of possible moments is ω-sensible:

♦ψ ψ
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A completeness proof sketch for LTL

Fix a consistent formula ϕ. We construct a model for ϕ.
1. Assign a characteristic formula to each possible moment

m.
In this case, m is a Σ-type and χ(m) =

∧
m+ ∧ ¬

∨
m−.

2. Definition: A moment m is possible iff χ(m) is consistent.

3. Prove that the set of consistent moments is ω-sensible:

♦ψ ψ

4. Conclude that any possible moment can be included in a
realizing path an hence an LTL model.



A completeness proof strategy for DTL

1. Moments are now elements of IΣ: finite, labelled, rooted
preorders

2. The formula χ(m) is replaced by Sim(m), which defines
simulability of m

3. The moment m is possible iff Sim(m) is consistent. Define
JΣ to be the set of possible moments.

4. Prove that JΣ is a quasimodel.

5. Conclude that if ϕ is consistent then it is true on some
possible moment, hence on the quasimodel JΣ, and hence
on some dynamic topological model (by last week’s
results).
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Labelled spaces
Fix a finite set of formulas Σ closed under subformulas.

Recall: A Σ-type is a pair (Φ+,Φ−) indicating the true and false
formulas of Σ on a point.

A Σ-labelled space is a topological space X with a function `
assigning a Σ-type `(x) = (`+(x), `−(x)) to each x ∈ X , so that

I {x ∈ X : �ϕ ∈ `+(x)} is always open

I if �ϕ ∈ `−(x) and U is a neighbourhood of x then there is
y ∈ U with ϕ ∈ `−(y)

Note: Labelled spaces generalize topological models since we
may always define

`+(x) = {ϕ ∈ Σ : x ∈ JϕK}
`−(x) = {ϕ ∈ Σ : x 6∈ JϕK}
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Simulations revisited
A simulation between labelled spaces (X , `X ) and (Y , `Y ) is a
continuous relation E ⊂ X × Y which preserves labels:

x E y ⇒ `X (x) = `Y (y)

A simulation between pointed/rooted labelled spaces preserves
the designated point:

(X , `X , x)E (Y , `Y , y)

if there is a simulation E ⊂ X × Y with x E y .
Simulations between labelled preorders are forward-confluent:
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Reminder: The structure IΣ

IΣ = (IΣ,<,R, `)

1. Elements of IΣ are called moments: tuples
m = (|m|,<m, `m, rm) such that

I (|m|,<m) is a finite preorder

I `m assigns a Σ-type to each m ∈ |m|

I rm is a root of m

2. v 4 w if v is an open substructure of w

3. v R w if there is a sensible, root-preserving relation
between v and w
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Reminder: The structure IΣ

I IΣ is a weak quasimodel, but not necessarily a
quasimodel, as ω-sensibility may fail.

I Given any dynamic topological model (X ,S, J·K), the
maximal simulation E∗ ⊂ IΣ × X is a surjective dynamic
simulation.

I IΣ restricted to the domain of E∗ is a quasimodel.

Today: The relation E defines a well quasiorder on IΣ.
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Well quasiorders

A preorder (A,≤) is a well quasiorder if the following equivalent
conditions hold:

1. If
a0,a1,a2, . . .

is an infinite sequence of elements of A, there are i < j
with ai ≤ aj .

2. If U ⊂ A is upwards-closed under ≤, there are finitely many

u1, . . . ,un ∈ A

such that for every a ∈ A there is i ≤ n with ui ≤ a.
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Kruskal’s theorem

Theorem (Kruskal)
Fix a finite set Λ. The set of finite trees labelled by elements of
Λ is well quasiordered by embeddability.

Corollary
IΣ is well quasiordered by E.

Proof.
Every moment m is bisimilar to a tree-like moment m′, and an
embedding E from m′ to n′ yields a simulation between m and
n. So, we can apply Kruskal’s tree theorem.

First used in the setting of DTL in Konev, Kontchakov, Wolter
and Zakharyaschev 2006.
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Undefinability of simulation

Proposition
The property mE (X , `, x) is not definable in L�, even when X
is a Kripke model and m is the {p,q}-cluster.
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The tangled closure

Definition
If S is a collection of subsets of a topological space X , we
defne the tangled closure of S, denoted S∗, as the greatest
subset of X such that every A ∈ S is dense within S∗.

L∗�(◦�): We consider an extension of L where � is allowed to
act on sets of formulas, and define

J�{γ0, ..., γn}K = {Jγ0K , ..., JγnK}∗ .

Theorem (Dawar and Otto)
L∗� is equally expressive as the µ-calculus over the class of
finite preorders.
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The tangled closure on a preorder

LetM = (W ,4, J·K) be a Kripke model.

I If W is finite then w ∈ J�{ϕ0, . . . , ϕn}K iff there is a cluster
C < w such that for each i ≤ n there is v ∈ C such that
v ∈ JϕiK.

I In general, w ∈ J�{ϕ0, . . . , ϕn}K iff there is a path

w = w0 4 w1 4 w2 4 . . .

such that for each i ≤ n there are infinitely many j such
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4. If A = Q and B = Q + π then {A,B}∗ = R
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Simulation formulas

Theorem (DFD)
Given a locally finite labelled preorder (W ,4, `), there exist
formulas

(
Sim(w)

)
w∈W ∈ L

∗
� such that for any dynamic

topological modelM = (X ,S, J·K), tfae:

1. (M, x) |= Sim(w)

2. there is E ⊆W × X such that w E x

Example
If m is the {p,q}-cluster then

Sim(m) = p ∧ �{p,q}
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An axiomatization for DTL∗

Taut All propositional tautologies.

Axioms for �:
K �(p → q)→ (�p → �q)
T �p → p
4 �p → ��p
Fix� �Γ→

∧
γ∈Γ �(γ ∧ �Γ)

Ind� p ∧�
(

p →
∧
γ∈Γ �(p ∧ γ)

)
→ �Γ

Temporal axioms:
Neg◦ ¬◦p ↔ ◦¬p
And◦ ◦(p ∧ q)↔ ◦p ∧ ◦q
Fix� �p → p ∧ ◦�p
Ind� �(p → ◦p)→ (p → �p)

TCont ◦�Γ→ �◦Γ
Rules: MP,Subs,N�,N�,N◦
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The set of possible moments

Definition
Fix finite Σ closed under subformulas. A moment m of IΣ is
possible if Sim(m) is consistent, and JΣ is the substructure of
possible moments.

Completeness proof strategy:
1. Prove that JΣ is a quasimodel.

2. Prove that for any consistent ϕ, there is a possible moment
m with ϕ ∈ `+(m).
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Basic properties of Sim

Fix finite Σ closed under subformulas and let IΣ = (IΣ,<,R, `)

I If ψ ∈ `+(w), then ` Sim(w)→ ψ

I If ψ ∈ `−(w), then ` Sim(w)→ ¬ψ

I ` ψ →
∨

ψ∈`+(w)

Sim(w)

I ` Sim(w)→ ◦
∨

wRv

Sim(v)
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ω-sensibility

Lemma
Let w be a moment of JΣ and �ψ ∈ `−(w), R∗(w) be the set of
worlds reachable from w in JΣ

Then, ψ ∈ `−(v) for some v ∈ R∗(w)

Proof.
Assume toward a contradiction that the lemma fails
I ` Sim(w)→ ¬�ψ
I `

∨
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Completeness

Theorem (DFD)
If ϕ ∈ L∗�◦� is valid on the class of dynamical posets then ` ϕ

Proof.
Assume that ϕ is consistent.
Let Σ = sub(ϕ), IΣ = (IΣ,<,R, `)
From

` ϕ→
∨

ϕ∈`+(w)

Sim(w)

we obtain that w∗ is possible for some w∗ with ϕ ∈ `+(w∗),
hence w∗ is a world of JΣ.
Thus JΣ is a quasimodel satisfying ϕ, and it follows that ϕ is
satisfiable on some dynamical topological model.
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Kremer’s intuitionistic temporal logic

Kremer 2004: Work over L◦� and use the topological
semantics of intuitionistic logic to interpret→

However, the following standard validities fail

I �p → ◦�p

I �◦p → ◦�p

I �p → ��p
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Topological semantics for intuitionistic logic
Models

M = (X , T ,V ), where:

I (X , T ) is a topological space

I V : PV→ T

Truth sets

I J⊥K = ∅

I JpK = V (p)

I Jϕ ∧ ψK = JϕK ∩ JψK

I Jϕ ∨ ψK = JϕK ∪ JψK

I Jϕ→ ψK
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(
JϕKc ∪ JψK

)◦
Interior of A ⊆ X :

A◦ =
⋃
{U ∈ T : U ⊆ A}
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I Jϕ ∨ ψK = JϕK ∪ JψK

I Jϕ→ ψK

=
(
JϕKc ∪ JψK

)◦
Interior of A ⊆ X :

A◦ =
⋃
{U ∈ T : U ⊆ A}
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Intuitionistic temporal logic

Language L◦♦�∀: ϕ,ψ :=

p | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ◦ϕ | ♦ϕ | �ϕ | ∀ϕ

Models: (X ,S,V ), where S : X → X is continuous

Truth of temporal operators

J◦ϕK = S−1 JϕK

J♦ϕK =
⋃

n<ω S−n JϕK

J�ϕK =
(⋂

n<ω S−n JϕK
)◦

J∀ϕK =

{
X if JϕK = X
∅ otherwise
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Gödel-Tarski translation
The translation ϕ 7→ ϕ� embeds L◦♦� into the classical L�◦� by
setting

I p� = �p I ⊥� = ⊥

I (ϕ ∧ ψ)� = ϕ� ∧ ψ� I (ϕ ∨ ψ)� = ϕ� ∨ ψ�

I (ϕ→ ψ)� = �(ϕ� → ψ�) I (◦ϕ)� = ◦ϕ�

I (♦ϕ)� = ♦ϕ� I (�ϕ)� = ��ϕ�

Theorem
Given ϕ ∈ L◦♦�, ϕ is intuitionistically valid iff ϕ� is classically
valid.

Corollary
The set of L◦♦�-formulas valid over the class of dynamical
systems is computably enumerable.
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Kremer’s counterexample: �p → ◦�p fails!

I X = R
I V (p) = (−∞,1)

I S(x) =

{
2x if x > 0
0 otherwise

0 1-1JpK

⋂
n<ω S−n JpK

J�pK
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Expressivity
I Recall: A dynamical system (X ,S) is Poincaré recurrent if

whenever A ⊆ X is open and non-empty, there are x ∈ A
and n > 0 such that Sn(x) ∈ A.

Recall: This is equivalent to the classical validity of
�ϕ→ �◦♦ϕ
It is also equivalent to the intuitionistic validity of

p → ¬¬ ◦ ♦p

I Recall: (X ,S) is minimal if for all x ∈ X and non-empty,
open A ⊆ X there is n > 0 such that Sn(x) ∈ A.
Recall: This is equivalent to the classical validity of
∃�p → ∀♦p
It is also equivalent to the intuitionistic vaility of

∃p → ∀♦p
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Some good news

Theorem (DFD)
The validity problem for L◦♦∀ is decidable over the class of all
dynamical systems

Theorem (Balbiani, Boudou, Diéguez, DFD)
The validity problem for L◦♦� is decidable over the class of
dynamical posets

However, there are Kripke-valid but non-derivable formulas,
such as

�(p ∨ q)→ ♦p ∨�q
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Intuitionistic labelled posets

Triple (W ,4, `) where ` assigns a type to each w ∈W
according to the intuitionistic semantics

p

p

q → r

rq
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The intuitionistic IΣ

In the intuitionitsic setting, we may use a finite version of IΣ.

p

p⊗

p,p ∨ ¬p

p,p ∨ ¬p

p⊗
⊗

There are finitely many (about 2n
n) moments of height n up to

bisimulation.
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The calculus ITL0
♦

ITaut Standard intuitionistic propositional axioms

Temporal axioms:

Next⊥ ¬ ◦ ⊥

Next∧ (◦ϕ ∧ ◦ψ)→ ◦(ϕ ∧ ψ)

Next∨ ◦(ϕ ∨ ψ)→ (◦ϕ ∨ ◦ψ)

Next→ ◦(ϕ→ ψ)→ (◦ϕ→ ◦ψ)

Fix♦ (ϕ ∨ ◦♦ϕ)→ ♦ϕ

Rules:

MP
ϕ ϕ→ ψ

ψ
Nec

ϕ

◦ϕ

Mon
ϕ→ ψ

♦ϕ→ ♦ψ
Ind

◦ϕ→ ϕ

♦ϕ→ ϕ



The calculus ITL0
♦∀

Add the following to ITL0
♦:

K∀ ∀(ϕ→ ψ)→ (∀ϕ→ ∀ψ) EM∀ ∀ϕ ∨ ¬∀ϕ

Dist∀ ∀(ϕ ∨ ∀ψ)→ ∀ϕ ∨ ∀ψ T∀ ∀ϕ→ ϕ

Next∀ ∀ϕ↔ ◦∀ϕ 4∀ ∀ϕ→ ∀∀ϕ

Nec∀
ϕ

∀ϕ

Theorem (Boudou, Diéguez, DFD)
ITL0
♦ and ITL0

♦∀ are sound and complete for the class of
dynamical systems.

Question: Are these logics also Kripke complete?

I ITL0
♦ Yes I ITL0

♦∀ No
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Simulation formulas

Theorem
Given a finite labelled poset A with domain W, there exist
intuitionistic formulas

(
Sim(w)

)
w∈W such that for any model

M = (X ,4,V ), tfae:
1. (M, x) 6|= Sim(w)

2. there is y < x and a simulation E ⊆W ×X such that w E y

(Essentially Jankov-de Jongh formulas)

Definition
Fix finite Σ closed under subformulas. A world w of IΣ is
possible if 6` Sim(w), and JΣ is the substructure of possible
worlds
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Completeness of ITL0
♦∀

Proof.
ITL0
♦∀ is complete for the class of dynamical systems.

1. Unlike in the classical case, simulation formulas Sim(w)
are already definable in the basic intuitionistic language
(no tangle needed).

2. With these formulas, the classical completeness proof
goes through.

3. We only need to make slight modifications to work with the
dual ♦.
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Concluding remarks

I Dynamic topological logic is an expressive propositional
framework in which to reason about topological dynamics

I Unfortunately, it is incomplete and undecidable

I These issues can be resolved by suitable modifications of
the language of DTL:

I DTL∗ is complete I ITL◦♦∀ is decidable

I There are many open questions!

1. Identification of tractable fragments

2. Decidability of ITL with homeomorphisms

3. Extensions with nominals

4. . . .
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