A note on the dual of Burch's inequality

Massoud Tousia ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Shahid Beheshti University, Evin, Tehran 19834, Iran
${ }^{\mathrm{b}}$ Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-1795 Tehran, Iran

Received 3 August 1998
Communicated by C.A. Weibel

Abstract

The aim of this paper is to improve the main result of [5] (Theorem 3.5). We show that if A is a non-zero Artinian module over a commutative ring R and $\mathfrak{a} \subseteq \mathfrak{b}$ are ideals of R such that $(0: A \mathfrak{b}) \neq 0$, then the dual of Burch's inequality $$
S_{\mathfrak{b}}(\mathfrak{a}, A) \leq \operatorname{Kdim}_{R}(A)-\operatorname{width}_{\mathfrak{b}}\left(0:_{A} \mathfrak{a}^{i}\right)(i \gg 0)
$$ holds (the dual notions $S_{\mathfrak{b}}(\mathfrak{a}, A), \operatorname{Kdim}_{R}(A)$, $\operatorname{width}_{\mathfrak{b}}(A)$ are explained in [5]). (C) 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 13E10; 13C99; secondary 13A30

Let N be a finitely generated module over a commutative Noetherian ring R and $I \subseteq J$ be ideals in R satisfying $N \neq J N$. We denote the graded R-algebra $\bigoplus_{i \geq 0} I^{i}$ (the Rees ring of I) by \tilde{R}. In [1], the analytic spread of I at J with respect to N, which is denoted by $l_{J}(I, N)$, was defined as the Krull dimension of the \tilde{R}-annihilator of the graded \tilde{R}-module $\bigoplus_{0 \leq i} I^{i} N / I^{i} J N$ and the generalization of Burch's inequality [2, Corollary (i)]

$$
l_{J}(I, N) \leq \operatorname{dim}_{R}(N)-\operatorname{depth}_{J}\left(N / I^{i} N\right) \quad(i \gg 0)
$$

was proved. Here, $\operatorname{dim}_{R}(N)$ means the Krull dimension of N and $\operatorname{depth}_{J}\left(N / I^{i} N\right)$ denotes the length of a maximal $N / I^{i} N$-sequences in J.

Let A be a non-zero Artinian module over a commutative ring R and let $\mathfrak{a} \subseteq \mathfrak{b}$ be ideals of R. The dual notions $S_{\mathfrak{b}}(\mathfrak{a}, A), \operatorname{Kdim}_{R}(A)$ and $\operatorname{width}_{\mathfrak{b}}(A)$, to those of

[^0]$l_{\mathrm{b}}(\mathfrak{a}, N) \operatorname{dim}_{R}(N)$ and $\operatorname{depth}_{\mathfrak{b}}(N)$ were studies in [5, 9], [4, 7] and [6, 10], respectively. The aim of [5] is to prove the dual version of Burch's inequality
$$
S_{\mathfrak{b}}(\mathfrak{a}, A) \leq \operatorname{Kim}_{R}(A)-\operatorname{width}_{\mathfrak{b}}\left(0:_{A} \mathfrak{a}^{i}\right) \quad(i \gg 0),
$$
in the following conditions: R is a Noetherian ring, R / \mathfrak{b} is Artinian and \mathfrak{b} is contained in any associated prime of A.

In this paper we shall improve this result by showing that if $\left(0:_{A} \mathfrak{b}\right) \neq 0$, then the above inequality holds without any restriction on R (see Theorem 6(ii)). Also, we prove that $\operatorname{width}_{\mathfrak{b}}\left(0:_{A} \mathfrak{a}^{i}\right)$ takes a constant value for large i (see Theorem 6(i)).

Throughout R will denote a (non-trivial) commutative ring with identity and A will be a non-zero Artinian R-module.

Remark 1 (See [8, Theorem 3.2 and the proof of Lemma 2.2]). There exist only finitely many maximal ideals m of R for which $\operatorname{Soc}(A)$ has a submodule isomorphic to R / \mathfrak{m}. Let the distinct such maximal ideals be $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{s}$. It is easy to see that $\operatorname{Ass}_{R}(A)=\left\{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{s}\right\}$. Set $J=\bigcap_{i=1}^{s} \mathfrak{m}_{i}$, and let \hat{R} be the J-adic completion of R.
(i) The ring $R^{\prime}:=\hat{R} /\left(0:_{\hat{R}} A\right)$ is a semi-local commutative Noetherian ring which is complete in the topology defined by its Jacobson radical.
(ii) For $\hat{r}=\left(r_{i}+J^{i}\right)_{i \geq 1} \in \hat{R}$ and $x \in A$, the sequence $\left(r_{i} x\right)_{i \geq 1}$ is ultimately constant and $\hat{r} x$ is defined as the ultimate constant value of the above sequence. Hence the module A is, in a natural way, a faithful Artinian module over R^{\prime}, and a subset of A is an R-module if and only if it is an R^{\prime}-module. Moreover, if $\psi: R \rightarrow R^{\prime}$ is the natural map, then, for any $r \in R$, the multiplication by r on A has the same effect as multiplication by $\psi(r)$ on A.

Notation 2. Throughout the remainder of the paper, R^{\prime} and \hat{R} are as in Remark 1 and the following notations will be used.

Set $E:=\bigoplus_{\mathfrak{m}^{\prime} \in \operatorname{Max}\left(R^{\prime}\right)} E\left(R^{\prime} / \mathfrak{m}^{\prime}\right)$, where $\operatorname{Max}\left(R^{\prime}\right)$ is the set of all maximal ideals of R^{\prime} and $E\left(R^{\prime} / \mathrm{m}^{\prime}\right)$ is the injective envelope of $R^{\prime} / \mathrm{m}^{\prime}$. We shall use $D(\cdot)$ to denote the additive, exact, R-linear functor $\operatorname{Hom}_{R^{\prime}}(\cdot, E)$ from the category of all R^{\prime}-modules and R^{\prime}-homomorphisms to itself. Also, for any ideal I of R, we use $I R^{\prime}$ to denote the extension of I to R^{\prime} under ψ.

We recall some facts in the following.

Remark 3. (i) (See the proof of [3, Theorem 2.1].) Let I be an ideal of R such that $\left(0:_{A} I\right) \neq 0$. Then $\operatorname{width}_{I}(A)=\operatorname{depth}_{I R^{\prime}}(D(A))$.
(ii) $\left(\right.$ See $\left[11\right.$, Lemma 2.13(i)].) Let L be an R-submodule of A. Then $\operatorname{Kdim}_{R}(L)=$ $\operatorname{dim}_{R^{\prime}}(D(L))$.

For the proof of Theorem 5, we need the following lemma.

Lemma 4. Let R be a Noetherian ring. Then $\operatorname{Kdim}_{R}(A)=\operatorname{dim}\left(R /\left(0:_{R} A\right)\right)$.
Proof. In view of the proof of [5, Corollary 1.11], we may assume that A is a faithful R-module and that

$$
K \operatorname{dim}_{R}(A)=\operatorname{dim}\left(\hat{R} /\left(0:_{\hat{R}} A\right)\right) \leq \operatorname{dim}(\hat{R})=\operatorname{dim}(R)
$$

Now, we prove that $\operatorname{dim}(\hat{R}) \leq \operatorname{dim}\left(\hat{R} /\left(0:_{\hat{R}} A\right)\right)$. It is enough to show that if $\mathfrak{q} \in$ $\operatorname{Spec}(\hat{R})$, then $\left.\left(0:_{\hat{R}} A\right)\right) \subseteq \mathfrak{q}$. Let $\mathfrak{q} \in \operatorname{Spec}(\hat{R})$, and set $\varphi^{-1}(\mathfrak{q})=\mathfrak{p}$, where $\varphi: R \rightarrow \hat{R}$ is the natural map. Then, by [12, Corollary 2.4 and Lemma 2.5], there exists a maximal ideal \mathfrak{m} of R such that $\mathfrak{p} \in \operatorname{Supp}_{R}\left(D_{\mathfrak{m}}(A)\right)\left(D_{\mathfrak{m}}(\cdot)\right.$ is the functor $\left.\operatorname{Hom}_{R}(\cdot, E(R / \mathfrak{m}))\right)$. Since $\hat{R}_{\mathfrak{q}}$ is a faithfully flat $\hat{R}_{\mathfrak{p}}$-module, we have $D_{\mathfrak{m}}(A)_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \hat{R}_{\mathfrak{q}} \neq 0$. On the other hand, we have

$$
\begin{aligned}
D_{\mathfrak{m}}(A)_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \hat{R}_{\mathfrak{q}} & \cong\left(D_{\mathfrak{m}}(A) \otimes_{\hat{R}} S^{-1} \hat{R}\right) \otimes_{R_{\mathfrak{p}}} \hat{R}_{\mathfrak{q}} \\
& \cong D_{m}(A)_{\mathfrak{q}} \otimes_{R_{\mathfrak{p}}} S^{-1} \hat{R},
\end{aligned}
$$

where $S=\varphi(R-\mathfrak{p})$. Therefore $\mathfrak{q} \in \operatorname{Supp}_{\hat{R}}\left(D_{m}(A)\right)$ and consequently $\left(0:_{\hat{R}} A\right) \subseteq\left(0:_{\hat{R}}\right.$ $\left.D_{m}(A)\right) \subseteq \mathfrak{q}$.

Theorem 5. Let $\mathfrak{a} \subseteq \mathfrak{b}$ be ideals of R. Then $S_{\mathfrak{b}}(\mathfrak{a}, A)=l_{\mathfrak{b} R^{\prime}}\left(\mathfrak{a} R^{\prime}, D(A)\right)$. (Note that, by $[6,1.6(3)], D(A)$ is a finitely generated R^{\prime}-module.)

Proof. Let $S=\bigoplus_{0 \leq i} \mathfrak{a}^{i} \rightarrow S^{\prime}=\bigoplus_{0 \leq i} \mathfrak{a}^{i} R^{\prime}$ be the natural map from the Rees ring of \mathfrak{a} to that of $\mathfrak{a} R^{\prime}$. Set $G=\bigoplus_{n \leq 0} G_{n}$, where $G_{n}=\left(\begin{array}{lll}0 & :_{A} & \mathfrak{a}^{i} \mathfrak{b}\end{array}\right) /\left(\begin{array}{lll}0 & :_{A} & \mathfrak{a}^{i}\end{array}\right)=\left(\begin{array}{lll}0 & :_{A} & \mathfrak{a}^{i} \mathfrak{b} R^{\prime}\end{array}\right) /$ (0 $:_{A} \quad \mathfrak{a}^{i} R^{\prime}$) and $n=-i \leq 0$. By Remark 1(ii), any S-submodule of G is an S^{\prime} submodule. So, by [5, Definition 2.5 and Lemma 1.2], we have

$$
S_{\mathfrak{b}}(\mathfrak{a}, A)=\mathrm{K} \operatorname{dim}_{S}(G)=\mathrm{K}_{\operatorname{dim}_{S^{\prime}}}(G) .
$$

Put $G_{-n}^{\prime}=D\left(G_{n}\right)$ for $n \leq 0$ and $G^{\prime}=\bigoplus_{0 \leq m} G_{m}^{\prime}$. Then, by [5, Lemma 1.9], $G_{m}^{\prime}=$ $\mathfrak{a}^{m} R^{\prime} D(A) / \mathfrak{a}^{m} \mathfrak{b} R^{\prime} D(A)$ for $m \geq 0$. Since $\left(0:_{R^{\prime}} M\right)=\left(0:_{R^{\prime}} D(M)\right)$ for any R^{\prime}-module M (see[6, Theorem 1.6(8)], we have $\left(0:_{S^{\prime}} G\right)=\left(0:_{S^{\prime}} G^{\prime}\right)$. It therefore follows from [5, Lemma 2.4] and Lemma 4 that

$$
\operatorname{Kdim}_{S^{\prime}}(G)=\operatorname{dim}\left(S^{\prime} /\left(0:_{S^{\prime}} G\right)\right)=\operatorname{dim}\left(S^{\prime} /\left(0:_{S^{\prime}} G^{\prime}\right)\right)=l_{\mathfrak{b} R^{\prime}}\left(\mathfrak{a} R^{\prime}, D(A)\right)
$$

Theorem 6. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\left(0:_{A} \mathfrak{a}+\mathfrak{b}\right) \neq 0$. The following statements hold:
(i) $\operatorname{width}_{\mathfrak{b}}\left(0 \quad:_{A} \mathfrak{a}^{i}\right)$ becomes for large i eventually constant.
(ii) If $\mathfrak{a} \subseteq \mathfrak{b}$, then

$$
S_{\mathfrak{b}}(\mathfrak{a}, A) \leq \operatorname{Kdim}_{R}(A)-\operatorname{width}_{\mathfrak{b}}\left(0:_{A} \mathfrak{a}^{i}\right) \quad(i \gg 0) .
$$

Proof. (i) Follows from Remark 3(i), [5, Lemma 1.9] and [1, Theorem (2)(i)].
(ii) Follows from Remark 3 and Theorem 5.

Acknowledgements

The author would like to thank the Institute for Studies in Theoretical Physics and Mathematics for the financial support.

References

[1] M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979) 35-39.
[2] L. Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972) 369-373.
[3] K. Khashyarmanesh, S.H. Salarian, M. Tousi, On the local homology theory for Artinian modules, Acta Math. Hungar. 81 (1998) 97-107.
[4] D. Kirby, Dimension and length for Artinian modules, Quart. J. Math. Oxford (2) 41 (1990) 419-429.
[5] I. Nishitani, On the dual of Burch's inequality, J. Pure Appl. Algebra 96 (1994) 147-156.
[6] A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J. 6 (1976) 573-587.
[7] R.N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford (2) 26 (1975) 269-273.
[8] R.Y. Sharp, Artinian modules over commutative rings, Math. Proc. Cambridge Philos. Soc. 111 (1992) 25-33.
[9] R.Y. Sharp, A.J. Taherizadeh, Reductions and integral closures of ideals relative to an Artinian module, J. London Math. Soc. (2) 37 (1988) 203-218.
[10] Z. Tang, H. Zakeri, Co-Cohen-Macaulay modules and modules of generalized fractions, Comm. Algebra 22 (1994) 2173-2204.
[11] M. Tousi, A. Tehranian, Co-Cohen-Macaulay modules over commutative rings, Preprint.
[12] S. Yassemi, Coassociated primes, Comm. Algebra 23 (1995) 1499-1502.

[^0]: ${ }^{1}$ Correspondence address: Department of Mathematics, Shahid Beheshti University, Evin, Tehran 19834, Iran.

