

Journal of Pure and Applied Algebra 149 (2000) 101-104

www.elsevier.com/locate/jpaa

A note on the dual of Burch's inequality

Massoud Tousi^{a, b, *}

^a Department of Mathematics, Shahid Beheshti University, Evin, Tehran 19834, Iran ^b Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-1795 Tehran, Iran

> Received 3 August 1998 Communicated by C.A. Weibel

Abstract

The aim of this paper is to improve the main result of [5] (Theorem 3.5). We show that if A is a non-zero Artinian module over a commutative ring R and $\mathfrak{a} \subseteq \mathfrak{b}$ are ideals of R such that $(0:_A \mathfrak{b}) \neq 0$, then the dual of Burch's inequality

 $S_{b}(\mathfrak{a}, A) \leq \operatorname{Kdim}_{R}(A) - \operatorname{width}_{b}(0 :_{A} \mathfrak{a}^{i}) (i \gg 0)$

holds (the dual notions $S_b(\mathfrak{a}, A)$, Kdim_{*R*}(*A*), width_b(*A*) are explained in [5]). C 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 13E10; 13C99; secondary 13A30

Let N be a finitely generated module over a commutative Noetherian ring R and $I \subseteq J$ be ideals in R satisfying $N \neq JN$. We denote the graded R-algebra $\bigoplus_{i\geq 0} I^i$ (the Rees ring of I) by \tilde{R} . In [1], the analytic spread of I at J with respect to N, which is denoted by $l_J(I,N)$, was defined as the Krull dimension of the \tilde{R} -annihilator of the graded \tilde{R} -module $\bigoplus_{0\leq i} I^i N/I^i JN$ and the generalization of Burch's inequality [2, Corollary (i)]

 $l_I(I,N) \le \dim_R(N) - \operatorname{depth}_I(N/I^iN) \quad (i \ge 0)$

was proved. Here, $\dim_R(N)$ means the Krull dimension of N and $\operatorname{depth}_J(N/I^iN)$ denotes the length of a maximal N/I^iN -sequences in J.

Let A be a non-zero Artinian module over a commutative ring R and let $\mathfrak{a} \subseteq \mathfrak{b}$ be ideals of R. The dual notions $S_{\mathfrak{b}}(\mathfrak{a}, A)$, $\operatorname{Kdim}_{R}(A)$ and $\operatorname{width}_{\mathfrak{b}}(A)$, to those of

¹Correspondence address: Department of Mathematics, Shahid Beheshti University, Evin, Tehran 19834, Iran.

 $l_b(\mathfrak{a}, N) \dim_R(N)$ and depth_b(N) were studies in [5, 9], [4, 7] and [6, 10], respectively. The aim of [5] is to prove the dual version of Burch's inequality

$$S_{\mathfrak{b}}(\mathfrak{a},A) \leq \operatorname{Kdim}_{R}(A) - \operatorname{width}_{\mathfrak{b}}(0 :_{A} \mathfrak{a}^{i}) \quad (i \geq 0),$$

in the following conditions: R is a Noetherian ring, R/b is Artinian and b is contained in any associated prime of A.

In this paper we shall improve this result by showing that if $(0 :_A b) \neq 0$, then the above inequality holds without any restriction on *R* (see Theorem 6(ii)). Also, we prove that width_b $(0 :_A a^i)$ takes a constant value for large *i* (see Theorem 6(i)).

Throughout R will denote a (non-trivial) commutative ring with identity and A will be a non-zero Artinian R-module.

Remark 1 (See [8, Theorem 3.2 and the proof of Lemma 2.2]). There exist only finitely many maximal ideals m of *R* for which Soc(*A*) has a submodule isomorphic to *R*/m. Let the distinct such maximal ideals be m_1, \ldots, m_s . It is easy to see that Ass_{*R*}(*A*) = { m_1, \ldots, m_s }. Set $J = \bigcap_{i=1}^s m_i$, and let \hat{R} be the *J*-adic completion of *R*.

(i) The ring $R' := \hat{R}/(0:_{\hat{R}} A)$ is a semi-local commutative Noetherian ring which is complete in the topology defined by its Jacobson radical.

(ii) For $\hat{r} = (r_i + J^i)_{i \ge 1} \in \hat{R}$ and $x \in A$, the sequence $(r_i x)_{i \ge 1}$ is ultimately constant and $\hat{r}x$ is defined as the ultimate constant value of the above sequence. Hence the module A is, in a natural way, a faithful Artinian module over R', and a subset of A is an R-module if and only if it is an R'-module. Moreover, if $\psi : R \to R'$ is the natural map, then, for any $r \in R$, the multiplication by r on A has the same effect as multiplication by $\psi(r)$ on A.

Notation 2. Throughout the remainder of the paper, R' and \hat{R} are as in Remark 1 and the following notations will be used.

Set $E := \bigoplus_{\mathfrak{m}' \in \operatorname{Max}(R')} E(R'/\mathfrak{m}')$, where $\operatorname{Max}(R')$ is the set of all maximal ideals of R' and $E(R'/\mathfrak{m}')$ is the injective envelope of R'/\mathfrak{m}' . We shall use $D(\cdot)$ to denote the additive, exact, R-linear functor $\operatorname{Hom}_{R'}(\cdot, E)$ from the category of all R'-modules and R'-homomorphisms to itself. Also, for any ideal I of R, we use IR' to denote the extension of I to R' under ψ .

We recall some facts in the following.

Remark 3. (i) (See the proof of [3, Theorem 2.1].) Let *I* be an ideal of *R* such that $(0 :_A I) \neq 0$. Then width_{*I*}(*A*) = depth_{*IR'*}(*D*(*A*)).

(ii) (See [11, Lemma 2.13(i)].) Let L be an R-submodule of A. Then $\operatorname{Kdim}_{R}(L) = \dim_{R'}(D(L))$.

For the proof of Theorem 5, we need the following lemma.

Lemma 4. Let R be a Noetherian ring. Then $\operatorname{K} \operatorname{dim}_{R}(A) = \operatorname{dim}(R/(0 :_{R} A))$.

Proof. In view of the proof of [5, Corollary 1.11], we may assume that *A* is a faithful *R*-module and that

 $\operatorname{Kdim}_{R}(A) = \dim \left(\hat{R} / \left(0 :_{\hat{R}} A \right) \right) \leq \dim(\hat{R}) = \dim(R).$

Now, we prove that $\dim(\hat{R}) \leq \dim(\hat{R}/(0 :_{\hat{R}} A))$. It is enough to show that if $q \in \operatorname{Spec}(\hat{R})$, then $(0 :_{\hat{R}} A)) \subseteq q$. Let $q \in \operatorname{Spec}(\hat{R})$, and set $\varphi^{-1}(q) = \mathfrak{p}$, where $\varphi : R \to \hat{R}$ is the natural map. Then, by [12, Corollary 2.4 and Lemma 2.5], there exists a maximal ideal \mathfrak{m} of R such that $\mathfrak{p} \in \operatorname{Supp}_R(D_{\mathfrak{m}}(A))(D_{\mathfrak{m}}(\cdot))$ is the functor $\operatorname{Hom}_R(\cdot, E(R/\mathfrak{m})))$. Since \hat{R}_q is a faithfully flat $\hat{R}_{\mathfrak{p}}$ -module, we have $D_{\mathfrak{m}}(A)_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \hat{R}_q \neq 0$. On the other hand, we have

$$D_{\mathfrak{m}}(A)_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} \hat{R}_{\mathfrak{q}} \cong (D_{\mathfrak{m}}(A) \otimes_{\hat{R}} S^{-1} \hat{R}) \otimes_{R_{\mathfrak{p}}} \hat{R}_{\mathfrak{q}}$$
$$\cong D_{m}(A)_{\mathfrak{q}} \otimes_{R_{\mathfrak{p}}} S^{-1} \hat{R},$$

where $S = \varphi(R - \mathfrak{p})$. Therefore $\mathfrak{q} \in \operatorname{Supp}_{\hat{R}}(D_m(A))$ and consequently $(0 :_{\hat{R}} A) \subseteq (0 :_{\hat{R}} D_m(A)) \subseteq \mathfrak{q}$. \Box

Theorem 5. Let $\mathfrak{a} \subseteq \mathfrak{b}$ be ideals of R. Then $S_{\mathfrak{b}}(\mathfrak{a}, A) = l_{\mathfrak{b}R'}(\mathfrak{a}R', D(A))$. (Note that, by [6, 1.6(3)], D(A) is a finitely generated R'-module.)

Proof. Let $S = \bigoplus_{0 \le i} \mathfrak{a}^i \to S' = \bigoplus_{0 \le i} \mathfrak{a}^i R'$ be the natural map from the Rees ring of \mathfrak{a} to that of $\mathfrak{a}R'$. Set $G = \bigoplus_{n \le 0} G_n$, where $G_n = (0 :_A \mathfrak{a}^i \mathfrak{b})/(0 :_A \mathfrak{a}^i) = (0 :_A \mathfrak{a}^i \mathfrak{b}R')/(0 :_A \mathfrak{a}^i R')$ and $n = -i \le 0$. By Remark 1(ii), any S-submodule of G is an S'-submodule. So, by [5, Definition 2.5 and Lemma 1.2], we have

 $S_{\mathfrak{b}}(\mathfrak{a},A) = \operatorname{Kdim}_{S}(G) = \operatorname{Kdim}_{S'}(G).$

Put $G'_{-n} = D(G_n)$ for $n \le 0$ and $G' = \bigoplus_{0 \le m} G'_m$. Then, by [5, Lemma 1.9], $G'_m = a^m R' D(A)/a^m b R' D(A)$ for $m \ge 0$. Since $(0 :_{R'} M) = (0 :_{R'} D(M))$ for any R'-module M (see[6, Theorem 1.6(8)], we have $(0 :_{S'} G) = (0 :_{S'} G')$. It therefore follows from [5, Lemma 2.4] and Lemma 4 that

$$Kdim_{S'}(G) = dim(S'/(0 :_{S'} G)) = dim(S'/(0 :_{S'} G')) = l_{\mathfrak{b}R'}(\mathfrak{a}R', D(A)). \square$$

Theorem 6. Let a and b be ideals of R such that $(0 :_A a + b) \neq 0$. The following statements hold:

(i) width_b($0 :_A \mathfrak{a}^i$) becomes for large *i* eventually constant.

(ii) If $\mathfrak{a} \subseteq \mathfrak{b}$, then

 $S_{\mathfrak{b}}(\mathfrak{a},A) \leq \operatorname{Kdim}_{R}(A) - \operatorname{width}_{\mathfrak{b}}(0 :_{A} \mathfrak{a}^{t}) \quad (t \geq 0).$

Proof. (i) Follows from Remark 3(i), [5, Lemma 1.9] and [1, Theorem (2)(i)]. (ii) Follows from Remark 3 and Theorem 5. \Box

Acknowledgements

The author would like to thank the Institute for Studies in Theoretical Physics and Mathematics for the financial support.

References

- M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979) 35–39.
- [2] L. Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972) 369-373.
- [3] K. Khashyarmanesh, S.H. Salarian, M. Tousi, On the local homology theory for Artinian modules, Acta Math. Hungar. 81 (1998) 97–107.
- [4] D. Kirby, Dimension and length for Artinian modules, Quart. J. Math. Oxford (2) 41 (1990) 419-429.
- [5] I. Nishitani, On the dual of Burch's inequality, J. Pure Appl. Algebra 96 (1994) 147–156.
- [6] A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J. 6 (1976) 573-587.
- [7] R.N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford (2) 26 (1975) 269–273.
- [8] R.Y. Sharp, Artinian modules over commutative rings, Math. Proc. Cambridge Philos. Soc. 111 (1992) 25-33.
- [9] R.Y. Sharp, A.J. Taherizadeh, Reductions and integral closures of ideals relative to an Artinian module, J. London Math. Soc. (2) 37 (1988) 203-218.
- [10] Z. Tang, H. Zakeri, Co-Cohen–Macaulay modules and modules of generalized fractions, Comm. Algebra 22 (1994) 2173–2204.
- [11] M. Tousi, A. Tehranian, Co-Cohen-Macaulay modules over commutative rings, Preprint.
- [12] S. Yassemi, Coassociated primes, Comm. Algebra 23 (1995) 1499-1502.