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Abstract

The aim of this paper is to improve the main result of [5] (Theorem 3.5). We show that if A
is a non-zero Artinian module over a commutative ring R and a ⊆ b are ideals of R such that
(0 :A b) 6=0, then the dual of Burch’s inequality

Sb(a ; A)≤KdimR(A)− widthb(0 :A a
i) (i/ 0)

holds (the dual notions Sb(a ; A); KdimR(A); widthb(A) are explained in [5]). c© 2000 Elsevier
Science B.V. All rights reserved.
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Let N be a �nitely generated module over a commutative Noetherian ring R and
I ⊆ J be ideals in R satisfying N 6= JN . We denote the graded R-algebra

⊕
i≥0 I

i

(the Rees ring of I) by R̃. In [1], the analytic spread of I at J with respect to N ,
which is denoted by lJ (I; N ), was de�ned as the Krull dimension of the R̃-annihilator
of the graded R̃-module

⊕
0≤i I

iN=I iJN and the generalization of Burch’s inequality
[2, Corollary (i)]

lJ (I; N )≤ dimR(N )− depthJ (N=I iN ) (i/ 0)

was proved. Here, dimR(N ) means the Krull dimension of N and depthJ (N=I iN ) de-
notes the length of a maximal N=I iN -sequences in J .
Let A be a non-zero Artinian module over a commutative ring R and let a ⊆ b be

ideals of R. The dual notions Sb(a ; A); KdimR(A) and widthb(A), to those of
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lb(a ; N ) dimR(N ) and depthb(N ) were studies in [5, 9], [4, 7] and [6, 10], respec-
tively. The aim of [5] is to prove the dual version of Burch’s inequality

Sb(a ; A)≤KdimR(A)− widthb(0 :A ai) (i/ 0);

in the following conditions: R is a Noetherian ring, R=b is Artinian and b is contained
in any associated prime of A.
In this paper we shall improve this result by showing that if (0 :A b)6=0, then the

above inequality holds without any restriction on R (see Theorem 6(ii)). Also, we
prove that widthb(0 :A ai) takes a constant value for large i (see Theorem 6(i)).
Throughout R will denote a (non-trivial) commutative ring with identity and A will

be a non-zero Artinian R-module.

Remark 1 (See [8, Theorem 3.2 and the proof of Lemma 2.2]). There exist only
�nitely many maximal ideals m of R for which Soc(A) has a submodule isomorphic
to R=m. Let the distinct such maximal ideals be m1; : : : ;ms. It is easy to see that
AssR(A)= {m1; : : : ;ms}. Set J =

⋂s
i=1 mi, and let R̂ be the J -adic completion of R.

(i) The ring R′ : = R̂=(0 :R̂ A) is a semi-local commutative Noetherian ring which is
complete in the topology de�ned by its Jacobson radical.
(ii) For r̂=(ri+J i)i≥1 ∈ R̂ and x∈A, the sequence (rix)i≥1 is ultimately constant and

r̂x is de�ned as the ultimate constant value of the above sequence. Hence the module
A is, in a natural way, a faithful Artinian module over R′, and a subset of A is an
R-module if and only if it is an R′-module. Moreover, if  :R→R′ is the natural map,
then, for any r ∈R, the multiplication by r on A has the same e�ect as multiplication
by  (r) on A.

Notation 2. Throughout the remainder of the paper, R′ and R̂ are as in Remark 1 and
the following notations will be used.
Set E :=

⊕
m′∈Max(R′) E(R

′=m′), where Max(R′) is the set of all maximal ideals
of R′ and E(R′=m′) is the injective envelope of R′=m′. We shall use D(·) to denote
the additive, exact, R-linear functor HomR′(·; E) from the category of all R′-modules
and R′-homomorphisms to itself. Also, for any ideal I of R, we use IR′ to denote the
extension of I to R′ under  .

We recall some facts in the following.

Remark 3. (i) (See the proof of [3, Theorem 2.1].) Let I be an ideal of R such that
(0 :A I) 6=0. Then widthI (A)= depthIR′(D(A)).

(ii) (See [11, Lemma 2.13(i)].) Let L be an R-submodule of A. Then KdimR(L)=
dimR′(D(L)).

For the proof of Theorem 5, we need the following lemma.
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Lemma 4. Let R be a Noetherian ring. Then K dimR(A)= dim(R=(0 :R A)).

Proof. In view of the proof of [5, Corollary 1.11], we may assume that A is a faithful
R-module and that

KdimR(A) = dim
(
R̂
/ (
0 :R̂ A

)) ≤ dim(R̂)= dim(R):

Now, we prove that dim(R̂)≤ dim(R̂=(0 :R̂ A)). It is enough to show that if q ∈
Spec(R̂), then (0 :R̂ A))⊆ q. Let q ∈Spec(R̂), and set ’−1(q)= p, where ’ :R→ R̂ is
the natural map. Then, by [12, Corollary 2.4 and Lemma 2.5], there exists a maximal
ideal m of R such that p∈SuppR(Dm(A))(Dm(·) is the functor HomR(·; E(R=m))).
Since R̂q is a faithfully at R̂p-module, we have Dm(A)p ⊗Rp

R̂q 6=0. On the other
hand, we have

Dm(A)p ⊗Rp
R̂q

∼= (Dm(A)⊗R̂ S−1R̂)⊗Rp
R̂q

∼=Dm(A)q ⊗Rp
S−1R̂;

where S =’(R − p). Therefore q ∈SuppR̂(Dm(A)) and consequently (0 :R̂ A)⊆ (0 :R̂
Dm(A))⊆ q .

Theorem 5. Let a ⊆ b be ideals of R. Then Sb (a ; A)= lbR′(aR′; D(A)). (Note that;
by [6, 1.6(3)]; D(A) is a �nitely generated R′-module.)

Proof. Let S =
⊕

0≤i a
i → S ′=

⊕
0≤i a

iR′ be the natural map from the Rees ring of a

to that of aR′. Set G=
⊕

n≤0Gn, where Gn=(0 :A aib)=(0 :A ai)= (0 :A aibR′)=
(0 :A aiR′) and n=−i≤ 0. By Remark 1(ii), any S-submodule of G is an S ′-
submodule. So, by [5, De�nition 2.5 and Lemma 1.2], we have

Sb(a ; A)=KdimS(G)=KdimS′(G):

Put G′
−n=D(Gn) for n≤ 0 and G′=

⊕
0≤m G′

m. Then, by [5, Lemma 1.9], G′
m=

amR′D(A)=ambR′D(A) for m≥ 0. Since (0 :R′ M)= (0 :R′ D(M)) for any R′-module
M (see[6, Theorem 1.6(8)], we have (0 :S′ G)= (0 :S′ G′). It therefore follows from
[5, Lemma 2.4] and Lemma 4 that

KdimS′(G)=dim(S ′=(0 :S′ G))= dim(S ′=(0 :S′ G′))= lbR′(aR′; D(A)):

Theorem 6. Let a and b be ideals of R such that (0 :A a + b) 6=0. The following
statements hold:
(i) widthb(0 :A ai) becomes for large i eventually constant.
(ii) If a ⊆ b ; then

Sb (a ; A)≤KdimR(A)− widthb (0 :A ai) (i/ 0):



104 M. Tousi / Journal of Pure and Applied Algebra 149 (2000) 101–104

Proof. (i) Follows from Remark 3(i), [5, Lemma 1.9] and [1, Theorem (2)(i)].
(ii) Follows from Remark 3 and Theorem 5.
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