A note on the dual of Burch’s inequality

Massoud Tousia,b,*

aDepartment of Mathematics, Shahid Beheshti University, Evin, Tehran 19834, Iran
bInstitute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-1795 Tehran, Iran

Received 3 August 1998
Communicated by C.A. Weibel

Abstract

The aim of this paper is to improve the main result of [5] (Theorem 3.5). We show that if \(A \) is a non-zero Artinian module over a commutative ring \(R \) and \(a \subseteq b \) are ideals of \(R \) such that \((0 :_b b) \neq 0\), then the dual of Burch’s inequality

\[S_b(a,A) \leq \text{Kdim}_R(A) - \text{width}_b(0 :_a a') \ (i \geq 0) \]

holds (the dual notions \(S_b(a,A), \text{Kdim}_R(A), \text{width}_b(A) \) are explained in [5]). © 2000 Elsevier Science B.V. All rights reserved.

MSC: Primary 13E10; 13C99; secondary 13A30

Let \(N \) be a finitely generated module over a commutative Noetherian ring \(R \) and \(I \subseteq J \) be ideals in \(R \) satisfying \(N \neq JN \). We denote the graded \(R \)-algebra \(\bigoplus_{i \geq 0} I^i \) (the Rees ring of \(I \)) by \(\hat{R} \). In [1], the analytic spread of \(I \) at \(J \) with respect to \(N \), which is denoted by \(l_I(I,N) \), was defined as the Krull dimension of the \(\hat{R} \)-annihilator of the graded \(\hat{R} \)-module \(\bigoplus_{0 \leq i \leq l_I(I,N)/I^iN} \) and the generalization of Burch’s inequality [2, Corollary (i)]

\[l_I(I,N) \leq \dim_R(N) - \text{depth}_J(N/I^iN) \ (i \geq 0) \]

was proved. Here, \(\dim_R(N) \) means the Krull dimension of \(N \) and \(\text{depth}_J(N/I^iN) \) denotes the length of a maximal \(N/I^iN \)-sequences in \(J \).

Let \(A \) be a non-zero Artinian module over a commutative ring \(R \) and let \(a \subseteq b \) be ideals of \(R \). The dual notions \(S_b(a,A), \text{Kdim}_R(A), \text{width}_b(A), \) to those of

1Correspondence address: Department of Mathematics, Shahid Beheshti University, Evin, Tehran 19834, Iran.

0022-4049/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0022-4049(98)00174-1
\[l_b(a, N) \dim_R(N) \text{ and } \dim_b(N) \] were studies in [5, 9], [4, 7] and [6, 10], respectively. The aim of [5] is to prove the dual version of Burch's inequality

\[S_b(a, A) \leq K \dim_R(A) - \text{width}_b(0 :_A a^i) \quad (i \geq 0), \]

in the following conditions: \(R \) is a Noetherian ring, \(R/b \) is Artinian and \(b \) is contained in any associated prime of \(A \).

In this paper we shall improve this result by showing that if \((0 :_A a^i) \neq 0 \), then the above inequality holds without any restriction on \(R \) (see Theorem 6(ii)). Also, we prove that \(\text{width}_b(0 :_A a^i) \) takes a constant value for large \(i \) (see Theorem 6(i)).

Throughout \(R \) will denote a (non-trivial) commutative ring with identity and \(A \) will be a non-zero Artinian \(R \)-module.

Remark 1 (See [8, Theorem 3.2 and the proof of Lemma 2.2]). There exist only finitely many maximal ideals \(m \) of \(R \) for which \(\text{Soc}(A) \) has a submodule isomorphic to \(R = m \). Let the distinct such maximal ideals be \(m_1, \ldots, m_s \). It is easy to see that \(\text{Ass}_R(A) = \{m_1, \ldots, m_s\} \). Set \(J = \bigcap_{i=1}^s m_i \), and let \(\hat{R} \) be the \(J \)-adic completion of \(R \).

(i) The ring \(R' := \hat{R}/(0 :_{\hat{R}} A) \) is a semi-local commutative Noetherian ring which is complete in the topology defined by its Jacobson radical.

(ii) For \(\hat{f} = (r_j + J')_{j\geq 1} \in \hat{R} \) and \(x \in A \), the sequence \((r_j x)_{j\geq 1} \) is ultimately constant and \(\hat{f} x \) is defined as the ultimate constant value of the above sequence. Hence the module \(A \) is, in a natural way, a faithful Artinian module over \(R' \), and a subset of \(A \) is an \(R \)-module if and only if it is an \(R' \)-module. Moreover, if \(\psi : R \to R' \) is the natural map, then, for any \(r \in R \), the multiplication by \(r \) on \(A \) has the same effect as multiplication by \(\psi(r) \) on \(A \).

Notation 2. Throughout the remainder of the paper, \(R' \) and \(\hat{R} \) are as in Remark 1 and the following notations will be used.

Set \(E := \bigoplus_{m' \in \text{Max}(R')} E(R'/m'), \) where \(\text{Max}(R') \) is the set of all maximal ideals of \(R' \) and \(E(R'/m') \) is the injective envelope of \(R'/m' \). We shall use \(D(\cdot) \) to denote the additive, exact, \(R \)-linear functor \(\text{Hom}_{R'}(\cdot, E) \) from the category of all \(R' \)-modules and \(R' \)-homomorphisms to itself. Also, for any ideal \(I \) of \(R \), we use \(IR' \) to denote the extension of \(I \) to \(R' \) under \(\psi \).

We recall some facts in the following.

Remark 3. (i) (See the proof of [3, Theorem 2.1].) Let \(I \) be an ideal of \(R \) such that \((0 :_A I) \neq 0 \). Then \(\text{width}_I(A) = \text{depth}_{IR'}(D(A)) \).

(ii) (See [11, Lemma 2.13(i)].) Let \(L \) be an \(R \)-submodule of \(A \). Then \(K \dim_R(L) = \dim_{R'}(D(L)) \).

For the proof of Theorem 5, we need the following lemma.
Lemma 4. Let R be a Noetherian ring. Then $K \dim_R(A) = \dim(R/(0 :_R A))$.

Proof. In view of the proof of [5, Corollary 1.11], we may assume that A is a faithful R-module and that

$$K \dim_R(A) = \dim \left(\frac{\hat{R}}{(0 :_\hat{R} A)} \right) \leq \dim(\hat{R}) = \dim(R).$$

Now, we prove that $\dim(\hat{R}) \leq \dim(\hat{R}/(0 :_\hat{R} A))$. It is enough to show that if $q \in \text{Spec}(\hat{R})$, then $(0 :_\hat{R} A) \subseteq q$. Let $\mathfrak{p} \in \text{Spec}(\hat{R})$, and set $\varphi^{-1}(\mathfrak{p}) = p$, where $\varphi : R \rightarrow \hat{R}$ is the natural map. Then, by [12, Corollary 2.4 and Lemma 2.5], there exists a maximal ideal m of R such that $p \in \text{Supp}_R(D_m(A))(D_m(\cdot))$ is the functor $\text{Hom}_R(\cdot,E(R/m))$. Since \hat{R}_q is a faithfully flat \hat{R}_q-module, we have $D_m(A)_p \otimes_{R_q} \hat{R}_q \neq 0$. On the other hand, we have

$$D_m(A)_p \otimes_{R_q} \hat{R}_q \cong (D_m(A) \otimes_{\hat{R}} S^{-1}\hat{R}) \otimes_{R_q} \hat{R}_q \cong D_m(A)_q \otimes_{R_q} S^{-1}\hat{R},$$

where $S = \varphi(R - p)$. Therefore $q \in \text{Supp}_R(D_m(A))$ and consequently $(0 :_\hat{R} A) \subseteq (0 :_R D_m(A)) \subseteq q$. \qed

Theorem 5. Let $a \subseteq b$ be ideals of R. Then $S_b(a,A) = l_{bR'}(aR',D(A))$. (Note that, by [6, 1.6(3)], $D(A)$ is a finitely generated R'-module.)

Proof. Let $S = \bigoplus_{0 \leq i} a^i \rightarrow S' = \bigoplus_{0 \leq i} a^i R'$ be the natural map from the Rees ring of a to that of aR'. Set $G = \bigoplus_{n \leq 0} G_n$, where $G_n = (0 :_A a^ib)/(0 :_A a^i) = (0 :_A a^i R')/ (0 :_A a^i R')$ and $n = -i \leq 0$. By Remark 1(ii), any S-submodule of G is an S'-submodule. So, by [5, Definition 2.5 and Lemma 1.2], we have

$$S_b(a,A) = K \dim_S(G) = K \dim_{S'}(G).$$

Put $G'_n = D(G_n)_{\leq m}$ for $n \leq 0$ and $G'_n = \bigoplus_{0 \leq m} G'_n$. Then, by [5, Lemma 1.9], $G'_m = a^m R'D(A)/a^m b R'D(A)$ for $m \geq 0$. Since $(0 :_{R'} M) = (0 :_{R'} D(M))$ for any R'-module M (see [6, Theorem 1.6(8)]), we have $(0 :_{S'} G) = (0 :_{S'} G')$. It therefore follows from [5, Lemma 2.4] and Lemma 4 that

$$K \dim_{S'}(G) = \dim(S'/0 :_{S'} G)) = \dim(S'/0 :_{S'} G))) = l_{bR'}(aR',D(A)). \qed$$

Theorem 6. Let a and b be ideals of R such that $(0 :_A a + b) \neq 0$. The following statements hold:

(i) $\text{width}_b(0 :_A a^i)$ becomes for large i eventually constant.

(ii) If $a \subseteq b$, then

$$S_b(a,A) \leq K \dim_R(A) - \text{width}_b(0 :_A a^i) \quad (i \gg 0).$$
Proof. (i) Follows from Remark 3(i), [5, Lemma 1.9] and [1, Theorem (2)(i)].
(ii) Follows from Remark 3 and Theorem 5.

Acknowledgements

The author would like to thank the Institute for Studies in Theoretical Physics and Mathematics for the financial support.

References