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Abstract

The structural property of dualizing complex is generalized and its applications are given
to show that (1) over a ring possessing a dualizing complex, the conditions of Serre on the
canonical module are connected with the local cohomologies of the ring itself; (2) the Cousin
complexes of certain modules over a ring possessing a dualizing complex have �nitely generated
cohomologies; (3) a quotient of a Cohen–Macaulay local ring which satis�es (S 2) and admits
canonical module, also possesses a dualizing complex. c© 2001 Elsevier Science B.V. All rights
reserved.

MSC: 13D25; 13H10; 13D45

0. Introduction

In [4], the authors have described that, for an (S2) local ring A, the fundamental
dualizing complex for A, if it exists, is isomorphic to the Cousin complex of the canon-
ical module K of A with respect to the height �ltration (= the dimension �ltration)
of A. This structural property of dualizing complex has been proved to be useful in
applications. In this paper we generalize this structural property in the following direc-
tion: if (A;m) possesses a fundamental dualizing complex I ·; M is a �nitely generated
A-module satisfying (S2) and MinA(M) = AsshA(M), then

0→ Hd−s(HomA(M; I ·))→ HomA(M; Id−s)→ HomA(M; Id−s+1)→ · · ·
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is the Cousin complex of Hd−s(HomA(M; I ·)) with respect to some appropriate �ltra-
tion, where d = dim A and s = dimA(M); this is the main objective of Section 1. We
will �nd some applications of this structural property in Sections 2–4.
In Section 2, for an (S2) local ring (A;m) which possesses a dualizing complex, we

examine the e�ect of Serre condition (Sn) on its canonical module K . We show among
other things that K is (Sn) if and only if H dim A−i

m (A) = 0, for i = 1; : : : ; n − 2, which
is equivalent to saying that �i(p; K) = �i ht p for all p ∈ Spec(A) and 0 ≤ i¡n, where
�i(p; K) is the Bass number of K and �ij is the Kronecker delta. It is also shown
that if (A;m) is a complete and (S2) local domain such that H−1+dim A

m (A) = 0 then A
satis�es the Canonical Element Conjecture.
In Section 3, the main result is Theorem 3.2: Assume that (A;m) is a local ring

possessing a dualizing complex. Then for each �nitely generated A-module M where
MinA(M) = AsshA(M) and M satis�es (S2), all cohomology modules of the Cousin
complex of M are �nitely generated.
In Section 4, we prove that if A is an (S2) local ring admitting canonical module

such that all of its formal �bres are Cohen–Macaulay, then A also possesses a dualizing
complex.
Throughout A is a commutative Noetherian ring with non-zero identity, and M is

an A-module. For each n ≥ 0; M is said to satisfy (Sn) whenever depthAp
(Mp) ≥

min{htMp; n} for all p ∈ SuppA(M). Denote, by MinA(M), the set of all mini-
mal elements of SuppA(M). For a �nite-dimensional module M; AsshA(M) = {p ∈
SuppA(M): dim(A=p) = dimM}.

1. A generalization of dualizing complex structure

The main purpose of this section is to �nd a generalization of [4, Theorem 2:4 and
Corollary 2:5]. Let us �x our notations.

Dualizing complexes 1.1. (See [13, Further de�nitions 2.4; 6, Theorem 3:6; 15, Def-
inition 1:1 and Theorem 1:2]). A dualizing complex I · for A is a complex of A-modules
and A-homomorphisms

I · : 0 −→ I 0 �0−→ I 1 −→ · · · �l−1

−→ I l −→ 0

such that
(i) I · is a bounded complex of injective A-modules and I 0 6= 0; I l 6= 0;
(ii) for each i; H i(I ·), the ith homology module of I ·, is a �nitely generated A-module;
(iii)

⊕
0≤i≤l I i ∼= ⊕

p∈Spec(A) E(A=p), where E(A=p) is the injective envelope of A=p
as A-module, that is, each prime ideal of A occurs in exactly one term of I ·, and
occurs exactly once.

For each p ∈ Spec(A), denote t(p; I ·) by the unique integer t for which E(A=p) is a
summand of I t (see [14, p. 208]).
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Lemma 1.2 (Sharp [14, Lemma 3:3]). With the above notation; suppose that p and
q are prime ideals of A such that p⊂ q and there is no prime ideal strictly between
p and q . Then

t(q ; I ·) = t(p; I ·) + 1:

Cousin complexes 1.3 (see [16]). A �ltration of Spec(A) is a descending sequence
F= (Fi)i≥0 of subsets of Spec(A), so that

F0⊇F1⊇ · · ·⊇Fi ⊇Fi+1⊇ · · ·
with the property that, for each i ≥ 0, each member of @Fi = Fi − Fi+1 is a minimal
member of Fi, with respect to inclusion. We say that F admits M if SuppA(M)⊆F0.
Suppose that F is a �ltration of Spec(A) that admits M . The Cousin complex C(F; M)
for M with respect to F has the form

0 d−2

−→M d−1

−→M 0 d0−→M 1 → · · · → Mn dn

−→Mn+1 → · · ·
where Mn=

⊕
p∈@Fn

(Coker dn−2)p for all n ≥ 0. The homomorphisms in this complex
have the following properties: for m ∈ M and p ∈ @F0, the component of d−1(m) in Mp

is m=1; for n¿ 0; x ∈ Mn−1 and q ∈ @Fn, the component of dn−1(x) in (Coker dn−2)q
is �x=1, where − :Mn−1 → Coker dn−2 is the canonical epimorphism.
Assume that A possesses a dualizing complex I ·. Let M be a �nitely generated

A-module, we set k =min{ j: SuppA(M) ∩ AssA(I j) 6= �}, and, for each i ≥ 0,
Ti:={p ∈ SuppA(M): t(p; I ·) ≥ i + k}:

By Lemma 1.2, TI ·
M :=(Ti)i≥0 is a �ltration of Spec(A) that admits KI ·

M = Hk

(HomA(M; I ·)). Note that we have AssA(HomA(M;N )) = SuppA(M) ∩ AssA(N ) for all
A-module N , so HomA(M; I j) = 0 for all j¡k and KI ·

M
∼= HomA(M;Ker �k). We are

now in a position to give a generalization of [4, Theorem 2:4].

Theorem 1.4. Assume that the ring A possesses a dualizing complex

I · : 0→ I 0 �0−→ I 1 �1−→· · · → I l → 0:

For a �nitely generated A-module M; let the situations and notations be as above.
Set HomA(M; I ·)∗:

0→ KI ·
M → HomA(M; Ik)→ HomA(M; Ik+1)→ · · · → HomA(M; I l)→ 0;

such that (HomA(M; I ·)∗)−1 = KI ·
M ; and (HomA(M; I ·)∗)i =Hom(M; Ik+i); i = 0; 1; : : : .

The following statements are true:
(i) There exists a (unique) homomorphism of complexes

	I ·
M = ( 

i)i≥−2 : C(TI ·
M ; KI ·

M )→ HomA(M; I ·)∗

(over IdKI·
M
) from the Cousin complex of KI ·

M with respect to TI ·
M to the induced

complex HomA(M; I ·)∗ of HomA(M; I ·).
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(ii) MinA(M)=AssA(KI ·
M ) if and only if T

I ·
M =HM ; where HM=(Hi)i≥0 is the height

�ltration of M that is Hi = {p ∈ SuppA(M): htM (p) ≥ i} for all i ≥ 0. In this
situation SuppA(M) = SuppA(K

I ·
M ).

(iii) If MinA(M) = AssA(KI ·
M ); then M is (S1) if and only if 	I ·

M is an epimorphism.
(iv) If MinA(M) = AssA(KI ·

M ); then M is (S2) if and only if 	I ·
M is an isomorphism.

Proof. (i) For each i ≥ 0, set X i =HomA(M; Ik+i) and X−1 = KI ·
M . We show that the

complex

X · : 0 e−2

−→X−1 e−1

−→X 0 e0−→· · · ;
where e−2 is the zero map, e−1 is inclusion map and ei =HomA(IdM ; �i+k) for i ≥ 0,
satis�es the conditions of [4, Proposition 2:1]. The condition SuppA(X

i)⊆Ti for all
i ≥ 0, is clear. For the second condition we proceed as follows. Let i ≥ 0. Recall
that for an A-module X with SuppA(X )⊆Ti, we denote by �(X ) :X → ⊕

p∈@Ti
Xp

the natural map, for which, if x ∈ X then the component of �(X )(x) in Xp is x=1.
Set F = (Fj)j≥0 to be such that Fj = {p ∈ Spec(A): t(p; I ·) ≥ j} and I = I i+k . Thus
@Ti=SuppA(M)∩AssA(I). Since M is a �nitely generated A-module, for each p ∈ @Ti,
the natural map �p : HomA(M; Ip)→ HomAp

(Mp ; Ip), where, for each f ∈ HomA(M; Ip),
�p(f)(m=s) = (1=s)f(m) for all m=s ∈ Mp, is an isomorphism. We have the following
commutative diagram:

Since �(I) is an isomorphism (see [4, Lemma 2.2]), �(HomA(M; I)) is an isomor-
phism.
(ii) For each p ∈ SuppA(M) so that t(p; I ·) = k, we have (KI ·

M )p ∼= HomAp
(Mp ; E

(A=p)) so that AssA(KI ·
M ) = SuppA(M) ∩ AssA(I k). It is clear, by Lemma 1.2, that

AssA(KI ·
M )⊆MinA(M). Hence MinA(M)=AssA(KI ·

M ) if and only if t(p; I
·)−k=htM (p)=

0 for all p ∈ MinA(M). Now the �rst assertion follows from Lemma 1.2. The second
assertion is easy.
The rest may be treated in the same way as in [4, Theorem 2:4(iii) and (iv)], but

we bring a proof here for the convenience of the reader.
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(iii) Let M be (S1). By [4, Proposition 2:1(i)], it is enough to show that SuppA
(Coker ei−1)⊆Ti+1 for each i ≥ 0. Since Im e−1 = Ker e0, the assertion is clear for
i = 0. Assume that i¿ 0. We have

SuppA(Coker e
i−1)⊆SuppA(HomA(M; I i+k))⊆Ti:

Suppose that p ∈ @Ti, so that t(p; I ·) = i + k. Therefore we have HomAp
(Mp ; I

j
p) = 0

for all j¿ i + k. Hence

(Coker ei−1)p ∼= Coker ei−1p
∼=Hi+k((HomA(M; I ·))p)
∼=Hi+k(HomAp

(Mp ; I ·p)):

Since I ·p is a dualizing complex for Ap (see [13, Theorem 4:2]) and t(pAp ; I ·p) = i+ k,
we have, by Sharp [15, Theorem (2:6)],

max{ j: Hj(HomAp
(Mp ; I ·p)) 6= 0}= i + k − depthAp

(Mp):

As htM (p) = i¿ 0, we have depthAp
(Mp)¿ 0. Thus Hi+k(HomAp

(Mp ; I ·p)) = 0 and so
p 6∈ SuppA(Coker ei−1). This shows that SuppA(Coker ei−1)⊆Ti+1.
Conversely, assume that 	I ·

M is an epimorphism. Let p ∈ SuppA(M). We may assume
that htM (p)¿ 0. Set i = htM (p). Then p ∈ @Hi; so, by [4, Proposition 2:1(i)], p 6∈
SuppA(Coker e

i−1). Thus

HomAp
(IdMp

; �i−1+k
p ) : HomAp

(Mp ; I i−1+k
p )→ HomAp

(Mp ; I i+k
p )

is an epimorphism. It therefore follows from the fact that t(p; I ·)= i+k that Hj(HomAp

(Mp ; I ·p))=0 for all j ≥ i+k. Hence, by [15, Theorem (2:6)], i+k−depthAp
(Mp)¡i+k;

that is depthAp
(Mp) ≥ 1. Thus M is (S1).

(iv) Assume that M is (S2). We have, by (iii) and [4, Proposition 2:1(i)], that

SuppA(H
i−1(X ·))⊆SuppA(Coker ei−2)⊆Ti

for all i ≥ 0. Consequently, in view of [4, Proposition 2:1(ii)], it is enough to show that
SuppA(H

i−1(X ·))⊆Ti+1 for all i ≥ 0. We have H−1(X ·)=0=H 0(X ·). Let us assume
i ≥ 2 and p ∈ @Ti so that htM (p)=i. Since M is (S2), we may use [15, Theorem (2:6)]
again to deduce that p 6∈ SuppA(Hi−1(X ·)). This shows that SuppA(H

i−1(X ·))⊆Ti+1.
Conversely, assume that 	I ·

M is an isomorphism of complexes. Let p ∈ SuppA(M).
By (iii), we may assume that htM (p)¿ 1. Set i = htM (p). Then p ∈ @Ti; so, from [4,
Proposition 2:1(ii)] it follows that p 6∈ SuppA(Hj(X ·))) for all j ≥ i − 1. This, again,
shows that i+ k−depthAp

(Mp)¡i+ k−1, i.e. depthAp
(Mp) ≥ 2. Therefore M is (S2).

In the following corollary, we are interested in the particular case of Theorem 1.4
in which A is local. The dualizing complex of a local ring is of the form

I · : 0→ I 0 �0−→ I 1 �1−→· · · �d−1

−→ Id → 0; (∗)
where d=dim A and I i=

⊕
p∈Spec(A);dim(A=p)=d−i E(A=p) (see [6, De�nition 4:3]). Note

that the dualizing complex of a local ring is unique up to isomorphism of complexes
(see [13, Theorem 4:5; 6, 4.2]).
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Corollary 1.5. Let A be a local ring and dim A=d. Suppose that A possesses a dual-
izing complex (∗). Let M be a non-zero �nitely generated A-module with dimA(M)=s.
Set DM = (Di)i≥0 be the dimension �ltration of SuppA(M), i.e.

Di = {p ∈ SuppA(M): dim(A=p) ≤ s− i}; i = 0; 1; : : : :

We choose the notations KM :=Hd−s(HomA(M; I ·)) and HomA(M; I ·)∗ to be the
complex

0→ KM ,→ HomA(M; Id−s)
(�0)∗−→· · · → HomA(M; Id)→ 0;

so that (HomA(M; I ·)∗)−1 = KM and (HomA(M; I ·)∗)i = HomA(M; Id−s+i) i = 0; 1; : : : .
Then the following statements hold:
(i) There exists a (unique) homomorphism of complexes

	M = ( i)i≥−2 : C(DM ; KM )→ HomA(M; I ·)∗

(over IdKM); from the Cousin complex of KM with respect to DM toHomA(M; I ·)∗.
(ii) MinA(M)=AsshA(M) if and only if DM =HM ; where HM is as in 1:4. In this

situation SuppA(M) = SuppA(KM ).
(iii) If MinA(M) = AsshA(M); then M is (S1) if and only if 	M is an epimorphism.
(iv) If MinA(M) = AsshA(M); then M is (S2) if and only if 	M is an isomorphism.

Proof. In view of Theorem 1.4, it is enough to prove that DM =TM , where TM is
as in the paragraph preceding Theorem 1.4, and AssA(KM ) = AsshA(M).
Note that min{ j: dim(A=p)=d−j for some p ∈ SuppA(M)}=d−s. This shows that

the integer k, introduced in the paragraph preceding 1.4, is equal to d− s. It follows,
by elementary argument, that DM =TM .
As in the proof of 1.4(ii), we have AssA(KM ) = SuppA(M) ∩AssA(Id−s). Therefore

AssA(KM ) = AsshA(M).

2. Serre condition and canonical module

Throughout this section (A;m) is a local ring with the maximal ideal m and d =
dim A. A �nitely generated A-module K is called a canonical module of A precisely
when

K ⊗A Â ∼= HomA(Hd
m(A); E(A=m));

where Â is the completion of A with respect to m-adic topology, and Hd
m(−) is the

dth local cohomology functor with respect to m. Note that canonical module of A,
if it exists, is unique up to isomorphism of modules. It is known that if a local ring
possesses a dualizing complex I ·, then H 0(I ·) is the canonical module of A.
We will use the structural Corollary 1.5 in studying the e�ect of Serre condition

(Sn) on canonical module.
The following remark will be used frequently in the rest of this paper.
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Remark 2.1. If A is an (S2) local ring such that it admits canonical module K , then
we have the following facts:
(i) Assh(A) =Min(A) = Ass(A) (by [2, Lemma 1:1]);
(ii) SuppA(K) = Spec(A) (by [1, 1.7]);
(iii) AsshA(K) =MinA(K) = AssA(K) (by (i), (ii) and [1, 1.7]);
(iv) dim Ap + dim(A=p) = dim A = dimA(K) for every p ∈ Spec(A) (by (ii) and [1,

1.9]).

Lemma 2.2. Assume that A possesses a dualizing complex I ·. Let M be a �nitely
generated A-module which satis�es the condition (S2) such that

MinA(M) = AsshA(M):

Set s=dimA(M) and KM =Hd−s(HomA(M; I ·)). Then the following statements are
true:
(i) KM is (S2).
(ii) For n ≥ 3; KM is (Sn) if and only if Hd−s+t(HomA(M; I ·))=0 for all t; 1 ≤ t ≤

n− 2.
(iii) Let KM be (Sn) with n ≥ 3 and x1; : : : ; xn−3 be an M-sequence. Then

Hd−s+t(HomA(M=(x1; : : : ; xi)M; I ·))= 0 for all i and t with 1 ≤ i+1 ≤ t ≤ n− 2.

Proof. (i) and (ii). By Corollary 1.5(ii) and (iv), HomA(M; I ·)∗ is isomorphic to
C(KM ), the Cousin complex of KM with respect to HKM , the height �ltration of KM .
Since HomA(M; I ·)∗ is exact at terms −1 and 0, the same is true for C(KM ). Now the
claims follow from [17, Example 4:4].
(iii) By induction on i. For i = 0, it is true by (ii). Assume 0¡i ≤ n− 3 and the

result is known for all j; 0 ≤ j¡ i. Let i + 1 ≤ t ≤ n − 2. By induction hypothesis,
we have

Hd−s+t−1(HomA(M=(x1; : : : ; xi−1)M; I ·)) = 0

and

Hd−s+t(HomA(M=(x1; : : : ; xi−1)M; I ·)) = 0:

Using the exact sequence

0→ M=(x1; : : : ; xi−1)M
xi−→M=(x1; : : : ; xi−1)M → M=(x1; : : : ; xi)M → 0; (∗)

we get the exact sequence

Hd−s+t−1(HomA(M=(x1; : : : ; xi−1)M; I ·))→Hd−s+t(HomA(M=(x1; : : : ; xi)M; I ·))

→Hd−s+t(HomA(M=(x1; : : : ; xi−1)M; I ·));

from which the result follows.

Proposition 2.3. Assume that the situation and notation are as in Lemma 2:2. Let n ≥
2; KM be (Sn) and x1; : : : ; xn−2 be an M -sequence. Then x1; : : : ; xn−2 is KM -sequence
and; for each i; 0 ≤ i ≤ n− 2;

KM=(x1 ;:::; xi)M
∼= KM=(x1; : : : ; xi)KM :
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Proof (By induction on i). Let 0¡i ≤ n−2 and the result is true for all j; 0 ≤ j¡ i.
Since Hd−s+i−1(HomA(M=(x1; : : : ; xi)M; I ·)) = 0, from Lemma 2.2(iii) and the exact
sequence (∗) in it, we have the exact sequence

0→ Hd−s+i−1(HomA(M=(x1; : : : ; xi−1)M; I ·)) xi−→Hd−s+i−1(HomA(M=

(x1; : : : ; xi−1)M; I ·))→ Hd−s+i(HomA(M=(x1; : : : ; xi)M; I ·))→ 0:

The result follows.

Corollary 2.4. Assume that A is (S2) and it possesses a dualizing complex I ·. Set
K = H 0(I ·). Let n ≥ 2 and K satis�es (Sn). If x1; : : : ; xn−2 is an A-sequence then it
is a K-sequence and the canonical module of A=(x1; : : : ; xi)A is K=(x1; : : : ; xi)K; for all
i; 0 ≤ i ≤ n− 2.

Proof. By Remark 2.1(i), Min(A) = Assh(A). Let x1; : : : ; xn−2 be an A-sequence and
0 ≤ i ≤ n − 2. Since HomA(A=(x1; : : : ; xi)A; I ·) provides the dualizing complex for
A=(x1; : : : ; xi)A (see [13, Theorem 3:9]), the result follows by Proposition 2.3.

The continuation of this study is motivated by the work of Dutta who proves that
“A satis�es Canonical Element Conjecture if A is a complete local normal domain
whose canonical module is (S3)” (see [5, Theorem 2:6]). In this connection we will
�nd the relationship between the Serre condition on canonical module and vanishing
of local cohomology modules of the ring itself. Thus, in view of Proposition 2.5 and
[5, Theorem 1.4], we may extend result [5, Theorem 2:6] in the following form: If A
is a complete local domain which satis�es (S2) and H dim A−1

m (A) = 0, then A satis�es
the Canonical Element Conjecture.

Proposition 2.5. Let A satisfy (S2) and admit dualizing complex I · (see the para-
graph preceding Corollary 1:5) with the canonical module K . For n ≥ 2 the following
statements are equivalent:
(i) K is (Sn);

(ii) 0→ K
�−1

,→ I 0 �0−→ I 1 → · · · → I n−1 is part of a minimal injective resolution of K
where �−1 is the inclusion map;

(iii) �i(p; K) = �i ht p (Kronecker delta) for all p ∈ Spec(A) and 0 ≤ i¡n; where
�i(p; K) is the ith Bass number of K ;

(iv) Hd−i
m (M) = D(ExtiA(M;K)) for i = 0; 1; : : : ; n − 2 and for all �nitely generated

A-modules M; where D(−) = HomA(−; E(A=m));
(v) Hd−i

m (A) = 0 for i = 1; : : : ; n− 2.

Proof. (i)⇒(ii) By Corollary 1.5(ii) and (iv) (or [4, Corollary 2:5(iv)]),

I∗ : 0→ K ,→ I 0 �0−→ I 1 → · · · �d−1

−→ Id → 0
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is the Cousin complex of K with respect to the dimension (=height) �ltration of K .
By [12, Proposition 5:3] each I i is an essential extension of Im �i−1. Also by Lemma
2.2(ii), I∗ is exact at K; I 0; : : : ; I n−2. The claim follows.
(ii)⇒(iii) By Remark 2.1(iv), dim(A=p) + ht(p) = dim A for all p ∈ Spec(A). Now,

the claim is clear.
(iii)⇒(i) We have depthAp

(Kp) = min{ j: �j(p; K) 6= 0} for all p ∈ SuppA(K). By
Remark 2.1(ii), SuppA(K) = Spec(A) and that htK (p) = ht(p) for all p ∈ Spec(A).
Hence from the assumption it follows that depthAp

(Kp) ≥ min{n; htK (p)} for all p ∈
SuppA(K).
(ii)⇒(iv) follows from the de�nition of Ext functor and Grothendieck’s local duality

theorem [3, Corollary 2:5].
(iv)⇒(v) is clear.
(v)⇒(i) follows from [3, Corollary 2:2] and Lemma 2.2(ii).

Note that if M is an A-module with situation Lemma 2.2, then, for an integer n ≥ 3,
the following conditions are equivalent: (i) KM satis�es (Sn); (ii) Hs−i

m (M) = 0 for all
i with 1 ≤ i ≤ n − 2. This is clear from [3, Corollary 2:2] and Lemma 2.2(ii). This
fact is known when A is an epimorphic image of a local Gorenstein ring (see [11,
Corollary 1:15]). 1

Corollary 2.6. Assume that A possesses a dualizing complex and satis�es (Sl) for
some l ≥ 2; and that K is the canonical module A. A necessary and su�cient condition
for A to be a Cohen–Macaulay ring is that K is (Sk) for some integer k with k+ l ≥
d+ 2.

Proof. We may assume that l ≤ d, so that Hi
m(A) = 0 for i = 0; 1; : : : ; l − 1. On the

other hand, by Proposition 2.5, K satisfying (Sk) is equivalent to Hd−i
m (A) = 0 for

i = 1; : : : ; k − 2. Now A is a Cohen–Macaulay ring if and only if K is (Sk) for some
integer k with k + l ≥ d+ 2.

3. A study of Cousin complexes over rings admitting a dualizing complex

In this section (A;m) is a local ring. If A possesses a dualizing complex, then we
will prove that for any �nitely generated A-module M satisfying (S2) and MinA(M)=
AsshA(M), all cohomology modules of the Cousin complex of M , CA(M), with respect
to the M -height �ltration of Spec(A) are �nitely generated.

Lemma 3.1. Assume that A possesses a dualizing complex I · and M is a �nitely
generated A-module with dimA(M)=d=dim A; MinA(M)=AsshA(M); and M is (S2).
Then; all cohomology modules of CA(M); the Cousin complex of M with respect to
the M -height �ltration of Spec(A); are �nitely generated.

1 We thank the referee for quoting it to us.
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Proof. We have H 0(HomA(M; I ·))=HomA(M;K); where K =H 0(I ·). Set KM =HomA

(M;K). By Lemma 2.2(i), KM is (S2), also, by Corollary 1.5(ii), dimA(KM ) = d and
MinA(KM ) = AsshA(KM ). Consequently, by Corollary 1.5(iv), CA(HomA(KM ; K)), the
Cousin complex of HomA(KM ; K) with respect to the height �ltration of KM , is iso-
morphic to HomA(KM ; I ·)∗. But HomA(KM ; K) =HomA(HomA(M;K); K) ∼= M (see [1,
Proposition 4:4]) and the height �ltration of M is equal to the height �ltration of KM ,
by Corollary 1.5(ii). The result follows from [13, Lemma 3:4(ii)].

Now we can prove the following theorem.

Theorem 3.2. If A possesses a dualizing complex; then for each �nitely generated
A-module M such that MinA(M) = AsshA(M) and M is (S2); all cohomologoy mod-
ules of CA(M); the Cousin complex of M with respect to the M -height �ltration of
Spec(A); are �nitely generated.

Proof. Take an A-module M with the required conditions, and set �A= A=0 : M . We
have dim �A=dim �A(M); �A also possesses a dualizing complex (see [13, Theorem 3:9])
and Min �A(M) = Assh �A(M). It is also straightforward to see that M satis�es (S2) as
�A-module. Therefore, by Lemma 3.1, all cohomology modules of C �A(M), the Cousin
complex of M , as �A-module, are �nitely generated �A-modules. The result follows from
the fact that there exists a natural isomorphism of complexes, of �A-modules, between
C �A(M) and CA(M).

It should be noted that if A is (S2) and admits a canonical module then the converse
of Theorem 3.2 also holds (see [4, Corollary 3:4]).

4. Which local ring possesses a dualizing complex?

It was shown in [9, Section 6, Example 2] that there exists a local ring A with
canonical module and non-Gorenstein formal �bres, hence not a homomorphic image
of a Gorenstein ring, which, by [7, Corollary 6:2], is equivalent to saying that A does
not possess a dualizing complex. The aim of this section is to prove the following
theorem (cf. with [9, Theorem 5:2]).

Theorem 4.1. If an (S2) local ring; with Cohen–Macaulay formal �bres; admits a
canonical module; then it possesses a dualizing complex.

Lemma 4.2. Let ’ :A → B be a at ring homomorphism. Assume that M is an
A-module and that all �bres Ap=pAp ⊗A B; for all p ∈ SuppA(M); are Cohen–
Macaulay. Then

Hi(CA(M))⊗A B ∼= Hi(CB(M ⊗A B))
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as B-modules. (Here if X is a module over a ring R; then CR(X ) denotes the Cousin
complex of X with respect to the X -height �ltration of Spec(R):)

Proof. By [10, Theorem 2:15] there exists a morphism of complexes

� : CA(M ⊗A B)→ CB(M ⊗A B)

which is injective. By [10, Theorem 3:5] the induced quotient complex CB(M ⊗A B)=
�(CA(M ⊗A B)) is exact. Therefore � is a quasi-isomorphism of complexes, that is

Hi(CA(M ⊗A B)) ∼= Hi(CB(M ⊗A B))

for all i ≥ 0. Now the result follows from [10, Lemma 2:9].

Proof of Theorem 4.1. Assume that A is a local ring satisfying (S2) and that all
�bres of A → Â are Cohen–Macaulay. Denote by K the canonical module of A. By
Lemma 4.2,

Hi(CA(K))⊗A Â ∼= Hi(CÂ(K̂))

for all i ≥ 0. By [8, Theorem 23:9(iii)], Â is also (S2). Hence, by Remark 2.1(iii),
MinÂ(K̂) = AsshÂ(K̂) so that, by Theorem 3.2, Hi(CÂ(K̂)) is a �nitely generated
Â-module for all i ≥ 0. Now, by [8, Exercise 7.3], Hi(CA(K)) is �nitely generated
A-module. On the other hand, by 2.1(ii) and (iv), CA(K) = C(D; K), where C(D; K)
is the Cousin complex of K with respect to D = (Di)i≥0, the dimension �ltration of
Spec(A). The claim follows from [4, Corollary 3:4].

Corollary 4.3. Let A be an (S2) local ring. Then the following statements are
equivalent:
(i) A possesses a dualizing complex,
(ii) A admits a canonical module and all �bres of A → Â are Gorenstein;
(iii) A admits a canonical module and all �bres of A → Â are Cohen–Macaulay.

Proof. (i) ⇒ (ii) follows from [14, Theorem 3:7]. (ii) ⇒ (iii) is clear, and (iii) ⇒
(i) follows from Theorem 4.1.

The following corollary is a particular case of (iii) ⇒ (i) above.

Corollary 4.4. Assume that A is a local ring which satis�es (S2) and it is a quotient of
a Cohen–Macaulay ring. If A admits canonical module; then A possesses a dualizing
complex.

Proof. If A is a quotient of a Cohen–Macaulay ring, then, by using [8, Remark in
p. 184 and Exercise 23.1], we see that all formal �bres of A are Cohen–Macaulay.
Hence the result is clear from (iii) ⇒ (i) of Corollary 4.3.
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Note that, from Corollary 4.4 and [7, Corollary 6:2], any (S2) local ring which
is a quotient of a Cohen–Macaulay ring and which admits canonical module is a
homomophic image of a Gorenstein ring.
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