A Note on the Countable Union of Prime Submodules^{*}

M. R. Pournaki, M. Tousi

Abstract

Let M be a finitely-generated module over a Noetherian ring R. Suppose \mathfrak{a} is an ideal of R and let $N = \mathfrak{a}M$ and $\mathfrak{b} = \operatorname{Ann}(M/N)$. If $\mathfrak{b} \subseteq J(R)$, M is complete with respect to the \mathfrak{b} -adic topology, $\{P_i\}_{i\geq 1}$ is a countable family of prime submodules of M, and $x \in M$, then $x + N \subseteq \bigcup_{i\geq 1} P_i$ implies that $x + N \subseteq P_j$ for some $j \geq 1$. This extends a theorem of Sharp and Vámos concerning prime ideals to prime submodules.

Keywords: Prime submodule, a-Adic topology, Complete metric space.2000 Mathematics Subject Classification: Primary 13C99, 13J10; Secondary 13E05.

1 Introduction

Let R be a commutative ring with identity. One of the fundamental cornerstones of commutative ring theory is the "prime avoidance" theorem, which states that, if $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are prime ideals of R and \mathfrak{a} is an ideal of R such that $\mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{p}_i$, then $\mathfrak{a} \subseteq \mathfrak{p}_j$ for some $1 \leq j \leq n$. In [4], the authors proved and used an extension of the following.

Theorem 1.1 Let R be a Noetherian local ring having maximal ideal \mathfrak{m} . Let $\{\mathfrak{p}_i\}_{i\geq 1}$ be a countable family of prime ideals of R, \mathfrak{a} an ideal of R, and $x \in R$. If R is complete with respect to the \mathfrak{m} -adic topology, then $x + \mathfrak{a} \subseteq \bigcup_{i>1} \mathfrak{p}_i$ implies that $x + \mathfrak{a} \subseteq \mathfrak{p}_j$ for some $j \geq 1$.

Consider M as a unitary left R-module. A submodule P of M is called *prime submodule*, if $P \neq M$ and for each $r \in R$ and $m \in M$, $rm \in P$ implies that $r \in \text{Ann}(M/P)$ or $m \in P$. Of course, if we regard R as an R-module, then the concept of prime submodules is equivalent to the concept of prime ideals. Now it is natural to ask if the "prime avoid-ance" theorem is true for prime submodules. In fact the answer is affirmative as has been shown by Lu [2].

Theorem 1.2 Let M be an R-module and P_1, \ldots, P_n be prime submodules of M. Let N be a submodule of M such that $N \subseteq \bigcup_{i=1}^n P_i$. Also assume that $\operatorname{Ann}(M/P_j) \not\subseteq \operatorname{Ann}(M/P_k)$ for $j \neq k$. Then $N \subseteq P_j$ for some $1 \leq j \leq n$.

The main purpose of this paper is to generalize the above theorem to a countable

^{*}This research was in part supported by a grant from IPM.

family of prime submodules.

2 Main Result

Let R be a Noetherian ring, \mathfrak{a} an ideal of R contained in the Jacobson radical of R, and M a finitely-generated R-module. The \mathfrak{a} -adic topology is metrizable and one suitable metric d may be given by requiring that, for $x, y \in M$ with x and y different, $d(x, y) = 1/2^t$, where t is the greatest integer i such that $x - y \in \mathfrak{a}^i M$.

Now, we apply the Baire's category theorem for deducing our main result. Note that the Baire's category theorem states that a complete metric space is not the union of a countable family of nowhere dense subsets, and a subset of a metric space M is nowhere dense in M if and only if its closure has no interior point (see [1, page 38]). In the sequel, we denote the Jacobson radical of R by J(R).

Main Theorem 2.1 Let M be a finitely-generated module over a Noetherian ring R. Suppose \mathfrak{a} is an ideal of R and let $N = \mathfrak{a}M$ and $\mathfrak{b} = \operatorname{Ann}(M/N)$. If $\mathfrak{b} \subseteq J(R)$, M is complete with respect to the \mathfrak{b} -adic topology, $\{P_i\}_{i\geq 1}$ is a countable family of prime submodules of M, and $x \in M$, then $x + N \subseteq \bigcup_{i\geq 1} P_i$ implies that $x + N \subseteq P_j$ for some $j \geq 1$.

We will need the following well-known result which is essentially due to Krull.

Lemma 2.2 (see [3, Theorem 8.10]) If M is a finitely-generated module over a Noetherian ring R and \mathfrak{b} an ideal of R such that $\mathfrak{b} \subseteq J(R)$, then each submodule of M with respect to the \mathfrak{b} -adic topology is closed.

Proof of the Main Theorem.

By Lemma 2.2, each submodule of M and in particular N is closed with respect to the b-adic topology. One easily obtains that x + N is also a closed subset of M. So the completeness of M yields that x + N is a complete metric space. But by hypothesis we have $x + N = \bigcup_{i\geq 1} ((x+N) \cap P_i)$ and therefore it turns out by Baire's category theorem that, there is some $j \geq 1$ for which the subset $(x+N) \cap P_j$ of x + N is not nowhere dense. But $(x+N) \cap P_j$ is closed in x + N and therefore the interior of $(x+N) \cap P_j$ in x + N is not empty. Let c be an element of the interior of $(x+N) \cap P_j$. Thus there exists an open subset U of M such that $c \in (x+N) \cap U \subseteq (x+N) \cap P_j$. But $c \in U$ implies that, there is $k \in \mathbb{N}$ such that $c + \mathfrak{b}^k M \subseteq U$ and hence $c \in (x+N) \cap (c + \mathfrak{b}^k M) \subseteq (x+N) \cap P_j$. It is easily deduced that $N \cap \mathfrak{b}^k M \subseteq P_j$. But $\mathfrak{b}^k M \subseteq N$, so $\mathfrak{b}^k M \subseteq P_j$ and $\mathfrak{b}^k \subseteq \operatorname{Ann}(M/P_j)$. Since P_j is a prime submodule of M, it follows that $\operatorname{Ann}(M/P_j)$ is a prime ideal of R and so $\mathfrak{b} \subseteq \operatorname{Ann}(M/P_j)$. Now we have $\mathfrak{a} \subseteq \mathfrak{b} \subseteq \operatorname{Ann}(M/P_j)$, and hence $\mathfrak{a}M = N \subseteq P_j$. But $x - c \in N$, so $x + N \subseteq P_j$, as required. \Box

Remark 2.3 i) Note that if M is a finitely-generated module over a Noetherian ring R, $\mathfrak{a}_1 \subseteq \mathfrak{a}_2$ ideals of R, and M complete with respect to the \mathfrak{a}_2 -adic topology, then it is also complete with respect to the \mathfrak{a}_1 -adic topology. This shows that, the main theorem is also true if we assume that M is complete in J(R)-adic topology.

ii) In the view of (i), it is clear that Theorem 1.1 is a particular case of the main theorem.

References

[1] E. T. Copson, "*Metric Spaces*", Cambridge Tracts in Mathematics and Mathematical Physics, no. 57, Cambridge University Press, London, 1968.

[2] C. P. Lu, Unions of Prime Submodules, Houston J. Math. 23 (1997), no. 2, 203-213.

[3] H. Matsumura, "*Commutative Ring Theory*", Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1989.

[4] R. Y. Sharp, P. Vámos, Baire's Category Theorem and Prime Avoidance in Complete Local Rings, Arch. Math. (Basel) 44 (1985), no. 3, 243-248.

The Authors' Addresses

M. R. Pournaki, Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran, and School of Mathematics, Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran.

E-mail address: pournaki@karun.ipm.ac.ir

M. Tousi, Department of Mathematics, Shahid Beheshti University, Evin, Tehran 19834, Iran, and School of Mathematics, Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran.

E-mail address: mtousi@vax.ipm.ac.ir