Tensor products of some special rings

Masoud Tousi a,b and Siamak Yassemi a,c

a Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran
b Department of Mathematics, Shahid Beheshti University, Tehran, Iran
c Department of Mathematics, University of Tehran, Tehran, Iran

Received 15 September 2002
Communicated by Paul Roberts

Abstract

In this paper we solve a problem, originally raised by Grothendieck, on the properties, i.e., complete intersection, Gorenstein, Cohen–Macaulay, that are conserved under tensor product of algebras over a field k.

Keywords: Regular; Complete intersection; Gorenstein; Cohen–Macaulay; Flat homomorphism of rings

Introduction

Throughout this note all rings and algebras considered in this paper are commutative with identity elements, and all ring homomorphisms are unital. Throughout, k stands for a field.

Among local rings there is a well-known chain

Regular ⇒ Complete intersection ⇒ Gorenstein ⇒ Cohen–Macaulay.

These concepts are extended to non-local rings: for example, a ring is regular if for all prime ideal p of R, R_p is a regular local ring.

In this paper, we shall investigate if these properties are conserved under tensor product operations. It is well-known that the tensor product R ⊗_A S of regular rings is not regular in general, even if we assume R and S are A-algebra and A is a field, see Remark 7. In [5],

✩ This research was supported in part by a grant from IPM.

E-mail addresses: tousi@ipm.ir (M. Tousi), yassemi@ut.ac.ir (S. Yassemi).

0021-8693/$ – see front matter © 2003 Published by Elsevier Inc.
doi:10.1016/S0021-8693(03)00105-4
Watanabe, Ishikawa, Tachibana, and Otsuka, showed that under a suitable condition tensor products of regular rings are complete intersections. It is proved in [3], that the tensor product
\[R \otimes_A S \]
of Cohen–Macaulay rings are again Cohen–Macaulay if we assume \(R \) is flat \(A \)-module and \(S \) is a finitely generated \(A \)-module, and in [5], it is shown that the same is true for Gorenstein rings. Recently, in [1], Bouchiba and Kabbaj showed that if \(R \) and \(S \) are \(k \)-algebras such that \(R \otimes_k S \) is Noetherian then \(R \otimes_k S \) is a Cohen–Macaulay ring if and only if \(R \) and \(S \) are Cohen–Macaulay rings.

In this paper we shall show that the same is true for complete intersection and Gorenstein rings. Also it is shown that \(R \otimes_k S \) satisfies Serre’s condition \((S_n)\) if and only if \(R \) and \(S \) satisfy \((S_n)\).

Main results

A Noetherian local ring \(R \) is a complete intersection (ring) if its completion \(\hat{R} \) is a residue class ring of a regular local ring \(S \) with respect to an ideal generated by an \(S \)-sequence. We say that a Noetherian ring is locally a complete intersection if all its localizations are complete intersections.

A Noetherian ring \(R \) satisfies Serre’s condition \((S_n)\) if depth \(R_p \geq \min\{n, \dim R_p\} \) for all prime ideal \(p \) of \(R \). Also, a Noetherian ring \(R \) satisfies Serre’s normality condition \((R_n)\) if \(R_p \) is a regular local ring for all prime ideal \(p \) with \(\dim R_p \leq n \).

The following theorem is collected from [2, Remark 2.3.5, Corollary 3.3.15, Theorem 2.1.7, and Theorem 2.2.12].

Theorem 1. Let \(\varphi: (R, m) \rightarrow (S, n) \) be a flat local homomorphism of Noetherian local rings. Then the following hold:

(a) \(S \) is a complete intersection (resp. Gorenstein, Cohen–Macaulay) \(\iff \) \(R \) and \(S/mS \) are complete intersections (resp. Gorenstein, Cohen–Macaulay).

(b) If \(S \) is regular then \(R \) is regular.

(b2) If \(R \) and \(S/mS \) are regular then \(S \) is regular.

Corollary 2. Let \(\varphi: R \rightarrow S \) be a flat homomorphism of Noetherian rings. Then the following hold:

(a) If \(R \) and the fibers \(R_p/pR_p \otimes_R S, p \in \text{Spec}(R) \), are regular (resp. locally complete intersections, Gorenstein, Cohen–Macaulay) then \(S \) is regular (resp. locally complete intersection, Gorenstein, Cohen–Macaulay).

(b) If \(S \) is locally complete intersection (resp. Gorenstein, Cohen–Macaulay) then the fibers \(R_p/p\hat{R}_p \otimes_R S, p \in \text{Spec}(R) \), are locally complete intersections (resp. Gorenstein, Cohen–Macaulay).

Proof. (a) Let \(q \in \text{Spec}(S) \). Set \(p = q \cap R \in \text{Spec}(R) \). The induced homomorphism \(\hat{\varphi}: R_p \rightarrow S_q \) is flat and local. It is clear that \(S_q/p\hat{R}_q S_q \) is a localization of \(R_p/pR_q \otimes_R S \). Now the assertion follows from Theorem 1.
Proposition 5. Now the assertion follows from Theorems 1 and 3.

\[\text{(2, Theorem 2.3.3(c)).} \]

Let

Proof.

\[\text{Corollary 4.} \]

\[(a) \text{ Let } q \in \text{Spec}(S) \text{ and } p = q \cap R. \text{ If } S_q \text{ satisfies } (S_n) \text{ (resp. } (R_n)) \text{ then } R_p \text{ satisfies } (S_n) \text{ (resp. } (R_n)). \]

\[(b) \text{ If } R \text{ and the fibers } R_p/pR_p \boxtimes_R S, \text{ p } \in \text{Spec}(R), \text{ satisfy } (S_n) \text{ (resp. } (R_n)) \text{ then } S \text{ satisfies } (S_n) \text{ (resp. } (R_n)). \]

Theorem 3 (see [2], Propositions 2.1.16 and 2.2.21). Let \(\varphi : R \to S \) be a flat homomorphism of Noetherian rings. Then the following hold:

\[(a) \text{ If } S \text{ is regular (resp. locally complete intersection, Gorenstein, Cohen–Macaulay), then so is } R. \]

\[(b) \text{ If } S \text{ satisfies } (S_n) \text{ (resp. } (R_n)) \text{, then so does } R. \]

Proof. Let \(p \in \text{Spec}(R). \) Since \(\varphi \) is faithfully flat there exists \(q \in \text{Spec}(S) \) such that

\[p = q \cap R. \]

Consider the flat local homomorphism \(\hat{\varphi} : R_p \to S_q \) where \(\hat{\varphi}(r/s) = \varphi(r)/\varphi(s). \)

Now the assertion follows from Theorems 1 and 3.

Proposition 5. Let \(k \) be a field, \(L \) and \(K \) be two extension fields of \(k. \) Suppose that \(L \otimes_k K \) is Noetherian. Then the following hold:

\[(a) L \otimes_k K \text{ is locally complete intersection.} \]

\[(b) \text{ If } k \text{ is perfect then } L \otimes_k K \text{ is regular.} \]

Proof. (a) With the same method in the proof of [4, Theorem 2.2], we can assume that \(K \) is a finitely generated extension field of \(k \) (note that, in view of Theorem 1, [4, Lemma 2.1] is true with “Gorenstein ring” replaced by “complete intersection”). Now using [2, Proposition 2.1.11] we have that \(L \otimes_k K \) is isomorphic to

\[A = T^{-1}(L[x_1, x_2, \ldots, x_n])/(f_1, f_2, \ldots, f_m)T^{-1}(L[x_1, x_2, \ldots, x_n]), \]

where \(T \) is a multiplicatively closed subset of \(L[x_1, x_2, \ldots, x_n] \) and \(f_1, f_2, \ldots, f_m \) is a \(T^{-1}(L[x_1, x_2, \ldots, x_n]) \)-sequence. Therefore \(A \) is locally complete intersection, cf. [2, Theorem 2.3.3(c)].

(b) The assertion follows from the note on page 49 of [4].

Theorem 6. Let R and S be non-zero k-algebras such that $R \otimes_k S$ is Noetherian. Then the following hold:

(a) $R \otimes_k S$ is locally complete intersection (resp. Gorenstein, Cohen–Macaulay) if and only if R and S are locally complete intersections (resp. Gorenstein, Cohen–Macaulay).

(b) $R \otimes_k S$ satisfies (S_n) if and only if R and S satisfy (S_n).

(c) If $R \otimes_k S$ is regular then R and S are regular.

(d) If $R \otimes_k S$ satisfies (R_n) then R and S satisfy (R_n).

(e) The converse of parts (c) and (d) hold if $\text{char}(k) = 0$ or $\text{char}(k) = p$ such that $k = \{a^p \mid a \in k\}$.

Proof. Consider two faithfully flat homomorphisms

$$\varphi : R \rightarrow R \otimes_k S \quad \text{and} \quad \psi : S \rightarrow R \otimes_k S$$

of Noetherian rings.

If $R \otimes_k S$ is regular (resp. locally complete intersection, Gorenstein, Cohen–Macaulay) then by Corollary 4 we have R and S are regular (resp. locally complete intersections, Gorenstein, Cohen–Macaulay). Also if $R \otimes_k S$ satisfies (S_n) (resp. (R_n)) then by Corollary 4, R and S satisfy (S_n) (resp. (R_n)).

Now let R and S be locally complete intersection (resp. Gorenstein, Cohen–Macaulay). By Corollary 2 it is enough to show that the fibres $(R \otimes_k S) \otimes_R R_p / pR_p \cong R_p / pR_p \otimes_k S$ over every prime ideal p of R is locally complete intersection (resp. Gorenstein, Cohen–Macaulay). Consider the flat homomorphism $\gamma : S \rightarrow R_p / pR_p \otimes_k S$. Using Corollary 2, it is enough to show that the fibres $(R_p / pR_p \otimes_k S) \otimes_S S_q / qS_q \cong R_p / pR_p \otimes_k S_q / qS_q$ over every prime q of S is locally complete intersection (resp. Gorenstein, Cohen–Macaulay). But it is clear to see that $R_p / pR_p \otimes_k S_q / qS_q$ is Noetherian, since it is a localization of $R / p \otimes_k S / q \cong R \otimes_k S / (p \otimes_k S + R \otimes_k q)$, which is Noetherian. Now the assertion follows from Proposition 5.

If R and S satisfy (S_n), with the same proof $R \otimes_k S$ satisfies (S_n). By using the Proposition 5 the proof of part (e) is the same. \(\Box\)

Remark 7. The converse of part (c) in Theorem 6 is not true. For example, let k be an imperfect field of characteristic 3, let $a \in k$ be an element with no cube root in k. Then $K = k[x]/(x^3 - a)k[x]$ is a splitting field of $x^3 - a$ over k. Thus $K \otimes_k K \cong K[x]/(x^3 - a)K[x]$, which is not regular.

Acknowledgment

The authors would like to thank the referee for his/her comments.
References