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Abstract

Let R be a commutative Noetherian ring and p be a prime ideal of R such that
the ideal pRp is principal and ht(p) 6= 0. In this note, we describe the explicit
structure of the injective envelope of the R-module R/p.
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1 Introduction

According to classic results of E. Matlis [5, Theorems 2.5 and 2.7] every injective
module over a Noetherian ring R can be expressed uniquely as the direct sum of in-
decomposable injective modules; the indecomposables have the form ER(R/J) where
J is an irreducible left ideal of R [5, Theorem 2.4]; and if in addition R is commu-
tative the indecomposables are exactly the envelopes ER(R/p), p is a prime ideal of
R [5, Proposition 3.1]. Thus if we wish to understand the structure of the injective
modules in detail, it suffices to know the structure of the indecomposables. Find-
ing a precise description of a class of indecomposable injective modules has been
the main object of [7], [2], [4], [10], [9], and [1], although even over commutative
Noetherian ring their structure can still be quite complicated.

In this note we give the explicit structure of the injective envelope of the R-
module R/p, where p is a prime ideal of R with ht(p) 6= 0 and is the weakly locally
principal, i.e., a prime ideal of R such that there exists an element p of R for which
pRp = pRp. Note that the prime ideals p with ht(p) = 1 in regular rings, Krull
rings and Noetherian normal rings are weakly locally principal. In particulary, each
prime ideal of Dedekind domains is weakly locally principal too.

*This research was in part supported by a grant from IPM.
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2 Main Results

Throughout this section, let R denote a commutative ring with identity, M be a
unitary left R-module and ER(−) denote the injective envelope of R-module −. Also,
if p denotes the weakly locally principal prime ideal of R, then p denotes the element
of R for which pRp = pRp. For such p and p, define S = {pis : s ∈ R \ p, i ≥ 0}.
Clearly S is a multiplicative closed subset of R and we have R \ p ⊆ S. In this
case, for such S, the function Θ : Rp −→ S−1R defined by Θ(r/s) = r/s is an
R-homomorphism.

In the following theorem, the explicit structure of a class of indecomposable
injective modules will be given.

Main Theorem Let R be a Noetherian ring and p be a weakly locally principal
prime ideal of R. If ht(p) 6= 0, then ER(R/p) ∼= S−1R/Θ(Rp) as R-modules.

Let a be an ideal of R. For each R-module M , set Γa(M) =
⋃

n∈N(0 :M an), the
set of elements of M which are annihilated by some power of a.

For the proof of the Main Theorem we need to following lemmas.

Lemma 2.1 Let M and E be R-modules and E be injective. If a is an element of
R such that aM = M , ΓaR(M) = M , ΓaR(E) = E and (0 :M a) ∼= (0 :E a), then
M ∼= E.

Proof. By the hypothesis, there is an R-isomorphism ϕ : (0 :M a) −→ (0 :E a)
and therefore we obtain the induced R-monomorphism ϕ̂ : (0 :M a) −→ E. Now,
injectivity of E implies that there is an R-homomorphism ψ : M −→ E, such that
ψ|(0:Ma) = ϕ̂. We claim that ψ is an R-isomorphism.

If K is an R-module such that ΓaR(K) = K, then for x ∈ K \ {0} we define
exp(x) = min{n ∈ N : anx = 0} and we set exp(0) = 0.

ψ is injective: We show that x ∈ Ker ψ implies x = 0. We use induction on
exp(x). If x ∈ Ker ψ and exp(x) = 1, then ax = 0, so x ∈ (0 :M a). Therefore 0 =
ψ(x) = ϕ̂(x) and so x = 0. Now suppose, inductively, x ∈ Ker ψ, exp(x) = n > 1
and suppose for each y ∈ Ker ψ with exp(y) = n − 1, we have shown that y = 0.
The condition exp(x) = n implies that exp(ax) = n − 1. But ax ∈ Ker ψ, so, by
the inductive hypothesis ax = 0. Since n > 1, we have x = 0. This completes the
inductive step.

ψ is surjective: Again we use induction. Suppose y ∈ E and exp(y) = 1. Then
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ay = 0 and we have y ∈ (0 :E a). Now surjectivity of ϕ implies that there is
x ∈ (0 :M a) ⊆ M , such that y = ϕ(x) = ϕ̂(x) = ψ(x), so y ∈ Im ψ. Now
suppose, inductively, y ∈ E, exp(y) = n > 1 and suppose for each z ∈ E with
exp(z) = n − 1, we have shown that z ∈ Im ψ. Since y ∈ E and exp(y) = n

implies that exp(ay) = n− 1, by the inductive hypothesis there is x′ ∈M such that
ψ(x′) = ay. Since aM = M , x′ = ax′a, where x′a ∈ M . Now we have ψ(x′a) = y or
exp

(
ψ(x′a)− y

)
= 1. In each case we have y ∈ Im ψ. This completes the inductive

step.
Therefore we established the claim and so M ∼= E. �

Lemma 2.2 Let R be a Noetherian ring and p be a weakly locally principal prime
ideal of R for which ht(p) 6= 0. Then Rp/pRp

∼= (0 :S−1R/Θ(Rp) p) as R-modules.

Proof. Define φ : Rp/pRp −→ (0 :S−1R/Θ(Rp) p) by φ(r/s+pRp) = r/sp+Θ(Rp).
Clearly φ is an R-homomorphism. Firstly, we prove that φ is surjective. For showing
this, suppose α/pit + Θ(Rp) ∈ (0 :S−1R/Θ(Rp) p). Therefore, there exist t′ ∈ R \ p

and β ∈ R for which pα/pit = β/t′ or α/pit = β/pt′ in S−1R. Now, φ(β/t′+pRp) =
β/pt′ + Θ(Rp) = α/pit + Θ(Rp) implies that φ is surjective. Secondly, we claim
that φ is injective. Suppose the contrary, i.e., there is a non-zero element in Ker φ,
say r/s + pRp. So there exists r′/s′ ∈ Θ(Rp) such that r/sp = r′/s′ in S−1R and
r/s /∈ pRp. Therefore there exists l ≥ 0 and t ∈ R \ p for which pltrs′ = pl+1tr′s.
Consequently (pRp)l+1 = (pRp)l. Nakayama Lemma now implies that ht(pRp) = 0,
a contradiction. So the claim proved and φ is an R-isomorphism and the lemma
holds. �

Proof of the Main Theorem.
By using [8, Lemma 4.24], we get (0 :ER(R/p) p) ∼= (0 :ERp (Rp/pRp) pRp) ∼=

Rp/pRp. On the other hand, Lemma 2.2 implies that Rp/pRp
∼= (0 :S−1R/Θ(Rp) p).

Therefore we have
(0 :ER(R/p) p) ∼= (0 :S−1R/Θ(Rp) p).

It is easy to see that p
(
S−1R/Θ(Rp)

)
= S−1R/Θ(Rp). Now, suppose r/pis+Θ(Rp) ∈

S−1R/Θ(Rp). Therefore, pi
(
r/pis + Θ(Rp)

)
= Θ(Rp) and so r/pis + Θ(Rp) ∈

ΓpR

(
S−1R/Θ(Rp)

)
. This shows that ΓpR

(
S−1R/Θ(Rp)

)
= S−1R/Θ(Rp). Since

ΓpR

(
ER(R/p)

)
= ER(R/p) (see [6, Theorem 18.4 (v), (vi)]), Lemma 2.1 implies that

ER(R/p) ∼= S−1R/Θ(Rp). �
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Let p be an element of R and λ : R −→ Rp be natural R-homomorphism. Then
we denote the R-module Rp/λ(R)={a/pn + λ(R) : a ∈ R, n ≥ 0} by Rp∞ .

Proposition 2.3 Let p be an element of R such that p = pR is a maximal ideal
of R. Then p is the weakly locally principal prime ideal of R and if we consider
S = {pis : s ∈ R \ p, i ≥ 0} and Θ : Rp −→ S−1R as we mentioned earlier we
obtain S−1R/Θ(Rp) ∼= Rp∞ as R-modules.

Proof. For each r ∈ R \ pR and each l ≥ 0, there exists α, β ∈ R such that
αr+βpl = 1. By using this fact, it is easy to see that the natural R-homomorphism
µ : Rp∞ −→ S−1R/Θ(Rp) given by µ

(
r/pn + λ(R)

)
= r/pn + Θ(Rp) is an R-

isomorphism. �

Now the Main Theorem and Proposition 2.3 imply the following corollaries.

Corollary 2.4 Let R be a Noetherian ring and p = pR be a maximal ideal of R.
If ht(p) 6= 0, then ER(R/p) ∼= Rp∞ as R-modules.

Corollary 2.5 Let R be a Noetherian integral domain. If pR is a non-zero maxi-
mal ideal of R, then ER(R/pR) ∼= Rp∞ as R-modules. In particular, if p is a prime
integer, then EZ(Z/pZ) ∼= Zp∞ as Z-modules.

We now apply the result of the Corollary 2.5 to find a decomposition for injec-
tive modules over one-dimensional unique factorization domains. In the following,
µ(−,M) denotes the 0-th Bass number of M with respect to prime ideal −. For
an R-module N ,

⊕
µ(−,M)N denotes the direct sum of µ(−,M) copies of N and

consider Π = {p ∈ R \ {0} : pR ∈ AssR(M)}, where AssR(M) = {p ∈ Spec(R) :
there exists x ∈M such that p = (0 :R x)}.

Corollary 2.6 Let R be a one-dimensional unique factorization domain, F its
field of fractions and let M be an injective R-module. Then

M ∼=
( ⊕

µ(0,M)F
)
⊕

( ⊕
p∈Π

µ(pR,M)Rp∞
)

as R-modules.

We need the following lemma to prove this corollary.

Lemma 2.7 The ring R is a principal ideal domain if and only if R is a one-
dimensional unique factorization domain.
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Proof. Clearly any principal ideal domain is a unique factorization domain and
one-dimensional, so we prove the converse, which is more interesting. Suppose that
R is a one-dimensional unique factorization domain. We note that the proof of
Theorem 20.1 in [6] shows that if R is a unique factorization domain and p is a
prime ideal of R such that ht(p) = 1, then p is a principal ideal. Since R is one-
dimensional, any prime ideal of R is principal. So R is Noetherian. Now if R is not
a principal ideal domain, there is a non-principal ideal a. Since R is Noetherian,
there is an ideal, m, that is maximal with respect to being non-principal. A standard
result of M. Isaacs (see [3, page 8]) states that m is a prime ideal. This contradicts
that fact that all prime ideals of R are principal and completes the proof. �

Proof of the Corollary 2.6.
Let 0 6= p ∈ AssR(M). By the Lemma 2.7, p = pR for some p ∈ Π. We know

that M has a decomposition of the form of

M ∼=
⊕

p∈Spec(R)

µ(p,M)ER(R/p)

(see [5, Theorem 2.5 and Proposition 3.1]). But it is easy to see that µ(p,M) 6= 0 if
and only if p ∈ AssR(M). Therefore since ER(R) ∼= F we have

M ∼=
⊕

p∈AssR(M)µ(p,M)ER(R/p)

∼=
( ⊕

µ(0,M)ER(R)
)
⊕

(⊕
0 6=p∈AssR(M)µ(p,M)ER(R/p)

)
∼=

( ⊕
µ(0,M)F

)
⊕

( ⊕
p∈Π µ(pR,M)Rp∞

)
. �
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