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ABSTRACT

The aims of Chapter (I) are to provide a characterization of generalized Hughes
complexes, and to give several illustrations of situations where this characterization
can be exploited to good effect, and to prove that whenever our commutative ring is
not Noetherian, then there is a morphism of complexes from a generalized Hughes
complex of a certain type to a complex of modules of generalized fractions.

Suppose that R is a commutative ring with non-zero identity and G is a group
of automorphisms of R. We use R® to denote the fixed subring. The purposes of
Chapter (IT) are the following discussion: (i) under “good” conditions on R and G,
what general “good” properties does R® enjoy? (ii) Can G induce an action group
on certain modules and complexes (for example local cohomology, injective envelope

and Cousin complex)? Can we specify the fixed submodule and subcomplex?
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60 Introduction.

0.1 GENERAL NOTATIONS. Througout this thesis, A (respectively R)
will denote a commutative Noetherian (respectively commutative) ring with non-
zero identity, and C(A) (respectively C(R)) will denote the category of A-modules
and A-homomorphisms (respectively R-modules and R-homomorphisms). We shall
use Nx (respectively N) to denote the set of non-negative (respectively positive)

integers.

0.2 SOME HISTORY. The Cousin complex considered in Algebraic and
Analytic Geometry have Also commutative algebra analogues given by Sharp in
[23]. Suppose that M is an A-module. In [23], Sharp defined, C'(M), the Cousin
complex for M. Tt is, in fact, the commutative algebra analogue of the Cousin
complex of §2 of Chapter IV of Hartshorne [7].

Cohen-Macauly rings can be characterized in terms of the Cousin complex: A
is a Cohen-Macaulay ring if and only if C'(A) is exact [23, (4.7)]. Weaker conditions
on the C(A) provide reasonable classifications of some rings which not be Cohen-
Macaulay (see [26]). For example, the C'(A) is exact at its (—1) th, oth, - -+, (n—2)th
terms if and only if the ring A satisfies the condition (S,) (see [26,2.2]). Also, the
Cousin complex provides a natural minimal injective resolution for a Gorenstein ring
(See [23, (5.4)]). For M, non-zero and finitely generated, A-module we have that M
is a Cohen-Macaulay if and only if C'(M) is exact (See [25, (2.4)]).

Various more general Cousin complexes can be constructed. We can, for any
filtration F [33, (1.1)] of Spec (A) that admits M, construct the Cousin complex
C(F, M) for M with respect to F [33, (1.3)]. If we use for F the M-height filtration
H(M) of Spec (A) [33, (1.2)], then C(H(M), M) is just the Cousin complex C'(M)



which is mentioned earlier. When A is local, using the dimemsion filtration D(A)
[33, (1.2)] of Spec (A), permits a characterization of balanced big Cohen-Macaulay
A-modules (not necessarily finitely generated). A-module X is a balanced big Cohen-
Macaulay A-module [32, P.229] if every system of parameters for A is an X-sequence.
It trurns out that M is a balanced big Cohen-Macaulay A-module if and only if
C(D(A), M) is exact and m9 # M (where m denotes the maximal ideal of A).

Although Cousin complexes do provide satisfactory characterizations of various
Cohen-Macaulay properties, they have the disadvantage that their constraction is
rather complicated, and this perhaps makes them difficult to work with. The purpose
of [21] is to show that, for an A-module M such that Ass(M) has only finitely many
minimal members and a filtraction F of Spec (A) which admits M, the Cousin
complex C(F, M) is actually isomorphic to a complex of modules of generalized
fractions in the sense of [38]; this description is perhaps simpler and easier to work
with.

K.R. Hughes [12] introduced a grade-theoretic analogue of the Cousin complex.
he emploied Ree’s concept of the grade of a proper ideal b of A. Sharp and Yassi [36]
explored relationships between Hughes’s complex and the complex of the modules of
generalized fractions of sharp and Zakeri and introduced the concept of generalized
Hughes complexes. It was proved by Sharp and Yassi [36, Theorem 3.5] that every
complex of modules of generalized fractions of a certain type is isomorphic to a
generalized Hughes complex.

One of the main results of [34] is Theorem 2.3, which shows that every Cousin
complex for M is (isomorphic to) a generalized Hughes complex for M. This result,
and the earlier result accord a certain amount of importance to generalized Hughes
complexes. Generalized Hughes complexes provide an ‘umbrella concept’ which

covers all the algebraic Cousin complexes previously studied by sharp [23], [33], and



all the complexes of modules of generalized fractions of the type described in [20, p.

420).

0.3 AN OUTLINE OF THE THESIS. Briefly, the aims of chapther (I) are
to provide a characterization of generalized Hughes complexes, and to give several
illustrations of situations where this characterization can be exploited to good effect,
and to prove that whenever our commutative ring is not Noetherian, then there is
a morphism of complexes from a generalized Hughes complex of a certain type to a
complex of modules of generalized fractions.

In §1, we recall the ®-torsion functor I'g, ®-transform functor Dg, right derived
functors of T'y (where @ is a system of ideals of a commutative ring; see 1.1), and
we list some properties of these functors.

We review the definition of the generalized Hughes complex in §2. For an R-
module L, the generalized Hughes complex with respect to a family S = (P;);en
of systems of ideals of R is denoted by H(S,L). In §2, we answer the following
questions: (i) what conditions on the terms and homomorphisms in a complex of
A-modules and A-homomorphisms

6_1 60 . e .
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are necessary and sufficient for the complex to be isomorphic (over Idys) to the
generalized Hughes complex for M with respect to a family of systems of ideals &
of A? (ii) what conditions on the terms and homomorphisms in the complex C* are
necessary for there exists a homomorphism (or an epimorphism) of complexes (over
Idy) from C* to the generalized Hughes complex H(S, M) for M with respect to a
family of systems of ideals S of A?

Let S = (®;)ien and Z = (6;);en be two familes of systems of ideals of A such
that ©,, C @, for all n € N, and let M be an A-module. It is shown, in §3, that



there is a unique morphism of complexes U = (¢*);>_o: H(Z, M) — H(S, M) over
Idy; and, under additional conditions, W is an epimorphism such that if H(S, M) is
exact, then ¥ is an isomorphism. In §5, we show that these results can be viewed
as a generalization of results of [35, (2.10), (2.11) and (3.6)] in which two Cousin
complexes compared.

Let & = (®;);en be a family of systems of ideals of A, and let f : A — B be
homomorphism of commutative Noetherian rings. In §4 and §5, we show that there
is SB, a family of systems of ideals of B, and also there is a unique morphism of

complexes of B-modules and B-homomorphisms
U= (l/)i)iz—Q H(S,M) @ B — H(SB,M ©4 B)

over Idye ,p; if H(S, M) is isomorphic to a Cousin complex, then ¥ is an isomor-
phism. In §5, under additional conditions, we prove that if H(S, M) is isomorphic
to a Cousin complex, then H(S, M) @4 B is isomorphic to a Cousin complex. This
theorem is a strengthening of a result on the behaviour of Cousin complexes under
ring homomorphisms established in [27, Theorem (2.6)]. Also, in §4, we show that
if f is flat, then W is an isomorphism.

In §5, we present a proof for [34, Theorem 2.3] which is shorter than the proof
presented in [34]. This theorem shows that every Cousin complex is generalized
Hughes complex. Also, we recover and extend Theorem 3.3 of [21], which shows
that every two complex of A-modules and A-homomorphisms of Cousin type for M
with respect to a filtration of Spec (A) which admits M are isomorphic.

In §5, we shall give an example of a generalized Hughes complex which is not
isomorphic (over Id,4) to a Cousin complex for A, but we prove that if S = (®;);en is
a family of systems of ideals of A and M is an A-module, then there is a descending
sequence F = (F})icn, of subsets of Spec (A), which if it were a filtration of Spec
(A), then the Cousin complex C'(F, M) is isomorphic (over Idys) to H(S, M). Also,
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we prove that if & = (®;);en is a family of systems of ideals of A and M is an
A-module, then there is &' = (®));en, a family of systems of ideals of A, such that
the generalized Hughes complex H(S, M) is isomorphic (over Idy) to H(S', M);
and for each i € N,

(av) for each a €, every ideal b of A with b O a also belongs to ®!; and

(B) ®; 2> @, and V(a) C Supp (M) for all a € |.

Suppose that U is a chain of triangular subsets on R (see 6.1) and M is an
R module. Then we can construct a complex of modules of generalized fractions
C(U, M). The chain U determines a family S(U) of systems of ideals of R (see 6.2),
and so the generalized Hughes complex H(S(U), M) for M with respect to S(U)

can be contructed. One of the main results of [36] is theorem 3.5, which shows that,

when R is Noetherian, there is an isomorphism of complexes
U= (")p>_9:C(U,M)— H(SU), M)

over Idy;. The proof of that theorem given in [36] using the Noetherian property
of R which plays an important role: at the end of [36], it was asked whether there
is any analogue of that theorem in the case when R is not necessarily Noetherian.
The purpose of §6 is to response that question and is to use the methods of §2 to
prove a strengthening of [36,3.5].

In §6, we prove that, in general, there is a natural homomorphism of complexes
0= (9")7@,2 : H(S(Z/{), M) — C(Z/I, M)

over Idy;, Moreover, we show that, if R is Noetherian, then © is an isomorphism
of complexes and its inverse is the isomorphism of complexes of [36, theorem 3.5]
which mintioned above. In addition, we show that the class of commutative rings
R for which © is always an isomorphism of complexes includes the N-rings studied

by W. Heinger and D. Lantz in [8]. It should be noted an N-ring need not itself
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be Noetherian (see [8, page 122]). The final part of §6 provides an example which
shows that © is not always an isomorphism.

In §7, the ideas of §2 are used to give a quick proof that every one of M.
Kersken’s Cousin complexes with respect to denominator systems over A is isomor-
phic to a generalized Hughes complex.

Suppose that G is a group of automorphisms of A. We use A% to denote the
fixed subring. The intuition that A% should resemble A (the case where G = {Id,}
is an extreme example) is often unfounded. There are many results concerning the
success (and failure) of this resemblance. The purposes of Chapter (II) are the
following discussion: (i) under “good” conditions on A and G, what general “good”
properties does A“ enjoy? (ii) Can G induce an action group on certain modules and
complexes (for example local cohomology, injective envelope and Cousin complex)?
Can we specify the fixed submodule and subcomplex?

For the remainder of the introduction, M is an A-module, H is a finite group
of A%module automorphisms of M such that |H|, the order of H, is invertible in
A. Also, we shall let N be an A%-module.

Let R’ be a commutative ring with non-zero identity such that |H| is invertible
in R', and let T (respectively U) be an additive covariant (respectively contravariant)
functor from C(A%) to C(R'). Then, in section 8, we show that H induces an
action group on T(M) (respectively U(M)) such that T(M") = T(M)" (as R-
modules) (respectively U(M") =2 U(M)" (as R'-modules)), where M and T(M)"
(respectively U(M)H) are fixed submodules. In this section, the results are true for
non-Notherian rings.

Let b be an ideal of A, and let i € Nx. In section 9, under a condition on b, we
show that H induces an action group on H{(N @4c M) the i-th local cohomology

for N @46 M with respect to b such that (H} (N @ 4¢ M) and H} qe(N @ a0 M)



are A-isomorphic, where (H (N @ 4¢ M))" and M* are fixed submodules.
For the remainder of the introduction, we shall assume that G is finite and |G|,
the order of G, is invertible in A.

Let G = (G})ien, be a filtration of Spec (A) which admits N @ 4¢ A, and let
Fi={qnA® :0(q) € &; for all 0 € &}

for all © € Nx. Then, in section 10, we show that GG induces an action group on
C(G, N @ ¢ A) (respectively H'(C(G, N @ 4c A)) for all i € Ni). Also, we prove that
F = (F)ien, is a filtration of Spec (A%) which admits N and the fixed subcomplex
(C(G, N @40 A))Y (respectively the fixed submodule (H(C(G, N @ 4¢ A)))G for all
i € Ny) is isomorphic to the Cousin complex C(F,N) (respectively H'(C(F,N))
for all i € N¢). Also, we show that F is the dimension filtration of Spec (A%)
(respectively the N-height filtration of Spec (A%)), whenenver G is the dimension
filtration of Spec (A) (respectively the N @46 A-height filtration of Spec (A)).

For the remainder of the indroduction, k is a field, C' is a Noetherian k-algebra
and K is an algebraic extension field of £ for which B = C @, K is a Noetherian
ring. We shall let I' :== Gal (K : k) denote the Galois group of K over k. We shall
denote

{a€e K:0(a)=aforall o €T}

by F. We assume that [F' : k] is the dimension of F' considered as a vector space
over k.

Let p € Spec (C), and let

Fp(p) ={q € Gpec (B):f '(q) =p},

where f : C — B is the natural homomorphism of rings. The main result of

[43] shows that T' induces an action group on @ E(B/q) such that the fixed
qa€Fs (p)



submodule is C-isomorphic to E(C/p), whenever C' is a Gorenstion ring and K is a
finite, separable, and normal extension field of k.
In section 11, we prove that if A, when regarded as an A%-module, is finitely

generated (or A and A are Gorenstein rings), then G induces an action group on

@ EA(A/q) such that the fixed submodule is A%-isomorphic to E(A%/p), where

a€3(p)
p € Spec (A%) and

F(p)={q€ Gpec (A):qnA® = p}.

In section 11, we deduce the main result of [43], but without any restriction on C,

that is I' induces an action group on @ E(B/q) such that the fixed submodule

q€Fn(p)
is C-isomorphic to E(C/p), whenever K is a finite, separable, and normal extension

field of k and |T'|, the order of T, is invertible in C.
In section 12, we generalize the main result of [43]. We show that I" induces

an action group on @ E(B/q) such that the fixed submodule is C-isomorphic

9€Fs(p)
to &[F : k]E(C/p), where K is a finite extension field of £ and |T'|, the order of T,

is invertible in C. Also, we show that I' induces an action group on @ E(B/q)

q€Fs (p)
such that the fixed submodule is C-isomorphic to &[F : k| E(C/p), whenever C' and

B are Gorenstion rings. Note that, if C' is a Gorenstein ring and K is a finitely
generated extension field over k, then B is also a Gorenstein ring.

In section 13, we consider various questions of the following type: when does a
good property of A pass to A9? we prove that A is generalized Cohen-Macaulay (re-
spectively Buchsbaum) ring, then A% is generalized Cohen-Macaulay (respectively
Buchsbaum) ring. In this section, we show that A is a Cohen-Macaulay ring if and
if A% is a Cohen-Macaulay ring. Also, we show that, under a certain condition, if A

is a Gorenstion ring, then A% is a Gorenstien ring; and next, we use this result to



deduce, under weaker conditions, the results of K. Watanabe and R. Stanley (See
[11, (2.2) and (2.4)]). Also, we show that if A islocal and N @ 4¢ A is a balanced big
Cohen-Macaulay A-module, then N is a balanced big Cohen-Macaulay A%-module.



CHAPTER (I)
GENERALIZED HUGHES COMPLEXES

§1 ®-torsion functor and ®-transform functor.

Firstly, we define ®-torsion functor and list some properties of this functor.

1.1 DEFINITION. (See [2, 2.1]) A system of ideals of R is a nonempty set
® of ideals of R such that, whenever a, b € , then there exists ¢ € such that ¢ C ab.

For an R-module M, set
Lo(M) :={m € M : am = o for some a € }.

Note that I'¢(M) is a submodule M. For a homomorphism f : M — N of
R-modules, we have f(I'¢(M)) C T's(N); so that there is a mapping T's(f) :
I'e(M) — T's(N) which agrees with f on each element of T'g(M).

It is clear that, if ¢ : M — N and h : N — L are homomorphisms
of R-modeles and 7 € R, then Tg(hof) = Ta(h)ola(f),Ta(f +9) = Ta(f) +
Pe(g),Ta(rf) =rle(f) and Ie(Idp) = Idpgan. Thus, T'y is a covariant, additive
and R-linear functor from C(R) to itself. We call T'y the ®-torsion functor.

For i € Ng, the i-th right derived functor of T'g is denoted by Hj and is referred
to as the i-th generalized local cohomology functor with respect to P.

Note that in [2], T's is denoted by Lg¢, and also is called the general local
cohomology functor with respect to ®.

1.2 REMARK. It should be noted that if ® = {a': i € N}, for some ideal a
of R, then the ®-torsion functor I'g is just the ordinary local cohomology functor
with respect to a (See [24]).

For i € Ny, the i-th right derived functor of Ty is denoted by H' and is referred

to as the i-th local cohomology functor with respect to a.
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1.3 DEFINITION. Let M be an R-module and let ® be a system of ideals
of R. We shall say that M is ®-torsion free precisely when I'q(M) = 0, and that M
is ®-torsion precisely I'g(M) = M.

If M is a ®-torsion R-module, then all submodules and all R-homomorphic

images of M are also ®-torsion.

1.4 DEFINITION. Let f : R — R’ be a homomorphism of commutative
rings. For any ideal a of R, we use aR’ to denote the extension of a to R’ under f.
Also, for a system @ of ideals of R, we use ®R’ to denote {aR' : a € } of R/,

and we refer it as the extension of ® to R’ under f.

1.5 PROPERTIES OF LOCAL COHOMOLOGY FUNCTOR. Let M
be an arbitrary A-module and let ® be a system of ideals of A. Let i € Ny.
(1) To calculate H}(M), one proceeds as follows. Let

—1 0 . 1 .
I.:Od IO d I/ [l d [Z+1

be an injective resolution for M, so that there is an A-homomorphism a : M — I°

such that the sequence
0 M- Pop

is exact. Apply the functor I's to the complex I*® to obtain the complex

0 M) Py(10) — - T (1) 2 py (1Y)

the i-th cohomology module ker (I'g(d"))/Im(I's(d" 1)) of the complex, which, by a
standard fact of homological algebra, is independent (up to A-isomorphism) of the
choice of injective resolution I* of M, is Hi(M).

(2) Since T'y is covarant, additive and A-linear, it is automatic that the gener-

alized local cohomology functor H} is again covariant, additive and A-linear.
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(3) Since 'y is left exact, HY is naturally equivalent to I's. Thus, loosely, we
can use this natural equivalence to identify these two functors.

(4) In view of (1) and 1.3, Hy(M) is a ®-torsion A-module.

(5) (See [2, 2.4]) Let (M, ftap) be a direct system of A-modules and A-
homomorphisms over the directed set A. Then

Hi (lim Ma> =~ lim Hy (M,).

aEA a€A

(6) (See [2, 2.5]) Suppose f : A — B be a homomorphism of commutative
Noetherian rings. Any B-module N may be regarded as an A-module by means of
f. When this is the case, it is denoted by N[4. Note that [4 can be regarded as a
functor from C(B) to C(A). For each i € Ny, the functors Hj(e[4) and Hjy(e)[ 4
from C(B) to C(A) are naturally equivalent.

(7) (See[2, 2.6]) Suppose that S is a multiplicatevely closed subset of A. Let

Sto={Sta:ac}.

Then the functors S~ Hj(e) and Hi_,5(S~"(e)) (from C(A) to C(S™'A)) are natu-
rally equivalent.
(8) (See[34, 1.4(1)]) If G is a ®-torsion A-module, then every term in the
minimal injective resolution of G is also ®-torsion, so that Hy(G) = 0 forall i € N.
(9) (See [34, 1.4(ii)]) The canonical epimorphism 7 : M — M /I'g(M) induces
isomorphisms
Hy(r) + Hy(M) — H(M/T(M))

for all n € N.

1.6 NOTATION. For an ideal b of A, V(b) denotes the set

{p € Spec (A):bCp}.

12



1.7 LEMMA. Let ® be system of ideals of A. Then an A-module M is a
®-torsion module if and ouly if Supp (M) C UV(a).
ac

Proof. Let M be ®-torsion and p €Supp (M). Then there exist 0 # x € M
and b € such that (0:4 x) Cpand b C (0:9 ). Thus p € U%(a).

ac

Conversely, suppose that Supp (M) C UV(a). Let 0 # 2 € M. Then
ac

V((0:42)) € Supp(M) C | JV(a).

Let py,--+,p¢ be the minimal prime ideals of a =: (0 :4 x). Thus, for each i =
1,---,t, there exists ¢; € such that ¢; C p;. Therefore, in view of the fact that

ra(a) =p, N---Npy, there exists h € N such that
(¢ S (pr---p)’ € (va(a))’ C g

hence there exists b € such that b C (0 :9 7).

1.8 REMARK. (See [34, 2.1]) Let U and W be subset of Spec (A) such that
W 2 Supp (M). The set

®(U, W) ={a: aan ideal of such that B(a) N W C U}

is a system of ideals of A. It is easy to check that if M is an A-module such that
Supp (M) C U, then M is ®(U, W)-torsion.

1.9 LEMMA. Let ® be a system of ideals A and F(®) = UV(a). Let M be
ac

an A-module. Then
Supp (Hy(M)) C F(®) N Supp (M)

13



for all 7 € Ny.

Proof. Suppose that p € Supp (Hs(M)) and i € Ne. Then, by 1.5 (7),
Hy,(My) = (Hy(M)), # 0.

Hence ®A, # {A,} and M, # 0. Therefore p € F(®) N Supp (M).

1.10 LEMMA. Let f : A — B be a homomorphism of commutative Noethe-
rian rigns. Let G be an A-module and let N be B-module. Let U, W, X, Y be subset
of Spec (A) such that U C X and Supp (G) C W. Let

O(U, W) ={a:aisan ideal of A such that B(a) N W C i},

and suppose that ®(U,Spec (A)) = ®. Then, for each i € Ny,

<I’(UW @ Gy) =

peYP-X

(i) HéB( @ Np) =
peY—x
(i11) Hyp(( @ Gp) @4 B) =0
peY—x

Proof. (i) let i € Ne. By 1.5 (5) and 1.5(6),

<I>(UW @ Gy) = @ Hé(U,W)<GP) = @ Hé(U,W)Ap(GP)

peY—X peP-Xx peYP-X
@ Hclb(U,W)Ap(Gp)
pE(Y—-X)N Supp (&)

1%

Ifpe W and p € U, then

QU W)A, ={a, :a € (U, 20)} = {A,}.

14



Hence

Hé(uw)( @ Gp) = @ HEAF}(GP) = 0.

pe(P-X) pe(P—X)N Supp (&)
(ii) By 1.5(6) and (i),

Hys( D M) = Hy( @ Ny)=o.
pE(D—X) PE(V-X)
(iii) Since tensor product commutes with direct sum,

(@ Gy) ©a B = @ (Gy@aB) = @((G®AA|:)®AB)

peD-X peD-X peP-X

=~ B (GoaB)@aA)
peY—-X

>~ B (GoaB),

peYP-X

Hence the claim follows from (ii).

1.11 LEMMA. Let n € Ny, and let &g, ®1,--- , P, 11 be systems of ideals of
A. Let M be an A-module such that M is ®;-torsion for every ¢ = 0,...,n. Then

n+1
O = {j{:ai:aiei}
=0

is a system of ideals of A and Hy(M) = HS (M) for each i € Ny.

(I’n+1

Proof. 1t is easy to see that ® is a system of ideals of A.
Let

R I (N SN (RN o

be the minimal injective resolution of M. By 1.5(8), for each i € Ny, I' is ®;-torsion

for every j = 0,---,n. Hence I'g(I") = T'g,,,(I') for all i € Ne. Hence the claim

15



follows from 1.5(1).
For definition of ®-transform functor, we shall need the following remark.

1.12 REMARK. (See [24, 2.2]) Let (A, <) be a (non-empty) directed partially
ordered set, and suppose that we are given an inverse system of R-modules (M, )aea
over A, with constituent R-homomorphisms h§ : M, — M; (for each (a, ) € AxA
with a > (). Let T : C(R) x C(R) — C(R) be an additive, R-linear functor of two
variables which is contravariant in the first variable and covariant in the second. We
show now how these data give rise to a covariant, additive and R-linear functor

1in T(M,,e):C(R) — C(R).

aEA
Let L, N be R-modules and let f : L — N be an R-homomorphism. For
a,f € A with @ > (4, the homomorphism h§ : M, — Mj induces an R-

homomorphism

T(h§, L) : T(Ms, L) — T(M,, L),

and the fact that T'is a functor ensures that the T'(hg, L) turn the famiy (T (Ma, L))aca
into a direct system of R-modules and R-homomorphisms over A. We may therefore

form

lim T'(M,, L).

aEA

Moreover, again for a, 3, € A with a > [, we have a commutative diagram
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T(Mg, L) T(M,,L)
T(Mg, f) T(Ma, [)
T(Mjg. N) ) T(M,,N) :
3

therefore the family T'(M,, f)(« € A) of homomorphisms constitute a morphism of
direct systems and so induce an R-homomorphism

lim T(M,. f) : lim T(M,, L) — lim T(M,, N).

a€A a€EA a€EA

It is now straightforward to check that, in this way,

lim T (M, e).

a€EA

becomes a covariant, additive, R-linear functor from C(R) to itself. Observe that,
since passage to direct limits preservers exactness, if T is left exact, then so too is
liLn T(M,,e).
a€h

1.13 DEFINITION. (See [36,1.2]) Any system of ideals of R is a non-empty
partially ordered and directed set with respect to reverse inclusion. Also any system
of ideals ® of R gives rise to an inverse system of R-modules (a),c over ®, with
constituent R-homomorphisms Af : b 1 a (for each (a,b) € x with a < b that is
with b C a).

Let ® be a system of ideals of R. Tt is straightforward to adapt the ideas of
1.12 in an obvious way to produce a covariant, additive, R-linear, left exact functor

Dg = lim Homp(b, e)

be
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from C(R) to itself; Dg is called the generalized ideal transform determined by ®,

or, more briefly, the ®-transform. There is a morphism of functors
Ne - Id — D.:p

which is such that, for each R-module G and each g € G and each a € , the image
ne(G)(g) is the natural image in Dg(G) of the R-homomorphism A\qg : @ — &
defined by Aqq(r) =rg for all 7 € a.

1.14 PROPERTIES OF IDEAL TRANSFORM FUNCTOR. Let @ be
a system of ideals of A and let M be an A-module.
(i) (See [36,1.2]) For each A-module G, there is an exact sequence

0 —Te(G)— G (S Dg(G) — Hé,(G) — 0,

of A-modules and A-homomorphisms, where 1g(G) is as described in 1.13. Note
that
Ker 76(G) = I's(G) and Coker 14(G) =2 Hy(G).

(i) (See [34,1.4 (iii)]) For all i € Ny, let R'Dg denote the i-th right derived
functor of the left exact functor Dg. Note that, for each i € N, the functors R'Dg

and Hi' (from C(A) to itself) are naturally equivalent.

(iii) (See [34,1.5]) Let m : M — M /T'g(M) be the natural epimorphism. Then
the following hold:

(1) Do(Te(M)) = 0;
(2) Dg(m) : Dg(M) — Dg(M/T's(M)) is an isomorphism;
(3) Do(ne(M)) =no(Dg(M)) : De(M) — Dg(Dg(M)) is an isomorphism;
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(4> F@(Dé(M» =0= Hé(Dé(M»

1.15 LEMMA. Let ® be a system of ideals of A. Let e : C — ' be an
A- homorphism such that Ker e and Coker e are both ®-torsion. Then the A-

homomorphism Dg(e) : De(C) — Dg(C") is an isomorphism.

Proof. We shall need to use the exact sequences
0— Kere—5C -2 Ime — 0
and
0 — Ime 2 "% Coker e — 0

in which the maps are the obvious natural homomorphisms. Note that e = pgA; it
is therefore enough for us to show that Dg(p) and Dg(A) are both isomorphisms.

The first of the above exact sequences induces an exact sequence
Dg(7) Dg()) 1
0 — Dg( Ker ) = Dg(C) —" Dg(Im e¢) — R'Dg( Ker e).

However, R'Dg( Ker ¢) = HZ( Ker ¢) by 1.14 (ii). By hypothesis, Ker e is ®-
torsion. Hence, by 1.14 (iii) and 1.5(8),

Dg( Ker ¢) = H3( Ker ¢) = 0.

Hence Dg(A) is an isomorphism.

Next, from the exact sequence
0— Ime-2 "% Coker e — 0
we obtain an induced exact sequence
Da (o)

0 — Do(Im ¢) 222 Dg(C") P22 Dy(Coker ¢).
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However, by hypothesis, Coker e is ®-torsion, and so Dg (Coker e)= 0, by 1.14(iii).

Hence Dg(p) is an isomorphism.

1.16 LEMMA. (See [17, Theorem 7.11]) Let f : A — B be a flat homomor-
phism of commutative Noetherian rigns, and let M be an A-module. Then there is

a natural transformation of functors
o HomA(O, M) XA B— H0m3<<.> @A B, M XA B)

(frome C(A) to C(B)) which is such that

(i) un(g @ b) = b(g @ Idp) for each A-module N, each b € B and each g €
Hom (N, M) and

(ii) pun is an isomorphism if N is a finitely generated A-module.

We shall need the following lemma which is proved in [42,4.1.7]. But, for the

convenience of the reader, we have given it’s proof.

1.17 LEMMA. Let f : A — B be a flat homomorphism of commutative
Noetherian rings, and let ® be a system of ideals of A. Then the two functors

Dy (o) @4 B and Dgp(e @4 B) (from C(A) to C(B)) are naturally equivalent.

Proof. Let M be an A-module. For every two ideals a,b in ® with a < b (that

is b C a), the inclusion map hf : b — a gives rise to the direct systems

(HO’I’I’LA(CL, i)ﬁ) Ry %)ae and (ﬁomg[( g, TJng) ® 30%)
(a,b) € x
a<b

of B-modules and B-homomorphisms over the directed set ®. Hence, by [1,p.33,
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Exercise 20], there is a natural B-isomorphism

wyy : (lim Homa(a, M) Qg B — lHm(Homy(a, M) @y B).

ac ae
For any a, b in ® with b C a, let hly : BB — aB be the inclusion map. Recall

from [17, Theorem 7.7] that there exists a B-isomorphism A, : a8 — a @g B, for
any ideal a of A, such that the diagram

Aa
a’B a @y B
hg% hi @ Idg
bB b @y B
Ap

commutes for any a, b in ® with a < b. Therefore, by 1.16, the diagram

Homp(Ag, Idare , B)ottam

Hom 4(a, ) @y B Hompg(aB, M @4 B)
HomA(hg,IdM) & Id H0m3<hg§,IdM®AB>
HomA(b,i)ﬁ) ®Q[% HomB(b%,ﬁﬁ@)g %)

Homp(Xe, Idare ,B)ottem
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commutes for any a, b in ® with a < b. Therefor there exists a B-isomorphism

yar s Hm(Homa(a, M) Qg B) — lim Homeg (aB, M @y B).

ag ag

It is easy to see that there exists a B-isomorphism

7o lim Homp(aB, M Qg B) — lim Homg(aB, M @y B).

a€e aBeB

We denote 7,,0v30wy; by €y,. Hence, if

[ ]: Homu(a, M) — D(M) and [ ] : Homg(aB, M Qg B) — Dy (I Qg B)
are the cononical homomorphisms for any a € , then
O - Do(M) @4 B — Dop(M @4 B)
is a B-isomorphism and, for all a € , g € Hom(a, M) and « € B,
On(lg] © @) = [alg @ Idg)oAd]".

Also if N is a second A-module and v : M — N is an A-homomorphism, the

diagram

On
Dy(M) @4 B Dop(M @4 B)
Dg (V) @ Idp Dgp(y @ Idp)
Ds(N) @4 B Dsp(N @4 B)
On
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commutes. This completes the proof.

We shall need the following lemma for 1.19.

1.18 LEMMA. Let ® be a system of ideals of A and let a be an ideal of A.
Let M be an A-module. Then we can identify Hom 4(a, 9(9%)) with a submodule of
Hom 4(a,90) : when this is done,

Homa(a,d(9M)) = o(Homgy(a, M)).

Proof. Suppose that g € T'o(Hom(a,9)). Then there exists b € such that bg = o.
Hence Im g C T'g(M); hence g € Hom 4(a, d(9MN)).

On the other hand, suppose that g € Hom(a,0(9M)) and a = A, + - - - + Ay
where aq,---,a; € A. Then, for each 1 < ¢ < t, there exists b; € such that
big(ci) = o. Next there exists ¢ € such that ¢ C b; for each i = 1,--- ,¢t. Hence
cg = 0; so that g € T'g(Homa(a,IM)).

1.19 LEMMA. Let ® and © be two systems of ideals of A, and let M be an
A-module. Then
I'e(Do(M)) = De(T's(M)).

Proof. By 1.5(5) and 1.18,

La(Do(M)) = Lo(lim Hom (a,M))

acf

= limCg(Homa(a, M)

acf

= lim Hom(a,0(9M)) = D;(o(M)).

acf

1.20 LEMMA. Let M be an A-module, and let ® be a system of ideals of A.
Then Supp (De(M)) C Supp (M).
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Proof. Let p € Supp (Dg(M)). Since the natural homomorphism A — A, is
flat, it follows from 1.17 that,

0# (De(M))y = Da(M) @4 Ay = Doap(M @4 Ay) = Do ap(My).
Hence M, # 0, and so p € Supp (M).

1.21 LEMMA. Let n € Ny and let &g, @4, , P, 11 be systems of ideals of
A. Let M be an A-module such that M is ®;-torsion forall 7 =0,--- ,n. Then

n+1
<I>={Zai:ai€i}
1=0

is a system of ideals of A and there is an A-isomorphism ¢ : Dg(M) — Dg,,, (M)

n+l<

such that the diogram

ne (M)
M Dg(M)
(G
Ndp i1 (M)
D‘I’n+1 (M)

commutes.

Proof. Application of the morphism of functors ng,., : Id — Dsg, ., to the

modules and homomorphism in
Ne(M) : M — Dg(M)
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yields a commutative diagram

ne (M)
M Dg(M)
N®,11 (M) n¢n+1<D¢<M>>
D<Pn+1 (M) D¢n+1<D¢<M>>
Ds, ., (ne(M))

Thus, in order to prove the lemma, it is enough to show that De, , (7e(M))

and 7, ,,(Dg(M)) are A-isomorphisms.

n+l<

By, 1.14 (i) and 1.5(4), Ker ne(M) and Coker ne(M) are ®-torsion, and so it
is immediate that Ker ne(M) and Coker ne (M) are @, q-torsion. Hence, by 1.15,
Ds, ., (ns(M)) is a an A-isomorphism.

By, 1.19 and the hypothesis, Dg(M) is ®;-torsion for all i = 0,---,n. Hence,
by 1.11 and the part (4) of 1.14 (iii),

Hy  (Dg(M)) = Hg(Dg(M)) =0 and I'y_ ., (Dg(M)) = L'e(De(M)) = 0.

n+1( n+1(

Hence, in view of 1.14 (i), 7¢,,,(De(A)) is an isomorphism.
Now, we present another proof for 1.21.
For each a;,, == a5 +a, +--- + aup, €, let

[ ] Homa(ay,,, ) — D(9M) and [ | : Homg(an,, M) — D, (M) be the

n+1

cononical homorphisms.

For each a;,, :== a5 + -+ - + any, €, we define

%'

n+1

: Homa(ag,,, ) — D, (M)

n+1(
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by Yo (f) = [flaws,] where f € Homa(ay,,, D). It is clear that ¢y, is an
A-homorphism.
Let a:1+1 = ao+a1+' "+an+1, bil+1 = bo+bl+" '+bn+1 < Wlth a:1+1 g bil+17

we show that the diagram

Homy(ay,,, M) Dg

ZZ)bln+1
Homy(by,,, M)

in which the vertical map is the restriction homomorphism, is commutative. Let

f € Homyu(ay,,,9). There exists ¢ € 4, such that ¢ C a,y, and ¢ C byy,. Hence

(flaws)le = (flo)le- Therefore vor  (f) = e, (fle,,)-
Hence there exists an A-homomorphism ¢ : Dg(M) — Dsg, ., (M) which such

that ©([f]') = [flaws.]), for each a , = ao + -+ any, € and f € Homy(ay,,, ).
We show that 1 is injective and surjective.

It follows from 1.5(8) that there exists an injective A-module E such that
M C E and F is ®;-torsion A-module for all i =0,--- , n.

Let aj,, = as+ -+ anyy € and f € Homy(ay, . 9M) such that ¢ ([f]') = 0.
Then there exists b,,; € 44, such that by, C a,,, and f‘bn+l = 0. There exists an
A-homomorphism ¢ : A — E such that g|a’n+1 = f. Assume that g(14) = e. since F
is ®;-torsion and ®; is a system of ideals of A for all i = 0,--- ,n, there are b; € ;
such that bje = o and by C a; for all i = 0,1,---,n. Let by, := by + -+ bpy,.
Then

hiH»l g a:1+1 and ﬂbln_i_l = glh’,‘+l = g|bn+1 = ﬂbn+1 = O

Therefor [f]' = 0.
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It follows from last pargragh that ¢ is injective. Now, we show that v is
surjective.

Suppose that anyy € niy and h € Homy(any,, M). Then there exists an A-
homomorphism # : A — E such that §|,,,, = h. Assume that #(14) = 2. Then,
since F is ®;-torsion for all « = 0,---,n, there are a; € ; such that a;x = o for
all i = 0,---,n. Let ai,, := a5+ -+ + @yy,. Then Oy = 0, = h. Hence

9|a1‘+1 € Homy(a,,,91) and w[(e\ml]/) = [h].
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§2 A Characterization of generalized Hughes complexes.

2.1 DEFINITION. Let M be an R-module, and let S = (®;);en be a family
of systems of ideals of R. The generalized Hughes complex for M with respect to S

18 writen as
h71 . hO . hz .
0—M"—-K "K' — ... — K 25 K™ — ... (%)

and is described as follows. Set K2 =0, K ' = M, and let h 2 : K2 — K!
denote the zero homomorphism. For all n € Ny, let K" := Dg, ., (Coker h"=?), and
let A"~ K"~' — K™ be the composition of the natural epimorphism from K"~!
(Coker h"~%): Coker h"? — Dg

to Coker h" 2 and the homomorphism 7g

n+1 n+1

(Coker h"~?)= K™. Then complex (x) is denoted by H(S, M) and is a generalization
of are constructed by K.R. Hughes in [12].

2.2 DEFINITION. To say that the two complexes C% = (C!)i>a2(a = 1,2)

of A-modules and A-homomorphisms of the form

d-2? d e do dr.
c? cg cg cg
0 —=2% 44_a>02_a>0é_>..._>02_a>02+1_>...

are 1somorphic over Idy, is to say that there is an isomorphism of complexes
U= (")iz—:C} — C3

which is such that ¢! : M — M is the identity mapping Id,,. Similarly to say
that a morphism of complexes © = (0");> 5 : Ct — C3 is over Idy is simply to
say that =1 = Id,,.

Throughout this section, M is an A-module and & = (®;);en denotes a family
of systems of ideals of A. Let
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@) := {a: ais an ideal of A such that V(a) CSupp (M)}.

Note that @, is a system of ideals of A and, for every x € M, (0 :4 ) € ®q
thus M is ®q-torsion.
As a preparation for our charactorization of generalized Hughes complexes, we

begin by noting some properties of such complexes.

2.3 REMARKS. (i) For each n € Ny,

Coker h"~' 2 Coker (ng,,,(Coker h"~ %)) = Hyg  (Coker h"?)

n41 +1

(by 1.14 (i)), and so Coker A"~ is @, -torsion (by 1.5(4)).

(ii) For each n € Ny,
H" '(H(S,M)) = Ker (ns,,,(Coker h"?)) 2Ty, (Coker h"?)

(by 1.14 (i)), and so H"'(H(S, M)) is ®,,,;-torsion (by 1.5(4)).

(iii) For each n € Ny,

N (K") : K" — Dg, (K™)

n+1

is an isomorphism (by 1.5(4) and 1.14 (iii)).

2.4 LEMMA. (i) For each n € Ny, Coker h""? is ®;-torsion for every i =
0, ,n.
(ii) For each n € Ny, H* ™ (H(S,M)) is ®,-torsion for every i = 0,---n + 1.

(iii) for each n € Nx, K* is ®;-torsion for every i = 0,--- , n.

Proof. (i) We prove this part of lemma by induction on n. The case in which

n = 0 is immediate by the fact that Coker h 2 = M.
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Now suppose, inductively, that j > 0 and the result has been proved for 57 — 1.
By 2.3 (i), it is enough to show that Coker i/ 2 is a ®;-torsion A-module for all
t=0,1,---,7 — 1. It follows immediatly from the inductive hypothesis that Coker
hi=3 is a ®;-torsion A-module for all i = 0,1,---,j — 1. Therefore it follows from
1.19 and K7°' = Dy, (Coker h'~?) that K7 ' is a ®;-torsion A-module for all
i =0,1,---,5 — 1. Hence, by 1.3, Coker h'~2 is a ®;-torsion A-module for all
t=20,---,7 —1; and this completes the inductive step.

(ii) This follows from (i) and 2.3 (ii).

(iii) This follows from (i) and 1.19

We can deduce the following lemma from 2.4 and 1.7, but we present here a

direct proof.

2.5 LEMMA. Let F(®,) = | V(a) and F, = (| F(®;) for each n € Ny,
acn i=0

Then
(i) for each n € Ny, Supp (Coker h"~?) C F,.
(i) for each n € Ny, Supp H" Y(H(S,M)) C F, 1.
(iii) for each n € Nx, Supp (K™) C F,.

Proof. (i) We prove this by induction on n. To begin, note that, in the case
when n = 0, the claim is immediate from the fact that if p,q €Spec (A) such that
p C qand p € Supp (M), then q € Supp (M).

Now suppose, inductively, that 7 > 0 and the result has been proved for j—1. It
immediately follows from this inductive hypothesis that Supp (Coker h/~3) C F;_;.
Hence, by 2.3 (i) and 1.9,

Supp (Coker h'~2) C Supp (Coker ' *)N F(®;) C F; 1 N F(®;) = F}.
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The inductive step is therefore complete.
(ii) This follows from 2.3(ii), 1.9 and (i).
(iii) This follows from (i) and 1.20.
We can now prove the main results of this section.

2.6 THEOREM. Let F(®,) = | JV(a). For each n € Ny and let

acny

—2 -1 0 n
0 Mo ot oo S ot L

be a complex C* of A-modules and A-homomorphisms such that
(a) Supp (Coker ¢"~2) C F(®,,) (or equivalently Coker e"~? is ®,-torsion),
(b) Supp (H" }(C*)) C F(®,41) (or equivalently H" *(C*) is ®,,,-torsion),

for each n € Nyx. Then there is a morphism of complexes
U = (wn)nsz : C. S H(S, M)

over Idy,.
In fact, we can give the following information about the constituent homomor-

phisms of ¥. Of course, 1) ' = Idy. For n € Ny, let
Y1 : Coker ¢"? — Coker h"?

be the homomorphism induced by ¥"~!, and let en~! : Coker ¢"~2 — C™ be the

homomorphism induced by e"~'. Then (Dsg,,,(e" 1) is an isomorphism and)

ZD" - D‘I’n+1 (wn_l)ﬂD‘@nﬂ (en_1>71 071%,, 41 (Cm)

Moreover, if 7p,,,(C") : C" — Dsg,,,(C") is an isomorphism for every n € Ny,

n+1(

then the morphism W is an isomorphism of complexes.
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Proof. It will be convenient to write C"2=0and C ! =M. Let ¢ 2:C % —

K2 be the zero map and ¢y ! : C~! — K ! be the identity mapping on M. These

provide a basis for the following induction.

Let n € Nx and suppose that we have already construceted A-homomorphisms

P O — Kifori=—2,-1,0,---,n — 1 such that the diagram

e~ ? e ! 0 o2
072 Cfl CO Cn72 Cnfl
1/}72 77/)71 77Z)O wan 77Z)nfl
h_2 h—l h(] hn—Q
K2 K1 K° Kn—? K1
comumutes, and suppose that it has also been shown that ¢°, -+, 4" must

all be isomorphisms if 7, ,(C?) : €7 — Dg,,,(C7) is an isomorphism for all

j=0,-,n—1.

From our inductive assumptions we obtain a commutative diagram

Coker e" 2

!/
Th—1
Cn—l
wn—l
Tn—
[('n—l

in which 7,4, 7),_; and ¢Ym! are the canonical homomorphisms.
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F

Now, using the



morphism of functores ng, ., : Id — Dsg,,, of 1.13; we obtain a commutative diagram
77¢n+1 (C")
cn D<I>n+1 (Cn)
€n_2 D¢7z+1 (en_1>
T Ns.,,, (Coker ¢"~?)
et Coker "2 Dg,, ., (Coker ¢"~?)
wnfl ZEjT l)¢n+1cwn71)
o1 Do, ., (Coker h" ?)
K-t Coker hn—2 Ds,,, (Coker h"=?) := K™.

Ker "1 and Coker e"~! are ®,,,-torsion, because Ker e"~1 = H"~!(C*) and Coker

en—t = Coker ¢"~'. Hence, by 1.15, Dg,,,(e"!) is an A-isomorphism. Now, let

wn : C" — K™ to be D¢n+1(’(z}n_1)(] D¢n+1(€n_1>71 077¢n+1(0n>. Then ¥™ is an

A-homomorphism and the diagram

en—l
Cn—l Cn
77bnfl wn
n—1
K=t h K"

commutes. ¥" must be an isomorphism if 5, (C?) : ¢ — Dg,,,(C7) is an isomor-
phism for all j = 0,---,n. This completes the inductive step and the result follows

by induction.

2.7 THEOREM. Let the situation and notation be as in 2.6. Then the
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morphism of complexes
‘I/ = (ZZ)i)iZ_Q . C. — H(S, M)

over Id,; is unique.

Proof. We prove this by induction on n.

Let n € Ny and suppose that we have proved that there is exactly one family
of A-homorphisms (¢")_s<;<,_1 such that

(a)y': C" — K' for each i = —2,--- ,n — 1,

(b)Y~ : M — M is the identity map, and

(c) the diagram

6_2 6_1 60 en—Q
0—2 C—l CO P Cn_2 Cn—l
,w—? dr& dﬁ ,wn—Q ,¢n—1
h_2 h—l hO hn—Q
1{—2 [{—1 }(0 }(n—Q }(n—l

commutes.
This is certainly the case when n = 0.

Let ¢ : C™" — K™ be an A-homomorphism such that the diagram

enfl

(jnfl (jn

ZZ)nfl ©
hnfl

Rt ————— K"

commutes. Then we obtain a commutative diagram
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eTL

Coker "2 cn
wn—l (p
N,., (Coker h"~?)
Coker h"2 K" := Dsg, ., (Coker h"2).

we now use the morphism of functors ne,,, : Id — Dg, , of 1.13 and use the

functor Dg, ., ,; we obtain diagrams

N®, 41 (Cn)
cn D‘I’n+1 (Cn)
99 D(I’n+1 ((10)
T/¢n+1 (Kn)
I(n D(I’n+1 (Kn)
and
D(I’n+1 (en_l)
D¢7z+1 (COker en72> D¢7z+1 (Cn>
D<I>n+1 (¢"_1) D<I>n+1 (W)
D(I’n+1 (77@714»1 (COker hniZ))
Dq,n+1 (COkGI' hn72> Dq>n+1 (1(")

in which commute. It should be noted that Dg, , (e"!) is an isomorphism, by 2.6,

and that, by part (3) of 1.14 (iii),

Ds, ., (1, (Coker h"_Q)) = ns,,,(Ds, ., (Coker h"_Q)) =Ne, ., (K")
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and ne,,,(K™) is an A-isomorphism. Thus

n+1

Y = (77<I>n+1<[(n))71 OD‘I’n+1 (99)077‘1’7;+1 (Cn>
= (77<I>n+1<[(n))_1 0D<I’n+1 (77<I>n+1 (COkerhn_2>>0D‘I’n+1 (wn_l)U<D¢n+1 <6n71>>_1 0@, 1 (Cm)
= Ds,,, (V" ")o(Da, ,(e" 1) ona,,, (C") = "

It therefore follows that there is at most one A-homomorphism " : C" — K™ such

that the diagram

en—l
Cn—l Cn
ZDn—l 77Z)n
n—1
I(nfl h Kn

commutes. The inductive step is therefore complete.

2.8 COROLLARY. Let F(®,) = | V(a) and F, = (") F(®;) for each n €

acn =0

Ny . Let

—2 -1 0 n
0L M Es o Lot oo S ot L

be a complex C* of A-modules and A-homorphisms. Then the following statements
are equivalent:
(i) there is a unique isomorphism of complexes over Idy, from C* to H(S, M).
(ii) For each n € Ny,

(a) Supp (Coker e"2)C F, (or equivalently Coker e" 2

is ®,-torsion for all
i=0,---,n),

(b) Supp (H"™'(C*)) C F,1 (or equivalently H"~!(C*) is ®;-torsion for all
i=0,--,n+1),

(c) ns,,,(C"): C" — Dg, ., (C") is an A-isomorphism.
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(iii) For each n € Ny,

(a) Supp (Coker e"~2) C F(®,) (or equivalently Coker "2 is ®@,,-torsion),
(b) Supp (H"Y(C*)) C F(®,41) (or equivalently H"~!(C*) is ®,,,,-torsion),
(¢) No,,,(C"): C" — Dg, ., (C™) is an A-isomorphism.

Proof. (i) = (ii) This follows from 2.4, 2.5 and part (3) of 1.14 (iii).
(71) = (dii) this is clear.

(7ii) = (i) This follows from 2.6 and 2.7

2.9 THEOREM. Let F(® U V(a) for each n € N, and let

acn

0 M Lt Lot o Dot

be a complex C* of A-modules and A-homomorphisms such that

(a) Supp (Coker e"~2) C F(®,) (or equivalently Coker "2 is ®@,,-torsion),

(b) Supp (H"'(C*)) C F(®,41) (or equivalently H"~'(C*) is ®,,,,-torsion),
so that, by 2.6 and 2.7, there is a unique morphism of complexes ¥ = (¢)"),>_ :
C* — H(S, M) over Idys. Assume that

(c) e"(Ts,,,(C™)) C Ty, ,(C") for all n € Ny, and
(d) Hy,,,(C™) =0 for all n € Ny

Then 9" is an epimorphism with kernel I'g,,, (C") for each n € Ny; so that
H(S, M) is isomorphic (over Idy;) to the quotient complex H(Z,M)/Y*, where

Y* = (Y"),>_2 denotes the subcomplex
0—20 u—_l> FfPl (CO) u—0> e F‘:I>n+1<cm> u—n> F‘I’n+2(cn+1) —

of C*.
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Proof. Write the quotient complex C*/Y* as

_9 —1 0 . 1 .
Z.:Of_>Mf_>Z0f_>Z1_>____>sz_>Zz+1_>___

We show that H(S, M) is isomorphic (over Idy) to the Z°.
Let n € Ng. Firstly, we show that Supp (Coker f"~2) C F(®,). We have the

exact sequence

Imen72 + Ynfl Cnfl Cnfl
— —
Imen—2 Imen—2 Imen—2 4 Yn-1

weher Coker e" 2 = C™ 1 /Ime™ 2 and Coker f* 2= Z""1/Imfr 2= C" 1 /Ime" 2+

Y"1 Hence

0— — 0

Supp (Coker f"~%) C Supp (Coker e"~?) C F(®,).

Now, we show that Supp (H" '(Z*)) C F(®,,1). It is clear that there is a mor-
phism of complexes IT = (7"),>_5 : C* — Z* over Idy; such that 7" is canonical

epimorphism, for each n € N.. We have a commutative diagram

enfl
Coker "2 cn
ﬂnfl "
fnfl
Coker fn—2 z"

in which 77~! e?~! and f»~! are induced homomorphisms. We have exact
sequences

(7=T) 1 ( Ker 1) 72 Ker foT — 0

and
n—1

0 — (Ker e )N (en1)"HY") — (en1)"HY") = Ime" ' NY" — 0.
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Since Ker fr=1T = H" 1(Z*), Ker e" T = H" 1(C*) and (7"=1)"}( Ker fn-1) =

(en~1)~L(Y™), we have

Supp (H"™'(Z*)) < Supp ((e"=1)7'(Y™))

= Supp (Ime" ' NY™)U Supp (H* 1(C*) N (en=1)~"1(Y™))
(Y")U Supp (H"~H(C*))
(V") U F(®y41).

C Supp
C Supp (V"

It follows from 1.9 that Supp (Y") = Supp (T'e,,,(C™)) C F(P,1). Hence

Supp(H"~'(2%)) € F(®p11).

We can therefore apply theorems 2.6 and 2.7 to the complex Z°® to see that there is

a unique morphism of complexes
E = (W)HZ,Q )/ /p— H(S, M)

over Idy;. By Theorem 2.6, in order to show that VU is an isomorphism of complexes,

it is enough for us to show that, for each n € Ny,
N0, (C"/Y") : C"[Y" — Da,,,, (C"/Y™)

is a isomorphism. However, Y =Ty cn)) =

0 and, by 1.5(9),

.1 (C™), and so, since I'y,,, (C" /T, ., (

H$n+1 (Cn/]‘—‘q)nJrl (Cn)) g H$n+1 (Cn)?

it is an easy consequence of 1.14 (i) and the hypothesis that Hg  (C™) = 0.

+1

It is clear that ¢"(7" is an epimorphism with kernel Y =Tg,_,,(C"), for each
n € Ne. The uniquenes aspect of ¥ implies that WyIT must be . Hence 9" is an
(cm).

epimorphism with kernel Y™ =T'g

39



2.10 REMARK. Let the situation and notation be as in 2.9. Next, we present
another proof for this statement Supp (H" (Z*)) C F(®,,1) for all n € Ny.
Let n € Ny, and let p €spec(A) and p & F(ny1). Then (H"1(C*)), = 0 (1).

In view of 1.9, it is clear that
Supp(H"(Y*)) € Supp ( Ker (u")) € Supp (V") C F(Py41).

Hence (H™(Y*)), = 0 (2). It therefore follows from the long exact sequence of

cohomology modules resulting from the exact sequence of complexes
0—Y*—C*"—2°"—0
that there is an exact sequence of A-modules
H™Y(C*) — H" 1 (Z%) — H™(Y*).
Hence there is an exact sequence of A,-modules
(H™ HC%))p — (H" H(Z%)y — (H™(Y*)), (3).

It follows from (1), (2) and (3) that (H" '(Z*)), = 0. Hence p & Supp (H" '(Z*)).
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3 Morphisms between generalized Hughes complexes.

Throughout this section, M will denote an A-module. We shall let
®y ;= {a: ais an ideal of A such that U(a) C Supp (IM)}.

3.1 PROPOSITION. Let § = (®;);en and Z = (0;);en be two families of systems
of ideals of A.
(i) If, for each n € N and each b € f,, there exists a € , such that a C b, then

there is a unique morphism of complexes
U:H(Z,M) — H(S, M)

over Idy,.

In particular, this conclusion applies of ©,, C ®,, for all n € .

(ii) If, for each n € N, the system O, is a cofinal subset of ®,, then the
unique morphism of complexes U : H(Z, M) — H(S, M) over Idy; (of (i)) is an

isomorphism.

Proof. Write the generalized Hughes complex H(Z, M) as

i

—1 0 . .
0—o MEZL 02, o

(i) Tt is easy to see that U V(a) C U U(a), for each n € N. Hence, by 2.5,
acfn acn
Supp (Coker w"?) C U V(a) and Supp (H" *(H(Z, M))) C U V(a),
acn a€n+a
for each n € Ny. The result is therefore immediate from 2.6 and 2.7.

(ii) Tt follows from the assumption that L™ := Dg, , (Coker w"~?) is isomorphic

n+41

to Dg,,, (Coker w"=?), for each n € Ny. Hence, by the part (3) of 1.14 (iii),
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N, : L™ — Dg,, (L") is an isomorphism, for each n € Nx. The claim follows

n+1(

from 2.6

It is easy to deduce the following theorem from 2.9 and the proof of 3.1.

3.2 THEOREM. Let § = (9;);ey and Z = (0;);en be two families of systems
of ideals of A such that ©,, C &, for all n € N; so that, by 3.1, there is a unique
morphism of complexes ¥ = (¢"),>_o9 : H(Z, M) — H(S, M) over Idy;.

Write the generalized Hughes complex H(Z, M) as

—1 0 . i .
0— M2 02 o i
Assume that
(a)w"(Tp,,, (L") CTs,,, (L") for all n € Ny, and

(b)Hg, ., (L") =0 for all n € Ny,
Then 9" is an epimorphism with kernel I's, (L"), for each n € Ny, so that
H(S, M) is isomorphic (over Idys) to the quotient complex H(Z,M)/Y*, where

Y* = (Y"),>_s denotes the subcomplex

0—0— T, (L% — -+ — T, (L") — Lo, (L") — -

of H(Z, M).

3.3 LEMMA. Let the situation and notation be as in 3.2. write the general-
ized Hughes complex H(S, M) as

0" M RO R K
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Alsoset L?=K?*=0L2=K?=0,L'=K"'=M, and use w2 = h3:
K3 —K?andw ?=h?%: K 2—K! to denote the zero homomorphisms.
Let n € Ny. If H(S, M) is exact at K=2, K~! --- | K"™2 then H(Z, M) is also
exact at L=2,L=! -+.  L"2 and v is an isomorphism for all i = -2, —1,--+ ,n—1.
In particular, if H(S, M) is exact, then H(Z, M) is also exact and ¥ is an

isomorphism of complexes.

Proof. We prove this by induction on n. the claims are certainly the case when
n = 0.

Now suppose, inductively, that [ > 0 and the result has been proved for [ — 1.
Assume that H(S, M) is exact at K2 K~ ... K'=2 It is enough to prove that
Y is an isomorphism for all i = —2,—1,---,1 — 1. It immediately follows from
the inductive hypothesis that 1/=2,7~", -+, 9!=% are all isomorphisms. This implies
that Coker w'=® 2 Coker h'=%: Now, by 2.3 (ii),

H'"2(H(S, M)) =Ty, (Coker h'™%),

and this is zero since H(S, M) is eact at K'=2. Therefore I'y, (Coker w'=3) = 0.

Hence we can use 1.19 to deduce that
[y, (L) = T'y,(De,(Coker w'™?)) 2 Dg, (I's,(Coker w'=?)) = 0.

Therefore ¥'~! is an isomorphism, by 3.2, and the inductive step is complete.
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84 Generalized Hughes complexes and ring homomorphisms.

4.1 LEMMA. Let G be an A-module, and let f : A — B be homomorphism

of commutative Noetherian rings. Let L be a B-module. Then, for each i € Ny,
Suppg(Tor(G.L)) C {q € Spec (B):§ '(q) € Supp (&)}

Proof. Let i € N¢. Assume that q € Suppg(Tor?(8, £)), and set p := §'(q).
Then there exists 0 # x € Tor(G, L) such that (0 :p 2) C q. Hence (0 :4 x) C
f~Y(q). Consequently, f~1(q) € Supp 4(Tor?(G,L)). Since, by [16,3.E, page 21],

TOTzAp (GP7 LIJ) = (TOT;'A(Gv L))Pv

it follows that p € Supp 4(G).

4.2 THEOREM. Let M be an A-module, and let
—2 —1 0 n
0 Moo ol L, ot L
be a complex C* of A-modules and A- homomorphisms. Let f: A—B be homo-

morphism of commutative Noetherian rings, and let L be a B-module. write the

complex C* @4 L as
E_l en
0—Mo L e, s —sCh o, L o g s

Then, for each n € Ny,
Supp (Coker ("% @ Idy)) = Suppg(Coker e" 2 @4 L) and Suppg(H" H(C*® @4
L)) C Suppp(H"'(C*) @4 L)U Supp g(Tor{*(Coker "=, L)).

Proof. Let n € Ne. It will be convenient to abbreviate H"}(C*®) by H" ! in

the remainder of proof; also, we interpret C~! as M and C? as zero. The complex

44



C* induces, in an obvious way, exact sequences
_ T _ A _
0—H"' - Cokere”? == Ime™™'—0 (1)

and
0—Ime" ' L5 0" 25 Coker e"~'—0. (2)
Also, there is the commutative diagram

en—Q T
cn—? crt Coker ¢""2 ——— 0

PoA (3)

Cn

in which 7 is the canonical epimorphism. Apllication of the right exact function
e @4 L to the modules and homomorphisms in the diagram (3) yields a commutative
diagram

e" 2@y, ldy T®1ldyp

C"2@4 L C" '@, L Coker "2 @4 —— 0

(poA) @ Idp — (4)
en1 @ Idy

Ch"@a L

such that its row is an exact sequence. Let 7 @ Idy, : Coker ("2 @ Id;)— Coker
"> @4 L and e"~1 @ Idy: Coker (¢" %@ Idy)—C™ @4 L be the homomorphisms
induced by 7 @ Idy and e" ' @ Idy. Then, by (4), 7 @ Idy is an isomorphism of

B-modules and the diagram
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T IdL
Coker ("2 @ Idp ~ Coker e" 2 @4 L

(poN) @ Id, — (5)

C" @y L

commutes. Hence, by (5), there is an isomorphism of B-modules
H" Y(C* @4 L) = Ker (e @ Idy) — Ker ((poA) @ Idy). (6)

It follows from (5) that Suppp (Coker (e" 2@ Idr)) =Suppp (Coker e" 2@ 4 L).
It is easy to see that Ker ((po\) @ Idy) = (A @ Idy) Y ( Ker (p @ Idyp)). Let
X =(A\@Idy) ' (Ker (p@Idg)). Then sequence

0— Ker (MA@ Id;) N X—X "% Ker (p @ Idy) N Im(\ @ Id;,)—0

is exact. Hence, by (6),
Suppg(H" ' (C*@4L)) = Suppg(X) C Suppg( Ker (A\@1d;))USuppz( Ker (p@Idy)). (7)

The exact sequences (1) and (2) induce exact sequences

H '@, L ™% (Coker e 2 @4 L) "% (Ime™!) @4 L—0

and

(Coker e"~!, L) £

Ime" @, LY cng, 2% (Coker e"™1 @, L) — 0.

Hence, by (7),

Suppg(H" 1 (C* @4 L)) C Suppg(Im(rt @ Idr)) U Suppg(Impu)
C Suppg(H" ™t @4 L) U Suppg(Tord(Coker e"~, L)).
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4.3 THEOREM. Let § = (®;);en be a family of systems of ideals of A, and
let M be an A-module. Write the generalized Hughes complex H(S, M) as

h72 hfl hO . hi .
0—-M>*">K' S K'— ... K2 K

Let f : A— B be a homomorphism of commutative Noetherian rings. Let SB =
(®;B);en (we are using notation introduced in 1.4), a family of systems of ideals of B.

Then there is a unique morphism of complexes of B-modules and B-homomorphisms
U= (Y")ps_9: H(S, M) @4 B—H(SB,M @, B)

over Idye ,B.

Furthermore, V¥ is an isomorphism of complexes if and only if
T"I)n+1B([(n ®A B) : K™ ®A B — D¢n+1B(K’n ®A B)

is an isomorphism for every n € Nj.

Proof. Set
Dy := {a: ais an ideal of A such that U(a) C Supp(IM)}.
By 2.6, it is enough for us to show that, for each n € Ny,

Supp(Coker h"* @ Idy) C (] V(b)
bcn'B

and

Suppy(H"'(H(S.M)@4B)) € | V().
bed,41 B
It follows from 2.5, 4.1 and 4.2 that

Suppg(Coker (h"~? @ Idg)) = Suppg(Coker h"~% @, B)
C {q € Spec(B) : f7*(q) € Suppy(Cokerh™?)}
C {g € Spec(B) : f *(a) € JB(a)} € J Do),

acy ben%
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and

Suppg(H" ' (H(S, M) ©4 B)) C Suppg(H"'(H(S, M) ©4 B)) U Suppg(Tori!(Coker
h"~'.B))
C {q € Spac(B) : {'(q) € Suppy (H" " (H(S,9M))U
Supp 4(Coker h"~1)}

C {9 €Spac(B): ' (q) € | J V(a)}
a€Ent1
c Y v
b€n+1%

We shall treat two important cases in which the morphism of complexes ¥ of
theorem 4.3 is actually an isomorphism, namely a case where H(S, M) is isomorphic
(over Idy) to a Cousin complex (we shall describe this case in 5.1 9), and the case

where the ring homomorphism f: A — B is flat.

4.4 THEOREM. Let the sitaution and notation be as in 4.3, and let f be

flat. Then the unique morphism of complexes of B-modules and B-homomorphisms

over Idys ,p of 4.3 is an isomorphism.

Proof. By Theorem 4.3 and 1.14 (i), it is enough for us to show that
T, (K" @4 B) = Hy | 5(K" @4 B) for all n € Ne.
However we can use Lemma 1.17 and 2.3(iii) to see that, for all n € Ny,
De, (K" @4 B) = Dg, ,(K") ©4 B = K" ©4 B (as B — modules).
Hence, by the part (4) of 1.14 (iii), the proof is complete.
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65 Generalized Hughes complexes and Cousin complexes.

Throughout this section, M will denote an A-module. We shall need some

properties of Cousin complexes and we list them for the reader convenience.

5.1 DEFINITION. (i) A filtration of Spec (A) [33, 1.1] is a descending se-
quence F = (F});en, of subsets of Spec (A), so that

Spec(A) D2 F 2 D F, 2 F 12,

with the property that, for each i € Ny, each member of OF; = F;\ F;; is a minimal
member of F; with respect to inclusion. We say that F admits M if Supp (M) C Fy.

(ii) Let F be a filtration of Spec (A) which admits M. the Cousin complex
C(F, M) for M with respect to F has the form

a2 d-1 d° n
00— MM M —. . M M

Where for each n € Ny,

M" = P (Coker d"~),.
pEITn

The homomorphisms of the complex have the following properties: for m € M and
p € 9%,, the component of d '(m) in M, is m/1; for n > 0,2 € M" ! and p € OF,,
the component of d"~!(x) in (Coker d"~?), is w(z)/1, where 7 : M"~'— Coker d"~*
is the cononical epimorphism. The fact that such a complex can be constructed is
explained in [33,1.3] and relies on arguments from [23, section 2]. Such complexes
are algebraic analogues of the Cousin complex studied earlier by Hartshorne in [7,
chapter IV].
We shall maintoin the above notation for C'(F, M) throughout this section.
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5.2 REMARK, (See [33,1.4 (i)] and [34,1.1 (iii)]) Let F = (F})ien,. be a
filtration of Spec (A) which admits M, and write the Cousin complex C(F, M) as

d=2 d-1! do ar
00— MM M —...—M" = M.

Then, for each n € N,
Supp (M™) C Supp (Coker d"2?) C F,, N Supp (M) and
Supp (H"~H(C(F, M)) € Foy1 0 Supp (M).

5.3 DEFINITION and LEMMA. (See [35, (2.2) and (2.3)]) Let F =
(Fi)ieny, be a filtration of Spec (A) which admits M. For each p € Spec (A), we
define the F-height p, denoted by htxp, as follows.

If p &5, then we set htzp = —1. If p € ﬂ Ti, then we set htrp = oco. If

€Ny
neither of these conditions is satisfied, then the set {i € Ny : p € Fi} has a greatest

member, n say, and we set htzp = n.

Let p,q € Supp (M) with p C q (the symbol ‘C’ is reseved to denote the strict
inclusion). Then htzp < htzq.

Also, for every p € Supp (9M), we have htyp < htgep. (Here, for p € Supp
(M), the notation htp/p means the M- height of p, that is the dimension of the
Ag-modules M,; the dimension of a non-zero module is the supremum of lengths of

chains of prime ideals in its support if this supremum exists and oo otherwise)

5.4 NOTATION, DEFINITION AND REMARKS. The Cousin com-
plex C'(M) for M is described in [23, section 2]: it is actually the Cousin complex
C(H(M), M) for M with respect to the M-height filtration H(M) = (H,)en, of
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Spec (A), where
H; ={p € Supp (M) : htgyp > i} for all i € N...

We shall call C(H(M), M) the basic Cousin complex for M.

Cohen-Macaulay modules can be characterized in terms of the Cousin com-
plex: a non-zero finitely generated A-module G is Cohen-Macoulay if and only if
C(H(G),G) is exact [25,2.4]. Also, A is a Gorenstein ring if and only if C(H(A), A)

provides an injective resolution (resp. minimal injective resolution) for A [23, 5.4].

5.5 THEOREM. Let F = (F});cn, and G = (G} )ien, be filtrations of Spec(A)
which admits M. Suppose that F; C G; for all i € Ny; so that, on use of 5.3,
htyp < htep < htgp for all p € Supp (9). Write the Cousin complex C(F, M)
as

0“2 a2 a0 L

Let H(M) = (H,)ien, be the M-height filtration of Spec (A) given by H; = {p €
Supp (M) : htgpp > i} for all i € Ny

(1) (See [35, 2.9]) for each n € Ny,

M" = @ (Coker d"~?),.
P€83nmaﬁn
(ii) (See [35, 2.10]) for each n € N, let
S" = @ (Coker d"?),,.
Feagnﬁaﬁ’)n\({‘)@n

Then d"(S™) C S™*! for all n € Ng, and so, if ™ denotes the restriction of d" to S™

(for each n > —2) (interpert S~2 = S~! =0), then
u=? u=?! u? u”
(o Jy I S N N S R L S S
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is a subcomplex of C'(F, M). We denote this subcomplex by S(F,G, M).

The quotient complex C(F, M)/S(F,G, M) is isomorphic to the Cousin com-
plex C(G, M).

(iii) (See [35, 2.11]) There is a morphism of complexes

U= (¢)is—2: C(F, M) — C(G, M)

which has the following properties:

(a) =1 : M — M is the identity mapping;

(b) for each n € Ny, the map ¢" is an epimorphism whose kernel is a direct
summand of M";

(c) for each n € N¢ and each p € 9F, N 99, \9B,, the restriction of " to the
direct summand (Coker d"~?), of M™ is zero.

(iv) (See [35, 3.6]) If C(G, M) is exact, then

(a) C(F, M) is exact;

(b) the morphism of complexes ¥ = ("), 5 of (iii) is an isomorphism.

(¢) both the complexes C(G, M) and C(F, M) are isomorphic to the basic
Cousin complex C(H (M), M); so that all three complexes are exact.

5.6 REMARK. (i) Let U be a subset of Spec (A), and let
® = ®(U, Spec (A)) ={a: ais an ideal of A such that V(a) C U}.

Then UV(a) C 4. Moreover, let V(p) C U for every p € . Then p € for

ac
every p € . Hence U V(a) = 4.

ac

(ii) Let S = (®;)ien be a family of systems of ideals of A. Define
®y = {a: ais an ideal of A such that U(a) C Supp (M)}
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a system of ideals of A. Set F(® U V(a) and F, ﬂ F(®,;) for all n € N.

acn

Then
Supp (M) =F, D F 2 DF,DF41D---

Let
® = {b:bis an ideal of A such that B(b) C F,}

for each n € N.. It is easy to see that whenever, for each n € Ny, p,q € Spec (A)
are such that p € §, and p subseteqq, then q € §,. Hence, by (i U V(a) = §, for

ael
all n € Ng.

(iii) Let F' = (F])ien, be a filtration of Spec (A) which admits M. Let
@/ = {b:bis an ideal of A such that B(b) C §,} and

@ = {b: b is an ideal of A such that L(b) C F, N Supp(IM)}

for each n € Ny. It is easy to see that ®” C @ for each n € Ny. By 5.3, for each
n € Ne,q € §, N Supp (9M), whenever p € F,N Supp (M) and q € Spec (A) are
such that p C gq. Hence F!, N Supp (M) C ®”, for each n € Nx. Thus, by (i),
Supp (M)NF, = U V(a U U(a) and U V(a) C T,
ael ach, acy
for each n € N.. Hence F! N Supp (M) = U V(a)N Supp (M), for each n € Ny.
ach

5.7 REMARK. The method of proof of theorem 2.6 has some similarities with
that of [34, theorem 2.3], which shows that every Cousin complex is a generalized
Hughes complex. In fact, we can deduce that result very quickly from 2.6, as follows.

Let F = (F})ien, be a filtration of Spec (A) which admits M, and write the
Cousin complex C(F, M) as

d- 2 d—l dO dan
0—M—-M -M—...—M" = M —
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Let W be a subset of Spec (A) such taht W O Supp (M). For each n € Ny
the set

@, (F,W)={b:bis an ideal of A such that U(b) N W C F,}

is a system of ideals of A. Let the family of systems of ideals (@, (F, W)),en be
denoted by S(F,W).

It follows from 5.2 and 1.8 that, for all n € Ny, Coker d"~? is ®,,(F, W)-torsion
and H" Y(C(F,M)) is @, 11(F, W)-torsion (or it follows from 5.2 and 5.6 (iii) and
the fact that ®,,(F, Spec (A)) C ®,(F, W) for all n € Ny that

Supp (Coker d"~?%) C U V(a) C U U(a) and
a€n(F,Spec(2A)) acn(F,20)

Supp(H" (C(F,M))) C U Vi(a) C U B(a)
aEn(F,Spec(A)) aen(F,20)

for all n € Ny). Also, by 1.10(i),
Lo,z w)(M") = Hénﬂ(ﬁw)(M”) =0 for all n € Ny.

It therefore follows from 2.6, 2.7 and 1.14 (i) that there is a unique isomorphism
of complexes C(F, M) =, H(S(F, W), M) over Idy. Note that the uniqueness
ensures that this isomorphism must be the same as the inverse of the one constructed
in the proof of theorem 2.3 of [34].

Also, there is a unique isomorphism of complexes
II: C(F,M) — H(S(F, Spec (A)), M)

over Idy, where S(F, Spec (A)) is the family (®,),en of systems of ideals of A for
which

®, := &, (F, Spec (A)) ={b: bis an ideal of A such that B(b) C F,}
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for all n € N.

5.8 REMARK. We can deduce [34,2.2] from 5.2 and 1.10. Note that, the
proof of 1.10 in this way is much easier than the proof presented in [34].
We show that we can deduce the theorem [21,3.3] from 2.6 and 2.7 and we

need the following results.

5.9 PROPOSITION. (See [23, (2.3) and (2.5)]) Suppose U C Y are subsets
of Spec (A) such that each element of Y — U is a minimal (with respect to inclusion)
element in Y. Let G be an A-module such that Supp 4(G) C Y. Then there is an

A-homomorphism

for which, for g € G and p € P-4, the component of a(G)(g)in the direct summand
Gy is g/1; furthermore,

Supp ( Ker o(G)) C U and Supp (Coker o(G)) C U.

5.10 LEMMA. Let f : A — B be a homomorphism of commutative noethe-
rian rings. Let U C Y be subsets of Spec (A) such that each element of Y — U be

minimal (with respect to inclusion) in Y, and let N be a B-module such that Supp

A(N) C Y. Let

be the natural A-homomorphism such that, forx € N and p € P-4, the component
of a(N)(z) in the direct summand N, is /1 (it follows from 5.9 that there is such

an A-homomorphism). Let ® be the following system of ideals of A:

®(U, Spec (A)) = {a:ais an ideal of A such that U(a) C U}.

55



Then

(i) There is an A-isomorphism

¢: @ N, — Ds(N)

peY—u
such that the diagram
a(N) D M
N peY -4
¥
ne (V)
Dg(N)

commutes.

(ii) There is a B-isomorphism

v @ Ny — Dan(N)

peP-uU

such that the diagram

peP—-u

D¢B<N>

commutes.
Proof. (i) Application of the morphism of functors ne : Id — Dg to the

modules and A-homomorphism
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yields a commutative diagram

N a(N) P N
peYP—-U
1 (V) (D M)
peP—U
Da(N) Do( P ).
Da(a(N)) b

It is enough for us to show that 7e( @ Ny) and Dg(a(N)) are A-isomorphisms.

peP—-U
By 1.10 (i), Hiy( @ N,) = 0for i = 0,1, and so it clear from 1.14 (i) that
peP—-U
Na ( @ N,) is an A-isomorphism.

peY -4
By 1.8 and 5.9, Ker a(N) and Coker a(N) are ®-torsion. Hence by 1.15,

Dg(a(N)) is an A-isomorphism.
(ii) It is easy to check that a(/NV) is a B-homomorphism. Appllication of the

functors nep : Id — Dgp to the modules and B-homomorphism

peEY—U
yields a commutative diagram
a(N) N,
N D
peY—u
Han(N) ol D )
D(I)B(N) Dch( @ Np>
Dap(a(N)) ped-

57



It is enough for us to show that ngp( @ Ny) and Dgp(a(N)) are B-isomorphisms.

peY—-U
By 1.10 (ii), Hys( @D N,) = 0 for i = 0,1, and so it is clear from 1.14 (i)
peP—-U
that 7gp( @ N,) is a B-isomorphism.

peY -4
It is immediate that Ker a(N) and Coker a(N) are ®B-torsion since, by (i),

Ker a(N) and Coker a(N) are ®-torsion. Hence, by 1.15, Deg(a(N)) is a B-

isomorphism.

5.11 THEOREM. Let F = (F;);eny, be a filtration of spec (A) which admits
M, and let C(F, M) be the Cousin complex for M with respect to F. Let

—2 -1 0 n
0L M s o ot oo S ot L

be a complex C* of A-modules and A-homomorphisms such that , for each n € Ny,
Supp (Coker e"~?) is subset of F,, and Supp (H"~'(C*)) is subset of F,,;. Then

there is a unique morphism of complexes
\I/ = (’(/}i)iz_g . C. — C(f, M)

over Idy,.
Moreover the morphism W is an isomorphism of complexes if and only if, for

each n € Ny, Supp (C") C F, and the A-homomorphism a(C") : C" — @ (C")
PEITn
such that, for x € C™ and p € IF,, the component of a(C™)(z) in the direct

summand (C™), is /1 (it follows from 5.9 that there is such an A-homomorphism),

is an isomorphism.

Proof. Let ®,, be the system of ideals of A

®,(F, Spec (A)) ={b: b is an ideal of A such that B(b) C F.},
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for each n € Ny. Let the family of systems of ideals (®,,),en be denoted by S.
It follows from 1.8 that for each n € Ny, Coker e" 2 is ®,-torsion and H" 1(C*)
is &, ,1-torsion, Hence, by 2.6 and 2.7, there is a unique morphism of complexes
from C* to H(S, M) over Idy;. Hence, in view of 5.7, there is unique morphism of
complexes

U= (¢')ys 9:C° — C(F, M)

over Idy,.
Let ¥ be an isomorphism of complexes. Then, by 5.2, Supp (C") C F,, for each
n € Ny. Also, by 2.8 and 5.7, 5p,,,(C") : C" — Dg,,(C™) is an isomorphism, for

each n € Ng. It therefore follows from 5.10 (i) that o(C") : C" — @ (C")p is an

pEIFn
isomorphism, for each n € Ny..

Let Supp (C") C F,, and o(C") : C"* — @ (C™)y = 0 be an isomorphism,
PEITn
for each n € Ny. Then, by 5.10 (i), 7s,,,(C") : C" — Dg,,,(C™) is an isomor-
phism, for each n € Ny. It therefore follows from 2.8 that ¥ is an isomorphism of
complexes.

It is easy to deduce the following theorem from 5.11.

5.12 DEFINITION AND THEOREM. (See [21, (3.1) and (3.3)]) Let
F = (F})ien, be a filtration of Spec (A) that admits M. A complex X® = (X");>_
of A-modules and A-homomorphis is said to be of Cousin type for M with respect
to F if it has the form

d.3 d,} d ,
025 M 28 X0 XS xR

and satisfies the following for each n € Ny:
(i) Supp (X™") C Fy;
(ii) Supp (Coker d3.') C Fy;
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(iii) Supp (H" 1(X*)) C F,;

(iv) the natural A-homorphism a(X") : X" — @ (X™)p such that, for

pEITn
r € X" and p € OF,, the component of a(X")(x) in the summand (X"), is z/1

(it follows from condition (i) and 5.9 that there is such an A-homomorphism), is an
isomorphism.
Let X* = (X");> 5 and Y* = (Y");>_» be complexes of Cousin type for M

with respect to F. Then there is exactly one isomorphism of complexes
U = (ZZ)i)iZ_Q X — Y

over Idy,.
One of the main results of [34] is theorem 2.3, which shows that every Cousin
complex is a generalized Hughes complex. It is not the case that every generalized

Hughes complex is a Cousin complex, as the following example shows.

5.13 EXAMPLE. Suppose that the ring A is not Cohen-Macaulay.Consider
Hughes’ grade-theoretic analogue of the Cousin complex [12] which motivated the
definition of generalized Hughes complex in [36]. This is ([36, 1.4]) just H(G, A),
where G denotes the family of systems of ideals of A given by G = (G(n))nen, where,
for each n € N, the system G(n) is the set of all ideals of A of grade at last n (we
adopt the convention where by grade A = 00).

By [12], Hughes’ complex H(G, A) is exact. If it were isomorphic (over Id,)
to a Cousin complex for A with respect to some filtration of Spec (A), then, by 5.5
(iii), the basic Cousin complex C(H(A), A) for A would be exact, so that A would
be Cohen-Macaulay by 5.4. Thus, since A is not Cohen-Macaulay, H(G, A) is an
example of a generalized Hughes complex which is not isomorphic (over Id4) to a

Cousin complex for A.
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The next few remarks are concerned with the following question: given a gener-
alized Hughes complex H(S, M) for M with respect to a family of systems of ideals
S = (D;);en of A, can we identify a descending sequence F = (F});en, of subsets of
Spec (A) which, if it were a filtration of Spec (A), would of necessity be such that
Cousin complex C(F, M) is isomorphic (over Idy) to H(S, M)?

5.14 LEMMA. Let S = (®;);en be a family of systems of ideals of A. Define
®y :={a: ais an ideal of A such that U(a) C Supp (M)},

a system of ideals of A.

For each n € Ny, let

0, ::<{:§:(MI aiEEi}
1=0

Then Z = (©;);en is a family of systems of ideals of A and there is a unique isomor-

phism of complexes ¥ : H(Z, M) — H(S, M) over Idy;.

Proof. Tt is easy to check that each ©,(n € N) is a system of ideals of A.
By 3.1 (i), there is a unique morphism of complexes ¥ : H(Z, M) — H(S, M)
over Idy;. Write the generalized Haghes complex H(Z, M) as

-2 —1 0 . 1 .
[ [P/ SN S\ AN 55 SN 5 SN ot SN

By theorem 2.6 and 1.14 (i), it is enough for us to show that

Ty, (L") = H:

q’n+l

(L") =0 for all n € Ny.

n+1(

By 2.4(iii) for every n € Ny, L* is ©,-torsion. Hence L" is ®;-torsion for every

i=0,---,n. It then follows from 1.21 and 2.3(iii) that

Dg,,, (L") 2 Do, (L") = L" for all n € Ny.

n+1
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Therefore, by the part (4) of 1.14 (iii), the proof is complete.

5.15 PROPOSITION. Let & = (®;);en be a family of systems of ideals of
A. Define

@) := {a: ais an ideal of A such that U(a) C Supp (M)},

a system of ideals of A.

Set F(®,) := | JV(a), F, :=()F(®) and

acn =0

@' :={b: b is an ideal of A such that U(b) C F.},

a system of ideals of A, for all n € N, Let &' = (®}),en. Then

(i) Supp (M) = Fy D Fy D -+ D F;, 2 Fiyy 2 -+ and @, O &/ ., for all
n € N;

(i) F, = U V(b) for all n € Ny;

bey
(iii) there is a (unique) isomorphism of complexes ¥ : H(S', M) — H(S, M)

over Idy;
(iv) if F = (F})ien, is a filtrution of Spec (A), then there is a unique isomor-

phism of complexes H(S, M) — C(F, M) over Idy,;.

Proof. (i) This is clear.
(ii) This is follows from 5.6 (ii).

(iii) For each n € Ny, let

0, = {Xn:al Loy Ei}.
1=0

Then, by 3.1 (ii) and 5.14, it is enough for us to show that the system ©,, is a cofinal

subset ®! | for each n € N.

62



Let n € N. It is clear that ©, C ®/. Now, let b € ! and i € Ny such that
0 <i<mn. Then V(b) C F(®;). We can assume that b is proper. Let p,,---p; be
the minimal prime ideals of b. Then p,,---p; € F(;i), and so, for each j =1,--- |,

there exists ¢; € ; such that ¢; C p;. There exists i € N such that

(cxo e c)? € (pu, -+ p)" C (ra(b))? C by

Since ®; is a system of ideals of A, there exists a; € ; with a; C (¢, - -ct)". Hence
there exists a, + a; +-- - + a, € f, such that ap+---+a, C b.

(iv) This is now immediate from part (iii), the uniqueness aspect of 3.1(i), and
5.7: Remark 5.7 shows that there is a unique isomorphism of complexes C'(F, M) =,
H(S', M) over Idy,;.

We have thus answered the question raised immediately before the statement

of Lemma 5.14. Some additional comments about that result are appropriate.

5.16 REMARK. Let the situation and notation be as in 5.14 and 5.15. It is

easy to deduce from the proof of 5.15 (iii) that, for each n € Ny,
®' :={b:bis an ideal of A and b D a for some a € f,}.

5.17 REMARK. Let the situation and notation be as in proposition 5.15.
Then 5.15 shows that, for study of the generalized Hughes complex H(S, M), we
can, if we wish, replace S by &’ (without effecting H(S, M) up to isomorphic over
Idy): the family &' = (®!);en is such that, for each i € N,

(a) for each a € {, every ideal b of A with b D a also belongs to ®/; and

(b) ®; O @, and V(a) C Supp (M) for all a € |.

)

5.18 REMARK. Let the situation and notation be as in 4.3, and let F\(®,,) :=
JV(a) and F, = () F(®;) for all n € N. Set Gg := Supps(M @, B), and, for all

acn i=1
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n €N,
Gn={g € Suppy(M o B) : {7'(q) € T}

and

®' = {b:bis an ideal of B such that U(b) C &,},

a system of ideals of B. Let &' = (®});ey. Then it is easy to see that if Gf :=

Suppp(M @4 B) and G, = U V(b) for all n € N, then G, = ﬂG; for all
bed, B i=0
n € Ng. Hence, by 4.3 and 5.15, there is a unique morphism of complexes of

B-modules and B-homomorphisms from H(S, M) @4 B to H(S',M ©®4 B) over
Idyg , p. Furthermore, this morphism of complexes is an isomorphism of complexes
if and only if the morphism of complexes ¥ of theorem 4.3 is an isomorphism (or
equivalently,

Nepy1B - K"®s B — D¢n+1B(Kn ©a B)

is an isomorphism for every n € Ny.)

Note that, if G = (G,)ien, is a filtration of Spec (B) which admits M @4
B, then, by 5.7, there is a unique morphism of complexes of B-modules and B-
homomorphisms from H(S, M) @ 4 B to the Cousin complex C(G, M @4 B) of M @ 4
B with respect G over Idys,p. Furthermore, this morphism of complexes is an
isomorphism of complexes if and only if the morphism of complexes ¥ of Theorem

4.3 is an isomorphism (or equivalently,
Nepi1B K" XA B — D<I>n+1B(Kn XA B)

is an isomorphism for every n € Ng.)
Next, we shall treat an important case in which the morphism of complexes ¥
of 4.3 is actually an isomorphism; namely a case where H(S, M) is isomorphic (over

Idyr) to a Cousion complex as in 5.7.
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5.19 THEOREM. Let F' = (F!);cny, be a filtration of Spec (A) which admits
M. For each n € N, let

®, = {b: bis an ideal of A such that B(b) C §,}.

It follows from 5.7 that S := (®,,)nen is a family of system of ideals of A and there

is a unique isomorphism of complexes (over Idy)
C(F, M) = H(S, M).

Let f: A — B be a homomorphism of commutative Noetherian rings, and
let SB := (q)zB)zEN

() There is a unique isomorphism of complexes of B-modules and B-homomorphisms
C(F,M)®, B— H(SB,M @, B)

over IdM®AB-

(ii) For each n € Ny, set
Gn:={q € Supp (MoxB): " (q) €y}

and

®' = {b:bis an ideal of B suchthat U(b) C &,},

a system of ideals of B. Let 8" := (®/,),,en. Then there is a unique isomorphism of

complexes of B-modules and B-homomorphisms
C(F'M)@, B—H(S'\M @, B)

over Idys ,B-
(iii) Suppose, in addition, that whenever ¢, q" € Suppg(M @4 B) with q C ¢’
and f~'(q) = {*(q’), then q = q’ (this condition is satisfied if B were integral over
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its subring f(A), or if f were surjective, or if ht4f 1(q) = htpq for all ¢ € Spec
(B).) Then G := (G})en, is a filtriation of Spec (B) which admits M @4 B, and

there is a unique isomorphism of complexes of B-modules and B-homomorphisms
C(F,M)@4 B — C(G,M @4 B)

over Idys ,B.

Proof. Write the Cousin complex C(F', M) for M with respect to F' as
095 M 2 M0 oty L
(i) By 4.3 and 1.14(i), it is enough for us to show that
Lo, 5(M" @4 B)=Hg,  z(M" @4 B)=0foralneN. ()

Let n € Nx. Now M"™ = @ (Coker d"~?),. Since, for every p € Spec (A),
pEITH

(Coker d"?), @4 B = (Coker d"? @4 A,) @4 B
> (Coker d"? @, B) @4 A,
>~ (Coker d"? @4 B),,
it follows that if p € Supp4 (Coker d"~?>® 4 B), then p € Suppa (Coker d"~?). Hence,
by 5.2,
Supp 4(Coker d"~? @, B) C F!.

We can now deduce, with the aid of 5.10 (ii) and the fact that tensor product

commutes with direct sum,

(€D ((Coker " *)) 04 B = P ((Coker d"*), 04 B)
peEIFn pEIThH

@ ((Coker d"™> @4 B),)
pPEIFn

gD@

I

(Coker d"2? @4 B).

n+1B
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Hence, by the part (4) of 1.14 (iii), the proof is complete.
Note that, also we can deduce (1) from 1.10 (iii).

(i) Set F(P UV andF_ﬂF ) for all n € N. By (i) and 5.18, it

acny

is enough for us to show that Gy = SuppB(M @4 B) and

G =1{q€ Suppy(M 2o B):§ '(q) € Fu)-

It follows from 4.1 and the fact that Supps(M) C Fy that Gy = Suppp(M @4 B).
Since @, D @, for every n € N,F,, = F(S, ) for all n € N. Hence, by 4.1 and 5.6

(ii),

= {g € Suppg (M @ B) : §'(q) € Ty N Supp (M)}
= {9 € Suppg(M @ B) : §'(q) € F(a) N Supp (M)}
={q € Suppy(M @ B) : {(q) € Fa N Supp (M)}
={a € Suppgs(M @ B) : *(q) € S},

for each n € N.
(iii) It follows from the proof of (ii) and the hypothesis that G := (G} )ien, is a
filtration of Spec (B) which admits M @4 B. Hence the claim follows from 5.7 and

(ii).

5.20 REMARK. Let the situation and notation be as in 15.19. We present
another proof for 5.19 (i) and 5.19 (ii). We need to the following facts:
(1) (See [27, 2.2]) Let n € Ni.. Then there exists a natrual B-isomorphism

0, : Coker d" ?©4 B — Coker (d" * @ Idp)

for which the diagram
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Tn_1eld
M '® B 19778 Coker dn2 @4 B

On

Coker (d"~* @ Idp)

commutes. m,_; and o,_; are the cononical epimorphisms.
(2) Let n € Ny. Then, by the proof of 15.19 (i), Suppa (Coker d">@,B) C F!.
Hence, by 5.9, there is an A-homomorphism
a(Coker d"> @4 B) : (Coker d"~> @4 B) — @) (Coker d"™> @, B),
pEIFL
for which, for z € Coker d"?>© 4 B and p € 0F’,, the component of a (Coker d" 2@ 4
B) in the direct summand (Coker d" 2 @4 B), is x/1. It is easy to see that

a(Coker d" 2@ 4 B) is a B-homomorphism. By 5.10 (ii), there exists a B-isomorphism
Y @ (Coker d" % @ 4 B), — Dg,, p(Coker d"? @, B)
pEOTH

such that the diagram

o (Coker d"~? @4 B) P (Coker d"~? @4 B),
pEITn

Coker d" 2@ 4 B

Tn
No,,.5 (Coker d" 2 @, B

Dsp (COk@I‘ dn—2 XA B)

commutes.
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(3) Let n € Ni. Then there exists a natural B-isomorphism

At (P Coker ") @4 B — €P) (Coker " @4 B),
pPEIFn peIFy

such that the diagram

A"t @ Ildg

Coker d"~2 @, B @ (Coker d"~?), | @4 B

peEIFH

An
a (Coker d"? @4 B)

@ (Coker d" % @4 B),
pEIT,

commutes. Here we have d* 1om, ; = d"'.

(4) Let n € N¢. ®,41B is a cofinal subset of @ ;.

Now, we can prove 5.19 (i). Write the generalized Hughes complex H(SB, M@ 4
B) as

w1 w9 . ,wi .
O—>M®AB—>LO—>L1_>..._>Ll_>Lz+1_>.”.

It will be convenient to write L=2 = 0,L ' = M @4 B. Define 12 to be the zero
homomorphism and ¥ ! : M @4 B—M ©4 B to be the identity mapping. We
shall construct a family (¢/');> 5 of B-isomorphisms with the required properties by
induction on 7 : a basis for this induction is provied by 1~2 and ¥~".

So suppose, inductively, that n > 0 and we have constructed B-isomorphisms

P27t oo "L such that the diagram

69



0 —Mo,B——5% Mo, B M"2? @, B——"M"1'®, B
w—Q\ ZD_I J wO wn—Q wn—l
— n—2
0 _,A]\4®ABM—> L(] Ln—2 Ln—l

commutes.

From our iductive assumptions we obtain a commutative diagram

M@, B Int Coker (d"™% @ Idp)
A B
wnfl W
1 Tn1 9
L Coker w"

in which 0,,_; and o/, ;| are the cononical epimorphisms and ¢! is the induced

B-isomorphism. Hence, by (1), the diagram below is commutative:

M1 @ Id
Mo, B—— "B Coker d" 2 9, B

77Z)nfl 'l/}nilgen

L1t Coker w™ 2

Hence 7, ; : M"™' — Coker d"~? is the cononical epimorphism and "~1,0,, is a
B-isomorphism. We now use the morphism of functors e, 5 : Id — De,, 5(e)

of 1.3, we obtain a diagram
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M1 @ Idp - Mo, 8(Coker d* 2 @4 B)

M1 @4 B———Coker d" 2 ®4 B 9,4, 8(Coker d"? @4 B)
’wnil ¢"‘1o9n D¢n+1B(¢n7109n)
/ Cok n—2
In1 L@oker wnﬁnq’”“B (Coker w )D<I,n+1B (Coker w™™?).

which commutes. Hence, by (2) and (3), the diagram below is commutative:

M1 @ Id n—1
Mo, B e g2 o, g2 1 D (Coker d" %), | @4 B
pEITL
wn_l Wﬁloen D¢n+1B(wn7109n)07n0)\n
/ C k n—2
L1 In_1 Coker w"ﬁ?nHB (Coler )D<I’n+1B (Coker w"ﬁ)'

Because ¢"~1(0, is a B-isomorphism, we have Dg,_ p(1""1(0,) is a B-isomorphism.

Now define ¢ : M™ @4 B — L" to be Dg, ,5(¢V"140,)070A,. Then, in view of

definition 2.1, ¥ is a B-isomorphism and the diagram

'@ Id
Mnfl ®A B ® B Mn ®A B

77anl wn

Lnfl Ln
commutes, thus completing the inductive step. The theorem follows by induction.
Similar to the above proof, on use of (4), we can prove 5.19 (ii).

We show next how to use theorem 5.19 to obtain a generalization of [27, theo-

rem (2.6)].
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5.21 EXAMPLE. Let f : A — B be a homomorphism of commutative
Noetherian rings. Let C(H(M), M) denote the basic Cousin complex for M, where
H(M) = (Hi)iENy and

H; = {p € Suppy(M) : htyyp > i} for all i € N..

Assume that hty, f7'(q) =htye,sq for all ¢ € Suppg(M @4 B). Note that, by 4.1,
if ¢ € Suppg(M @4 B), then f~1(q) € Suppa(M).
The hypothesis of 5.19 (iii) are satisfied, and so we set, for each n € Ny,

Gn ={a€ Suppy(MoaB):f '(q) € Hu}
={q € Suppgy(M ©x B) : htye,pq > n}.
The filtration G := (G,);en of Spec (B) is therefore just the M @ 4 B-height filtration,
and we can immediately deduce from 5.19 (iii) that the complex C'(H(M), M) @4 B
is isomorphic over Idy g ,p to the basic Cousin complex for the B-module M @4 B.
In the special case in which M = A, such an isomorphism was produced in [27,
Theorem (2.6)] under the additional assumption that B is integral over its subring
f(A). We present an example of a natural ring homomorphism from a (commutative
Noetherian) ring to one of its rings of fractions for which this last condition is not

satisfied.

5.22 EXAMPLE. Let A be a unique factorization domain (UFD), and let
there exist ¢,m € A such that ¢, 7 are prime elements of A and ¢ { 7 (for example
L, LXKy, -+, Xy |, NXpe, -+, X ] (k is a field and Z is the set of integers)). Since Ac

is a prime ideal of A,

S:={a€A:cta}

is a multiplicatively closed subset of A. Suppose that ¢ : A — S~ !A is the natural
ring homomorphism. A is a prime ideal of A and A7 NS # (. Hence p(Anr) is a
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prime ideal of ¢(A) and there is not q € Spec (S1A) such that g N p(A) = (Ar).
Hence, by the Lying-over theorem (See [1,5.10]), S~ A is not integral over its subring

©(A). On the other hand, we know that htg-1,q9 = ht,0~'(q), for every q € Spec
SLA).

Theorem 3.2 can be viewed as a generalization of 5.5 (ii) and 5.5 (iii) in which

two Cousin complexes are compared. We explain this.

5.23 REMARK. We introduce some further notation.
Let F = (F})ien,. be a filtration of Spec (A) which admits M, and denote the
Cousin complex C'(F, M) for M with respect to F by

—2 d=! 0 d° 1 n d” n+1
O—M — M —M-—-—M"'—MT"T—...

Let G = (G)ien, denote a second filtration of Spec (A) which admits M for which
F, C G, for all n € Ny, and let H(M) = (H,)icry, be the M-hight filtration of Spec
(A) given by H; = {p € Supp (M) : htyp > i} for all i € Ne.

By 5.7, there is a unique isomorphism of complexes 7 : C'(F, M) — H(S(F,
Spec (A)), M) over Idy;, where S(F, Spec (A)) is the family of sysems of ideals
(®,(F, Spec (A)))nen for which

®, (F, Spec (A)) ={b: b is an ideal of A such that B(b) C F,}

for all n € N. Of course, we can do the same for G: there is a unique isomorphism
of complexes Q : C(G, M) — H(S(G, Spec (A)), M) over Idy. However, since

F, C G, for all n € Ny, we have

®,,(F, Spec (A)) C ®,(G, Spec (A)) for all n € IN.
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We are thus in a situation where 3.1 can be applied; in fact, as we now show, we
can apply Theorem 3.2. It will be convenient to denote ®,(G, Spec (A4)) by @,(G)
(for n € N) during the remainder of this remark.

Let n € N. By 5.5 (i),

M= B (Coker d"™),

PEIFnNONHN
It follows from 1.10 (i) that
Lo, i) (M") = @D Te,ie)((Cokerd™?),) = . T, ,1(0)((Coker d*2),).
P€83nmaﬁn p€33:\035n06n+1

Also, for a p € 9F, N 9Ny, each element of (Coker d"~?), is annihilated by some
power of p (by [35, 2.6], for example), and, if p € &,,,N supp (M), then p € ,,,(G)

(by 5.6 (iii)). It is easy to deduce from these comments

T, 0)(M") = @ (Cokerd"?),.
PEIFnNONNG 41

It is easy to see that

T, (o) (M™) = P  (Coker d"?), =: "
Feagnﬁaﬁ’)n\({‘)@n

It was shown in 5.5 (ii) that
d"(Ta,41(6) (M) € T, ag) (M),

On use of 1.5 (9) and 1.10 (i), we see that

H$n+1(g)(Mn) = H$n+1(g)(Mn/Sn)
= Hénﬂ(g) @ (Coker dn*2),g =0.
PEIFaNING \ Gt
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We can now apply Theorem 3.2. Let S* = (S");>_» denote the subcomplex
0—0—S' 5t .. 5 g

of C(F, M). Theorem 3.2 shows that the quotient complex C'(F, M)/S*® is isomor-
phic (over Idy) to the Cousin complex C'(G, M). This result was established by a
different method in 5.5 (ii).

Thus Theorem 3.2 can be viewed as a generalization of 5.5 (ii) and 5.5 (iii).

We proceeded on anologue of 5.5 (iv) for the situation of Theorem 3.2 in 3.3.
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§6 Comparison of complexes of modules of generalized frac-

tions and generalized Hughes complexes.

Throughout this section, for any positive integer n, D, (R) denotes the set of
n x n lower triangular matrices over R. For H € D,(R), the determinant of H is
denoted by |H|, and we use 7 to denote matrix transpose. Given H € D, (R) with
n > 1, H* will denote the (n — 1) x (n — 1) submatrix of H obtained by deletion of
the n-th row and n-th column of H.

Let us briefly describe the main ingredients in the construction of modules of
generalized fraction. Let M be an R-module. A non empty subset U of R" is called
triangular if (i) whenever (xq,...,x,) € U, then (z7',...,25") € U for all choices
of aq,...,a, € N, and (ii) whenever z,y € U, then there exist z € U and H, K €
D, (R) such that Hz" = 27 = Ky”. Given such a U and an R-module M, one can
construct the module of generalized fractions U™"M = {% ca€eMxelU }, where
¢ denotes the equivalence class of the pair (a,2) € M x U under the equivalence
relation ~ on M x U defined as follows.

For a,b € M and z,y € U, write (a,x) ~ (b,y) precisely when there exist
(z1,-++,2,) =2z €U and H,K € D, (R) such that

n—1
Ha" = 2" = Ky" and [Hla — [K|b € (Z Rzi> M.

i=1
Now U~"M is an R-module under the operations

b |Hla+|K|b a ra
+-=—"——andr— = —
Yy z X X

SIS

for r € R,a,b € M,x,y € U and any choice of z € U and H, K € D, (R) such that
Hz" = 27 = Ky”. The reader is referred to [38, section 2] for more details of the

construction.
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The above concept is indeed a generalization of the familiar concept of an

ordinary module of fractions: See [38,3.1].

6.1 DEFINITION AND NOTATION. (See [20, p.420]) By a chain of
triangular subsets on R, we mean a family U = (U, ),en of sets such that:

(i) U, is a triangular subset of R™ for every n € N;

(i) (1) € Uy;

(iii) for each n € N and each (uq, -+ ,u,) € U,, we have (uq -+ ,u,,1) € U,y1;
and

(iv) for each n € Nwithn > 1, and each (uy - -+ , u,) € U,, we have (uy -+ ,u, 1) €
U,_1.

Such a chain U determines, for each R-module M, a complex
0—M <5 UM s o UM 5 U M
in which €°(m) =m/(1) for all m € M and

() = (@)

for all n € N> € M and (uy,---,u,) € U,; we shall denote this complex by
o, M).

6.2 REMARK. Let 4 = (U, ),en be a chain of triangular subsets on R. By
[3], for each n € N, the set

(U, = {zn:Rul S(ug, e uy) € Un}

is a system of ideals of R. Thus S(U) = (®(U,,))nen is a family of systems of ideals
of R, and one can form the generalized Hughes complex H(S(U), M). Our propose
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in this section is to compare the complex H(S(U), M) with the complex of modules
of generalized fractions C'(U, M) described in 6.1.
Before giving some of the basic properties of generalized fractions, we introduce

the important notions of expansion and restriction (See [38, (3.2) and (3.6)].

6.3 DEFINITION. (i) The triangular subset V of R" is said to be ex-
panded if, whenever (vy,...,v,) € V and i is an integer such that 0 < ¢ < n,
then (vy,...,v;,1,...,1) € V also.

(ii) If U is a triangular subset of R" and if m is a positive integer such that

1 < m < n, then the set
{(ug,...up) : (ug,...,uy) €U for some uyq,..., 0, € R}

is a triangular subset of R™ called the restriction of U to R™.

6.4 REMARK. Let n € N. Let M be an R-module and assume that U is
triangular subset of R". Let m € M and (uy,...,u,) € U. Then

n—1
(i) (See [21, 3.3]) if m € <Z uiM>, then —™— =0 in U™ M.

(U1, un)
=1

(ii) (See [39,2.1]) if =™~ =0 in U™"M, then —2— =0in U"M.

(w1, un) (ur,+ un)

(iii) if v € U is such that Hu? = v for some H € D,,(R), then m/u = |H|m/v.

The next result is a technical lemma which will be of assistance in the 6.15. It
can be proved by routine arguments using generalized fractions, based on [38, (2.2)
and (2.3)]; alternatively, the reader might like to consider the argument given by

Gibson and O’Corroll in [4, 3.3].

6.5 LEEMMA. (See [4, 3.3]) Let M be an R-module.
(i) Let U be an expanded triangular subset of R*. Then U x {1} is a triangular
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subset of R?, and there is an exact sequence
M- U'M % (U x {1}) *M—0,

in which e is the natural homomorphism and w(m/(u)) = m/(u, 1) for each m € M
and (u) € U.
(ii) Let U = (U, )nen be a chain of triangular sets on R. Choose n € N. Then

U,y1 x {1} is a triangular subset of R"*2  and there is an exact sequence
U7"M <5 U7 M2 (U, x {1))7"2M —0,

in which e is as defined in 6.1 and w,,1(m/v) = m/(v, 1) (with an obvious notation)

for each m € M and v € U, ;.

6.6 DEFINITION. (See [4, P.255]) Let M be an R-module. Suppose that
U = (U,)nen is a chain of triangular subsets on R. Put Fo=Supp (M) and, for
1 € N, define

F,={p € Supp (M) : there exists (uy,---,u;) € U; with ZAUJ Cp}.

j=1
The family F = (F;);en, of sets of primes of R is called the sequence of sets of
primes induced by U and M.

6.7 REMARK. Let M be an R-module, and let # = (U;);en be a chain of

triangular subsets on R. We can form the complex

CU,M): 0 — M -5 UM <5 UM —s o — U7 M - U M —s -

It follows from the proof of [4, Theorem 3.6] that, for each n € Ny,
Supp(Coker e"™') C F, and Supp (Ker " /Ime™™') C Fyy1.
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The special case of theorem 6.8 below provides a short proof of the main part

of Thereom 3.5 of [36].

6.8 THEOREM. Let S = (®;);en be a family of systems of ideals of A.

Suppose that there exists a chain U = (U;);en of triangular subsets on A such that,
u

for each i € N, ZA&; € Soforall (ug, -+ ,u;) € Uj, and that, for each ideal b € 5,
1=K

there exists (vy,---,v;) € U; such that Z Av; C b. Let M be an A-module.
7=1
Then there is a unique isomorphism of complexes C(U, M) =, H(S, M) over

Id,y.
Proof. Write the complex C(U, M) as
05 M-S U7 M - UM S U M
Let

®y := {a: ais an ideal of2 such that L(a) C Supp(IM)}.

By 2.6 and 2.7, it is enough for us to show that
(a) Supp (Coker ¢" 1) C U V(a) for all n € Ng,

acn
(b) Supp (Ker e"/Ime™ 1) C U V(a) for all n € Ny, and
aCn41
(¢) The homomorphism

N (Ul ' M) U iT "M — Do, (U M)

is an isomorphism for all n € Ny.

It follows from 6.7 and the hypothesis that (a) and (b) are satisfied.
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Let m € M and u = (u1, -+ ,Upt1) € Uppq such that m/u € T, (U T M).

n+1

Then there exists v = (v, -+ ,VUp41) € Upyq such that <Z Avi> (m/u) = 0. By
i=1

the definition of triangular subset, there exists w = (wq, -+, wp41) € Uyyq and

H,K € D, (A) such that Hu” = w” = Kv". Hence, in U, ;' M,
|H [w,1m _ Wy M
(wlv"' awn-l—l) (ulv"' aun-l—l)

Hence, by 6.4 (i), |H|m/w = 0, so m/u = 0. Therefore we can deduce I'y, ,, (U, [, 'M) =

=0.

0. Consequently, by 1.14 (i), ns, (U 7' M) is injective. Now, we show that
o, .. (UplT M) is surjective.

Leta € iy, and let f € Homa(a, 8,7 "9N). Then there exists u = (u1, -+, Upy1) €
n+1

U, .1 such that Z Au; C a. Since a is a finitely generated ideal of A, and finitely

=1
many generalized fractions can be put on a common denominator, there exists

t=(t1, -+ ,tus1) € Upyq such that

ImfC{————€U'M:meMy.
(t1, - s tnga)

There exist w = (wy, -+, Wpy1) € U and H, K € D, ;1(A) such that Hu? = w! =
Kt". Hence, by 6.4 (iii),

m
Imf C cU ™ M:-meM?}.
fe {<w11"' s Wnt1) i }

For each b € .., let

[ ] : HomA(bvﬂ;:;1m> I ©n+1 (ﬂ;ﬁ;lm’t)

be the comonical homomorphism. Hence [f] = [f| = |. Let f(wpy1) =
Z Awi2 + Aw,
=1

g/w. Then, by 6.4 (i),

=[f] n = o, (UM ( g ) .
[f] [f|z Aw? N Awn+1] Ny ( +1 ) (’LUI, cee Wy, 'LU721+1)

1=1
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Hence

)=t (U7 M) <<w1, — ) .

2
5 W, wn-l—l)

The following lemma plays an important role in the construction of the mor-

phism of complexes © = (6"),>_» in 6.15.

6.9 LEMMA. Let M be an R-module. Let n € N with n > 1, let U be an

expanded triangular subset of R"*!, and let U be the restriction of U to R™. Let
n+1

w= (uy, -, upp1) € U. Let f € Hompg ZRui,(U X {1})"1]\/[) Then there
i=1
exists w = (wy, -+ ,Wy41) € U and H € D,1(R) such that

m

Imfg{ e(Ux{1})—"—1M:meM}

(wlv"' ,'I,Un,].)

and Hu' = w”. Also there is an R-homomorphism

n+1
oy : Hompg <Z Ru;, (U x {1})_"_1M> — UM

=1

which is such that, for f and w as above, so that

9
(wi, -+ wy, 1)

f(wn—l-l) =

for some g € M, we have 6,(f) = g/(w1, -+ , Wy, Wpy1).

n+1
Proof. Since Z Ru; is a finitely generated ideal of R and finitely many general-
=1

ized fractions can be put on a common denominator, there exists t = (¢1,--- ,t,) € U
such that

Imf C {“—tnl) ce(Ux{1})™'M:m¢e M} .
Since U is the restriction of U to R" and U is expanded, (t;,--- ,t,,1) € U. Hence
there exists w = (wy,- -+ ,wpy1) € U and H, K € D,;1(R) such that Hu? = w! =
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K(t,1)T, and, since K*tT = (wy,+-+ ,w,)T, in view of 6.4 (iii), it is clear that w
meets the reqiurements.

To define a map 6, as described in the statement of the lemma, suppose that

w = (), - ,wl,,,) €U and H € D,y (R) are such that H'v" = w” and
Imf C Ux{1})™ "M : M.
mf_{(wlla"'vw;ml)E( X{}) e }
suppose that
gl
/ J—
f(wn+1) - (w/I’ 7w;”1>7

for some ¢’ € M. We must show that ¢'/w’ = g/w in U1 M.
There are P, P' € D,,1(R) and z = (21, , 2n41) € U such that Pw” = 27 =
P'w'". By 6.4 (iii), there exists ¢” € M such that f(z,41) = ¢"/(21, -, zn,1). We

show that g/w = ¢"/zin U "' M.
n—+1

Let P = (pi;); then 2,4, = anﬂiwi. Hence
i=1

2 . 2 2
fntl = § :azwz + Phtint1Wni1s

i=1
n+1
for some ay,--- ,a, € ZRwi. Since
=1
Imf C o c(Ux{1)™ 'M:meM
L (wi, - wy,, 1) ' ’

n

it follows form 6.4 (i) that f(z a;w;) =0, and so f(z2,,) = f(Phi1ns1Wh ).
=1

Hence, in (U x {1})™""1 M,

" 2
Zn419 _ Pntint1Wnt1g
(Zl,“‘,Zn,l) (wla"'awnal)

Hence by 6.4 (iii),
Znt19" _ |P*|P121+1n+1wn+19
(Zla"'azn71> (Zla"'azn71>
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Since U x {1} C U, it follows that, in U""' M,

Zng1g” _ ‘P*‘p%+1n+1wn+lg
(Zla'”aznal) (Zla'”aznal)

that is, by 6.4 (iii),

Zi+1g” _ 2121+1‘P*‘p121+1n+1wn+lg
(Zla"' 7Zn723z+1) (Zl?'” ,Zn,2%+1)
Therefore, by 6.4 (ii),
Znt19” _ |P*|p121+1n+1wn+19
(Zla"' 7Zn72121-|—1> (Zla"' aznaz721+1)

in U M. Let L = (l;;) € Dyy1(R) be such that L* = P* [, 41, = a;(1 < i < n)
and ln+1n+1 = p721+1n+1' Then L[wlv Ty Wny w121+1]T = [Zla T Ry Z?z—l—l]T and ‘L‘ =
|P*|p21n41- Hence, by 6.4 (iii),

"

9 _ g

(Zla"' 7Znazn+1) (wla"' 7wnvwn+1)

in U=""' M.
Similarly, we can prove that ¢’/w’ = ¢”/g in U™""'M. Hence g/w = ¢'/w’ in
U 1M. It follows that there is indeed a mapping

n+1
Oy HomR(Z Ru;, (U x {1})™'M) — U""' M,
=1
as described in the statement of the lemma; Now we show that ¢, is an R-homomorphism.
n+1
Let fi. f2 € HomR(Z Ru;, (U x {1})"™ 'M and let r € R. Then there exist
i=1
t=(ty, -+ ,t,) and t' = (t},--- ,t,) € U such that

m

I c{—
mfl o {<t11 7tn71)

c(Ux{1})y™'M:me M}

and

Imf, C{ c(Ux{1})™"'M:m e M}.

m
(lla"'vt,nvl)
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There exists ¢/ = (t/,--- ,t") and L, L' € D,(R) such, that LtT = t"" = L't'".
Since U is the restriction of U to R" and U is expanded, (#/,--- ¢, 1) € U. Hence

there exists w = (wy, -+ ,wpy1) € U and H, K € D, 1(R) such that Hu” = v’ =
K(t",1)". Hence, by 6.4 (iii),

m —
C —’I‘L—l :
Imfl_{(wl,-~,wn,1)E(UX{1}> M:me M}
and
I C Ux{1H)™" M : M.
mf2_{<w1’.”7wm1>€(U><{}) m € M}
Let
g1 22
1) = d fy(wys) =
fl(w +1) (wh“. awna1> an 2(W +1) (Wh"' Wo, 1)
for some ¢y, 9o € M. Then
g1+ g2 21
O + 6, = and 6,(f;) = . (1
(fl) (fQ) (wla' o awnawn—l—l) ( 1) (le" : aWnaWn—I—l) ( )
On the other hand, we have
m —
I C Ux{1V)™ M : M
mi+ ) € Ay € (0 1) m e M}
and
m —
I C 1) M M.
mlr) € gy € 0 () M me M)
Hence
. g1+ 92 . rgy
6u(f1 + fg) = and (5u(rf1) = . (2)
1" " s Wny Wn+1 1,777 » Wny Wn41
(w Wy, Wit 1) (w W, W)

It follows from (1) and (2) that 6, is an R-homomorphism.

6.10 PROPOSITION. Let the situation be as in 6.9. We denote by ®(U)
the system of ideals of R determined by U (See 6.2). For each b € (i), let

[ ]: Homp(b, (1 x {1})7"7'0) — Dy (4 x {1})™"7'9M)
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be the cononical homomorphism.

There is an R-monomorphism
§: Doany(U x {1} 'M) — U"'M

which is such that, for each v = (uy,--- ,u,41) € U and each

n+1

fe HomR(Z Ru;, (U x {1}) "' M),

1=1

we have 6([f]) = 6.(f), where 6, is the homomorphism defined in lemma 6.9.

n+1
Proof. Let w = (uy, -+, Upq1), 0" = (uf, -, ul,y) € U with ZRu; -

=1
n+1

Z Ru;. We show that the diagram

1=1

n+1

HomR(Z Ru;, (U x {1})™""'M)

bu

n+1
HomR(Z Rul, (U x {1})™"~" M} U-"=10f

i=1 Our

in which the vertical map is the restriction homomorphism, is commutative.
n+1

Let f € HomR(Z Ru;, (Ux{1})"""'M). Then there exists w’ = (w{, -+, wl,;) €

=1

U and L € D, 1(R) such that

m
(wi,--- w, 1)

) n’

Imf C{ c(Ux{1})y™'M:me M}
and LuT = w'". There exists w = (wy,--+ ywpy1) € U and K', K € D,1(R) such
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that K'w'" = wT = Ku'". Let K'L = H. Then, by 6.4 (iii),

Imf C{ c(Ux{1})™'M:me M}

(wlv"' ,'I,Un,].)
and Hu” = w” = Ku'". Let f(wni1) = g/(wy, - ,w,,1). Then

g
Wy, - - 7wn71)‘

f|n+1 (wn+1> = (

Z Ru
i=1

Also, Im(f|,41 ) C Imf. It follows from the definition that

Z Ru!
i=1

6u(f) = g/w = 6w (f|nsa ).

Z Ru
i=1

Hence there is an R-homomorphism ¢ as described in the statement of the proposi-

tion. We show that ¢ is injective.
n+1

Let u = (uy, - ,upy1) € U and f € HomR(Z Ru;, (U x {1})"" *M) be such

=1

that 6([f]) = 6u(f) = 0. There exist H € D, 1(R) and w = (wq,- -+ ,wp41) € U

such that Hu? = w” and

m

Imf C{ c(Ux{1}) " 'M:me M}.

(wi, -+ wy, 1)

Let f(w,y1) = g/(wy,+++ ,wpy1,1). Then g/w = 0 in U™""'M. Therefore there
exist Q € D,;1(R) and z = (21, , 2,41) € U such that Qu’T = 2T and |Q|g €

g zM. Let Q = (g;;). Then 27, = E bjw; + qﬁﬂnﬂwiﬂ, where by,--- .0, €
=1 1=1
n+1

Z Ruw;. Tt follows from 6.4 (i), and the fact that

=1

Imf C{ c(Ux{1) ™" 'M:me M},

(wla"' 7wn71)
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that f(z7) = 0(1 <i < n)and f(2341) = @ps1np1f(whyy)- Since

Q*[wlv e awn]T - [Zla e 7Zn]T
and |Q| = |Q*|¢nt1n+1, it follows from 6.4 (iii) that
An+in+19 qn-l—ln-l—llQ*lg |Q|9

= = =0
(wla”' ,'I,Un,1> (Zla”' 7Z’I’L71) (217”' azna1>

in (U x {1})™""'M. Hence

2
Qnt1n+1Wnt19
(wlv sty W, ]-)

=0

in (U x {1})7""'M. Hence ¢2,,,,f(w2,,) =0, that is f(z2,,) = 0. Since f(z?) =
n+1

0(1 <i<mn)and f(z2,,) =0, the restriction of f to Z Rz? is zero, and so [f] = 0.
=1

Therefore ¢ is injective.

6.11 DEFINITION. (See [8, P.115]) The ring R is called an N-ring if, for
every ideal a of R, there is a commutative Notherian ring extension 7' of R (having
the same identity as R) such that a is contracted from T, that is , aT N R = a.

Of course, if R is Noetherian, then it is an N-ring, but an N-ring need not be
Noetherian (See [8, P.122]).

The following theorem of Heinzer and Lantz provides a characterization of N-

rings which is very useful for our purpose.

6.12 THEOREM (W. Heinzer and D. Lantz [8, Theorem 2.3]). The ring R
is an N-ring if and only if; for every ideal b of R, the set {(b : ¢) : ¢ is an ideal of

R} (partaily ordered by inclusion) satisfies the maximal condition.

6.13 THEOREM. Let the situation be as in 6.10.
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If Ris an N-ring (See 6.11) (and so, in particular, if R is Noetherican), then

the R-monomorphism ¢ of 6.10 is an isomorphism.

Proof. Tt is enough to show that § is surjective. Let m/(uy, -« ,un1) €

U 1M. It follows from 6.12 that the following increasing chain

(ﬁ: Ru; : Un+1> - (i: Ru; : ule) (Z Ru,; : n+1> C
=1 1=1

stabilizes. Hence there exists ¢ € N such that (Z Ru,; : uf1+1> = (Z Ru; : uifl)'

i=1
Therefore there exists an R-homomorphism

f: ZRuleRufjfl (U) x {1} " 'M

for which
n t
. t41y _ _ dnt1Uniq M
f(z a;u; + an+1un—|—1> (U1 ey, 1)
i=1 9 ) )
for all ay,--+ ,a,+1 € R. Hence
Imf C cUx{1H)y™'M:-meM
mf gy € @ ()M e )
and
t
t+1 n+1117
f(un—l—l) (uh Uy, 1)
Hence by 6.9, we have
ul .m m
6 - 5 t+1 = ntl — .
([f]) (u17---7un7unt_1)(f> (u1," . un,uf;:_ll) (ula' .. aunaun-l—l)
Therefore m/(uy, -+, upi1) € IMo.

A similar result is available for triangular subsets of R, its proof is similar, but

simpler than, the proofs of 6.10 and 6.13.
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6.14 PROPOSITION. Let U be an expanded triangular subset of R. We
denote by ®(U) the system of ideals of R determined by U. For each b € (4), let |
|: Homp(b, M) — Dy (M) be the canonical homomorphism.

There is a monomorphism & : Dey(M) — U~'M which is such that 6([f]) =
f(uq)/(uy) for each f € Homp(Ruy, M) where (uy) € U. Moreover, if R is an N-

ring (and, in particular, if R is Noetherian), ¢ is an isomorphism.

Proof. Let u = (uy) € U. Then there is an R-homomorphism
6w : Homp(Ruy, M) — U™'M
which is such that, for f € Homg(Ruy, M), we have 6,(f) = f(u1)/(u1).
Let u = (uy),u' = (u}) € U with Ru}{ C Ru;. We show that the diagram

Hompg(Ruy, M)

bu
HomR(Ru’l, M)é—' UM

in which the vertical map is the natural homomorphism, is commutative.

Let f € Homg(Ruy, M) and let ) = ayu; where a; € R. Then

f(uy) _ ayf(ur) _ J(uy)
(uy) (aruy) (uq)

Hence there is an R-homomorphism 6 as described in the statement of the proposi-

bu (flRut) = = 8.(f).

tion. We show that ¢ is injective.
Let w = (uy) € U and f € Homg(Ruy, M) be such that 6([f]) = 6.(f) = 0.
Then f(u1)/(u1) = 0 in U 1M. Therefore there exists a; € R and (v;) € U such
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that ajuy = vy and aq f(uq) = 0. Hence f(ajuy) = f(v1) = 0, and so f|g,, = 0.
Hence [f] = 0. Therefore ¢ is injective.
Let R be an N-ring. We show that 6 is surjective. Let m/(u;) € U™'M. Tt

follows from 6.12 that the following increasing chain
0:u))C(0:u})C---C(0:ul)C---

stabilizes. Hence there exists ¢+ € N such that (0 : u}) = (0 : u4*"). Therefore there
exists an R-homomorphism f : Ru!t" — UM for which f(a;u'"") = ajulm.

Hence
JE)  wlm m

(™) (™) ()

Bt (f) =

Therefore (;"—1) € Imb.

6.15 THEOREM. Let 4 = (U,)nen be a chain of triangular sets on R.
Denote the complex C(U, M) of modules of generalized fractions by

1 0 n
0—>Mf—>FOf—>F1—>---—>F"f—>F"+1—>....

(so that F" = U 7'M and f* ! =e" for all n € N¢), and set F1 = M.

Let S(U) = (®(U,))nen be the family of systems of ideals of R determined by
U. Denote the generalized Hughes complex H(S(U), M) for M with respect to S(U)
by

0 ML RO g g M e

and set K~ = M.

Then there is a homomorphism of complexes

O=(0")i>_1: H(SU),M) — CU, M)
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over Idy;. Moreover, © is an isomorphism if R is an N-ring (and, in paricular, when

R is Noetherian).

Proof. The homomorphism © = (6');5>_; is constructed by a straighforward
inductive process.

Let =1 : K=! — F~! be the identity mapping on M and use 6.14 to define
6°. Suppose, inductively, that n > 1 and we have constructed R-homomorphism

61,0 ... 6" ! so that diagram

hfl hn72
0 M Ko o K2 K-t
9—1 l 90 l 971—2 l en—l l
—1 n—2
0 M F(] e f Fn—l
commutes, and suppose we have shown that =1, 8%, ---,6"! are all isomorphisms

when R is an N-ring. The above diagram induces a homomorphism §7~! : Coker

h"2? — Coker f" 2 such that the diagram

Tn—1
Kn1 Coker h"—2
en—l Hn—1
On—1
-t Coker fn—2

(in which ¢,,_; and 7, _; are the canonical epimorphisms) commutes, and 71 is an

isomorphism if 67!, ---  #"~! are. By 6.5 (ii), there is an R-isomorphism
W, : Coker f* 2 — (U, x {1}) ™ 'M.

Note that, w,q0,_1 is equal to w, of 6.5 (ii). It will be convenient to abbreviate

®(U,41) by ®py1 (for n € N) in the remainder of the proof. We now use the
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morphism of functors ne,,, : Id — Ds,,, of 1.13 and we obtain a diagram

n+1

Tp—1 ne,., (Coker h" 2
Coker pn—2—2 ( )

Dsg, ., (Coker h"~?) = K™

K1 —

=1 g1 Do, (6777

n+41

n—2
Fr=t 4%%_1 Joker f7? ey, (Coker /)

Dsg, ., (Coker fm?)

Wy, D<I>n+1 (wn)

U D) M), (< ()

(0, > {1yl

which commutes. By 6.10 and 6.13, there is an R-homomorphism
§:Dg,, (U, x {1})™'M) — U /7'M == F",
and ¢ is an isomorphism if R is an N-ring. It is routine to check that

fn_l = 5077<1>71+1((Un X {1})_"_1M)0w_n00n_1.

Let 0" = 60 Ds,,,(Wn)oDs,,, (0" 1). Then the diagram
hn—l
I(nfl Kn
en—l 0"
n—1
anl f Fn

commutes, and, also, #" must be an isomorphism if R is an N-ring. We are therefore

able to complete the inductive step, and the proof.
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6.16 REMARK. It is easy to check that, when R is an N-ring, the isomor-
phism of 6.13
0: D@(U)«U X {1})7n71M) — UﬁnilM

is the inverse of the isomorphism
Tu(M) : U"'"M — Deu (U x {1})™" "' M)

provided by [36, 3.3]. Hence we can deduce, on use of induction, that if R is an
N-ring, then the isomorphism of complexes of 6.15 is the inverse of the isomorphism
of [36,3.5].

Let the situation and notation be as in 6.8 and suppose that our commutative
ring is not necessarily Noetherian. Then we show that there is a morphism of

complexes H(S, M) — C(U, M) over Idy,.

6.17 PROPOSITION. Let S = (®;);en and 8" = (®));en be two families of
systems of ideals of R such that, for each n € N, the system ®/ is a cofinal subset

of ®,. Let M be an R-module. Then there is an isomorphism of complexes

U= (U")i>_9: H(S', M) — H(S, M)

over Id,,.
Proof. Write the generalized Hughes complex H(S', M) as
w—l wO . ,wi .
0— M"Y — . . 2t
and write the generalized Hughes complex H(S, M) as

00— ML RO g M g
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It will be convenient to write L 2 = K2 = 0,L ' = K ' = M, and to use
h7?:K?— K'and w?:L?%— L ! to denote the zero homomorphism.

We shall construct an isomorphism of complexes ¥ by an inductive process.
Let 972 : L72 — K2 be the zero map and ¥~! : L=! — K~! be the identity
mapping on M. These provide a basis for the following induction.

Let n € Ny and suppose that we have already constructed R-isomorphisms

P L' — K'for i = —2,—1,0,--- ,n — 1 such that the diagram

L72 _,w_Q Lfl - 5 e - 5 Ln72 " Ln72
w—2 1/;*1 wan w—l
-2 n—2
K2 h—> K-l — . — N2 h Jn—1

commutes. From our inductive assumptions we obtain a commutative diagram

Tn—1

Lt Coker w™ 2
wn—l W

1 In—1 2
K" Coker h"~

in which 7,_; and o,_; are the canonical epimorphisms and ¢"~! is the induced
isomorphism. We now use the morphism of functors Na! ., Id — D¢%+1 of 1.13

and we obtain a diagram
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Tn—1 N, (Coker w"2) o .
Lt Coker w"—2—* Dy (Coker w" %)=L
ZDn—1 W D(I);Hl(wnfl)
On— ' Coker h" 2
Kt - Coker hm=? o, (Coker ) D (coker h"~?)

n—+1

which commutes. Since @], is cofinal subset of ®,,;;, there exists an R-isomorphism

An i Day (Coker h"~? ) — Dg,,, (Coker h"~*) such that the diagram

n+41

na:.,, (Coker h"~?)

Coker h"? Dy, (Coker h"?)

An
Ne,,, (Coker A"~

Dg, ., (Coker h"~?)

commutes. Set 9" = 0"0D¢11+1(wn_1)‘ Then %™ is an R-isomorphism and the

diagram

Lnfl Ln
77anl wn
n—1
Kt h K"

commutes. We are therefore able to complete the inductive step, and the proof.

6.18 COROLLARY. Let § = (®9;);en be a family of systems of ideals of R.
Suppose that there exists a chain U = (U;);en of triangular subsets of R such that,

96



for each i € N, we have Z Ru; € @; for all (uy,---,u;) € U, and, for each ideal

=1
b € i, there exists (vy,---,v;) € U; such that Z Rv; Cb. Let M be an R-module.

7=1
Then there is a morphism of complexes H(S, M) — C(U, M) over Idy,;.

Proof. For each n € N, let

o(U,) = {2": Ruj : (uy, -+ ,uy,) € Un} )

Then, by the hyppothesis, ®(U,,) is cofinal subset of ®, for all n € N. Hence the
claim follows from 6.15 and 6.17.

6.19 A COUNTEREXAMPLE. A multiplicatively closed subset of R is
a triangular subset of R. We give an example of a commutative ring R and a

multiplicatively closed subset S of R for which the natural map
§: lim Hompg(sR,R) = Dgs)(R) — S™'R
sRG—QzS)

of 6.14 is not surjective. Since S can be incorporated into the chain of triangular
subsets U = (U, )pen on R, where Uy = S and U, = S x {1} x---x {1} C R" for all
n € N with n > 1, this example is enough to show that the morphism of complexes
of 6.15 in not always an isomorphism.

Consider R = k[Xy, X5, -+, X,,,---]/I where k is a field and
Ii= (X1 X0, X7 X5, -+, X7 X, o).

Let 2; denote the natural image of X; in R. We show that (0 :p 277') C (0 :5 a7),

for each n € N.
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Since 2tx,,1 = 0, we have x,,; € (0 :g 27). It is enough to show that
T € (0:5 2771, Suppose that z,.1 € (0:5 277"), so that X' X, ., € I. Hence
there are t € N and fi(Xy,---, Xy), -, fil X1, -+, Xy) € k[Xy, -, Xy] such that

t>n+1and
t
X' X =) XX fi(X, -+ X))
i=1
in k[Xl, aXt—I—l]' Evaluate at XQ = = Xn = Xn—l—Q = s = Xt+1 =0 in

k[X1,---, X¢1]. We obtain that

XlnianJrl = X{LXrH»lfn(Xla 07 e 707 Xn+17 Oa T 70)7

and this contradiction shows that @, &€ (0 :p 27 1).

We note in passing that the strictly ascending chain
(0:ga)C(0:ga?)C---(0:ga}) C(0:pat™)C---

shows that R is not an N-ring.

Take S = {2} : i € N¢}, we show that 1/z; ¢ I'mé. Suppose that 1/z; € I'mé.
Then there are [ € N and f € Homp(2' R, R) such that 1/2, = f(2!)/2} in ST'R.
Note that (0:5 ) C (0 :z f(2})).

We can assume that

m

flah) =) aaf ol

i=1
Where u,m € N, O, -+ ,0s € Tand (q, -+, ) € NF(W <3 < ). If, for any

1 < i < m, there exists 2 < j < u such that 1 < a;;, then x{_lx?” =01in R, and

hence
a;zy" e 0
1 =
Ty
in ST'R. Hence, in S7'R,
1 h B
L fl@y) bixy
vy oot ay
! 1 i=1 1



Where h € N j,-+- ,= € Tand (f,---,0,) € Ng. Then there exists z{ € S such
h

that 2" = " b2 " in R. Tt follows from the definition of I that
i=1

l
Xi]-l-l — Z biXiBi'i'q-l-l

in k[X;]. Hence there exists 1 < p < h such that b; =0 for all 1 <i < h and i # p,
b,=1and 8, =1—1. Thus

f — :I/ll E Cl 'Yzl .. .:I/.Ziu’

where s € Ny, -+, o € Tand (i1, -, Yiu) € (Ne X N x <+« x N)(H

A
L1
A
2z

Now
E C;T 711 . ./I/'/Y“L — 0

in R. Hence 2% ' f(2t) = 2¥™2 and 2, 2" ' f(2h) = 2y pz¥™ 2 £ 0, since 2,4 &

(0 :5 2477%). However 2% ' (2}) = 2,002" ™" = 0. we have thus show that

Typ1Ty ! (0 R%)\(O Rf(%))

and this contradiction shows that 1/x1 & I'mé.
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87 Generalized Hughes complexes and kersken’s denominator

systems.

In [14], M. Kersken defined the concept of denominator system over R. He
then constructed, for an R-module M and a denominator system £, a complex
ce (L; M) (See [14, (2.4)]) which he called the Cousin complex of M with respect
to L. In [6,2.3], M.A. Hamieh and H. Zakeri showed that every Kersken’s Cousin
complexes is isomorphic to a complex of modules of generalized fractions. In this
section, we show that the methods of § 2 can be used to show very quickly that
every kersken’s Cousin complexes is isomorphic to a generalized Hughes Complex.

We now describe the theory of denominator systems developed by kersken in

[14].

7.1 DEFINITION. A denominator system over Ris aset £ C U R'. (where
1€N
RY is interpreted as {f}) for which the following are satisfied:

(a)C # 0;
(b) whenever i € N and (uq,---u;) € L= LN R', then (uy, -+ ,u;) € L for all
j = 07 e 717

(c) whenever ¢ € N and v = (vy,--- ,v;) € L', then
S(v) :=A{viy1 € R:(vy,- -+ ,0;,0i41) € L}

is a multiplicatively closed subset of R; and

(d) whenever i € N and u = (u1,+++,u;),v = (vy,-+- ,v;) € L' with Zij C

J=1

uw; R, then S(v) C S(u) C (S(v)+ w;R), where T, for a multiplicativel
Z ] ) J 9 9 p y
j=1

i=1
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closed subset 1" of R, denotes the saturation of 7.

7.2 LEMMA (See [14,1.1]) Let £ be a denominator system over R. Let

(ur, -, up), (Uh"" v,) € Ep where p € N.. Then there exists (wy,- -, w,) € LP

such that w; € ZuR ZvR forall 7 =0,
=1
7.3 DEFINITION. For an ideal a of R, the £ hleight of a [14, page 390],
denoted L£-ht a, is defined to be
Sup {i € Ny : there exists (uy,---,w) € £' such that ZujR Ca}.

i=1

Let M be an R-module. The L-height of M [14, page 390], denoted L-ht (M),
is defined to be

inf{L—ht (0:pz):x€ M}

7.4 LEMMA. (See [14, (2.1)]) Let M be an R-module. Assume that £-ht
(Anng(M)) > p, where p € Ny.

Let w = (uy, - ,up),v= (v, -+ ,v,) € L be in Anng(M). Then (S(u)) *M
and (S(v))~'M are isomorphic.

By the above isomorphisms we obtain the desired result.

7.5 DEFINITION. (See [14, page 392]) Let H be a finitely generated R-
module and let zy,-- -, x, generate H. Assume that £- ht (H) > p, where p € Ny.
Then £ — ht(0 :g ;) > p for all z' = 1,---,n. consequently, by 7.2, there exists

u = (uy,--+,u,) € LP such that Zu ‘R C Anng(H).C(LP;H) is defined to the

module (S(u))™'H (this is sensible by 7.4) and ey : H — C(L"; H) denotes the

natural homomorphism.
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7.6 DEFINITION. (See [14, (2.2)]) Let M be an R-module. Assume that
L — ht(M) > p, where p € Ni. Let

K = {H : H is a finitely generated submodule ofM}.

We define a partial order on K by letting H < H; if H C Hy; this makes K into
a direct set. Let H,H; € K and u = (uy,--- ,u,) € L be such that H C H; and
zp:uiR C Anng(H,). Let ey p, : C(LP; H) — C(LP; Hy) be the homomorphism
in 1Which x/t € C(LP; H) maps into x/t. Clearly the homomorphisms ey g, turn the
family {C(LP; H)}pgex into a direct system over . C(LP; M) is defined to be the
direct limit lim C(LP H).
Hek

7.7 REMARK. Given an R-module M, write K for the collection of all
finitely generated submodules of M. We define a partial order on K by letting
H, H € K and H < H, if H C Hy; this makes K into a directed set, and we write
tpm, : H — H; for the natural indusion. Then {H, uyp,} is a direct system of
R-modules, the limit of which is the original M, that is M = hi{l H.

HeK

7.8 LEMMA. (See [14, (2.2)]) Let the situation and notation be as in 7.5,
7.6 and 7.7. Then the system of homomorphisms {eg : H — C(LP; H)}gek is
a morphism from direct system of 7.7 to direct system of 7.6 Hence it induces an
R-homomorphism €y, : M — C(L£P; M). Also, we have £ — ht (Kerey) > p+1
and £ — ht (Coker €y7) > p+ 1.

7.9 THEOREM. (See [14, (2.4)]) Let M be an R-module, and let £ be a

denominator system over R. Then there exists a unique (up to an isomorphism)
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complex

~ ~

C* (L M) - ——C (L M) 250 (L M) — -

such that:
(1) C*" (L; M) =0and & =0 for all i < —1
(2) C 1 (L M) = M;

(3) for each p € Ny, C' (£; M) = C(L'; Coker §*~%) and §*~! is the composition

of the natural epimorphism from C?~' (£; M) to Coker 6°~> and the homomorphism
€Coker so—2 : Coker 6P 2 NG (L:M).

Furthermore, £ — ht(Hi(C’N' (L;M))) >i+2forallicZ.

7.10 REMARK. Let the situation and notation be as in 7.9. Then it follows

from 7.8, on use of induction, that £ — ht (Coker 6 2) > i for all i € Ny.

7.11 THEOREM. Let £ be a denominator system over A, as described in
7.1. Let M be an A-module. For each i € N, set

O ={> wid: (uy,- - u) € L= LN A}
j=1

Then § = (®@;);en is a family of systems of ideals of A, and there is a unique
isomorphism of complexes (over Idy,) between kersken’s Cousin complex ce (L; M)

and the generalized Hughes complex H(S, M).

Proof. Tt is immediate from 7.2 that ®; is a system of ideals of A (for all i € N).
Write C* (L; M) as

0% M0 (M) 2 O (M) e (L M) —
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Let
@y = {a: ais an ideal of A such that U(a) C Supp (IM)}.

By 2.6, 2.7 and 1.14 (i), it is enough for us to show that

(a) Coker §"~2 is ®,-torsion for all n € Ny,

(b) H”‘l(é’ (L; M)) is @, -torsion for all n € Ny, and

() To,,,(C™ (L; M) = HY _(C™ (£; M)) =0 for all n € Ny.

Let n € Ny. By 7.9, 7.10 and the definition 7.3, each element of Coker 6" 2 is

n+1

annihilated by an ideal in ®, and each element of H "‘1(5’ (L; M)) is annihilated
by an ideal in ®,,,1. Hence points (a) and (b) have been verified.

Let i € Nx. Since, by 1.5(5), the functor Hé,nH commutes with direct limits, it
follows from 7.6, 7.9 and 7.10 that it is enough for us to show that, for an orbitrary

finitely generated submodule D of Coker 6"~ and a sequence u := (u1, - ,u,) € L"

for which (Z u;A)D = 0, we have

7=1
Hy, . ((S(u))'D) =0.
To see this, let (vy, -+ ,v,41) € LT By 7.2, there exists (wy, -+ ,wny1) €

L7 such that

n

Z w;iA C (Z wA) N (D v;A)

7=1
n+1
and w1 € ZujA. Thus, by 7.1 (d), w41 € S(u). Thus a N &S(u) # 0, for each
7=1

a€ d,,,. Hence @, 1(S(u))"'A = {(S(u))"'A}. Hence, by 1.5 (6),
Hy, . ((S(u))'D) 2= Hy, (s(uy-14((S(w)'D) =0.

Thus point (¢) has been verified, and the proof is complete.
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CHAPTER (II)
ACTION OF CERTAIN GROUPS ON CERTAIN MODULES AND
COMPLEXES

Throughout this chapter, for a subgroup G of automorphisms of R, we use R“

to denote the fixed subring
{a € R:0(a) =a for all o € G},

and C(R%) to denote the category of all R“-modules and R“-homomorphisms. Also,
for R-module M and for a group H of R%-automorphisms of M, we use M to denote

the fixed submodule
{r € M:o(x)=x for all ¢ € H}.

§ 8 Group action and functors.

Throughout this section, G is a finite group of automorphisms of R and M is an
R-module. We shall assume that there exists a finite group H of R“-automorphisms
of M such that |H|, the order of H, is invertible in R. Also, we shall let R' be a
commutative ring with non-zero identity such that |H| is invertible in it.

The next two results 8.1 and 8.2 is needed in this section.

8.1 PROPOSITION. (See [19, P.36, Proposition 4]). Let T be an additive
functor from C(R) to C(R'). Then if R-homomorphism f is null (a homomorphism

is null if its domain and kernel coincide), then T(f) = 0.

8.2 THEOREM (See [19, P.37, Theorem 2]). Let T be an additive functor
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from C(R) to C(R'), and let
0— M —M-—M—20
be a split exact sequence of R-modules. If T is covariant, then the sequence
0—TM)—TM)— T(M")—0
is a split exact sequence, while if T is contravariant this is the case for sequence
0—TM")—T(M)— T(M') — 0.
There is an RS-homomorphism 7 : M — M# which is such that
) = g 3 ofa)
for all # € M. We shall need to use the exact sequences
0— M M- — —0

and

0— Kern - M1 M7T — 0

in which p, 7 and p are the obvious natural homomorphisms. It is clear that nyp =

Idym. Therefore we have the following.

8.3 LEMMA. The exact sequence of R“-modules and R“-homomorphisms

OHMHLML_A%HO

and

0— Kern 4 ML MT —0
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are split exact sequences.

8.4 DEFINITION. Let T be a functor from C(R%) to C(R'). We define
(T(M)Y .= {2 € T(M): T(o)(z) = x for all ¢ € H}.

8.5 THEOREM. Let T be an additive covariant functor from C(R%) to C(R').
Then the R'-homomorphism T'(p) : T(MH) — (T'(M))¥ is an isomorphism.

Proof. Tt follows from 8.2 and 8.3 that the sequence

T(m) M

T(p) " T(W)

0 — T(M™) =5 T(M) —0 (1)

is a split exact sequence.
Eeach ¢ € H induces an R%-isomorphism & : M/M*" — M/M* which is
such that (y + M) := o(y) + M for all y € M. We define

(T(%))H ={x e T(%) :T(7)(x) =« for all 0 € H}.

For each 0 € H, we have a commutative diagram

P ™

MH M e
Tdyn g o
p T
MH M 2

We now use the functor 7', we obtain a commutative diagram
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T(MH)&»T(M) () T()
Tdyp ) T(o) T(O%
T(MH)ﬂ»T(M) T(m) T()

for each 0 € H. It follows from the above commutative diagrams that

Im(T(p)) € (P(M))"" and Tn(T(m)] ) € (T (2)

Set 7' = T'(7)|(r(ayr- By (1) and (2), the sequence of R'-modules and R'-homomorphisms

0 — 1My " oy = (T(%))H

in an exact sequence. Hence it is enough for us to show that (T (%))H =0.

Let x € (T(M/M*"))H. Then

[H|z = (Z T(@) () = (T(Z 5)) ().

ocH oeH

Since Z o(y) € M" for all y € M, ZE = 0. Hence, by 8.1, |H|z = 0. We have
ocH oc€EH

2 = 0 because |17| e R.

8.6 THEOREM. Let U be an additive contravariant functor from C(R%) to
C(R'). Then the R-homomorphism U(n) : U(M*) — (U(M))" is an isomorphism.

Proof. Tt follows from 8.2 and 8.3 that the sequence

0 — M " uon "™ ukery) — o0 (1)

is a split sequence.
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For each o € H, we have commutative a diagram

Kern M MH
0'|Ke1~n g IdMH
Kern M MH

Using the functor U, we obtain a commutative digram

U(MH&»U(M)M» U(Kern)

U(o) U(o

Kern)

IdU(MH

U(MH&U(M)M» U(Kern)

for each 0 € H. It follows from the above commutative diagrams that
Im(U(n)) € (UM))" and Tm(U(u)|woayn) S (U(Kern)™ (2).

Set p' = U(p)|w(ayyr- By (1) and (2), the sequence of R'-modules and R'-homomorphisms

0 — U(M") L2 Uy L5 (U (Ker))”

is an exact sequence. Hence it is enough for us to show that (U(Ker))? = 0.

Let z € (U(Kern))?. Then

|H |z = (Z U(OIKem)) (z) = (U(Z U\Kem)) ().

ocH oeH

Since ﬁ Za(y) =0 for all y € Ker n,Za

ocH oeH

We have x = 0 because ﬁ e R.

Kxern = 0. Hence, by 8.1, |[H|z = 0.
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The following corollaries of 8.5 and 8.6 are quite useful. Note that, = € R®

||
because |H|a(ﬁ) =1g forall o € G.

8.7 COROLLARY. Let N be an R%module, and let
(N @pe M) .= {2 € N@pe M : (Idy @ 0)(z) = 2 for all 0 € H}.

Then
Idy @ p: N @pe M7 — (N @ge M)?

is an R%-isomorphism.
8.8 COROLLARY. Let b be an ideal of R, and let « € Nx. Let N be an
R%module, and let
(Higre (NOpa M) i= {2 € H e (NOpa M) : Hi e (Idy©0)(z) = x for all o € H}.
Then
(Hyme (Idx @ p)) = Hypgne (N @ge MT) — (Hypge (N ©ge M)

is an R%-isomorphism.

8.9 COROLLARY. Let N be an R“-module, and let
(Hompa(M,N))" := {2 € Hompe(M,N) : Homga (o, Idy)(z) = for all 0 € H}.

Then
Hompe(n, Idy) : Hompe (M, N) — (Hompge (M, N))#

is an R%-isomorphism.
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8.10 REMARK. Let F' be a free R-module with basis B. Then each 0 € G

induces an R%-isomorphism o* : I — F which is such that
o*(a1by + - - - + apyb,) = o(ay)by + - - - + o(ay )by
for all a; € A(1 < i< n), forallb, € B(1 <i<mn)and for all n € N. It is clear that
G :={0":0€ G}

is a group of R%isomorphisms from F to F.

Let the situation and notation be as in 8.5 and 8.6, and let G be a finite
group such that |G|, the order of G, is invertible in R. Then, by 8.5 and 8.6,
T(p): T(F) — (T(F)“ and U(n) : U(FY") — (U(F))%" are R'-isomorphisms.
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§ 9 Group action on local cohomology modules.

Throughout this section, GG is a finite group of automorphisms of A and M is
an A-module; N is an A9-module. We shall assume that there exists H, a finite
group of A%-module automorphisms M, such that |H|, the order of H, is invertible
in A.

9.1 DEFINITION AND REMARK. Let i € Ny, and let b be an ideal of
A. If L is an A-module, then we use L[ 4¢ to indicate that we are regarding L as an

A%module. Tt is well known that, there is an A%-isomorphism
0 : Hyrge (N @0 M) — (H(iammﬂf)MN @ a6 M))[ ac

(See 1.2 and 1.5(6)). We define

(H;

(bNR®
x for all o € H}.

a(N@ae M) = {a € Hy qorq(N@ac M) : (BH}pqo(Tdy @) ™) () =

9.2 THEOREM. Let i € Ny, and let b be an ideal of A. Let q,,---.q. be

the minimal prime ideals associated to b. If
{a, - a0} = {olqn), -, olad)}
for all ¢ € GG, then
H{yrgoyq(N @40 M) = Hy(N @40 M);

and consequently H] o (N @46 M") and (H{(N @46 M))" are A%isomorphic.

112



Proof. By 8.8 and 9.1, it is enough to show that
H(ihmmvﬁ)m(N @0 M) = Hy(N @46 M).

Hence, by 1.5(1) and 1.2, it is enough, in order to complete the proof, to show that
74((b NA®)A) = vy (b). Tt is clear that r,((b N A®)A) C ty(b). We complete the
proof by showing that if q € Spec (A4) and (b N A®)A C q, then b C q.

Let q € Spec (A) and (b N A®)2A C q. Firstly, we show that b C U o(q). Let

oE®
o € b. Then T,eqo(a) € bNA®. Hence M,cqo(a) € q. consequently, there exists

A € G such that AM(«) € g. So we can deduce that b C U 0(q). Therefore there

oed
exists # € G such that b C 6(q). Hence there exists i(1 < i < r) such that q; C 6(q).

Hence 0'(q;) C q. By the hypothesis, b C 07*(q;) C q.
We can deduce from 9.2 the following.

9.3 COROLLARY. Let i € N, and let b be an ideal of A. Let q,,---,q. be
the minimal prime ideals associated to b. Let |G|, the order of G, be invertible in

A. Then if
{qlv T qt} = {U(ql)v e ao—(qt)}

for all 0 € G, then
H(ibnmes)m<N @pc A) = H{(N @46 A)

and furtermore H! .o (N) and (H(N @46 A))¢ are A%-isomorphic.

bN2AS
Now, we present some examples about ideals which satisty the condition of the

9.2.

9.4 EXAMPLES. (i) Let 0(b) C b for all 0 € G. Then b satisty the condition
of 9.2.
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(ii) Let b be an ideal of A and Suppose that there exists an ideal a of A“ such
that b = a2, Then o(b) = b for all 0 € G.

(iii) Let A be a semi-local ring and m,, - - - , m; its maximal ideals. Then o(m, N
cenNmg) =myN---Nmyg for all o € G.

(iv) Let A be a local ring and m its maximal ideal. Then o(m) = m for all

o€ G.
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§ 10 Group action on Cousin complexes.

Throughout this section, GG is a finite group of automorphisms of A and M is
an A-module; N is an A-module. We shall assume that there exists a finite group
H of R%isomorphisms from M to M such that |H|, the order of H, is invertible in
A.

We shall use the following facts (10.1, 10.2, 10.4 (iii), 10.6 and 10.7 ) in this

section.

10.1 LEMMA. Let |G|, the order of G, be invertible in A. Then
(i) The ring homomorphism A% — A is pure;
(i) (IA) N A% = I for any ideal I of A%,

(iii) A“ is a Noetherian ring.

Proof. (i) Let ¢ : R — R’ be a ring homomorphism. ¢ is said to be pure
if, for all R-module L, the natural homomorphism L — L @z R’ is injective. It
follows that we have purity if R is a direct summand of R" as an R-module (See [17,
page 54, Example 2]). Therefore with the aid of 8.3 we have the claim.

(ii) By (i), it is enough to show that if the ring homomorphism ¢ : R — R’
is pure, then ¢~ '(IR') = I for any ideal I of R. Let ¢ : R — R’ be a pure ring
homomorphism, and let I be an ideal of R. Then the natural R-homomorphism
0:R/I — R/I @R R is injective. Let A : R/I@r R" — R'/IR’' be the natural R-
isomorphism. Then the R-homomorphism \go : R/I — R'/IR’ given by (A\go)(r+
I) = ¢(r) + IR is a monomorphism. Hence o' (IR") = I.

(i) Let [; C +-- C I, C --- be ascending claim ideals in A“. Then (I,A),cn
stabilized in A, so that ((I,A) N A%),cy = (I,,)nen stabilizes in A,
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10.2 LEMMA. (i) A is integral over A“;

(i) Let p € Spec (AY), and let S = AY — p. Then J is a maximal ideal of
S~1A if only if there exists q € Spec (A) such that S~™'q = J and q N A® = g;

(i) Supp4e(N) = {gNA®: q € Suppa(N @40 A)};

(iv) If g € Supp (M), then o(q) € Suppa(M) for all o € G;

(v) Supp a(N @46 A) = {q € Spec (A) : qNA® € Suppuc(N)};

(vi) dim A = dimA® and if q € Gpec(2), then dim (A/q) = 0im(A® /q N A®);

(vii) Let g € Suppa(N @4¢ A). Then htye ,4(q) = btn(qN2A®).

Proof. (i) This follows from [1, page 68, Exercise 12].

(ii) Let J be a maximal ideal of S™*A. Then there is q € Spec (A) such
that S7!q = J and qN & = . Hence qNA® C p. Thus S~1(qNA®) C & 'p.
It follows from (i) and [1, 5.6 (ii)] that S~'A is integral over S™'A“. Hence, by
[1, 5.8], (S71q) N (& A®) = & (g N A®) is a maximal ideal of S~tA%, so that
S 1 qNA®) = & 'p. Hence qNA® =p

Let q € Spec (A) and qNA® = p. Then (S~1q) N (G7*A®) is a maximal ideal
of STLAY. Hence, by [1, 5.8], S™!q is a maximal ideal of S™1A.

(iii) By 4.1, it is enough to show that

Supp,c(N) C {gNA®: g€ Supp, (N @xc A)}.

Let p € Suppac(N). Set S = AY —p. Then N @46 S7'AY # 0. We shall denote
the inclusion map A9 — A by p. By 8.4 and 8.5

Idy @S N@ac S TAY — N@,e S A

is an A“-monomorphism, because N ©@4¢ S 1(e) is an additive covariant functor

from C(AY) to itself. Therefore N @4a S~'A # 0. Hence there exists a maximal
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ideal J of S71A such that (N @46 S7tA) @g-14 (S71A);) # 0. By (ii), there exists
q € Spec (A) such that J = S !q and q N A® = p. Consequently,

(N @a6 STIA) @g-14 (ST1A)g-14) # 0. (1)
We have
((N@AGS_IA)(X)SAA(S_IA)SACI) = N® e (S_1A®571A(S_1A)571q) = N® e (S_IA)Sflq

2N ®@ac Ag =N Qa0 (AD4 Ag) = (N Qac A) @4 Ag. (2)

It follows from (1) and (2) that (N®@cA)@4A,) # 0. Hence q € Suppa(N@ 4¢
A) such that g N 2A® = p.

(iv) Let q € Suppa(M). Then there exists the ring isomorphism f : A, —
A, (q) which is such that, for each a/s € Aq, f(a/s) = o(a)/o(s). Consequenctly, A,

is an A,(g-module. Therefore
M @4 Ag=M @4 (Aa(q) D 4, (q) Aq) > (M ®a Aa(q)) @4, Ag = Mo (q) @4, Ag.

Hence (My(q) ©4,,, Aq) # 0. Thus o(q) € Suppa(M).
(v) By (iii), it is enough to show that

{q € Spec (A): qNA® € Supprc(N)} C Supp, (N @c A).

Let q € Spec (A) such that g N 2A® €Suppac(N). Then, by (iii), there exists
q" € Spec (A) such that q’ € Suppa(N @40 A) and g’ N A® = q N A®. Hence, by
[1, page 68, Exercise 13|, there exists § € G such that ¢ = 6(q’). Thus, by (iv), q €
Suppa(N @46 A).

(vi) This follows from (i), [1, 5.6 (i)] and [17, Exercise 9.2].

(vii) Let o C g, C -++ C q¢ = q be a stritly decreasing chain of prime ideals
of Suppa(N @4 A). Then, by (i), the Incomparalility theorem [1,5.9] and (iii),
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G NA® C g, NA® C -+ C qNA® = g N A® is a strictly decreasing chain of prime
ideals of Supp4a(NV). Therfore

hing o 4(q) < btn(g N A®).

Now, suppose that p, C p, C --- C py = q N A® is a strictly decresing chain of
prime ideals of Suppe(/N). By, (i) and the Lying-over theorem [1,5.10], there exists
4o € Spec (A) such that q, N A® = p,. It now follows from (i) and the Going-up
theorem [1,5.11] that, there exists q, C q; C -+ C q a strictly decreasing chain of
prime ideals of A such that q;NA® = p; for each 0 < i < [. By [1, P.68, Exercise 13],
there exists o € G such that o(q;) = q. It is clear that 0(q,) C 0(q.) C -+ C o(q() =
q is a strictly decreasing chain of prime ideals of A such that o(q;)N2A® = q;NA® = p;
for each 0 < i < [. By (v), o(qi) € Suppa(N @4¢ A) for each 0 < i < [. Hence
htn(aNA®) < bye, o a(q)-

Using a proof Similar to the proof of 4.3 and 5.19, we can prove theorem 10.3

and theorem 10.4.

10.3 THEOREM. Let S = (®;);en be a family of systems of ideals of A.
Write the generalized Hughes complex H(S, M) as

-2 h—l hO L hz L
0—- M5 K" ... oK' S Kl—...

Let f : A—B be a homomorphism of commutative Noetherian rings, and let L
be a B-module. Let SB = (®;B);cn (we are using notation introduced in 1.4), a
family of systems ofideals of B. Then there is a unique morphism of complexes of

B-modules and B-homomorphisms
U= (")ps 9:H(S,M) @4 L—H(SB,M ©4 L)
over Idye , 1
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Furthermore, ¥ is an isomorphism of complexes if and only if
0o, B8(K" ©aL): K" @4 L—Dg, (K" ©4 L)

is an isomorphism for every n € Ny.

10.4 THEOREM. Let F' = (F!)icn, be a filtration of Spec (A) which admits
M. For each n € N, let

®, = {b: bis an ideal of A such that B(b) C §,}.

It follows from 5.7 that S := (®,,)nen is a family of system of ideals of A and there

is a unique isomorphism of complexes (over Id;)
C(F', M) — H(S, M).

Let f: A— B be a homomorphism of commutative Noetherian rings, and let
SB := (®;B);cn. Let L be a B-module.

(i) There is a unique isomorphism of complexes of B-modules and B-homomorphisms
C(F' M) @4 L — H(SB,M @4 L)

over Idye ,r-

(ii) For each n € Ny, set

G :={q€ Suppg(M @, L): {7 (q) € §,}

and

®' = {b:bis an ideal of B such that U(b) C &,},

a system of ideals of B. Let 8" := (®/,),,en. Then there is a unique isomorphism of

complexes of B-modules and B-homomorphisms
C(F M)yo, L — H(S',M @4 L)
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over Idye ,1.-

(iii) Suppose, in addition, that whenever ¢, ' € Suppg(M @4 L) with g C ¢q’ and
f~"q) = 7%(q'), then q = g’ (This condition would be satisfied if B were integral
over its subring f(A), or if f were surjective, or if ht,f~'(q) = bhtyq for all g € Spec
(B)). Then G := (G,)icn, is a filtration of Spec (B) which admits M @4 L, and

there is a unique isomorphism of complexes of B-modules and B-homomorphisms
C(F . M)y@ L — C(G. M @4 L)

over Idye ,r-

In this section, we can use either 10.4 (iii) or the following theorem.

10.5 THEOREM. Let F' = (F/);cn, be a filtration of Spec (A) which admits
M, and let f : A — B be a homomorphism of commutative Noetherian rings. Let

L be a B-module. Set

G, :={q € Supp (B):{7'(q) € §, N Supp (M)}

for each n € Ne. It is clear that G := (G,)ien, is a descending sequence of sub-
sets of Spec (B). Let G := (G})ien, be a filtration of Spec (B). Then G admits
M @4 L and there exists a unique isomorphism of complexes of B-modules and
B-homomorphisms

C(G, M@, L) — C(F ,M)@4 L

over IdM®AL-

Proof. Let q € Suppp(M ©,4 L). Then, by 4.1, f~'(q) € Suppa(M) C F}.
Hence q € &,. Hence G admits M @4 L. Write the Cousin complex C(F', M) for
M with respect to F' as

d-2 d-1 d0 dam™
00— MM S M—...—M" = M.
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By 5.11, it is enough for us to show that for each n € Ny,
(a) Suppp(M" @4 L) C Gu;
(b) Suppp (Coker (d"~? @ Idy)) C Gy;
(c) Suppp(H""H(C(F', M) @4 L)) C Gy
(d) the natural B-homomorphism
a(M" @4 L): M" @4 L — P (M" @4 L),
qeIG,

such that, for x € (M" @4 L) and q € 08, the component of a(M" @4 L)(x) in
the summand (M"™ @4 L), is x/1 (it follows from condition (a) and 5.9 that there is
such an B-homomorphism), is an isomorphism.

(a) , (b) and (c) follows from 4.1 , 4.2 and 5.2.

For each n € Ny, set
®, :={a: ais an ideal of A such that U(a) C F, N Supp (M)}

and

®' :={b: bis an ideal of B such that U(b) C &,}.

It is easy to see that ®,B C ®/ for all n € Nx.. We show that ®,B is a cofinal
subset of ®,, for all n € N.. Let n € N.. Let b € |, and suppose that b is proper.
Let qy,- -+, q¢ be the minimal primes of b. Then there exists 2 € N such that

(q: - q0)" C (¢(b))" C b.

Hence
(f 7M@) -1 H(a0)" S (b).

Since b C qi foralli =1,--- ¢, f~!(q;) € N Supp (M) foralli=1,---,t. By 5.6
(iii), F'N Supp (M) C ®,,, so that f~1(q;) € ,foralli =1,--- ,¢. Hence there exists
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a € , such that a C §7'(b), because @, is a system of ideals of A. Thus a8 € B
and a8 C b.
Let n € Ny. It follows from 1.10 (iii) that

b (MM 04 L) = Hy | y(M"0aL)=Hy | (@D (Coker d?)) @4 L | =0
peEIFH

for each ¢ € N.. Hence, by 1.14 (i), n¢;+l(K" @4 L) is a B-isomorphism, so that,
by 5.10 (i), a(M™ @4 L) is a B-isomorphism.

10.6 THEOREM. (See [33,1.6]) Let ' = (F});cn, be a filtration of Spec (A)
which admits M, and let V be a subset of Spec (A). Suppose that the filtration
F'NnV = (F/NV)en of Spec (A) admits M. Then there is an isomorphism of

complexes of A-modules and A-homomorphisms
C(F, M) = C(F'nV,M).
over Idy,.
10.7 THEOREM. Let F' = (F!);cn, be a filtration of Spec (A) which admits

M, and let
F!={q€ Spec (A):0(q) € F, for all 0 € &}

for each n € N.. Then F" = (F!");cn, is a filtration of Spec (A) which admits M

and there is exactly one isomorphism of complexes
C(F', M) = C(F", M)

over Idy,.
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Proof. By 10.2 (iv), it is easy to check that F” is a filtration of Spec (A) which
admits M.
Write the Cousin complex C(F"”, M) for M with respect to F" as

dr—2 dr—l drO a4
0 M M S M — M T

It follows from 5.2 and hypothesis that for all n € Ny,
Supp (M) C Supp (Coker d"*) C F" C F!

and

Supp (H" '(C(F",M))) C F. ,CF,

n+1-
Hence, in view of 5.12, it is enough for us to show that the natural A-homomorphism
a(M™): M'" — @ (M),
qEIFn
such that, for x € M'" and q € OF], the component of a(M'")(x) in the summand
(M'™)q is /1 (it follows from Supp (M'") C F, and 5.9 that there is such an A-
homomorphism), is an isomorphism for all n € Ny.
Let
®, := {b: b is an ideal of A such that B(b) C "}

for all n € N. Let n € N.. We use the morphism of functors ne, , : Id — Dg .,

and obtain a diagram

M/" Cl{(M’n) m
D ),
LISeki
No +1<M’n 77<I>n+1< @ (M, >l1)
: q€03h
2 Do, (a(M'™)) n
Dg,, (M2 Do (€D (M™),)

qEITn
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which commutes. By 1.10 (i), for each i € Ny,

Hy (@D (™)) =0

q€Fn
and
Hy  (M™)=Hj (@D (Coker d"7%)q) = 0.
qeITY
Hence, by 1.14 (i), e, ., ( @ (M'™),) and ns,.,, (M) are A-isomorphisms. There-

qEITn
fore it is enough for us to show that D, (a(M'™)) is an A isomorphism. It follows

from 5.9 that
Supp (Ker a(M'™)) C F) ., and Supp (Coker a(M"™)) C F,_,.
hence, by 10.2 (iv),
Supp (Ker a(M'™)) C F', and Supp (Coker a(M™)) C F)

n+1-

Thus, by 1.8, Ker a(M') and Coker ao(M'") are ®,,,1-torsion. Therefore, by 1.15,

De, ., (a(M'™)) is an A-isomorphism.

10.8 NOTATION AND DEFINITION. For the remainder of this section,
we shall assume that |G|, the order of G, is invertible in A, and we shall let G =

(G))ien, is a filtration of Spec (A) which admits N @ 4¢ A. Also, we shall let
F,={qnA°:0(q) € &, for all 0 € &}

for all n € Ng. It is clear that F = (F}),en, is a descending sequence of subsets of

Spec (A%).
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10.9 PROPOSITION. Let the situation and notation be as in 10.8. Then
F is a filtration of Spec (A%) which admits N and there is exactly one isomorphism

of complexes of A-modules and A-homomorphisms
C(G. N @46 A) — C(F,N) @46 A

over IdN®AGA.

Proof. Let
G, ={q € Spec(A):0(q) € &, for all 0 € G}

for each n € Ne. Then, by 10.7, G’ = (G)).en, is a filtration of Spec (A) which
admits N @ 4¢ A. Also, we have

F,={an2A®:qe &}

for each n € Ny.

Firstly, we show that F is a filtration of Spec (A%). Let n € Ny. Let p € 9%,
and p’ € §, such that p’ C p. Then there exist q € &) and q' € & such that
qNA® =p, ' NA° =p',q ¢ &, and ¢ NA® C qNA®. If a € ¢, then [l,cqo(a) €
q NA® C qNA®, hence §(a) € q for some § € G. Hence q' C U o(q). Thus

oce®
there exists ;1 € G such that ' C u(q). Since p(q) € 9&), and q' € &.q" = u(q).

Therefore q' N A® = pu(q) NA® = g N A®.
Now, we show that F admits N. Let p € Supp 4a(N). Then, by 10.2 (iii),
there exists q € Suppa(N @4¢ A) C Gy such that qNA® = p. Hence p € Fo.
Set
GI ={q € Specy(M@ge A) : qNA® € Fu} (1)
for all n € Ng. It is easy to see that G/ N Suppa(N @4¢ A) C G”, for each n € Ny.
Now, we show that GII C GI,N Suppa(N @4e A), For each n € Ny. Let n € Nx and
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q € &. Then there exists ' € &/, such that q N A® = g’ N A®. Hence it follows
from [1, P.68, Exersise 13] that there exists ¢ € G such that ¢ = o(q’). Hence, by
the definition of G/, q € &|. Hence q € &N Supp (N @ ¢ A). Consequently, for
each n € Ny, G, = G,N Suppa(N @4¢ A) (2).

By 10.7, there is a unique isomorphism of complexes

o

C(G, N @40 A) — C(G'.N @46 A) (3)

over IdN®AcA-
By (2), " = (GY);eny, is a filtration of Spec (A) which admits N @46 A. Tt

follows from 5.2 and 5.11 that there is a unique morphism of complexes
\I/ = (’l/}i)iz_g . C(g”, N ®AG A)—>C(gl, N ®AG A) (4)

over Idng ;. By 10.6, ¥ is an isomorphism of complexes.
By (1), 10.4 (iii) and the fact that F is a filtration of Spec (A%) which admits

M, there is a unique isomorphism of complexes
C(G" N @46 A) — C(F,N) @46 A (5).

over IdN®AcA-

The claim follows form (3) , (4) and (5).

10.10 DEFINITION. Let C*® be a complex of R-modules R-homomorphisms,
write C'* as

n—1 n
...—>Cn_1 e_>Cn e_>Cn+1_>...’

and let K be a group of isomorphism of complexes from C*® to C*. For each integer

n, set

(CE ={reC":h"(v)=x forall h = (h") € K}.
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Then (C™)X is an R-module and e"((C™)X) C (C™*1)E for each integer n. If u"

denotes the restriction of €™ to (C™)¥X (for each integer n), then
o _)(Cn—1>K lL‘l) (Cm)K un, (Cm+1)K_> o

is a subcomplex of C*; we denote this subcomplex by (C*)*.

10.11 NOTATION AND DEFINITION. Let the situation and notation
be as in 10.8.
(i) Write C(F,N) as

-1 0 1 n
0— N &5 N o N & o N L il

Each o € G induces an isomorphism of complexes of A%-modules and A“-homomorphism

0. = (0)i>_9: C(F,N) @406 A — C(F,N) @40 A

*

Which is such that 0% = Idy: @ o for each i > —2. Set G, = {0, : 0 € G}. Then
it is clear that G, is a group of isomorphisms of complexes from C(F, N) @46 A to
C(F,N)@4c A. We shall denote the (C(F, N) @4e A)% by (C(F,N)@4c A)°.

(ii) By 10.9, there is exactly one isomorphism of complexes
U= (¢")is—2: C(G,N @46 A)—C(F,N) @40 A

over Idyg,,4. Each o € G induces an isomorphism of complexes of A% modules

and A%-homomorphisms
Oue = (02)i> 2 : C(G, N @46 A) — C(G, N @40 A)

which is such that oi, = ("), ooy’ for each i > —2. Set G, = {04 : 0 € G}.

It is clear that G.. is a group of isomorphism of complexes from C(G, N @46 A) to
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C(G,N @46 A). We shall denote (C(G, N @0 A))% by (C(G, N @4c A))“. Write
C(G,N @,¢ A) as

w™

w™ ! w9 w'
0—Noe AY [0 2 b e 2t

We shall denote (L)%= (for each i > —2) by (L)“. We use u' to denote the
restriction of w' to (L)%, for each i > —2.

(iii) For every i > —2, each o € G induces and A%-isomorphism
ol : H(C(G,N @46 A)) — HI(C(G,N @46 A))

which is such that oi_(x + Imw*') = ol (z) + Imw* " for all z € Ker w'. We

define
(H/(C(G, N @46 A))) = {y € H(C(G,N @46 A)) : 0l (y) = y for all 0 € G}

for all 7 > —2.

10.12 THEOREM. Let the situation and notaion be as in 10.8 and 10.11.
Then

(i) there is an isomorphism of complexes of A“-modules and A“-homomorphisms
(C(G.N @46 A))Y = C(F,N)

(i) (H'(C(G. N @4¢ A))” and H/(C(F. N)) are A%isomorphic, for each i >

Proof. (i) Tt is clear that

(V|16 )iz=2 : (C(G, N @40 A)“—(C(F,N) @46 A (1)
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is an isomorphism of complexes of A9-modules and A9-homomorphisms. Let p’ be
the inclusion map A9 — A. Then, by 8.7, the homomorphism of complexes of

A% modules and A“-homomorphism
(Idy: @ p')is 9 : C(F,N) @46 A® — (C(F,N) @40 A) (2)

is an isomorphism. The claim follows from (1), (2) and the fact that the comploxes
C(F,N) @4a A% and C(F, N) are isomorphic of complexes.

(i) By (i), it is enough to prove that (H'(C(G, N @ ¢ A)))” and Hi ((C(G, N @ 40 A))€)
are A%isomorphic, for each i > —1.

(C(G,N @46 A))Y is a subcomplex of C(G, N @ A). Therefore, there is a

monomorphism of complexes of A9-modules and A“-homomorphisms
O = (0" : (C(G, N @40 A) — C(G, N @40 A)

which is such that, for each i > —2,6(z) = x for all x € (L')¢.O induces a homo-

morphism of complexes of A9-modules and A“-homomorphisms
O = (0")iz2: H'((C(G.N @40 A))%) — (H'(C(G.N @40 A)))"

which is such that, for each i > —2. #i(x+Imu'~") = x4+ Imw' " forallz € Ker u'.
We show that © is an isomorphism.

Assume that ¢ > —1. We show that # is surjective. Let z 4+ Imw'™! €
(H'(C(G.N @46 A)))“. Then

. . 1 . .
v € Kerw'and x + Imw'™" = <@ Zﬂi*(l’)> + Imw'™".
oelG

Let y = ﬁZO‘;(%) Then y € Ker u’ and 0i(y + Imu'~') = y + Imw' ' =
oeG

x4+ Imw'™'.
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Now, we show that #' is injective. Let y+ Imu’' € H'((C(G, N @40 A))%) be
such that #i(y +Imu'~') = Imw" . Then y € I'mw' . Hence there exists x € L'~

such that y = w'=!(z). Therefore, since y € (L)%,

= o S = i Do) = (T ).
Gl % e Gl %2
Thus, since Z O € (L)Y we have y € Imu'~".

oeG

10.13 COROLLARY. (i) Let G = (Gl)ien, be the dimension filtration of
Spec (A). which is difined by

G; = {q € Spec (A) : 0im(A/q) < 0imA — i}

for each i € Ny. There is an isomorphism of A9-modules and A%-homomorphisms
from (C(G,N @4¢ A))Y to C(D,N), the Cousin complex for N with respect to
D = (D;)ien,, where D is the dimension filtration of Spec (A%). Furthermore,
H'(C(D,N)) and (H(C(G, N @40 A)))" are A%isomorphic, for each i > —1.
(ii) Let G = (G,)iery, be the N @ 46 A-height filtration of Spec (A), which is
defined by
Gi = {q € Suppy(N Gge A) : htne,eu(q) > i}

for each i € N¢. Then there is an isomorphism of complexes of A9-modules and
A% homomorphisms from (C(G, N @4¢ A))¢ to C(H, N), the Cousin complex for
N with respect to H = (H;);cy, where H is the N-hight filtration of Spec (AY).
Furthermore, H'(C'(H, N)) and (H'(C(G, N @ 4¢ A)))” are A%isomorphic, for each
1> —1.

Proof. (i) By 10.12, it is enough for us to show that
D; ={qNA® : 0(q) € &, for all 0 € &}
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for each 7 € Ny.
Let i € N.. There exists an isomorphism of rings from A/q to A/o(q) for all
q € Spec (A) and 0 € G. Hence dim (A/o(q)) = 0im(2/q) for all g € Spec (A) and

o € G. Therefore.
{qnA® 1 qe &} ={qnA® :0(q) € &, for all 0 € &}. (1)
It follows from 10.2 (vi) that
{qnA®:qe &} C D,

Let p € Spec (A%) be such that dim(A%/p) < 0imA® —i. Then, by 10.2 (i) and
the Lying over theorem [1, 5.10], there exists q¢ € Spec (A) such that q N A® = p.
Hence, by 10.2 (vi), g € &;. Thus p € {qNA® : q € &;}. Therefore

{qNA® :qe &} =2, (2)

The claim follows from (1) and (2).
(ii) By 10.12, it is enough for us to show that

H; = {qnA® : o(q) € &, for all 0 € &}

for each 7 € Ny.
Let i € Nie. It is easy to see that htne ,,4(0(q)) = btne,ea(q) for all g € Supp
(N @46 A). Hence

{qnA® 1 qe &} ={qnA® : 0(q) € &, for all 0 € &}. (3)
It follows from 10.2 (vii) and 10.2 (v) that

{qﬂm®:q€®i}§ﬁi-
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Let p € Suppac(N) such that hty(p) > i. Then, by 10.2 (i) and the Lying over
theorem [1, 5.10]. there exists q € Spec (A) such that g N A® = p. Hence, by 10.2
(v) and 10.2 (vii), ¢ € &;. Thus p € {qNA® : q € &;}. Therefore

{qﬁﬂ®:q€®i}:5§i. (4)

The claim follows from (3) and (4).
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§11 Group action on injective envelops.

Throughout this section, G is a finite group of automorphisms of A such that
|G|, the order of G, is invertible in A and f : A — B is a homomorphism of
commutative Noetherian rings. If ¢ : R — S is a homomorphism of commutative
rings and p € Spec (R), then we use Fg(p) to denote the set {q € Spec (&) :
¢ *(q) = p}. The hight filtration of Spec (R) with denote by H(R) (See 5.4). An
R-module L is indecomposable if (a)L # 0 and (b) the only direct summands of L
are 0 and L itself. Let K be an R-module and L C K a submodule; we say that K
is an essential extension of L if NN L # (0) for every non-zero submodule N C K.
Now suppose that L is an R-module and that E is an essential extension of L which
is also an injective A-module. Then F is called an injective envelop of L, and writen
as E(L) or Er(L).

We shall use the following theorems (11.1, 11.2, 11.3, 11.4, 11.5 and 11.8 (i))

in this seciton.

11.1 THEOREM. (See [17, 18.4]) Let p € Spec (A)

(i) E(A/p) is indecomposable.

(ii) Any indecomposable injective A-module is of the form E(A/p) for some
p € Spec (A).

(iii) For any « € E(A/p) there exists a positive integer ¢ (depending on z) such
that p'r = o

(iv) If ¢ € Spec (A) is such that q C p, the E(A/q) is an Ap,-module and
E4(A/q) = o, (A /q2y).

(v) if @ € A—p, The multiplication by @ induces an automorphism of E(A/p).
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11.2 THEOREM. (See [17, 18.5]) We consider modules over A.
(i) A direct sum of any number of injective modules is injetive.
(ii) Every injective module is a direct sum of indecomposable injective modules.

(iii) The direct sum decomposition in (ii) is unique, in the sense that if
M = & M; (with indecomposable M;),

then for any p € Spec (A), the sum M(p) of all the M; isomorphic to E(A/p)
depends only on M and p, and not on the decomposition M = & M;. Moreover, the
number of M; isomorphic to F(A/p) is equal to

dimy(p) Homa, (K(p), M), (ohere K(p) = Ap/pAy).

11.3 DEFINITION AND REMARK. By means of 11.2, for an injective

A-module E, one can write

I

Ex @ e ee@/p).

pESpec (A)

where, for all p € Spec (A), u(p, )E(A/p) denotes the direct sum of p(p, €) copies
of E(A/p). Note that, by 11.2,

dimpyHom 4, (K(p), €,) = pu(p, €)
for all p € Spec (A). Also, for a multiplicative set S C A,
p(p, €) = u(&7'p, 67'€)

for all p € Spec (A) where p N & = @ (see [17, page 150]). Note that, S~'E is an
injective S~ A-module (see [17, page 144, lemma 5]).
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11.4 THEOREM. (see [17, 18.8]) A necessary and sufficient condition for a

rign A to be Gorenstein is that a minimal injective resolution
0— A —JY .o .

of A satisfies I’ =2 @ E(A/p), for each i € Ng.
htp=i
11.5 THEOREM. (see [15, 3.4 (4)]) Let p € Spec (A) and A, = {x €
E(A/p) : p'tr = o} for each i € Ne. Let K be the quotient field of A/p. Then
A;11/A; is a rector space over K, and A; = K.
Next we shall prove theorem [28, 4.3] under weaker conditions. Indeed to do
this we shall use the same argument as in the proof of [28, 4.3] in conjanction with

the following results 11.6, 11.7 and 11.8.

11.6 REMARK. (see [28, (2.1) and (2.2)]) Let p € Spec (A) and S = f(A—p).
We may form the possibly trivial ring S~!B; we shall use f': A, — S~ B to denote,
the ring homomorphism for which f'(a/t) = f(a)/f(t) (for « € A and t € A —p).

It is easy to see that

Fs1p(pAy) = {&7'q: q € T (p)}.

Let f : A — B be a ring homomorphism with the property that B, when
regarded as an A-module by means of f, is finitely generated. Then S~ !B is a
finitely generated Ap,-module; hence it is integral over A, [1, 5.1]. It follows from

5.8 of [1] that Fs-1p(p%Ay) is equal to the set of maximal ideals of S~'B.

11.7 LEMMA. (See [28, 3.3]) Let E be an injective A-module, and p € Spec
(A). Then Homa(B, E), when regarded as a B-module in the natural way, is B-
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injective.

11.8 LEMMA. (see [28, 3.4]) Let p be a prime ideal of A, and suppose
q € Spec (B)is such that the injective B-module Hom (B, Ea(A/p)) has a direct
summand which is B-isomorphic to Ez(B/q). Then

(1) S (a) S p;

(ii) if B, when regarded as an A-module by means of f, is finitely generated,

then f~1(q) = p.

11.9 THEOREM. Let f : A — B be a ring homomorphism with the
property that B, when regarded as an A-module by means of f, is a finitely generated
A-module, and let p € Spec (A). Then

Homa(B,Eo(A/p)) = €D €x(B/q)(as B — modules).
g€ (p)

Proof. (Note that, we repeat the proof of [28, 4.3]). By 11.7, Homa(B, EA(A/p)),
when regarded as a B-module in the natural way, is B-injective; furthermore, by
11.8, when this injective B-module is expressed as a direct sum of indecomposable
injective B-modules, the only prime ideals which can occur ((11.2)) in this decom-
position are the members of Fp(p). Let q be a typical member of Fp(p), and let H
denote the B-module Hom (B, E4(A/p); it is enough to show that u(q, $H) = 1.

However, S = f(A — p) doesnot meet ¢, so it is sufficient ((11.3)) to show
that (S™'q,&579) = 1. Now S™'H can be regarded as an A,-module by means of

[+ Ay — S7'B, and there are obvious natural A,-isomorphisms
ST H = H, =~ Hom, (B, [EA(A/p)]y)-
However, B, is Ap-isomorphic to S™!'B, and by 11.1 (iv), [E4(A/p)], is Ap-isomorphic
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to E4,(K4(p)). Hence, we arrive at a natural Ag-isomorphism
ST'H = Homa,(S7'B, E4p(Ka(p))),

and it is straightforward to check that this is , in fact, an S~ !B-isomorphism. Hence
it is enough for us to show that ;(S™'q, Homg, (6B, €y, (K(p)))) = 1. Morever,
by 11.6, S7'q € Fe-1(p2A,) and S™'q is a maximal ideal of S™'B. It follows that,
in order to show that u(q, ) = 1, we may in addition assume that A is local and p

is the maximal ideal of A and q is a maximal ideal of B. By 11.3 and the fact that

Homp,(Kg(q), [Homa(B, EA(A/p))q)

is Bg-isomorphic to [Homp(B/q, Homa(B, Es(A/p)))]q, it is enough to show that
the dimension of [Homp(B/q. Homa(B, EA(A/p)))]q as a vector space over Kp(q)

is 1. It is easy to see that
dimpgq[Homp(B/q, Homa(B, EA(A/p)))] = dimy,q[Homp(B/q, Homa(B, Es(A/p)))]q :

Use of this fact reduces the problem to the case in which showing that the dimension
of Homp (B/q, Hom4(B, E4(A/p))) as a vector space over B/q in 1.

Next, there is a B-isomorphism
Homp(B/q, Homa(B, EA(A/p))) = Homa(B/q, EA(A/p)).

But any A-homomorphism B/q — FE(A/p) has its image comtained in the A-
submodule X = {z € E4(A/p) : p3 = o} of E4(A/p); since ((11.5)) X is A-
isomorphic to A/p, we have reduced the problem to showing that Hom(B/q, A/p),
as vector space over B/q, has dimension 1. However, Homa(B/q, A/p) = Homa,(B/q, A/p).

and the result follows from a easy argument on finite dimensional vector spaces.

137



11.10 COROLLARY. Let p € Spec (AY). Then

(i) Each o € G induces an A%-automorphism ¢* on

Bi= @ n(a Homue(A B(A%/9)) E(A/fp)
q€ Spec (A)
aNA“Cp

such that G* = {¢* : 0 € G} is a group and if
EY ={x € E:0*(x)=uaforall o € G},

then E(A%/p) and E¢ are A%-isomorphic.
(i) If A, when regarded as an A“-module, is finitely generated, then each o € G

induces an A%-automorphism o* on @ E(A/q) such that G* = {¢* : 0 € G} is

q€FA(p)
a group and if

(P EA/q)={zec @ E(A/q):0"(x)=uxforall o € G},

qEFA(p) qeEFA(p)

then E,o(A%/p) and ( @ E(A/q))¢ are A%-isomorphic.

9EFA(p)
Proof. (i) It follows from 11.3, 11.7 and 11.8 that
Hom sa(A, E(A% Jp)) = @ 1t (q. Homge (A, E(A®/p))) E(A/p) := E(as A—modules).
q€ Spec (A)

gNAYCp

Hence A%-automorphism Hom e (o, dp(ac ) induces and A% automorphism o*

on E, for each 0 € G. It is easy to see that G* = {¢* : 0 € G} is a group and

(Hom a (A, E(AG/p)))G =~ F%as A° — modules),

where (HomAc(A, E(AG/]J)))G = {2 € Homc(A, E(A%/p)) : Homge (o, J0e@e p))(x) =
tfor allo € &}. Hence, by 8.9, E(A%/p) and E¢ are A%-isomorphic.
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(ii) Tt follows from 11.9 that

Hom e (A, BE(A% Jp)) = @ ¢(A/q)(as A — modules).
a€Ta(p)

Similar to the proof of (i), we can prove the claim.

11.11 LEMMA. Let A and B be Gorenstein rings, and let C(H(B), B) the
Cousin complex for B with respect to H(B) and C(H(A), A) @4 B be isomorphic
(as complexes of B-modules and B-homomorphisms). Let p, € Spec (A). Then

BoaEa(A/p) 2 D €x(B/q)(as B — modules).

htq=htp,
q€FB(po)

Proof. Assume that htp, = n and S = A — p,. It follows from 5.4 that
C(H(A), A) (respectively C(H(B), B)) is a minimal injective resolution of A(respectively
B). Hence, by 11.4,

B®a( @ E(A/p)) = @ ¢(B/q)(as B — modules).
htp=n htg=n

Hence

(B 24 P E(A/p)) @4 ST'A= (P E(B/q)) ©a & *AU(as B — modules). (1)

htp=n htq=n
Since tensor product commute with direct sum, it follows that, as B-modules,
<B @4 @ E(A/p) ) ASTTAY Boy (@ e A/p))) (2)
htp=n htp=n
and

(D E(B/q)) 0 67 A= B 0x (P 67HE(B/p) = P §(6)(&(B/a) (3).

htq=n htg=n htg=n
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Hence, by (1), (2) and (3),

<B ®a @ S Y (E(A/p) > @ f(S) " (E(B/p))(as B — modules).

htp=n htg=n
It follows form 11.1 (iii) that if p € Spec (A) and p NS # O (respectively q € Spec
(B) and f(S)Nq#0), then STY(E(A/p)) = o (respectively f(S)"'(E(B/q)) = o).
Also, by 11.1 (v), if p € Spec (A) and p NS = 0 (respectively q € Spec (B)
and q N (&) = 0), then E(A/p) (respectively F(B/q)) has a natural structere as
an S~1A-module (respectively f(S) !B-module), so that S™H(E(A/p)) = &(A/p)
(respectively ST'(E(B/q)) = ¢(B8/q)) as an S~' A-module (respectively f(S)~'—B
module). Hence

Boa @ EA/) 2 @ €®B/q)(as B — modules).

};E: f‘hlt(qq)gpo

Since htp, = n,

B @y E(A/p,) = @ ¢(B/q)(as B — modules). (4)

htg=n
= 1(a)Cro

Let q € Spec (B) such that the B @4 E(A/p,) has a direct summand which is B-
isomorphic to F(B/q). It is enough for us, in order to complete the proof, to show
that po C f1(q). Let r € po. Then, by 11.1 (iii) and (4), for any x € E(B/q) there
exists a positive integer t(depending on z) such that rfa = 0. Hence multiplication
by r on E(B/q) does not provide an automorphism. But multivlication by r on

E(B/q) has the some effect as multivlication by f(r). Hence, by 11.1 (v), f(r) € q.

11.12 COROLLARY. Let A and A% be Gorenstion rings and p € Spec (A%).
Then

() A0 E(A%/p) = €D E(A/q) (as A-modules).
q€Fa(p)
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(ii) Each o € G induces an A%-automorphism ¢* on @ E(A/q) such that

qa€S(p)
G*={o* : 0 € G} is a group and if

(P E4/0)°={rc @ €@A/q):0"(x) =rforallo € &},

q€3(p) qeTa(p)

then E(A%/p) and ( @ E(A/q))® are A%-isomorphic.
qae3(p)

Proof. (i) It follows from 10.2 (vii) and 5.21 that there is an isomorphism
of complexes of A-modules and A-homomorphisms from C(H(A%), A%) @46 A to
C(H(A), A) over Id,, Hence the cliam follows from 11.11.

(i) By (i), A%-automorphism o @ Id B(AG Jp) induces an A%-automorphism o*
on @ E(A/q), for each o € G. It is clear that G* = {0* : ¢ € G} is a group and

qa€S(p)
(A @46 B(A%/p))® = ( @ ¢(A/q))®(as A® — modules)
a€3(p)

where
(A@aa E(A%/p)® = {r € Adge E(A®/p) : (0 © Tgme jp))(x) =1 for all o € &},

Hence the cliam follows from 8.8.

We show next how to use 11.10 (ii) to obtain a generalization of the main result

of [43].

11.13 EXAMPLEXE. Let k be a field and A be a Noetherian k-algebra, and
let K be a finite, separable, and normal extension field of k& for which B = A @, K
is a Noetherian ring. Let ' := Gal(K : k) denote the Galois group of K over k
(that is, group of maps which are both field and k-module automorphisms of K).

By 12.2, KV = k. Suppose that f : A — B is the natural homomorphism of rings.
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By [31, (2.2)], f is faithfully flat. Hence f is injective. Let p be a prime ideal of A.
By [43 , 3.7], if A is a Gorenstion ring, then Id4 @ o induces an A-automorphism
o* on €P E(B/q) for all ¢ € T such that if

qeF(p)
(P EB/a)={re( P €(B/a):0"(x) =rforallo e},
g (p) q€Tn (p)

then ( @ E(B/q))° is an injective envelope of the A-module A/p. In [43], this

a€Ss(p)
result was proved by use of modules of generalized fractions. If |T'|, the order of

I', is invertible in A, then we shall obtain a similar result, but without imposing
any restriction on A and by use of a method which does not involve modules of
generalized fractions.

Let |T'|, the order of T, be invertible in A. It follows from 8.7 and the fact that
K" =k that B" = f(A) where

B ={reB:(Idy®o)(x)=ux forall 0 € T'}.

Hence the ring B' and A are isomorphic. Consequenctly, B, when regarded as B'-
module, is finitely generated, and so it follows from 11.10 (ii) that Id4 @ o induces

an A-automorphism o* an @ E(B/q) for all 0 € I such that if
q€Fs (p)

(P EB/a)={re P €B/a):0"(x)=rforalloc v},

q€3 1 (p) qeFn(p)

then ( @ E(B/q))® and E(A/p) are A-isomorphic.

Q€T ()
Note that, if A is a Gorenstion ring, then, by [41, proposition 2], B is also a

Gorenstein ring, and so we can deduce the above result from 11.12 (ii).
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§ 12 Generalization of 11.13.

Throughout this section, k is a field, A is a Noetherian k-algebra and K is
an algebraic extension field of & for which B = A @, K is a Noetherian ring (Note
that, by [30, 2.1], this would be the case if A were a finitely generated k-algebra,
or if K were a finitely generated extension field of k). By [31, (2.2) and (2.4)], the
natural homomorphism of rings f : A — B is faithfully flat and B is integral over
its subring f(A). Hence f is a k-algebra monomorphism. We shall use p to denote a
typical prime ideal of A, and S will denote f(A\p), a multiplicatively closed subset
of B. We shall denote the set {q € Spec (B) : §{(q) = p} by F(p). By [17, (9.5)]
and [17, Exercise (9.8) and (9.9)] and the facts that f is flat and B is integral over
its subring f(A), htap = btsq for all ¢ € F(p). We shall let G := Gal (K : k)
denote the Galois group of K over k (that is, group of maps which are both field
and k-module automorphism of K). We shall use F' to denote the fixed subfield

{a € K :0(a) =a for all 0 € G}.

For any R-module L, the injective envelope of L is denoted by Er(L) or E(L).
In this section, the 12.1 (and Also 12.8) extends the result 11.13.

12.1 PROPOSITION. Let K be a finite extension field of k. and let |G/,
the order of G, is invertible in A. Let [F' : k| be the dimension of F' considered

as a vector space over k. Then each ¢ € G induces an A-automorphism ¢* on

@ E(B\q) such that G* = {¢o* : 0 € G} is a group and if

a€3(p)
(P EB\()® :={re (P €(B\a):0°(x) =z forall o € &},
qae3(p) qae3(p)
then &[F : k]E(A\p) and ( @ E(B\q))® are A-isomorphic, where G[F : k]|E(A/p)
a€3(p)
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denotes a direct sum of [F : k| copies of E(A/p).

Proof. B, when regarded as A-module, is finitely generated. Hence, by 11.9,

Homu(B,E(A/p)) = €D €(B/q) (as B — modules).
q€3(p)

Hence Homa(Ida®@ 0, Idgasp)) induces an A-automorphism o* on @ E(B/q) for

a€3(p)
all 0 € G. Tt is easy to see that G* = {¢o* : 0 € G} is a group and

G

(Homa(B.E(A/p)“ = | € E(B/q) (as A — modules), (1)
q€3(p)

where
(Homa(B, E(A/p))“={x€ Homa(B, E(A/p)): Homy(Ig@a, W eq/p)) ()=tfor allo € &}.

By [18, page 29, Exercise 38|, G is finite. Also, Hom4(A@,e, E(A/p)) is an additive
contravariant functor from the category of all F-modules and F-homomorphisms
to C(A). Hence, by 8.6, Homa(A @ F, E(A/p)) and (Homa(B,E(A/p)))® are
A-isomorphic. On the other hand, A @; F and AU are A-isomorphic. Hence
Homa(A @y F,E(A/p)) and &[F : k]E(A/p) are A-isomorphic. Hence

DIF : k]E(A/p) = (Homy(B, €(A/p)))® (as A — modules). (2)

The claim follows from (1) and (2).
We shall need to use the following facts for 12.7

12.2 THEOREM. (See [18, page 59]) The field K is a Galois extension field

of k (that is, K¢ = k) if and only if K is a separable and normal extension of .
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12.3 THEOREM. (See [18, page 17, Theorem 19]) Let K be a finite extension
of k. Then there is a finite normal extension W of £ which contains K and which is
the smallest such extension in the sense that if L is a normal extension of £ which
contains K then there is a map ¢ : W —— L which is both field and K-module

monomorphism.

12.4 LEMMA. (See [40, Lemma 8.7]) Let K be a separable algebraic exten-
sion field of k, and let L be a field such that £k C L C K. Then L is a separable

extension of £ and K is a separable extension field of L.

12.5 PROPOSITION. (See [18, page 59, proposition 2|) Let K be a normal
and separable extension field of k£, and let L be a field such that £ C L C K. Let
0 : L — K be a map which is both field and £-module monomorphism. Then there
is a map 7 which is both field and k-module automorphism of K and n(a) = o(a)

for all @« € L.

12.6 LEMMA. (See [19, page 21, corollary|) Let M be a free R-module with
base (y;)icr, and let N be an R-module. Then each element of N @, M has a unique

representation in the form

Z(nz @ yi)

)

where n; belongs to N and n; = 0 for almost all 4.

12.7 LEMMA. Let N be an A-module, and let p: FF — K be the inclusion

map. Then the A-homomorphism

Idy @ p: Ny F — (N @, K)¢
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is an isomorphism, where
(Nop K)Y :={z e (Noy K): (Idy @ 0)(z) = 2 for all 0 € G}.
Proof. Every k-module is flat over k. Hence
Idy@p: N@y F— N @ K

is a A-monomorphism. It is clear that Im(Idy @ p) C (N @ K)¢. Therefore, it is
enough for us to show that (N @, K)¢ C Im(Idy @ p).
t

Let z = an ®a; € (N @, K)°. Tt is clear that Gal (K : k) = Gal(K : F)
=1
and

F={rxeK:o(x)=xforallo € Gal(K : F)}.

Hence, by 12.2, K is a separable and normal extension field of F.F(ay, -+ ,a;) is a
finite extension field of F'. Hence, by 12.3, there exists L a finite normal entension
field of F' such that F(ay,---,a;) € L C K. It follows from 12.4 and the fact that K
is a separable extension field of F' that L is a separable extension field of F'. Hence
L is a finite, separable and normal extension field F' such that a,---a; € L. Note

that, by [18, page 29, Exercise 38], Gal (L : F) is finite. By [18, P.68, Exercise 14],
if Gal (L: F) = {m,---,ns}, then there exists v € L such that Zm(w) =1 and

i=1
{ni(y) :i=1,---s} form a basis of L over F. Let {o;},c; be a basis of F' over k.

Then

v =33 (0 © am(y))

=1 jeJ

where n;; € N and n;; = 0 for almost all j. For each § € Gal (L : F), let A\() be
the permutation on the set {1,---,s} such that 0y1; = n@)) forall i =1,--- 5.
By 12.5, for each 6 € Gal (L : F') there exists oy € Gal (K : F') such that o], = 6.
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Hence, for each § € Gal (L: F),

.T—([d]v@a'o ZZ nl]®&j 90771( )

i=1 jeJj
s

— Z Z(nl] @ a0y (7))

i=1 jeJ
S

=3 > (o105 @ ami(7))-

=1 jeJ
Since A\(0) "t =X(0"1) for all € Gal (L : F),
x—zz nao-1y(i); @ a;ni(77))
i=1 j€J

for all # € Gal (L : F'). Hence, by 12.6 and the fact that (a;n;,(7))jes1<i<s is a
basis of of L over k, ng)a); = ny; for all j € J and for all § € Gal (L : F'). Hence

n;; =nq; forall j € Jand forall e =1,---,s. Hence
1= om0 () = Xl o)
JeJ jeJ

consequently, © € Im(Idy @ p).

12.8 COROLLARY. Let A and B be Gorenstein rings, and let [F' : k] be the
dimension of F' considered as a vector space over k. Then each o € G induces an

A-automorphism ¢* on @ E(B/q) such that G* = {¢* : ¢ € G} is a group and

" qe3(B)
(P EB/q)® :={re (P &B/a):0"x) =rforall g € &},
qae3(p) a€3(p)
then &[F : k]E(A/p) and ( @ E(B/q))® are A-isomorphic, where @[F : k|E(A/p)
a€3(p)

denotes a direct sum of [F : k| copies of E(A/p).
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Proof. Tt follows from 5.21 and the fact that ht 4(f~1(q)) = htpq for all g € Spec
(B) that there is an isomorphism of complexes of B-modules and B-homomorphisms

from C(H(A), A) @4 B to C(H(B), B). Hence, by 11.11,

E(A/p) @4 B= P E(B/q)(as B — modules).
q€3(p)

Hence

E(A/p) @4 K = €D E(B/q)(as 2 — modules).
9€3(p)

Hence Idpajy) @ o induces an A-automorphism ¢* on @ E(B/q) for all 0 € G.

qae3(p)
It is clear that G* = {0* : 0 € G} is a group and

(E(A/p) ©4 K)9 2= (€D E(B/q))®(as % — modules),
q€3(p)

where
(B(Afp) 04 K)° = {x € (E(Ap) @ R) : (B © 0)(z) = ¢ for allo € &},
Hence, by 12.7,

E(A/p) @y F = @ E(B/(q))%(as 2 — modules).
9€T(p)
since tensor product commutes with direct sum,
@[F Ck|E(A/p) =2 @ E(B/(q))°(as 2 — modules).
q€8(p)
12.9 REMARK. Note that, if A is a Gorenstein ring and K is a finitely
generated extension field over k, then, by [41, proposition 2], B is also a Gorenstein

ring.

148



12.8 is a generalization of the final result of [43] (that is, 3.7). In 12.13, we
shall present another proof for 12.8 by use of a method which involve the results of
[43]. We shall need to use the following lemmas (12.11 and 12.12). Note that, the

construction of modules of generalized fractions was introduced briefly in section 6.

12.10 PROPOSITION. (See [5, IT, (1.1)]) Let R’ be a commutative ring and
let ¢ : R — R’ be a ring homomorphism. Let U be a triangular subset of R" and
let Y be an R'-module. Let E C D,,(R) be such that

(i) £ is closed under multiplication;

(i) diag (uq,--- ,u,) € E for all (uy, -+ ,u,) € U;

(iii) whenever u,v € U, then there exist w € U and H, K € E with Hul =
wh = K.

Then o(U) = {(o(w1), -, ¢(un)) : (ug,---,u,) € U} is a triangular subset
of (R")* and, for a,b € Y and u = (uy, -+ ,upn), v = (v1,+-+ ,v,) €U

a b

(p(ur), - o(un)) — (@(01), - @(vn))
in o(U)""Y, if and only if there exist w = (wq,---w,) € U and H, H' € E such

9

n—1
that Hu” = w” = H'v" and o(|H|)a — ¢(|H'|)b € (Z R'o(w;))Y.
i=1
It is easy to deduce the following lemma from 12.10

12.11 LEMMA. Let R’ be a commutative ring and let ¢ : R — R’ be a ring
homomorphism. Let U be a triangular subset of R" and let Y be an R’-module.
Then p(U) = {(¢(u1), -+, ¢(un)) : (w1, ,u,) € U} is a triangular subset of (R"")
and there is an R’-isomorphism

g:UT"Y — o(U)™"Y
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for which

v y
(Ul,"' vun) <¢<u1>v"' a‘lo(un))
forall y € Y and (uy,---u,) € U.

It is easy to deduce the following lemma.

12.12 LEMMA. Let R’ be a commutative ring and let ¢ : R — R’ be a

ring homomorphism. Let U be a triangular subset of R". Then the natural R'-

homomorphism
h:UT"R@&r R — U "R
given by
oy = 2O
(ula"';un) (ula"'vun>
for all ' € R',r € R and (uy,--- ,u,) € U is an isomorphism.

12.13 REMARK. For any Noetherian ring C', we adopt to convention that
hto(C) = oo, and for n € N, we shall use C,, to denote the set

{(xy,---,x,) €C™: htc(ZC’xr) >iforalli=1,---,n}.

r=1
Note that C), is a triangular subset C", for each n € N (See [37, 5.2]). We will let
htAp =n.
Let f(An) ={(f(x1), -, f(xn)) : (w1, ,2,) € A, }. Tt follows from [43,3.2],

[43,3.4] that there is a B-isomorphism
U (f(An) x S)"B — P (By x (B\a)) "' B
a€3(p)
which is such that, for Z = =57 € (f(4,)xS) ™" 'B (withb € B.t € s and

(x1,---,2,) € An) and ¢ € F(p), the companent of /(7) in (B, x (B\q)) " "B is
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Z = m Hence by [43, page 19], ¢ induces an A-module authomorphism

o* of M = @ (B, x (B\q))"""'B, for each o € G such that if
a€3(p)

MY ={m € M :o*(m)=mforall 0 € G}

and

(F(A) x $)™ 7 B) = {7y gz € ((An) X 8)771B

_(das0)b)b
(f(z1), flzn)t) 0 for all o c C,Y}7

then
(f(A,) x S) ™ 'B)Y =2 MY (as A — modules). (1)

Also, by 12.11 and 12.12, there is a B-isomorphism
01 (Ay x (A\p) ARy B — (j(An) x &)™ 'B

which is such that
f(a)b
(f('rl)v e af(xn)a f(S))
for all a € A,b € B,s € A\p and (xq,---x,) € A,. Let L = (A, x (A\p)) " 2L
Then

a

(T1,++ , Ty S)

o( @b) =

(L @4 B)Y =2 ((f(A,) x S)™'B)% (as A — modules), (2)
where
(LoaB)Y ={xc(LosB): (Idy @ (Idy®0))(z) =z for all ¢ € G}.
It is easy to check that
(L oy K)° =2 (L @4 B) (as A — modules),  (3)
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where
(Loy K)Y ={r e (Lo K): (Id,®o)(z) = for all 0 € G}.

By 12.7, (L @ K)¢ and L @ F are A-isomorphic. Hence if [F : k] is the dimension

F' considered as a vector space over k, then
(L @ K)° 2 @[F : k]L (as A — modules).  (4)
It follows from (1), (2), (3) and (4) that
O[F : k]L =2 M (as A — modules). (5)
By [43, 3.6], if A and B are Gorenstein rings, then
M = @ E(B\q) (as B — modules) and £ = &(2A/p) (as A — modules). (6)

qeF(p)

It therefore follows from (5) and (6) that o induces an A-module automorphism o**

of @ E(B/q), for each 0 € G such that if
qa€S(p)

(P EB/2)® ={rec (P €B/a): 0™ ) = forall o € &},
qeF(p) q€3(p)

then

( @ E(B/q))® = @[F : €€&(A/p) (as A — modules).
a€3(p)
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§ 13 Properties of A“.

In this section, we consider various questions of the following type: when does
a good property of A pass to A9?
Throughout this section, G is a finite group of automorphisms of A such that

|G|, the order of G, is invertible in A.

13.1 REMARKS. Let b an ideal of A and M be a finitely generated A-

module. Recall that a sequence ay, - - -, a, of A are said to be a poor M-sequence (of
i1

length n) if, for alli = 1,--- , n, the element «; is not a zero-divisor on M/ Z a; M;

j=1
it is an M-sequence if, in addition, M # (Aay + - - - Aa,) M.

(i) It is well known that, if M # b9, then gradey,b, that is, the common
lenght of all maximal M-sequences contained in b, is equal to the last integer is such
that H{(M) # 0.

(ii) Let M # b9. Then the notation hty,b denotes the M-height of b, that is,

inf{htyp:p € Suppy(M) and p D b}.

It is well known that gradey; b < bhtgyb.
(iii) Tt is also well known that, M is Cohen-Macaulay if and only if htyp =
gradeys p, for every p € Suppy (9N).

13.2 LEMMA. Let n € Nand yy,- - , ¥, be elements of A“. Then -+ ,yn

is an A-sequence if and only if v, -+ , v, is an A%sequence.

Proof. Tet 1 < i <mn. Let Ay; +---+ Ay, 1 = ﬂ ; be minimal primary
7=1
decomposition of Ay;,+---+ Ay, in A, and let r(Q,;) = ¢;(1 < j < m). By 10.1
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(i), A%y, +---+ A%y, | = ﬂ(Qj NA9). Tt is easy to see that Q; N A% is (q; N A)®-
7=1

primary, for each 1 < j < m. Hence A%y, + --- + A%y, = ﬂ(Qj N A% is a

j=1
primary decomposition of A%y, + --- 4+ A%y;_; in A9, Therefore,

2A° " @
Ay, + - Ay, Ul 02®)

j=1

A

A
A(A?Jl + o+ Ayia

)= J g and 3ge(
j=1

. . G
m) if and only if Y; € ZAG(m> AAISO7 by 10.1

(i), Ays + - - - Ay, = A if and only if A%, + - + A%y, = A,

Hence y; € Za(

13.3 LEMMA. Let a be an ideal of A% such that a # A®. Then
(i) grade so (a) = grade s (a20);

(i) ht 4o (@ N A®) = hty(q), for every q € Spec (A);

(ili) ht 4o a= hty (a2A).

Proof. (i) It follows from 13.2 that grode o (a) < gradeg(a®(). Therefore it is
enough for us to show that grade, (a2() < gradege (a).

By 13.1 (i), Hiy(A) = 0 for all i < grode,(a?l). Hence, by 9.3 and 9.4 (ii),
(A%) =0 for all i < grade4(a2A). Hence, by 10.1 (ii), H.(A%) = 0 for all i <
grade(a2d). Hence, by 13.1(i), grades(ad) < grade,a(a).

(ii) This follows from 10.2 (vii).

)
HquﬁQl®

(iii) Let p € Spec (A%) such that a C p. Then, by 10.2 (i) and the Lying - over
theorem [1, 5.10], there exists q € Spec (A) such that N 2A® = p. Thus aA C q. It
therefore follows from (ii) that ht4(a2() < btye (p). Hence

hta(a?A) < inf{htye(p) : p € Spec(A®) and a C p} = hige(a). (1)
Let q € Spec (A) such that a® C q. Then, by 10.1 (ii), a € q N A®. Hence, by
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(ii), ht 4o (a) < bty (q). Therefore
ht qa(a) < inf{bty(q) : ¢ € Spec(A) and a2 C q} = hty(aA). (2)

The claim follows from (1) and (2).

13.4 PROPOSITION. A is Cohen-Macaulay if and only if A“ is Cohen-
Macaulay

Proof. Tt is easy to deduce from 13.1 (iii) that A“ is Cohen-Macaulay if and
only if htse(a) = gradeyo(a), for every a ideal of A®. Hence, by 13.3, if A is
Cohen-Macaulay, then A% is Cohen-Macaulay.

Let A% be Cohen-Macaulay. Then, by 13.1 (iii), 13.2 and 13.3 (ii),

hta(q) = btye (g N A®) = gradeye (q N A®) < gradey(q)

for every q € Spec (A). On the other hand, by 13.1 (ii), grades(q) < hta(q), for
every q € Spec (A). Hence grade,(q) = hty(q), for every q € Spec (A). Hence, by
13.1 (iii), A is Cohen-Macaulay.

13.5 DEFINITIONS. Let A be a local ring having the maximal ideal m
and a positive dimension, and let M be a non-zero finitely generated A-module of
dimension n > 1. Recall that n elements x4, - - - x,, of m form a system of parameters

(s.0.p) for M if M/ Z x; M has finite lenght.

=1
(i) ([22, (3.2) and (3.3)]) We say that M is a generalized Cohen-Macaulay A-
module if there exists » € N such that, for each system of parameters xq,--- , x, for

M, and forall t=1,--- ,n,

m(Axy 4 -+ Ariy) M w) /(A + - + Axi )M = 0.

155



(ii) ([22, (4.1)]) We say that M is Buchsbaum A-module if, for each system of

parameters xq,---x, for M and forall i =1,--- n,
m[((Axy + -+ Axic) M ) /Ay + -+ Aria )M = o

13.6 LEMMA. Let A be a semi local ring with maximal ideals m,,---m,
that dimA = n(> 1), and let ay, - - a, be elements of A,

(i) A is semi-local ring with maximal ideals m, N A%, ---m N A® (not neces-
sarily |G| is invertable in A).

(ii) aq,---a, is a system of parameters (s.0.p) for A if and only if ay,---a, is

a system of parameters for A,

Proof. (i) Tt follows from 10.2 (i) and [1, 5.8] that m, N A%, -+ m N A® are
maximal ideals of A,

Let p be an maximal ideal of A“. Then, by 10.2 (i) and the Lying over Theorem
[1, 5.10], there exists q € Spec (A) such that q N A® = p. Hence, by [1, 5.8], there
exists 1 < j <t such that my = q.

(ii) Note that, by 10.2 (vi), dim A= dim A®. Therefore it is enough to show
that r4(Aay + -+ -+ Aa,) = m, N---Nmg if and only if 74¢(A%y + - -+ + A%,) =
my NeeNmg NAC.

Let r4(Aa; + -+ -+ a,) =m, N---Nm,. We show that if p € Spec (A“) such
that A%ay +---+ A%, C p, then there exists mi(1 < i < t) such that m; N2A® = p.
Let p € Spec (A%) such that A%a; + -+ + A%, C p. Then, by 10.2 (i) and the
Lying over theorem [1, 5.10], there exists q € Spec (A) such that q N A®. Hence
Aay+- -+ Aa, C q. By the hypothesis, there exists mj(1 < j < t) such that m; = g.
Hence m; N 2A® = p.

Now, let 746¢(A%; + -+ + A%,) = my N -+~ NmgN A, We show that if

-

q € Spec (A) such that Aay + --- + Aa, C q, then there exists mj(1x < j < ¢)
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such that ¢ = my. Let q € Spec (A) such that Aay + -+ + Aa, C q. Then, by
the hypothesis, there exists mj(1 < j < t) such that ¢ C m;. Hence, by 10.1 (ii),
A%y + -+ A%, C qNA® C myNA®. Hence there exists me(1 < € < t) such that
meNA® = qNA®. Hence, by (i), meNA® = m;NA®. Hence qNA® = m;N2A®. Hence,

by 10.2 (i), the Incomparability theorem [1, 5.9] and the fact that ¢ C mj, q = m;.

13.7 PROPOSITION. Let A be a local ring having the maximal indeal m
and a positive dimension. Then

(i) If M is a generalized Cohen-Macaulay A-module of dimension n and there
exists H a finite group of A%-module automorphisms of M such that |H|, the order
of H, is invertible in A and M is a non-zero finitely A%-module of dimension n,
then M* is a generalized Cohen-Macaulay A“-module.

(ii) If A is a generalized Cohen-Macaulay ring, then A% is a generalized Cohen-
Macaulay with maximal ideal m N A®.

(iii) If A is a Bachsbaum ring, then A is a Buchsbaum ring with maximal

ideal m N AC.

Proof. It follows from 13.6 (i) that A“ is a local ring with maximal ideal mNA®.
(i) Let N be a non-zero finitely generated A-module of dimension n > 1. Then,
by [22, (3.2) and (3.3)], N is a generalized Cohen-Macauley A-module if and only if
there exists s € N such that m*$y} (91) = o foralli =0,---,n—1. Hence there exists

t € Nsuch that m'$} (9) = oforalli =0,--- ,n—1. Hence (mN2A®)'(H (IM))" = o

for all i = 0,--- ,n — 1 (we are using notation introduced in 9.1). Hence, by 9.2
and 9.4 (iv), (m N A®)'H: (M) = o forall i = 0,--- ,n — 1. Hence M" is a

generalized Cohen-Macaulay A%-module.

(ii) This follows from (i) and the fact dim A = dim A“,
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(iii) Let ay,---,a, be a system of parameters for A®. Then, by 13.6 (ii),

ai, -+ ,a, is a system of parameters for A. Hence, for each i =1,--- n,
m[(Aay, + -+ Aoy ) 1 i)/ (RAa, + -+ -+ Aoy, )] = 0.
Hence, for each i =1,--- ,n,
m((Aa, + -+ Aoy y) g o) S Aay + -+ Aoy,
Hence, for each i =1,--- ,n,

(MmN A [((Aay + -+ Aai ) i &) NA®] C (Aa, + -+ -+ A ) NAC.
Hence, by 10.1 (ii), for each i =1,--- | n,

(m N Qlﬁ)((Qlﬁal + -+ Q[Qﬁai_ﬂ e (li> C Ql®a1 + -+ qujai_l.
Therefore, for each 2 =1,--- ,n,
(m N A [((A%ay + -+ A%ai_,) g )/A%a, + -+ A%a;_,] = 0.

The claim follows immediately from preceding paragraph and 13.5(ii).

13.8 REMARKS AND DEFINITIONS. Let A be a local ring with the
maximal ideal m, and dim A = n, and let a,---a, be a system of parameters
(s.0.p) for A. An (not necessarily finitely generated) A-module M is said to be a big
Cohen-Macaulay A-module with respect to aq,---ay, if a1,---a, is an M-sequence.
The reader is refered to the work and writings of Hochster, such as [9], for details
of the relationship between this concept and the various homological conjectures in

commutative algebra. Furthemore, we say that M is a balanced big Cohen Macaulay

A-module if it is a big Cohen-Macaulay module with respect to every s.o.p for A(See
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[32]). If an A-module M is a big Cohen-Macaulay A-module with respect to some
s.0.p for A and M is finitely generated, then it is well known that M is a balanced
big Cohen-Macaulay A-module.
Let D(A) = (D;);eny, be the dimension filtration of Spec (A), which is defined
by
D; = {q € Spec () : dim(A/q) < dimA — i},

for each 7 € Ny, and let M be an A-module. Then M is a balanced big Cohen-
Macaulay A-module if and if M # m9 and the Cousin complex C(D(A), M) for M
with respect to the D(A) is exact (See [33, 3.7]).

13.9 PROPOSITION. Let A be a local ring with the maximal ideal m, and
dim A = n, so that, by 13.6 (i) and 10.2 (vi), A“ is a local ring with the maximal
ideal m N A® and dim A® = n. Let M be an A-module. Then

(i) If by, - , b, is a system of parameters for A“, then by, - - , b, is a system of
parameters for A and M, when regarded as an A-module, is a big Cohen-Macaulay
with respect to by, --b, if and only if M, when regorded as an A%-module, is a big
Cohen-Macaulay with respect to by, - - - b,.

(ii) If M is a balanced big Cohen-Macaulay A-module, then M is a balanced
big Cohen-Macaulay A%-module.

(iii) If N is an A9-module such that N @ 4¢ A is a balanced big Cohen-Macaulay
A-module, then N is a balanced big Cohen-Macaulay A%-module.

Proof. (i) Note that, b; € Zy(M/byM + --- + b;_1M) if and only if b; €
Zac(M/byM +---4+b; M) for all i = 1,--- ,n. Hence by,--- b, is a M-sequence
(as A-module) if and only if by, - -b, is a M-sequence (as A“-module).

The claim follows from 13.6 (ii) and above note.

159



(ii) This follows from (i).

(iii) By 13.8, the Cousin complex C(D(A), N @ 4a A) for N @ 46 A with respect
to the dimension filtration of Spec (A) is exact and m(M @ge A) # (N Dge A).
Hence, by 10.13 (i), the Cousin complex C(D(AY), N) for N with respect to the
dimension filtration of Spec (A“) is exact. Hence, by 13.8, it is enough for us to
show that (m N A®)IN #£ N.

Let (mNAY)N = N. Then (mN2A®)(MNgeA) = NDgeA. Hence m(N@geA) =
M @ge A. This contradiction shows that (m N AC)IT # N,

13.10 REMARK AND DEFINITION. (i) (See [17, page 183]) Suppose
k € Ne. The ring A is said to satisfy condition (Si) if and only if, for all p € Spec
(4),
grade, (p2Ay) > min(btp. £)

(i) (See [26, 2.2]) Suppose k € Ny, and
CUH(A), A) 10— A L5 40 0 g1 g & g

is the Cousin complex for A with respect to the height filtration H(A) (See 5.4).
Then the following statements are equivalent:

(i) A satisfies condition (.Sy)

(i) C(H(A), A) is exact at A=l = A, A% ... AF2

It is easy to deduce the following proposition from 10.13(ii) and 13.10 (ii).

13.11 PROPOSITION. Suppose k£ € Ny, and A statisfies condition (Sy),
then A satisfies condition (Sy).

We shall need to use the following proposition.
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13.12 PROPOSITION. (See [28, (3.5)]) Let f : A — B be a homomor-
phism of commutative Noetherian rings. Assume that f makes B into a flat A-
module. Let I be an injective B-module, then I, when regarded as an A-module by

means of f,is A-injective.

13.13 PROPOSITION. Let A be a Gorenstien ring and a be an ideal of A¢.
Then

(i)C(H(A%), A9) the Cousin complex for A® with respect to the height filtra-
tion H(AY) (See 5.4) is a Ly-acyclic resolution of A“.

(ii) If A is a flat A%-module, then A% is a Gorenstien ring.

Proof. Suppose that C(H(A), A) the Cousin complex for A with respect to the
height filtration H(A) has the form

d—1 do dam™
0— AL A T 41 oA gt

By 5.4, C(H(A), A) is a minimal injective resolution for A. It follows from 10.13 (ii)
that there is an isomorphism of complexes of A%-modules and A“-homomorphisms
from (C(H(A), A))% to C(H(AY), AY) and furthermore, C'(H(A%), AY) is exact (we
are using notation introduced in 10.11).

(i) Tt is enough for us to show that (A%)“ is a L-acyclic, for each i € Ny (we
are using notation introduced in 10.10).

Let i € Ng. Since A’ is an injective A-module, it follows from 1.2 and 1.4 (1)
that H(A") for all n € N. Therefore (HZ(A"))¢ =0 for all n € N (we are using
notation introduced in 9.1). Hence, by 9.2 and 9.4 (i), H o ((A")%) = 0 for all
n € N. Hence, by 10.1 (ii), H*((A")¢) = 0 for all n € N. Hence (A")% is a Ly-acyclic.

(ii) By 5.4, it is enough for us to show that C(H(A)%, AY) is a injective resolu-
tion for A®. Since (C(H(A), A))Y and C(H(A), A%) are isomorphic as complexes
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of A% modules and A%-homomorphisms and C(H(A%), A%) is exact, it is enough
for us to show that (A% is an injective A“-module, for each i € Ny.

Let i € Ne. By 8.3, (4)% is a direct summand of A’ as A%-module. On the
other hand, by 13.12, A’ is an injective A“-module. Hence (A")“ is an injective

A% module.

13.14 LEMMA. Let C' = R[xy,--- ,x,] be the polynomial ring in n indeter-
minates over R. Let S be a subring of C' such that R C S. Then C' is flat over S.

Proof. Let N be a S-module. Then there is a natural S-isomorphism
QQ:N@SS[QUI"" 7xn] —>N[£C1,"' wxn]

which is such that

t
Pa® Y st eam) = Sl o age
=1 3

t
for all @« € N and Zsixﬁ“ ceexnino€ Slry, -+ -x,]. Also, there is a natural S-
=1

isomorphism

w:R[xla"' wxn] ®RS—>S[x17"' 73771]

which is such that

l

t
At adn ©.9) = Y (risyaf -
1=1

1=1

I
for all s € S and Zr,;:c’f“ coogPin € Rlxy, - x,]. Hence there is a natural S-
i=1

isomorphism

On : (N @g Rlxy,--+ ,x,]) @ S — Nlxq,- - x,]
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which is such that

l
(@@ raft, - abmy@s) =Y ((rs)a)af™ - abn
=1 3

l
for all « € N,s € S and (Z rayt - afin € Rlxy, -, 3.
i=1
Let f : N; — N, be a monomorphism of S-modules. Then there is a natural
S-monomorphism

f* : Nl[xla'” wxn] B NZ[xla'”'xn]

which is such that

k
Zaw cegin) :Zf(ai)x?l’.“’xzm
i=1

for all Z oz -t € Ny[wy,- -, x,). Since the diagram
O
(Nl ®5 R[$17"’In]) ®RS N[I17"'In]
(f @ Ide) © Ids o
O,
(Ny @g Rlxy, 5] @r S Ny, -+ x,)

Commutes, (f @ Id¢) @ Idg is a S-monomorphism.

Let L be a S-module. Then there are the natural S-homomorphisms
1 L—L®pSand A\ : L®rS — L

which is such that
pp(x) =@ 1g and A\p(z @ s) = sx
for all + € L and s € S. It is clear that Ajou;, = Id;. Hence puj is a S-

monomorphism.
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Let f: Ny — N be a S-monomorphism. Since (f @ Id¢) @ Ids and pin,eqc

are S-monomorphicms and the diagram LN, 0aC
1¥s
N1 @g Rlxy, - w,] ———+N1 @5 Rlw1,- - 2,]) @ S

folde (f @ Ide) @ Idg

/’LN2® C 1
Ny, @g Rlxy, - 71‘n]45’(]\72 @g R[xy, - x,]) ©r S

Commutes, it follows that f @ Idq is a S-monomorphism.

It is easy to deduce the following corallary from 13.13 and 13.14.

13.15 COROLLARY. Let B be a commutative ring with identity, and let
A = B[xy,- -+ ,x,] be the polynomial ring in n indeterminates over B. Then

(i) If A is a Gorenstein ring and B C A%, then A“ is a Gorenstein ring.

(ii) If G is a group of B-algebra automorphisms of A and A is a Gorenstein

ring, then A“ is a Gorenstein ring.

13.16 REMARK. Let k be a field and A be a polynomial ring in n indeter-
minates over k. In section two of [11], the following theorems are stated (from K.
Watanabe and R. Stanley) to show that under what condition A“ is a Gorenstein
ring, whenever G is a finite linear algebric group over k& with |G| invertible in k£ such
that it acts linearly on A.

(i) (K. Watanabe, See [11, (2.2)]) Let G be a finite linear algebraic group over
k (See [10, page 164]) whose order is invertible in the field k& acting linearly (See
[10, page 164]) on the polynomial ring A = k[zy,---x,]. Assume that G C GL(V),
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where V = z”: kx;. Then

(a) AGZTS1 Gorenstein, whenever G C SL(V).

(b) A% is Gorenstein if and only if G C SL(V), whenever G contains no
psecutorefiections.

(ii) (R. Stanley, see [11, 2.4]) Let G be a finite linear algebraic group over k
acting linearly on a polynomial ring A = k[xy, - - -2, with |G| invertible in k. Then
A% is Gorenstein if and only if

D 1/det(I—tg) =t det(g)/det(I —tg).

9 9

where 7 is the number of pseudorefiections in GG. Both sides are to be regarded as
rational functions of the indeterminate t.
Note that, we have already established in 13.15 (ii), under weaker conditions,

a result similler to the results stated in 13.16.

13.17 REMARK AND DEFINITIONS. (i) (see [29]) the category of all
complexes of A-modules and translations of such complexes is denoted by Y (A).
Also Yb(A) will denote the full subcategory of Y (A) whose objects are the complexes
which are bounded. Y’(A) will denote the full subategroup of Y*(A) whose objects
are those complexes in Y°(A) all of whose cohomology modules are finitely generated.

If n is an integer, H" : Y(A) — C(A) will denote the n th cohomology
functor. So, if X € Y(A), then H"(X*) = Ker d%./Im d%.'. Now suppose that
X*.Y* € Y(A). A translation of complexes u® : X* — Y* is said to be a quasi
isomorphism (abbreviated as quism) if, for all 7 € Z, the induced homomorphism of
cohomology modules.

Hiu') : HY(X*) — H(Y*)

is an isomorphism
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A dualizing complex for A is an injective complex I* € Y?(A) such that the

translation of complexes
(X, I°) : X* — Homu([Homa(X"*, I%)],1°)

of 2.3 (ii) of [29] is a quism whenever X* € Y’(A).
(ii) (See [29, 3.9]) Suppose f : A — B is a homomorphism of commutative
Noetherian rings such that B, when regarded as an A-module by means of f, is

finitely generated. Suppose A has a dualizing complex J*® given by:
J: O —J —J" S J 00— 0

Then the complex I* of B-modules and homomorphisms given by:

I* -0 — Homu(B,J") — Homu(B, J"*) — -+ — Hom,(B, J"*") — 0 — - -

(in which it is to be understood that Hom (B, J') is the t-th term) is a dualizing

complex for B.

13.18 PROPOSITION. Let A, when regarded as an A%-module, be finitely

generated. Suppose A% has a dualizing complex J* given by:
Jio 0 — J— S 0 — 0

Then there is a dualizing complex I°® for A such that each ¢ € G induces an iso-
morphism of complexes of A%-modules and A“-homomorphisms o, : I* — I°.
Furthermore, G* = {0, : 0 € G} is a group of isomorphisms of complexes from I°
to I* and (I*)¢" (we are using notation introduced in 10.10) and .J* are isomorphic

of complexes (as complexes of A%-modules and A“-homomorphisms).
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Proof. By 13.17 (ii), the complex I* of A-modules and A-homomorphisms
given by:

I 0 — Homuc(A,JY) — Homue(A, J™) — o — Homyo(A, J7") — 0 — -

is a dualizing complex for A. Each ¢ € G induces an isomorphism of compexes of

A%modules and A9-homomorphisms
04 = (Ui->i€Z It —I°

which is such that o', = Homc(o,Idyi) for all i € Z. Set GT = {0, : 0 € G}.
Then it is clear that G is a group of isomorphism of complexes from I® to I*. There

is an A9-homomorphism 7' : A — A% which is such that

) = — o(a

for all @ € A. Hence, by 8.9, the homomorphism of complexes of A“-modules and

A% -homomorphisms
(Homuc(n', Idy:))icz - HomAG<AGa J*) — (Homya (A, J'))G+

is an isomorphism. It therefore follows from the fact that the complexes Hom 4o (A, J*)
and J* are isomorphic that (I ')GJr and J* are isomorphic (as complexes of A“-

modules and A“-homomorphisms).

13.19 REMARK AND DEFINITION. (i) (See [13, (1.1)]) Let &y, -« ,x, €
R; the sequence of elements xq,--- , x, is said to be a d-sequence

(1) 2; ¢ Rey +---+ Rx; 1+ Ry + -+ Ray, fori=1,- -+,

(2) Forall k > i+ 1 and all i > 0, (o = 0),

((xoR+---x;R) : wip1xy) = ((xo R+ -+ -+ 23 R) = ).
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(ii) Let xy,---x, € R. Tt is easy to check that zy,---x, is a d-sequence on R
if and only if for all £ > i+ 1 and all i > 0, (zg = 0),

Rxy + Rxg + - - - + Ru;

; Z
Ti1 & Zn( Rxg + -+ + Rx;

)7

that is, x; 1 is not a zero-divisor on R-module Rxy + Rxy +- - -+ Rx;/Rxy + - - - Ru;.

13.20 PROPOSITION. Let n € Nand vy, - ,yn € A9. Then 4y, --- , 7, is

a d-sequence on A if and only if vy, - -y, is a d-sequence on A%,

Proof. Let 0 <i < n—1, andlet £ > i+1. Let yg = 0. Suppose Ayg+---+Ay; =

m

ﬂ Q; is a minimal primary decomposition of the submodule Ay, + - - - + Ay, of A-
7=1
module Ay, +Ayo+- - -+ Ay;, and let 74(Q; : Ayp+Ayo+---+Ay;) = g;(1 <j < m).

Let 1 < j <m. Since ), is a A-submodule of Ay + Ayo+- - -+ Ay;, Q; is an ideal of
A and Q; contained in Ayy+ Ayo+- - -+Ay;. Hence, by 10.1 (ii), Q;N A% is an ideal of
A% and Q;NAY C A%y, + A%y +- - -+ A%y;. Hence Q; N A is an A%-submodule of

ASy+ A%yg+- - -+ A%y, Tt follows from 10.1 (ii) that A%y +-- -+ A%y, = ﬂ(Qj N
7=1
A%). Tt is easy to see that r 4o ((Q;NAY) : A%y, + A%y +-- -+ A%;) = (q;NA®) and

(Q;NA%) is a primary submodule of A%y, +A%yg+-- -+ A%;, foreach j =1,--+ ,m.

Hence A%yg+-- -4+ A%y, = ﬂ (QjﬁAG) is a primary decomposition of the submodule
j=1

A%y + - - A%y; of A% module A%y, + A%y + - - - + A%y;. Therefore,

m
Ayp+Ayot-+Ay; _U , ACy+ ACyo+-+ A%y, _U ' ®
za (Pt ) = oy and Zye (A2t ) = (0, 020),
j=1

7=1
Hence
Ayk+Ayg+~'+Ayi> : : (AGyk+AGyo+'~+AGyi>
i1 € 2 if and only if v, € Z .
Yit1 A( Ao+ -+ Ay, Y L Yiv1 AG ACyy + -+ Ay,

Also, by 10.1 (ii), yir1 € Ayy + -+ -+ Ay; + Ayiyo + - -+ + Ay, if and only if y, 41 €
ACy -+ A%+ A+ A%y,
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