Infinite dimensional tilting theory and its applications

Jan Trlifaj

Univerzita Karlova, Praha

IPM Tehran August 22-24, 2015

Jan Trlifaj (Univerzita Karlova, Praha) Tilting theory and its applications

E + 4 E +

(Lecture I) Tilting theory and approximations of modules.

(Lecture II) Finite type of tilting classes, and the finitistic dimension conjectures.

(Lecture III) Classification of tilting classes over commutative noetherian rings.

・ 同 ト ・ ヨ ト ・ ヨ ト

References

- L.Angeleri Hügel, D.Pospíšil, J.Šťovíček, J.Trlifaj, *Tilting, cotilting, and spectra of commutative noetherian rings*, Trans. Amer. Math. Soc. 366(2014), 3487–3517.
- L.Angeleri Hügel, J.Trlifaj, *Tilting theory and the finitistic dimension conjectures*, Trans. Amer. Math. Soc. 354(2002), 4345–4358.
- S.Bazzoni, F.Mantese, A.Tonolo, *Derived equivalences induced by infinitely generated n-tilting modules*, Proc. Amer. Math. Soc. 139(2011), 4225–4234.
- R.Göbel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules, 2nd revised and extended ed., Vols. 1 and 2, GEM 41, W. de Gruyter, Berlin 2012.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Large) Tilting Modules

Let R be a ring and $n < \omega$. A right R-module T is n-tilting provided

(T1)
$$pd_R(T) \le n$$
,
(T2) $Ext_R^i(T, T^{(\kappa)}) = 0$ for all $1 \le i$ and all κ , (i.e., T is a strong splitter).
(T3) There is a finite exact sequence $0 \to R \to T_0 \to \cdots \to T_r \to 0$ with $T_i \in AddT$, (i.e., R has a finite $Add(T)$ -coresolution).

The right tilting class induced by T is $\mathcal{B}_T = T^{\perp} = \{M \in \text{Mod-}R \mid \text{Ext}_R^i(T, M) = 0 \text{ for all } i \geq 1\}.$

A tilting module T is good if (T3) holds with Add T replaced by add T.

The tilting modules T and T' are equivalent if $\mathcal{B}_T = \mathcal{B}_{T'}$.

Lemma: Each tilting module is equivalent to a good one.

T is classical if $T \in \text{mod}-R$ (i.e., T is strongly finitely presented).

Lemma: Each classical tilting module is good.

Theorem (Miyashita)

Let T be a classical n-tilting module. Then for each $i \leq n$ there is a category equivalence

$$\bigcap_{j \le n, j \ne i} Ker(Ext_R^j(T, -)) \stackrel{Ext_R^j(T, -)}{\underset{Tor_S^j(-, T)}{\rightleftharpoons}} \bigcap_{j \le n, j \ne i} Ker(Tor_j^S(-, T))$$

where $S = End_R(T)$.

イロト イヨト イヨト

Lemma

All classical tilting modules over a commutative ring are projective.

The key point: If R is commutative, and T is strongly finitely presented of projective dimension $n \ge 1$, then $\operatorname{Ext}_{R}^{n}(T, T) \ne 0$.

Theorem (Bazzoni&co.)

Let R be a ring and T be a good n-tilting module. Then for each $i \leq n$ there is a category equivalence

$$\bigcap_{j \leq n, j \neq i} \mathit{Ker}(\mathit{Ext}_{R}^{j}(\mathcal{T}, -)) \stackrel{\mathit{Ext}_{R}^{i}(\mathcal{T}, -)}{\underset{\mathit{Tor}_{S}^{i}(-, \mathcal{T})}{\overset{j \leq n, j \neq i}{\overset{j \leq n, j \neq i}{\overset{j \leq n, j \neq i}{\overset{j \in n, j \neq i}}}} \mathsf{Ker}(\mathit{Tor}_{j}^{S}(-, \mathcal{T})) \cap \mathcal{E}_{\perp}$$

where $S = End_R(T)$, $\mathcal{E}_{\perp} = \{X \in \mathcal{D}(S) \mid Hom_{\mathcal{D}(S)}(\mathcal{E}, X) = 0\}$, and \mathcal{E} is the kernel of the total left derived functor $\mathbb{L}(-\otimes_S T)$.

Some examples in the commutative setting

Dedekind domains

Let R be a Dedekind domain with the quotient field Q, and P be a set of maximal ideals in R. Let R_P be the (unique) submodule of Q containing R such that $R_P/R \cong \bigoplus_{p \in P} E(R/p)$.

Then $T_P = R_P \oplus R_P/R$ is a tilting module, and

$$\mathcal{B}_{T_P} = \{ M \in \mathsf{Mod}\text{-}R \mid Mp = M \text{ for all } p \in P \}.$$

Iwanaga-Gorenstein rings

Let R be an Iwanaga-Gorenstein ring and

$$0 \rightarrow R \rightarrow I_o \rightarrow \cdots \rightarrow I_n \rightarrow 0$$

be a minimal injective coresolution of R.

Then $T = \bigoplus_{i \le n} I_i$ is (obviously) a tilting module.

Tilting cotorsion pairs

Let T be a tilting module. The left tilting class induced by T is $\mathcal{A}_T = {}^{\perp}\mathcal{B}_T = \{A \in \text{Mod-}R \mid \text{Ext}_R^i(A, B) = 0 \text{ for all } B \in \mathcal{B}_T \text{ and } i \ge 1\}.$

Since $\mathcal{A}_T = {}^{\perp}\mathcal{B}_T$ and $\mathcal{B}_T = \mathcal{A}_T^{\perp}$, $(\mathcal{A}_T, \mathcal{B}_T)$ is a (hereditary) cotorsion pair, called the tilting cotorsion pair induced by T.

If T is *n*-tilting, then $\mathcal{A}_T \cap \mathcal{B}_T = \text{Add}T$, \mathcal{A}_T coincides with the class of all modules possessing an AddT-coresolution of length $\leq n$, and \mathcal{B}_T with the class of all modules possesing a (possibly infinite) AddT-resolution.

In particular, \mathcal{B}_T is closed under arbitrary direct sums, and all modules in \mathcal{A}_T have projective dimension $\leq n$.

イロト 不得 トイヨト イヨト

A cotorsion pair $(\mathcal{A}, \mathcal{B})$ is complete provided that for each module M, there exists short exact sequences $0 \to M \xrightarrow{f} B \to A \to 0$ and $0 \to B' \to A' \xrightarrow{f'} M \to 0$ such that $A, A' \in \mathcal{A}$ and $B, B' \in \mathcal{B}$.

f is a special \mathcal{B} -preenvelope (= left \mathcal{B} -approximation) of M and f' a special \mathcal{A} -precover (= right \mathcal{A} -approximation) of M.

Theorem (Eklof.-T.)

Let S be a set of modules. Then the cotorsion pair (A, B) such that $B = S^{\perp}$ is complete. In particular, each tilting cotorsion pair is complete.

ヘロト 人間 ト 人 ヨト 人 ヨトー

Characterizations of tilting classes and tilting cotorsion pairs

Lemma

Let \mathcal{T} be a torsion class of modules. Then \mathcal{T} is a right 1-tilting class, iff \mathcal{T} is special preenveloping.

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair. Then TFAE:

- (i) \mathfrak{C} is tilting.
- (ii) \mathcal{A} consists of modules of bounded projective dimension, \mathcal{B} is closed under arbitrary direct sums (and \mathfrak{C} is complete).

Axiomatizability of tilting classes

Definition

Let S be any set consisting of strongly finitely presented modules of bounded projective dimension. Let $T = S^{\perp}$. Then T is of finite type.

Lemma

Each class of finite type is axiomatizable by a set of formulas of the first order theory of modules.

Theorem

Let \mathcal{T} be a class of modules. Then TFAE:

- (i) T is a right tilting class.
- (ii) \mathcal{T} is of finite type.

In particular, each right tilting class is axiomatizable.

Definition

A subclass S of mod-R is called resolving provided that it contains all finitely generated projective modules, it is closed under extensions and direct summands, and $A \in S$ whenever there is an exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ with $B, C \in S$.

Theorem

There is a 1-1 correspondence between

- **1** right tilting classes T in Mod-R, and
- e resolving subclasses S of mod-R consisting of modules of bounded projective dimension.
- It is given by the inverse assignments

$$\mathcal{T} \mapsto \mathcal{A}_{\mathcal{T}} \cap \operatorname{mod} - R \quad and \quad \mathcal{S} \mapsto \mathcal{S}^{\perp}.$$

3

イロト イポト イヨト イヨト

The finitistic dimensions

Notation: $\mathcal{P} = \bigcup_{n < \omega} \mathcal{P}_n$ the class of all modules of finite projective dimension, and

 $\mathcal{P}^{<\infty}$ the class of all finitely generated modules in $\mathcal{P}.$

 $\operatorname{Fdim}(R)$ denotes the big finitistic dimension of R(= the supremum of projective dimensions of the modules in \mathcal{P}

fdim(R) denotes the little finitistic dimension of R (= the supremum of projective dimensions of the modules in $\mathcal{P}^{<\infty}$).

Lemma

 $fdim(R) \le Fdim(R) \le gl.dim(R)$. If $gl.dim(R) < \infty$, then all these dimensions coincide.

イロト 不得 トイヨト イヨト

The finitistic dimension conjectures

Let R be a ring.

(1st FDC) Does $\operatorname{Fdim}(R) = \operatorname{fdim}(R)$?

(2nd FDC) Is fdim $(R) < \infty$?

Theorem (Bass, Raynaud-Gruson)

Fdim(R) equals the Krull dimension of R.

Theorem

- (i) (Nagata) There exists rings with $fdim(R) = Fdim(R) = \infty$. So (2nd FDC) fails in general.
- (ii) (Auslander-Buchsbaum) If R is local, then fdim(R) = depth(R). In particular, (1st FDC) holds, iff R is Cohen-Macaulay.

Theorem (Huisgen-Zimmermann, Smalo)

For each n > 1, there exist finite dimensional algebras with fdim(R) = 1and Fdim(R) = n. So (1st FDC) fails in general.

However, (2nd FDC) is still an open problem ...

Theorem (Angeleri-T.)

Let R be a right noetherian ring. Then $fdim(R) < \infty$, if and only if $(\mathcal{P}^{<\infty})^{\perp}$ is a right tilting class. That is, (2nd FDC) holds, iff there is a tilting module T_f with $\mathcal{B}_{T_f} = (\mathcal{P}^{<\infty})^{\perp}$. In this case, proj.dim $(T_f) = fdim(R)$, and T_f is unique up to equivalence.

Warning: T_f is not finitely generated in general.

- 4月 ト 4 ヨ ト 4 ヨ ト

Theorem (Angeleri-T.)

Let R be an artin algebra. Then TFAE:

- (i) The tilting module T_f can be chosen finitely generated.
- (ii) The category $\mathcal{P}^{<\infty}$ is contravariantly finite (= precovering) in $\operatorname{mod}-R$.

In this case $\mathcal{P} = \mathcal{A}_{T_f}$, whence $\operatorname{Fdim}(R) = \operatorname{fdim}(R) = \operatorname{proj.dim}(T_f) < \infty$.

The case of Iwanaga-Gorenstein rings

Definition

A ring R is Iwanaga-Gorenstein provided that R is left and right noetherian and of finite left and right injective dimension.

Lemma

If R is Iwanaga-Gorenstein, then the left and right injective dimensions of R coincide (with some $n < \omega$). Moreover, $\mathcal{P} = \mathcal{P}_n = \mathcal{I} = \mathcal{I}_n$.

Theorem (Angeleri-T.)

Let R be an Iwanaga-Gorenstein ring. Then both finitistic dimension conjectures hold for R. Moreover, the tilting module T_f can be chosen as $T_f = \bigoplus I_i$, where the I_is are the terms of the minimal injective coresolution of R.

Definition

Let *R* be a ring and $n < \omega$. A left *R*-module *C* is *n*-cotilting provided (C1) $\operatorname{id}_R(C) \leq n$. (C2) $\operatorname{Ext}_R^i(C^\kappa, C) = 0$ for all $1 \leq i$ and all cardinals κ . (C3) There is an injective cogenerator *W* and a long exact sequence $0 \to C_r \to C_{n-1} \to \cdots \to C_0 \to W \to 0$, with $C_i \in \operatorname{Prod} C$. The class ${}^{\perp}C = \{M \in R \operatorname{-Mod} \mid \operatorname{Ext}_R^i(M, C) = 0 \text{ for all } i \geq 1\}$ is the

cotilting class induced by C.

The cotilting modules C and C' are equivalent if ${}^{\perp}C = {}^{\perp}C'$.

Duality: formal versus explicit

The notions of a cotilting and tilting module are formally dual, but there is also an explicit duality:

Let R be a ring, $n \ge 0$, and T be an *n*-tilting right R-module. Then the dual module $C = T^* = \text{Hom}_{\mathbb{Z}}(T, \mathbb{Q}/\mathbb{Z})$ is an *n*-cotilting left R-module.

The tilting right *R*-modules *T* and *T'* are equivalent, iff the dual modules T^* and $(T')^*$ are equivalent cotilting left *R*-modules.

Moreover, if S is a set consisting of strongly finitely presented modules of projective dimension $\leq n$ such that $T^{\perp} = S^{\perp}$ is the right tilting class induced by T, then

$${}^{\perp}T^* = S^{\intercal} = \{N \in R \operatorname{-Mod} \mid \operatorname{Tor}_i^R(S, N) = 0 \text{ for all } i \geq 1 \text{ and } S \in S\}$$

is the cotilting class induced by T^* .

Cofinite type

The cotilting modules and classes of the form T^* and ${}^{\perp}T^*$, respectively, are called of cofinite type. **Warning:** Not all cotilting modules and classes are of cofinite type in general.

The map $T \mapsto T^*$ induces a bijection between equivalence classes of tilting modules on the one hand, and equivalence classes of cotilting modules of cofinite type on the other hand.

Similarly, the maps

 $\mathcal{T} \mapsto (^{\perp}\mathcal{T} \cap \mathsf{mod}\text{-}R)^{\intercal}$

and

$$\mathcal{C} \mapsto ({}^{\intercal}\mathcal{C} \cap \mathsf{mod}\text{-}R)^{\perp}$$

provide for a 1-1 correspondence between right tilting classes, and cotilting classes of cofinite type.

A subset $P \subseteq \text{Spec}(R)$ is closed under generalization provided that (P, \subseteq) is a lower subset in $(\text{Spec}(R), \subseteq)$.

Theorem (The structure of 1-cotilting classes)

Let R be a commutative noetherian ring. Then there is a 1-1 correspondence between

- **1** the 1-cotilting classes C in Mod-R, and
- It the subsets P of Spec(R) containing Ass(R) and closed under generalization.

It is given by the inverse assignments $C \mapsto Ass(C)$ and $P \mapsto \{M \in Mod - R \mid Ass(M) \subseteq P\}.$

イロト イ押ト イヨト イヨト

The Auslander–Bridger transpose

Let $C \in \text{mod}-R$ and $P_1 \xrightarrow{f} P_0 \to C \to 0$ be a projective presentation of C. The transpose of C, denoted by Tr(C), is the cokernel of f^+ , where $(-)^+ = \text{Hom}_R(-, R)$. That is, we have an exact sequence

$$P_0^+ \xrightarrow{f^+} P_1^+ \to \operatorname{Tr}(\mathcal{C}) \to 0.$$

 $\operatorname{Tr}(C)$ is uniquely determined up to adding or splitting off a projective summand.

Lemma

Let
$$\mathfrak{p} \in \operatorname{Spec}(R)$$
 be such that $\operatorname{Ass}(R) \cap V(\mathfrak{p}) = \emptyset$. Then

(i)
$$pd_R(\operatorname{Tr}(R/\mathfrak{p})) \leq 1;$$

(ii) $Hom_R(R/\mathfrak{p}, -)$ and $Tor_1^R(Tr(R/\mathfrak{p}), -)$ are isomorphic functors.

イロト イポト イヨト イヨト

Corollary

Let R be a commutative noetherian ring. Then all 1-cotilting classes are of cofinite type, so there is a bijection between right 1-tilting classes and the subsets P of Spec(R) containing Ass(R) and closed under generalization. For such P, the corresponding 1-tilting class is

$$\mathcal{T} = \bigcap_{\mathfrak{q} \in \operatorname{Spec}(R) \setminus P} \operatorname{Tr}(R/\mathfrak{q})^{\perp}.$$

Definition

Let *R* be a commutative noetherian ring. A sequence $\mathcal{P} = (P_0, \ldots, P_{n-1})$ of subsets of Spec(R) is called characteristic provided that

• P_i is closed under generalization for all i < n,

3
$$\operatorname{Ass}(\Omega^{-i}(R)) \subseteq P_i$$
 for all $i < n$.

For each characteristic sequence \mathcal{P} , we define the class of modules

$$\mathcal{C}_{\mathcal{P}} = \{ M \in \mathsf{Mod}\text{-}R \mid \mathrm{Ass}(\Omega^{-i}(M)) \subseteq P_i \text{ for all } i < n \}$$

A classification of *n*-cotilting classes

Theorem

Let R be a commutative noetherian ring, $n \ge 1$, and $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence. Then $\mathcal{C}_{\mathcal{P}}$ is an n-cotilting class, and the assignments

$$\mathcal{C} \mapsto (\operatorname{Ass}(\mathcal{C}_0), \dots, \operatorname{Ass}(\mathcal{C}_{n-1}))$$

and

$$\mathcal{P} = (P_0, \ldots, P_{n-1}) \mapsto \mathcal{C}_{\mathcal{P}}$$

are inverse bijections.

Lemma

Let R be a ring and C be an n-cotilting module with the induced class C. For each $i \leq n$, let $C_i = {}^{\perp}\Omega^{-i}(C)$. Then C_i is an (n - i)-cotilting class.

イロト イポト イヨト イヨト

Lemma

Let $\mathfrak{p} \in \operatorname{Spec}(R)$ and $n \ge 1$ such that $\operatorname{Ass}(\Omega^{-i}(R)) \cap V(\mathfrak{p}) = \emptyset$ for each i < n. Then

- (i) $pd_R(\operatorname{Tr}(R/\mathfrak{p})) \leq n$.
- (ii) $Ext_R^{n-1}(R/\mathfrak{p}, -)$ and $Tor_1^R(Tr(\Omega^{(n-1)}(R/\mathfrak{p})), -)$ are isomorphic functors.
- (iii) $Ext_R^1(\operatorname{Tr}(\Omega^{(n-1)}(R/\mathfrak{p})), -)$ and $Tor_{n-1}^R(R/\mathfrak{p}, -)$ are isomorphic functors.

・ 同 ト ・ ヨ ト ・ ヨ ト

Full classification over commutative noetherian rings

Theorem

Let R be a commutative noetherian ring and $n \ge 1$. Then there are bijections between:

- the characteristic sequences \mathcal{P} in $\operatorname{Spec}(R)$,
- 2 right n-tilting classes T,
- In−cotilting classes C.

A characteristic sequence \mathcal{P} corresponds to the right n-tilting class

$$\mathcal{T} = \{ M \in \text{Mod}-R \mid \textit{Tor}_i^R(R/\mathfrak{p}, M) = 0 \,\forall i < n \,\forall \mathfrak{p} \notin P_i \} = \\ \{ M \in \text{Mod}-R \mid \textit{Ext}_R^1(\text{Tr}(\Omega^{(i)}(R/\mathfrak{p})), M) = 0 \,\forall i < n \,\forall \mathfrak{p} \notin P_i \},$$

and the n-cotilting class

$$\begin{aligned} \mathcal{C} = & \{ M \in \mathrm{Mod}_{-R} \mid \mathsf{Ext}_{R}^{i}(R/\mathfrak{p}, M) = 0 \,\forall i < n \,\forall \mathfrak{p} \notin P_{i} \} = \\ & \{ M \in \mathrm{Mod}_{-R} \mid \mathit{Tor}_{1}^{R}(\mathrm{Tr}(\Omega^{i}(R/\mathfrak{p})), M) = 0 \,\forall i < n \,\forall \mathfrak{p} \notin P_{i} \}. \end{aligned}$$