IPM

                                پژوهشگاه دانش‌های بنیادی
پژوهشکدهٔ ریاضیات


Geometry and Topology Weekly Seminar سمینار هفتگی هندسه و توپولوژی




TITLE  
Faber Polynomials, Grunsky Matrix and Period Matrices


SPEAKER  
Mohammad Shirazi  
University of Manitoba, Canada  
 


TIME  
Wednesday, January 9, 2019,   15:30 - 17:00


VENUE   Lecture Hall 2, Niavaran Bldg.



SUMMARY

 

We extend the idea of Grunsky operator and Faber operator to higher genus compact Riemann surfaces with one boundary curve. In this talk, I will first review the classical concept of Faber Polynomials corresponding to the map $f$, a conformal map on a simply connected domain $\textbf{D}$ of the Riemann sphere with $\Gamma=\partial f (\textbf{D})$. We define the Grunsky coefficients associated to $f$, and review the necessary and sufficient conditions for $f$ to be univalent on $\textbf{D}$. We will define Grunsky and Faber operators and show that the Faber operator is an isomorphism for quasi-circles. I will present some recent work of myself, E. Schippers and W. Staubach generalizing these results to conformal maps into compact Riemann surfaces. Finally, a model which reveals some analogies between the Grunsky operator and the classical period mapping on the Universal Teichmuller space will be discussed.

 




تهران، ضلع‌ جنوبی ميدان شهيد باهنر (نياوران)، پژوهشگاه دانش‌های بنيادی، پژوهشکده رياضيات
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square, Tehran
ipmmath@ipm.ir   ♦   +98 21 22290928   ♦  math.ipm.ir