IPM

                                پژوهشگاه دانش‌های بنیادی
پژوهشکدهٔ ریاضیات


Geometry and Topology Seminar سمینار هندسه و توپولوژی




TITLE  
Proximal Actions, Strong Amenability, and Infinite Conjugacy Class Property


SPEAKER  
Pooya Vahidi Ferdowsi  
Caltech  
 


TIME  
Sunday, March 3, 2019,   10:00 - 12:00


VENUE   Lecture Hall 1, Niavaran Bldg.



SUMMARY

 

A continuous action of a countable discrete group on a Hausdorff compact space $X$ is called proximal if for any pair of points $x$, $y$ in $X$, we can simultaneously push them together, i.e. there exists a sequence of group elements $g_n$ with $\lim g_n x = \lim g_n y$. A group is called Strongly Amenable if each of its proximal actions has a fixed point. Glasner introduced these notions and showed Strongly Amenable groups are Amenable. Moreover, he showed that virtually nilpotent groups are Strongly Amenable. In this talk I will present a recent result classifying strongly amenable groups. This is a joint work with Joshua Frisch and Omer Tamuz.

 




تهران، ضلع‌ جنوبی ميدان شهيد باهنر (نياوران)، پژوهشگاه دانش‌های بنيادی، پژوهشکده رياضيات
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square, Tehran
ipmmath@ipm.ir   ♦   +98 21 22290928   ♦  math.ipm.ir