IPM

                                پژوهشگاه دانش‌های بنیادی
پژوهشکدهٔ ریاضیات


Geometry and Topology Seminar سمینار هندسه و توپولوژی




TITLE  
Lorentzian geometry and cohomogeneity one actions


SPEAKER  
Masoud Hasani  
IPM  
 


TIME  
Wednesday, July 8, 2020,   15:30 - 17:00


VENUE   (Online Seminar)



SUMMARY

 

In this talk, we introduce, briefly, the basis of Lorentzian geometry and cohomogeneity one actions. We also, introduce the Einstein universe and consider an interesting cohomogeneity one action on $\mathbb{Ein}^{1,2}$.
A smooth manifold $M$ equipped with a metric tensor $\textbf{g}$ of signature $(1, n)$ is called a Lorentzian manifold. Precisely, the restriction of $\textbf{g}$ to the tangent space $T_pM$ is of the form $−x_1^2+x_2^2+\cdots+x_n^2$.
Let $G$ be a Lie group which acts on a smooth manifold. Then the orbit of $G$ at point $p\in M$ is $G(p) := \{gp : g \in G\}$. If $G$ acts on $M$ smoothly, then every orbit of $G$ is a smooth immersed submanifold of $M$. The action of $G$ on $M$ is called cohomogeneity one if $G$ admits a codimension 1 orbit in $M$. Furthermore, if $M$ is a pseudo-Riemannian manifold and $G$ acts on $M$ isometrically, then every orbit is a pseudo-Riemannian submanifold. In other words, the restriction of the metric on each orbit has constant signature.
Consider the direct product Lorentzian manifold $(M, \textbf{g}) = (\mathbb{S}^1\times \mathbb{S}^n, −d\theta^2+\textbf{g}_{\mathbb{S}^n}$ ) where $(\mathbb{S}^1, d\theta^2)$ is the usual Riemannian circle of radius 1 and $(\mathbb{S}^n, \textbf{g}_{\mathbb{S}^n})$ is the usual Riemannian $n$-dimensional sphere of constant sectional curvature 1. The map $-Id : M \to M$ sending $(x, y)$ to $(-x, -y)$ is an isometry. The $(n + 1)$-dimensional Einstein universe $\mathbb{Ein}^{1,n}$ can be defined as the quotient of $M$ by $\{Id, -Id\}$. The Einstein universe is Lorentzian analogue of the sphere $\mathbb{S}^n$. It compactifies the Minkowski space and is the conformal boundary of Anti de Sitter space.

 




تهران، ضلع‌ جنوبی ميدان شهيد باهنر (نياوران)، پژوهشگاه دانش‌های بنيادی، پژوهشکده رياضيات
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square, Tehran
ipmmath@ipm.ir   ♦   +98 21 22290928   ♦  math.ipm.ir