IPM

                                پژوهشگاه دانش‌های بنیادی
پژوهشکدهٔ ریاضیات


Geometry and Topology Weekly Seminar سمینار هفتگی هندسه و توپولوژی




TITLE  
The mean orbital pseudo-metric in topological dynamics


SPEAKER  
Habibeh Pourmand  
Jagiellonian University  
 


TIME  
Thursday, June 17, 2021,   17:00 - 19:00


VENUE   Online: meet.google.com/qix-iqiy-txt



SUMMARY

 

We study properties and applications of the mean orbital pseudo-metric $\bar{\rho}$ on a topological dynamical system $(X,T)$ defined by \[ \bar{\rho}(x,y)= \limsup_{n\to \infty} \min_{\sigma \in S_n} \frac{1}{n}\sum_{k=0}^{n-1} d(T^k(x), T^{\sigma(k)}(y)), \] where $x,y\in X$, $d$ is a metric for $X$, and $S_n$ is the permutation group of the set $\{0,1,\ldots,n-1\}$. Writing $\hat{\omega}(x)$ for the set of $T$-invariant measure generated by the orbit of a point $x\in X$, we prove that the function $x\mapsto \hat{\omega}(x)$ is $\bar{\rho}$ uniformly continuous. This allows us to characterise equicontinuity with respect to the mean orbital pseudo-metric ($\bar{\rho}$-equicontinuity) and connect it to such notions as uniform or continuously pointwise ergodic systems studied recently by Downarowicz and Weiss. This is joint work with F. Cai, D. Kwietniak, and J. Li.

[IPM Youth Seminars on Topology and Dynamics]
Venue: meet.google.com/qix-iqiy-txt

 




تهران، ضلع‌ جنوبی ميدان شهيد باهنر (نياوران)، پژوهشگاه دانش‌های بنيادی، پژوهشکده رياضيات
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square, Tehran
ipmmath@ipm.ir   ♦   +98 21 22290928   ♦  math.ipm.ir