IPM

                                پژوهشگاه دانش‌های بنیادی
پژوهشکدهٔ ریاضیات


Algebraic Geometry Biweekly Webinar وبینار دوهفتگی هندسه جبری




TITLE  
Hilbert Functions, Lefschetz Properties and Perazzo Hypersurfaces


LECTURER  
Emilia Mezzetti  
University of Trieste (Italy)  
 


TIME  
Wednesday, June 12, 2024,   17:30 - 19:00


VENUE   (Online)



SUMMARY

 

Artinian Gorenstein algebras (AG algebras for short) can be viewed as algebraic analogues of the cohomology rings of smooth projective varieties. The Strong and Weak Lefschetz properties for graded AG algebras take origin from the hard Lefschetz theorem. The properties of an AG quotient $A _F$ of a polynomial ring are related to its Macaulay dual generator $F$, and in particular $A_F$ fails the Strong Lefschetz property if and only if the hessian of $F$ of order $t$ vanishes for some $1\leq t\leq d/2$, where $d=\deg F$ and the usual hessian is obtained for $t=1$. Perazzo polynomials are a large class of polynomials with vanishing hessian so their algebras $A_F$ always fail the SLP. I will report on some recent results concerning the question if the WLP holds for these algebras. Joint work with N. Abdallah, N. Altafi, P. De Poi, L. Fiorindo, A. Iarrobino, P. Macias Marques, R.M. Mir ́o-Roig, L. Nicklasson.

https://zoom.us/join
Meeting ID: 9086116889
Passcode: 362880
Email: agnt@ipm.ir

 




تهران، ضلع‌ جنوبی ميدان شهيد باهنر (نياوران)، پژوهشگاه دانش‌های بنيادی، پژوهشکده رياضيات
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square, Tehran
ipmmath@ipm.ir   ♦   +98 21 22290928   ♦  math.ipm.ir