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MANIFOLDS, MAPPINGS AND GROUPS

0.1 Differentiable Manifolds, Fibre Bundles and Ori-

entation

0.1.1 Manifolds, Vector Bundles

By a manifold M of dimension m we mean a Hausdorf separable topological space M ad-
mitting of a covering U = {U, V, · · · } such that each U, V, · · · is homeomorphic to an open
subset of Rm. For U ∈ U such a homeomorphism will be denoted by ϕU . If U, V ∈ U and
U∩V 6= ∅, then ϕUV = ϕUϕ

−1
V is a homeomorphism of the open subset ϕV (U∩V ) ⊆ Rm onto

ϕU(U ∩ V ) ⊆ Rm. A pair (U,ϕU) (or simply U) will be called a coordinate chart or coordi-
nate system. The functions ϕUV are called the transition functions for M . Let (xU1 , · · · , xUm)
denote the coordinates of a point in ϕU(U), then the mapping ϕUV expresses xUi ’s in terms
of xVi ’s, i.e.,

xUi = xUi (xV1 , · · · , xVm).

We also refer to x = (xUj ) or (xj) as coordinates on M . If the transition functions ϕUV are
k ≤ ∞ times continuously differentiable (analytic), we say that M is of class Ck (analytic).
A smooth manifold is one of class C∞. Unless stated to the contrary, a manifold M is of class
C∞, and if no differentiability assumption is made on the transition functions, M is called a
topological manifold. While most important examples of differentiable manifolds are C∞ or
even analytic, it is sometimes necesary to allow the greater generality of no differentiability
assumption of the transition functions since a given topological manifold may have none or
many differentiable structures. This subtle issue is not discussed here. Let f : M → N be a
continuous map. Smoothness of a map is a local requirement and therefore smoothness of f
means smoothness of ϕN · f · ϕ−1

M for all coordinate systems (UM , ϕM) and (UN , ϕN) for M
and N .

If the covering U is given as an indexed family, e.g. {Uα}, then the mappings ϕUα , ϕUαUβ

etc. will be denoted by ϕα, ϕαβ etc. Similarly, we write xαi etc. for xUα
i etc. Unless stated

to the contrary, all coverings are locally finite, i.e., every compact set intersects only finitely
many open sets of the covering. By a partition of unity subordinate to a covering U = {Uα}
we mean C∞ functions φα such that

1. supp(φα) ⊂ Uα;



2

2. 0 ≤ φα ≤ 1;

3.
∑

α φα ≡ 1.

We omit the proof of the existence of partitions of unity which can be found in almost
every elementary standard text on differentiable manifolds or differential topology. The
significance of partition of unity is due to the fact that in some circumstances it allows one
to patch together local data to obtain global ones on a manifold. This point becomes clear
as we develop the theory.

The notion of a submanifold requires some elaboration. Let M and N be manifolds and
f : M → N be a mapping such that Df(x) is injective for all x ∈ M . Such a mapping
is called an immersion and M or f(M) is an immersed submanifold of N . In this case the
topology on M may not be induced from that of N . The following example clarifies this
point and has other applications:

Example 0.1.1.1 Let M = R N = T 2 = R2/Z2 be the two dimensional torus. We can
represent N as a square with vertices at (0, 0), (1, 0), (1, 1) and (0, 1) and the points on
the boundary whose coordinates differ by an integer identified. Alternatively, T 2 is the
subset {(e2πit1 , e2πit2) of C2 as t1, t2 vary over [0, 1]. Let f : M → N be given by f(t) =
(t, γt) mod Z2, where γ is an irrational number. From elementary number theory or Fourier
analysis we know that {γm|m ∈ Z} mod 1 is dense in [0, 1]. This implies that in the
representation of T 2 as a square in the plane (with proper identifications of sides), the image
of f intersects the interval [0, 1] on the vertical axis in a dense set of points. Since f(M)
consists of parallel line segments in the square, f(M) is dense in N . Therefore the topology
induced on f(M) from N is not identical with the original topology of M . This example
works in any dimension. For instance, consider the torus Tm = S1 × · · · × S1. where S1

is identified with complex numbers of norm 1 Let x1, · · · , xm be real numbers such that
1, x1, · · · , xm are linearly independent over the rational numbers. Consider the mapping
f : R→ Tm defined by

f(t) = (eitx1 , · · · , eitxm).

Then f is an injective analytic immersion. It is a classical result due to Kronecker that Imf
is dense in Tm and therefore not closed (for a detailed proof see, e.g., [Ho]). The induced
topology on Imf is distinct from that of R. ♠

An immersion is not necessarily injective and the image can have self-intersections. For
example, figure ∞ is the image of an immersion of the circle S1 into the plane. If there is a
covering U = {Uα} of N such that Uα ∩ f(M) is defined as the zero set of a smooth function
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F : Uα ∩ f(M)→ Rn−m with DF (x) of rank n−m for all x ∈ Uα ∩ f(M), then f is called
an embedding and f(M) or simply M a submanifold of N . It is not difficult to show that an
injective immersion of a compact manifold M into a manifold N is an embedding.

The concept of a vector bundle on a manifold M (or more generally, on a topological
space X) plays a fundamental role in geometry, topology and physics. A vector bundle with
fibre F (= a vector space over R or C) consists of topological spaces X (called base) and E
(called total space) and a continuous map π : E → X such that

1. For every x ∈ X, Ex = π−1(x) (called fibre over x) is a vector space isomorphic to F ;

2. There is a covering U = {Uα} of X and homeomorphisms ϕα : π−1(Uα) ' Uα × F of
the form ϕα(y) = (π(y), ϕα1(y)) with ϕα1 linear on each fibre.

We normally denote a vector bundle by (E, π,X), E
π→ X, or E → X. The rank of a vector

bundle (E, π,X) is the dimension of a fibre. We may also refer to a vector bundle of rank k
as a k-plane bundle. Should it be necessary to specify the underlying field of a fibre, we will
refer to the vector bundle as real or complex.

The bundle (E, π,X) is trivial if E ' X × F with π projection on the first factor. Two
bundles (E, π,X) and (E, π′, X) are isomorphic if there is a homeomorphism θ : E ′ → E
such that πθ = π′ (hence θ preserves fibres) with the restriction of θ to each fibre a linear
isomorphism. By a mapping of a vector bundle (E, π,X) to a vector bundle (E ′, π′, Y ) we
mean a pair of continuous (or smooth depending on the context) maps f : X → Y and
f ′ : E → E ′ such that

1. fπ = π′f ′;

2. The restriction of f ′ to every fibre is a linear map of vector spaces.

If X = Y , f = id. and the restriction of f ′ to each fibre is injective, we say (E, π,X) or
(f ′(E), π′, X) is a sub-bundle of (E ′, π′, X).

For a vector space F of dimension n over a field K, we define GL(n,K) or GL(F ) (called
the general linear group of degree n) as the group of n × n matrices with entries from K
and determinant 6= 0, or invertible linear transformations of F . Similarly, SL(n,K) (called
the special linear group of degree n) is the subgroup of GL(n,K) consisting of matrices of
determinant 1. For y ∈ Uα ∩Uβ, we define ραβ by ραβ(ϕβ1(y)) = ϕα1(y) regarded as a linear
operator on F . Thus we have continuous maps ραβ : Uα ∩ Uβ → GL(F ) satisfying

ραγργβρβα = id. (0.1.1.1)

The GL(F )-valued functions ραβ are called the transition functions for the bundle (E, π,X).
In case the base is a manifold M , we generally assume smoothness of the transition functions
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of the bundle in consideration. It is not difficult to see that given a collection of GL(F )-
valued functions {ραβ}defined on non-empty intersections Uα ∩ Uβ for a covering U = {Uα}
of X, and such that ραβ = ρ−1

βα and (0.1.1.1) is satisfied, then there is a vector bundle with
the transition functions {ραβ}. In fact consider the disjoint union ∪(Uα × F ), and identify
the points (x, v) ∈ Uα × F and (x, v′) ∈ Uβ × F if v′ = ρβα(x)(v). It is clear that the set of
transition functions for a vector bundle is not unique. In fact by a change of bases for the
fibres we obtain new transition functions {ρ′αβ} related to {ραβ} by

ρ′αβ(x) = ψα(x)ραβ(x)ψ
−1
β (x), (0.1.1.2)

where ψα : Uα → GL(F ) describes the change of bases. It is straightforward to show that
vector bundles defined by two sets transition {ραβ} and {ρ′αβ} are isomorphic if and only if
they are related by (0.1.1.2) for some functions {ψα}.

Given a vector bundle (E, π,X) one can construct other vector bundles through tensor
operations. To be more precise, let (E, π,X) be defined by the transition functions ραβ. Then
the dual bundle (E?, π,X) is defined by the transition functions ρ′−1

αβ where the superscript ′

denote the transpose of the matrix. Now any linear transformation T : F → F induces linear
transformations ⊗pT ′−1 ⊗q T on the vector spaces ⊗pF ? ⊗q F (tensor product of p copies of
F ? and q copies of F ). We denote by ⊗pE?⊗q E → X the vector bundle with the transition
function ⊗ρ′−1

αβ ⊗ ραβ. The restriction of the transition functions to any GL(F )-invariant

subspace of ⊗pF ? ⊗q F defines a sub-bundle of ⊗pE? ⊗q E → X. For example, the pth

exterior power ∧pF ? of F ? and qth symmetric power �qF are invariant under GL(F ), and
the corresponding vector bundles are denoted by ∧pE? →M and �qE →M respectively.

By a section of a vector bundle (E, π,X) we mean a mapping s : X → E such that
πs(x) = x. In terms of transition functions this means we have mappings sα : Uα → F for
Uα ∈ U such that ρβα(x)s

α(x) = sβ(x). Note that the triviality of a vector bundle of rank k
is equivalent to the existence of k sections s1, · · · , sk which are linearly independent at every
point x ∈ X. A frame for a vector bundle (E, π,X) is a choice of a basis for a fibre π−1(x)
where x ∈ X. By a local frame we mean a continuous (or smooth depending on the context)
choice of bases for fibres π−1(x) where x ranges over an open subset of X. The set of frames
for (E, π,X) is the set of all possible bases for all fibres π−1(x) as x ranges over X.

Example 0.1.1.2 The cotangent bundle T ?M of a manifold M is defined by the transition
functions ραβ(x) ∈ GL(m,R) given by

ρβα,ij(x) =
∂xαj

∂xβi
.

This is motivated by the fact that if the 1-form ω in U ⊆ Rm has the expression ω =∑
j ω

α
j dx

α
j relative to the coordinate system (xαj ), then its expression relative to (xβi ) is given
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by

ω =
∑
i

(
∑
j

∂xαj

∂xβi
ωαj )dxβi .

The dual to the cotangent bundle of M is its tangent bundle TM →M , which is defined by
the transition functions

rβα,ij =
∂xβi
∂xαj

,

i.e., the transition functions for TM → M are the transpose inverse of the transition func-
tions for the cotangent bundle. Since by the chain rule

∑
j

ξαj
∂

∂xαj
=

∑
i

(
∑
j

∂xβi
∂xαj

ξαj )
∂

∂xβi
,

we may regard the quantities ∂
∂xα

i
as duals to the differentials dxαi , i.e., dxαi (

∂
∂xα

j
) = δij.

Historically, the use of the differentials dxαi preceded that of the differentiation operators ∂
∂xα

i

in differential geometry1. Naturally 1-forms are sections of the cotangent bundle T ?M and
sections of the tangent bundle are called vector fields. The fibres of the tangent and cotangent
bundles x ∈ M are usually denoted as TxM and T ?xM . A manifold M whose (co)tangent
bundle is trivial is called parallelizable. As indicated above one also considers the tensors
powers ⊗pT ?M ⊗q TM . Sections of ⊗pT ?M (resp. ⊗pTM) are often called cotravariant
(resp. covariant) tensors in the mathematics literature while the opposite convention is
prevalent in physics. Sections of ⊗pT ?M ⊗q TM are called mixed tensors of type (p, q). ♠

Given a 1-form ω on N and a map f : M → N , the pull-back f ?(ω) is a 1-form on
M . For a local expression ω =

∑
ωi(y1, · · · , yn)dyi and the representation of the map

f as yi = yi(x1, · · · , xm), f ?(ω) is obtained by substituting the expressions for yi’s and
dyi =

∑ ∂yi

∂xj
dxj in ω. That this is well-defined is a simple exercise. The mapping f ? extends

to sections of the tensor powers ⊗pT ?N , and in particular if τ is an exterior p-form or

1Throughout this work we emphasize the use of forms rather than vector fields in accordance with the
historical development. While it is important to keep in mind both points of view, this author considers
contravariant vectors, rather than covariant ones, the essential technical tool in understanding geometric
structures. Equation (0.1.1.3) which has no reasonable analogue for vector fields, is evidence of the greater
technical and geometric significance of forms.
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a symmetric p-tensor on N , then f ?(τ) is a p-form or a symmetric p-tensor on M . An
important property of f ?(ω), for an exterior p-form ω, is

f ?(dω) = df?(ω); (0.1.1.3)

sometimes called functoriality of d. Note that the linear mapping f ? has the property that
f ?(ω)(x) depends only on the value of ω at f(x) and the derivatives of f at x. Therefore f ?

defines a linear map f ? : T ?f(x)N → T ?xM . Dually, there is a linear map f? : TxM → Tf(x)N
which, in local coordinates, is simply the derivative of the map f regarded as the linear map
Df(x) : Rm → Rn. It is again a simple matter to verify that f? is well-defined on a manifold.

Example 0.1.1.3 Let F : U → Rn, where U ⊆ Rm+n, be a smooth map, and set M =
ZF = {x ∈ U |F (x) = 0}. Assume that the derivative DF (x) : Rm+n → Rn has rank n for all
x ∈ M . For x ∈ M , consider a splitting Rm+n ' Rm × Rn with ker(DF )(x) = Rm. By the
implicit function theorem there is open set V ⊆ Rm, and a neighborhood W of x in Rm+n

such that M ∩W is parametrized by a smooth map φ : V → M ∩W . The inverse of φ
defines a coordinate system in a neighborhood of x ∈ M . Let y = (y1, · · · , ym) denote the
standard coordinates in Rm. The derivative of φ is

Dφ(y) = −D2F
−1 ·D1F (φ(y)), (0.1.1.4)

where D1 and D2 denote the partial derivatives relative to Rm and Rn in the above splitting
of Rm+n. The tangent space TxM to M at x = φ(y), with the zero vector translated to the
origin in Rm+n, is the image ofDφ(y) = kerDF (x). Let ψ : V → V be a diffeomorphism given
symbolically by y′ = (y′1, · · · , y′m) → (y1(y

′), · · · , ym(y′)). Let η = (η1, · · · , ηm) ∈ Rm, then
Dφ(y)(η) and D(φψ)(ψ−1(y))(Dψ−1(y)(η)) are the same tangent vector in TxM . Therefore
the components of a tangent vector with respect to the coordinates {yj} are obtained from
those relative to {y′j} via multiplication on the left by the matrix

r′ij =
∂y′i
∂yj

.

A comparison of r′ij and rij of example 1.1 shows that the two descriptions of the tangent
bundle have identical transition functions and are therefore the same. Let εi denote the
column vector with jth component δij. (Unless stated to the contrary, δij denotes the Kro-
necker delta which is 1 if i = j and zero otherwise.) Then the above analysis also shows that
Dφ(y)(εi) can be identified with the differentiation operator ∂

∂yi
. ♠

Example 0.1.1.4 The tangent bundle of RN is the trivial bundle of rank N on RN . Let
N = m + n and M ⊂ Rn+m be as in example 1.2. The TM is a sub-bundle of the trivial
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bundle M×Rm+n which is the restriction of the tangent bundle of Rm+n to M . The quotient
M×Rm+n/TM is called the normal bundle to M and is denoted byNM . Using the standard
inner product on Rm+n one may regardNM as the vector bundle consisting of vectors normal
to M . Let us compute a set of transition functions for NM . We have∑

p≥m+1

ξαp
∂

∂xαp
=

∑
p,q≥m+1

ξαp
∂xβq
∂xαp

∂

∂xβq
+

∑
p≥m+1
1≤i≤m

ξαp
∂xβi
∂xαp

∂

∂xβi

Therefore the n× n matrices %βα = (%βαpq ) where

%βαpq =
∂xβq
∂xαp

,

is a set of transition functions for the normal bundle NM . ♠

We now describe a general construction associated with vector bundles which plays a
fundamental role in understanding vector bundles over manifolds. To a continuous map
F : X → Y of topological spaces and a vector bundle π : E → Y we assign a vector bundle
F ?(E) → X, called the pull-back of E, as follows: Let the total space of the vector bundle
be

F ?(E) = {(e, x)|π(e) = F (x)}.

Now consider the diagram

F ?(E)
−→ E ×X p1−→ E

πF ↓ p2 ↓ ↓ π
X

id.−→ X
F−→ Y,

where pj denotes projection on the jth factor,  is the obvious inclusion, and πF is the
restriction of p2 to F ?(E). It is immediate that if E → Y is a real (complex) k-plane bundle,
then so is F ?(E) → X, and its transition functions are easy to describe. In fact, let {Yj}
be a covering Y such that on each Yj the vector bundle E → Y is trivial, and let ρjk’s be
the corresponding transition functions. Then F ?(E) → X is a trivial k-plane bundle on
Xj = F−1(Yj), and its transition functions are ρjk(F (.)) relative to the covering {Xj} of X.
Notice that the for an embedding F : M → N and a vector bundle E → N , F ?(E)→M is
simply the restriction of the bundle E to the submanifold F (M).

By restricting the class of transition functions ϕαβ, we specialize the class of manifolds
under consideration. We have already noted that the requirement of smoothness (i.e., C∞),
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as opposed to mere continuity, limits the class of manifolds. If furthermore we assume that
the charts are open subsets of Cm ' R2m and the transition functions are complex analytic
diffeomorphisms, then we obtain a more restricted class of manifolds, naturally called complex
manifolds. The study of complex manifolds is postponed to another volume, however it is
important to introduce those aspects of the theory which closely parallel the real case in this
chapter. There are many examples which require only rudimentary knowledge of complex
manifolds and complex vector bundles and are more appropriately treated in the present
context. Example 0.1.1.3 extends to the complex case in the obvious manner in view of the
complex version of the implicit function theorem. Of course here one assumes that all maps
are complex analytic. In this manner one obtains many examples of complex manifolds.

Let E
π→ M be a complex n-plane bundle over the complex manifold M . Let {Uj} be a

covering of M and assume that

1. π−1(Uj) ' Uj × Cn holomorphically;

2. The restriction of π to π−1(Uj) is projection on the first factor.

Then we say we have a holomorphic vector bundle. The description of holomorphic vector
bundles in terms of transition functions ρjk is that ρjk’s, in addition to the usual requirements,
are holomorphic functions on Uj ∩ Uk with values in the complex group GL(n,C).

Obviously a complex manifold M of complex dimension m is also a real analytic manifold
of dimension 2m which we denote by MR. There is an additional structure here which we now
describe. Let TMR be the tangent bundle of the real manifold MR. There is a distinguished
tensor field J of type (1,1) on M as follows: In view of the isomorphism Hom(V, V ) ' V ?⊗V
this amounts to having an endomorphism of TzMR for every z ∈ MR. Let (Uα, ϕα) be a
coordinate chart, then we identify each TzMR with R2m ' Cm which is the ambient space
to Imϕα, and let Jz : TzMR → TzMR be the operator of multiplication by i =

√
−1. Since

the transition functions ϕαβ for M are complex analytic, the induced maps on the tangent
spaces are complex linear and therefore commute with the operator of multiplication by i.
Consequently Jz is a well-defined operator on the tangent spaces. Clearly it has the property
J2 = −I. A real manifold N of dimension n = 2k admitting of a type (1,1) tensor field J with
the property J2 = −I is called an almost complex manifold. An almost complex manifold
N may not have the structure of a complex manifold except when k = 1 (see subsection on
Isothermal Coordinates in chapter xxx). The issue of when an almost complex manifold is
in fact a complex manifold will be discussed in another volume.

0.1.2 Orientation and Volume Element

Two bases for a real vector space V define the same orientation if they differ by a linear
transformation of positive determinant. Therefore the set of bases for a real vector space is
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partitioned into two classes corresponding to the determinant of change of bases relative to a
fixed one, being positive or negative. One arbitrarily calls the choice of one class the positive
orientation for V , and the bases in that class are positively oriented. Naturally the bases in
other class are called negatively oriented. A vector bundle E

π→M is orientable if there is a
covering U = {Uα} and sections ξαj of π−1(Uα)→ Uα such that (i) (ξα1 (x), · · · , ξαk (x)) is a basis

for Ex for every x ∈ Uα, and (ii) if x ∈ Uα∩Uβ, then (ξα1 (x), · · · , ξαk (x)) and (ξβ1 (x), · · · , ξβk (x))
differ by a linear transformation of positive determinant. Therefore if E →M is orientable,
then we have an equivalence relation ∼ on the set of local frames for E → M . In fact, if
(x; ξ1(x), · · · , ξk(x)) and (y; η1(y), · · · , ηk(y)) are local frames on open subsets U, V ⊂M and
U ∩ V 6= ∅, then we say (x; ξ1(x), · · · , ξk(x)) ∼ (y; η1(y), · · · , ηk(y)), if for all x = y ∈ U ∩ V
the bases ξ1(x), · · · , ξk(x) and η1(y), · · · , ηk(y) differ by a linear transformation of positive
determinant. If U ∩ V = ∅ we define (x; ξ1(x), · · · , ξk(x)) ∼ (y; η1(y), · · · , ηk(y)) if there is a
sequence of open sets U = U◦, U1, · · · , Ul+1 = V and local frames (x; ξj1(x), · · · , ξ

j
k(x)) on Uj

such that for j = 0, · · · , l

1. Uj ∩ Uj+1 6= ∅;

2. (x; ξj1(x), · · · , ξ
j
k(x)) ∼ (x; ξj+1

1 (x), · · · , ξj+1
k (x)).

This breaks up the set of local frames for E → M into two classes, and the choice of either
one of these two is an orientation for E →M .

There is an alternative way of defining orientability and orientation. Let E → M be a
real vector bundle of rank k, and ∧kE? πk→ M the vector bundle of rank 1 (i.e., line bundle)
constructed via the obvious tensor operation explained earlier. This means that if the ραβ
are the transition functions for E → M , then the transition functions for ∧kE? → M are
det(ρ−1

αβ). If ∧kE? πk→ M admits of a global nowhere vanishing section ω, then ω determines
an orientation for every fibre Ex, x ∈ M , by the rule: A basis (ξ1(x), · · · , ξk(x)) for Ex is
positively or negatively oriented as ω(ξ1(x), · · · , ξk(x)) is positive or negative. Conversely,
assume E → M is oriented, and let U = {Uα} be a covering as in the preceding paragraph.
Fix local sections (ξα1 (x), · · · , ξαk (x)) forming positively oriented bases at every x ∈ Uα. Let
ωα be a section of π−1

k (Uα) → M with the property ωα((ξ
α
1 (x), · · · , ξαk (x)) > 0 for x ∈ Uα.

Then ω =
∑
φαωα is a nowhere vanishing section of ∧kE? πk→ M defining the orientation of

E →M .

A manifold M is orientable if its tangent bundle is orientable. By the analysis of the
preceding paragraph, this is equivalent to the existence of a nowhere vanishing m-form ω on
M which we call a volume element. We now describe how a volume element enables one to
integrate functions on a manifold. The critical point is that the change of variable formula
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for an integral in several dimensions is∫
U

f(x1, · · · , xm)dx1 · · · dxm =

∫
V

f(x1(y), · · · , xm(y)) |∂(x)

∂(y)
| dy1 · · · dym,

where xi = xi(y1, · · · , ym) is the coordinate expression of a diffeomorphism ϕ : V → U , and
∂(x)
∂(y)

= det(Dϕ) is its Jacobian. Now the transformation formula for an m-form under the
diffeomorphism ϕ is

f(x1, · · · , xm)dx1 ∧ · · · ∧ dxm ←→ f(x1(y), · · · , xm(y))
∂(x)

∂(y)
dy1 ∧ · · · ∧ dym.

Therefore for a positively oriented diffeomorphism, the change of variable formula is built
into an m-form, and it is thus the integral of an m-form which is naturally defined on Rm, i.e.,
is invariant under positively oriented diffeomorphisms. Invariance under a diffeomorphism is
the property which makes a scalar quantity unambiguously defined on a manifold. Therefore
we can say that given an orientable manifold and a volume element, then the notion of
integration of a function is well-defined. Given a function f on M , let U = {Uα} be a
covering of M by coordinate charts, and {φα} a partition of unity subordinate to U . Then∫
Uα
φαfω is the integral of an m-form on an open subset of Rm which is defined and is

invariant under positively oriented diffeomorphisms. Therefore we can define∫
M

f =
∑
α

∫
Uα

φαfω.

To summarize, the notion of the integral of a function on a manifold M is well-defined once
we fix a nowhere vanishing m-form on M . One may loosely rephrase the above analysis
by saying that an m-form on an orientable manifold M with a fixed orientation can be
integrated.
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0.2 Homogeneous Spaces and Invariant Elements

0.2.1 Lie Groups

Groups appear in the study of geometry in various ways. We review some aspects of group
theory which are relevant to later chapters. A Lie group is a real analytic manifold G together
with a group operation G × G → G, such that the mapping (g′, g) → g′g−1 is analytic. By
a homomorphism of Lie groups we mean an analytic homomorphism2. The identity of the
group will be generally denoted by e. A connected Lie group is called an analytic group.
For a Lie group G, let G◦ denote the connected component of G containing the identity.
Let g, h ∈ G◦ and γ and δ be curves joining e to g and h. The curves t → (γ(t))−1 and
t→ γ(t)δ(t) join e to g−1 and gh. Therefore G◦ is a group; g−1eg = e and the continuity of
the group operations imply that G◦ is a normal subgroup of G. It is useful to note that a
discrete normal subgroup H of an analytic group G necessarily lies in the center Z(G) of G.
In particular, if the kernel of a homomorphism ρ : G → G′ is discrete and G is connected,
then kerρ ⊂ Z(G). A Lie group whose underlying manifold is a complex manifold and the
mapping (g′, g)→ g′g−1 is complex analytic is called a complex (Lie) group. However, unless
stated to the contrary, it is the real analytic structure that we work with and not the complex
analytic one even if it exists. General notions of compactness, closedness etc. are applicable
to groups in the obvious manner. The tangent and cotangent bundles of a Lie group are
parallelizable since any basis for TeG or T ?e G gives bases for all tangent and cotangent spaces
by applications of left or right translation mappings Lh(g) = hg or Rh(g) = gh−1. Therefore
a tangent vector at e ∈ G gives rise by left translation to a vector field on G which is
naturally called a left invariant vector field. The tangent space (to a Lie group G) at the
identity or equivalently the set of left invariant will be denoted by the corresponding script
letter such as G. Similarly, one defines the notions of right invariant vector field and left and
right invariant forms. In all applications of interest to us, the groups that appear are either
finite or matrix groups, although sometimes they may not be directly be given as such. It
is essential to look at specific matrix groups and understand the relevant concepts in their
context.

Example 0.2.1.1 Let K be the field of real or complex numbers. In this example we clarify
the Lie group structure of GL(m,K) and SL(m,K). Now GL(m,K) is defined by the single
inequality det g 6= 0 and is an open subset of the space Mn(K) of all n × n matrices with
entries from K. Therefore the tangent space to GL(m,K) at e = I ∈ GL(m,K) is denoted

2It is no gain of generality to relax the analyticity condition since by the positive solution to Hilbert’s
fifth problem, any group whose underlying space is a manifold is necessarily analytic. Every continuous
homomorphism of Lie groups is necessarily analytic (see e.g., [Ho] for a proof.)
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by GL(m,K) = Mm(K) ' Km2
. On the other hand, SL(m,K) is defined by a single

polynomial equation det g = 1. First we have to verify that the equation det g = 1 defines a
Lie group. Let g(i) denote the ith column of the matrix g, and so e(i) denotes the ith column
of the identity matrix. Then using the fact that determinant is an n-linear function of the
columns we obtain

D(det)(e)(ξ(1), · · · , ξ(m)) = det((ξ(1), e(2), · · · , e(m))) + · · ·+ det((e(1), · · · , e(m−1), ξ(m))).

It follows that for ξ ∈Mn(K) we have

D(det)(e)(ξ) = Tr(ξ).

Therefore the hypothesis of the implicit function theorem are fulfilled and SL(m,K) has the
structure of an analytic manifold near e. Since det(hg) = det(h) det(g), the same argument
is applicable to show that for every fixed h ∈ GL(m,K), the set of matrices g ∈ GL(m,K)
with det(hg) = det(h) is an analytic submanifold near h. In particular, SL(m,K) is an
analytic manifold and the tangent space at e ∈ SL(m,K) can be naturally identified with

SL(m,K) ' {ξ ∈Mn(K)|Tr(ξ) = 0}. (0.2.1.1)

Of course, SL(m,C) and GL(m,C) are complex Lie groups. ♠

Example 0.2.1.2 The orthogonal group O(m) is the closed subgroup of GL(m,R) consist-
ing of matrices A = (Aij) such that A′A = I where the superscript ′ denotes transpose.
Since the defining equations for the orthogonal group, in long hand notation, are

m∑
i=1

A2
ij = 1,

m∑
i=1

AijAik = 0 for all j 6= k,

O(m) is compact. These conditions clearly establish a one to one correspondence between the
orthonormal bases for Rm (relative to the standard inner product) and O(m), with any fixed
orthonormal basis (e.g. the standard one) corresponding to the identity matrix. To prove
that O(m) is a Lie group we proceed as in the case of SL(m,K) by invoking the implicit
function theorem. In fact, we differentiate the defining equations for O(m) to obtain the
linear map

αA : ξ −→ ξ′A+ A′ξ, for ξ ∈Mn(R).

Thus to prove O(m) is a manifold it suffices to show that this map has rank m(m+1)
2

for
every fixed A ∈ O(m). Since for every fixed nonsingular matrix A, the set {ξ′A+ A′ξ} as ξ
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ranges over all n× n matrices, is precisely set of symmetric matrices, the rank requirement
of the implicit function theorem is fulfilled and O(m) is an analytic manifold. In particular,
the tangent space at e = I ∈ O(m) is the linear space of the skew symmetric matrices.
It is sometimes necessary to consider more general orthogonal groups. Given a symmetric
nondegenerate bilinear form Q on a real vector space of dimension m, one considers the
group O(Q) of invertible matrices g such that

Q(g.x, g.y) = Q(x, y)

for all x, y ∈ Rm. Recall that a real symmetric nondegenerate bilinear form Q on Rm is
determined up to change of basis by its signature (p, q) (i.e., Q has p negative and q positive
eigenvalues). We denote by O(p, q), p ≤ q, the orthogonal group corresponding to the
diagonal matrix Q = (Qij) with Qii = −1 for i ≤ p and Qjj = 1 for p+ 1 ≤ j ≤ p+ q = m.
The dimension of O(p, q) is 1

2
m(m− 1), p+ q = m, independently of the signature. If Q and

Q′ have the same signature, then the orthogonal groups O(Q) and O(Q′) are conjugate in
GL(m,R). Note that SO(p, q) is compact if and only if p = 0 or q = 0. ♠

Example 0.2.1.3 Similarly, the unitary group U(m) is the subset of GL(m,C) consisting of
matrices U = (Uij) such that Ū ′U = I where¯denotes complex conjugate. By an argument
similar to that for O(m), U(m) is a compact real analytic manifold and therefore a compact
Lie group. Notice that because of the complex conjugation in the defining equations for
U(m), the unitary group is a real group and does not have the structure of a complex
manifold. Just as in the case of O(m), one shows that the tangent space to U(m) at e = I is
the the linear space of skew hermitian matrices. Clearly U(m) can be identified with the set
of orthonormal bases for Cm relative to a fixed hermitian inner product. Just as in the case
of the orthogonal group one defines the unitary group U(p, q), p+ q = m, as the subgroup of
GL(m,C) consisting of matrices U such that Ū ′QU = Q where Q is a diagonal matrix with
p eigenvalues 1 and q eigenvalues −1. U(p, q) is compact if and only if p = 0 or q = 0. ♠

The special orthogonal groups SO(m), SO(p, q) and special unitary groups SU(m), SU(p, q)
are the subgroups of the orthogonal and unitary groups O(m), O(p, q), U(m) and U(p, q)
consisting of matrices of determinant 1. Since an orthogonal matrix has determinant ±1,
SO(m) is a subgroup of index two in O(m). Note that SO(m) and SU(m) are normal sub-
groups of O(m) and U(m) respectively. For a subgroup G ⊂ GL(n,K), the notation SG
often signifies the subgroup of G consisting of elements of determinant 1. For example, for
p+ q = n, S(U(p)× U(q)) means U(p)× U(q) is embedded in U(n) as(

U(p) 0
0 U(q)

)
⊂ GL(n,C),

and S(U(p)× U(q)) is its subgroup of elements of determinant 1.
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Example 0.2.1.4 From linear algebra we know that every unitary matrix U can be diago-
nalized by a unitary transformation A, i.e., AUA−1 = D with D a diagonal matrix. Denote
the diagonal entries of D by eiθj , j = 1, · · · ,m, U can be connected to e by unitary diago-
nal matrices Dε with diagonal entries eiεθj where 0 ≤ ε ≤ 1. Then the path ε → A−1DεA
connectes the identity to the matrix U , and consequently U(m) is connected. If U ∈ SU(m)
then

∑
θj = 0 and Dε ∈ SU(m) proving connectedness of SU(m). Connectedness of SO(m)

is proven by a similar argument. In fact, from linear algebra we know that every orthogonal
matrix of determinant 1 in dimension m = 2k is conjugate in SO(m) to one of the block
diagonal form with 2× 2 block diagonals(

cos θj − sin θj
sin θj cos θj

)
, j = 1, · · · , k.

For m = 2k + 1, an orthogonal matrix of determinant 1 can be put in the form

(
1 0
0 A

)
where A ∈ SO(2k). Since every such matrix can be connected to the identity, SO(m) is
connected. ♠

Exercise 0.2.1.1 Using the Jordan decomposition or otherwise, show that SL(m,C) and
GL(m,C) are connected.

Example 0.2.1.5 A consequence of connectedness of GL(m,C) (exercise 0.2.1.2) is that
every complex vector bundle is orientable. The key point is to show that every complex
vector space V = Cn regarded as R2n has a natural orientation. Let {h1, · · · , hn} be the
standard basis for Cn, and set ej = hj, en+j = ihj for j ≤ n. Then {e1, · · · , e2n} is a
basis for R2n. Any other basis {h′1, · · · , h′n} for Cn differs from {h1, · · · , hn} by an element
(Ajk+iBjk) ∈ GL(n,C), with Ajk and Bjk real matrices. Then the basis {e′1, · · · , e′2n} differs
from {e1, · · · , e2n} by the 2n× 2n real matrix g = (gjk) where

gjk = Ajk = gn+j n+k, gn+j k = Bjk = −gj n+k.

Since A+ iB → g is a continuous homomorphism of GL(n,C) into GL(2n,R), and GL(n,C)
is connected, det(g) > 0. Therefore all basis for R2n obtained in this fashion from bases for
Cn define the same orientation. This implies that all complex vector bundles are orientable.
♠

Example 0.2.1.6 With a little linear algebra one can gain some insight into the structure
of the groups GL(m,K) and SL(m,K) as analytic manifolds. It is clear that GL(m,R)
has at least two connected components GL±(m,R) corresponding to det(g) being positive or
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negative. Let K = R and Pm be the space of positive definite symmetric matrices. GL(m,R)
acts on Pm by

P −→ g′Pg, for g ∈ GL(m,R), P ∈ Pm.

From linear algebra (using the Gram-Schmidt process) we know that for every P ∈ Pm
there is a unique upper triangular matrix T = T (P ) with positive eigenvalues such that
T ′PT = I. It follows that the action of GL(m,R) on Pm is transitive. For g ∈ GL+(m,R),
let P = g′g and T = T (P ) to obtain (gT )′(gT ) = I so that gT ∈ SO(m). Therefore
every g ∈ GL+(m,R) has a unique decomposition in the form g = kT where k ∈ SO(m)
and T is an upper triangular with positive eigenvalues. If det(g) = 1 then det(g′g) = 1
and necessarily det(T ) = 1 which shows that the decomposition is valid for SL(m,R) as
well. The operations g → T → k are rational and therefore the decomposition g = kT
is a real analytic diffeomorphism. It is customary to further decompose T = au with a a
diagonal matrix with positive eigenvalues and u an upper triangular matrix with 1’s along
the diagonal. Let A (resp. U) denote the group of diagonal matrices with positive eigenvalues
(resp. upper triangular matrices with 1’s along the diagonal), and A1 ⊂ A the subgroup of
matrices of determinant 1. The above analysis gives analytic diffeomorphisms

GL+(m,R) ' SO(m)AU, SL(m,R) ' SO(m)A1U. (0.2.1.2)

Notice that these decompositions are only analytic manifold decompositions and not as
product groups, i.e., (kau)(k′a′u′) 6= (kk′)(aa′)(uu′). The decomposition (0.2.1.2) is a special
case of the Iwasawa decomposition. An immediate consequence of the Iwasawa decomposition
is that the groups SL(m,R) and GL+(m,R) are connected. ♠

Exercise 0.2.1.2 Using the space of positive definite hermitian (rather than symmetric)
matrices and repeating the argument of the preceding example, prove the following decompo-
sitions:

GL(m,C) ' U(m)AUC, SL(m,C) ' SU(m)A1UC,

where UC is the group of upper triangular complex matrices with 1’s along the diagonal. De-
duce that GL(m,C) and SL(m,C) are connected. (The above decompositions are examples
of the Iwasawa decompositions for GL(m,C) and SL(m,C).)

Let J be a nondegenerate skew symmetric bilinear form on Km, where K is any field of
characteristic zero. From elementary linear algebra we know that m = 2n and by a suitable
choice of basis for Km the matrix of J takes the form

J ←→
(

0 −I
I 0

)
, (0.2.1.3)
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where I is the identity n × n matrix. A subspace V ⊂ Km such that for all v, w ∈ V we
have J(v, w) = 0 is called isotropic. An isotropic subspace necessary has dimension ≤ n. It
is a standard theorem in elementary linear algebra that any basis for an isotropic subspace
V can be extended to a basis for Rm so that the matrix representation (0.2.1.3) is valid.
A maximal isotropic subspace is called a Lagrangian subspace. Every Lagrangian subspace
has dimension n and every isotropic subspace of dimension n is Lagrangian. Non-degenerate
skew-symmetric forms arise naturally in different contexts. For example, let R2n ' Cn with
the standard (or in fact any) hermitian inner product < ., . >. Then the imaginary part of
the hermitian inner product is

= < z,w >=
n∑
j=1

(yjuj − xjvj),

where z = (z1, · · · , zn), w = (w1, · · · , wn), zj = xj + iyj and wj = uj + ivj, which is visibly
a nondegenerate skew-symmetric form.

Example 0.2.1.7 The set of m × m matrices g such that g′Jg = J is a Lie group of
dimension 2n2 + n assuming that K = R or C. This group is denoted by Sp(n,K) and is
called the symplectic group modified by real or complex should it be necessary to specify the
field K. The group U(m) ∩ Sp(n,C) will be denoted by USp(n) and is called the compact

symplectic group. Writing g =

(
A B
C D

)
as n×n blocks, the condition g ∈ Sp(n,K) becomes

A′C − C ′A = 0, B′D −D′B = 0, A′D − C ′B = I. (0.2.1.4)

Thus for n = 1 we obtain the isomorphism Sp(1, K) = SL(2, K). Let V,W ⊂ Km be
Lagrangian subspaces. It is a standard fact from linear algebra that a basis for a Lagrangian
subspace can be extended to a basis for Km such that representation (0.2.1.3) remains valid.
It follows that there is g ∈ Sp(n,K) such that g(V ) = W , i.e., the symplectic group acts
transitively on the set of Lagrangian subspaces. Clearly the image of a Lagrangian subspace
under a symplectic transformation is Lagrangian.

Now assume K = R, e1, · · · , em be the standard basis and we assume that J has the
standard form (0.2.1.3) relative to this basis. Let V◦ denote the span of e1, · · · , en which is
a Lagrangian subspace, and V be an arbitrary Lagrangian subspace. Let < ., . > denote the
standard inner product on Rm so that < ej, ek >= δjk. For a non-singular n × n matrix g,
the linear transformation (

A′ 0
0 A−1

)
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is a symplectic transformation. By taking orthonormal bases for V◦ and V we deduce that
there is a transformation g ∈ Sp(n,R) ∩ O(m) mapping V◦ to V . Note also that g ∈
Sp(n,R) ∩O(m) if and only if the equations (0.2.1.4) and

A′A+ C ′C = I, B′B +D′D = I, A′B + C ′B = 0, (0.2.1.5)

are satisfied. It follows from (0.2.1.4) and (0.2.1.5) that g ∈ Sp(n,R) ∩ O(m) if and only if
A+ iC and B + iD are n× n unitary matrices and furthermore

(A′ + iC ′)(B − iD) = A′B + C ′D + i(C ′B − A′D) = iI.

This equation implies that D′ + iB′ is the inverse to the unitary matrix A + iC and conse-
quently

A = D, and B = −C. (0.2.1.6)

Thus we have shown that Sp(n,R) ∩ O(m) is isomorphic to the unitary group and the
isomorphism is given by g → A+ iC which is easily checked to be a homomorphism. ♠

Exercise 0.2.1.3 Construct the analogue of the Iwasawa decomposition Sp(n,R) ' KAU ,
where K ' U(n) and identify explicity the subgroups A and U . Deduce that Sp(n,R) is
connected and in particular det(g) = 1 for all g ∈ Sp(n,R).

Example 0.2.1.8 In this and the following example we discuss an application of the Iwa-
sawa decomposition to the space of lattices in Rm. This application will be useful in chapter
5 in connection with the topological uniformization theorem and the construction of certain
three dimensional manifolds. Fix a lattice L◦ ⊂ Rm and let f1, · · · , fm be a basis for L◦.
Let L ⊂ Rm be another lattice with basis f ′1, · · · , f ′m. Expressing each f ′j as a linear combi-
nation of fj’s and writing the coefficients as the jth column of a matrix, we obtain a matrix
gL ∈ GL(m,R). A change of basis for the lattice L has the effect of multiplying the matrix
gL on the right by matrix h ∈ GL(m,Z), where we recall that GL(m,Z) is the the group
of m × m matrices with integer entries and determinant ±1. Therefore the set of lattices
in Rm is identified with GL(m,R)/GL(m,Z) and is accordingly topologized. Let U be the
subgroup of upper (or lower) triangular matrices with 1’s along the diagonal, Let UZ ⊂ U
be the subgroup consisting of matrices with integer entries. Looking at the expression for
the product uh with u ∈ U and h ∈ UZ we see easily that there is a compact subset C ⊂ U
such that every u ∈ U has an expression of the form

u = uCh, with uC ∈ C, and h ∈ UZ. (0.2.1.7)

Therefore every lattice L has a representation of the form gL = kLaLuL, following the Iwasawa
decomposition, with uL in a fixed compact subset C ⊂ U . Since permutation matrices are
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in GL(m,Z), we can also assume that the diagonal entries a11, a22, · · · , amm of aL are in
decreasing order:

a11 ≥ a22 ≥ · · · ≥ amm > 0. (0.2.1.8)

Summarizing, every lattice L ⊂ Rm can be represented as gL = kLaLuL, following the
Iwasawa decomposition, with uL ∈ C and the diagonal entries of aL satifying the inequalities
(0.2.1.8). ♠

Example 0.2.1.9 Assume we have fixed a lattice L◦ ⊂ Rm. Let X be a set of lattices in
Rm, so that X ⊂ GL(m,R)/GL(m,Z). We want to obtain conditions for compactness of
the set X . From the discussion in example 0.2.1.8, we see that X is relatively compact in
GL(m,R)/GL(m,Z) if and only if there are constants R > r > 0 such that for all L ∈ X

R ≥ a11 ≥ a22 ≥ · · · ≥ amm ≥ r. (0.2.1.9)

This condition may be expressed in a more geometric language. To do so, we define the
volume of a lattice as

vol(L) = | det(gL)|.

It is straightforward to see that compactness criterion (0.2.1.9) may be re-stated as:

• (Mahler’s Compactness Criterion) X is relatively compact in GL(m,R)/GL(m,Z) if
and only if the following two conditions are satisfied:

1. There is a neighborhood U of 0 in Rm such that L ∩ U = 0 for all L ∈ X ;

2. vol is a bounded function on X .

In chapter 5 we will make use of this criterion for m = 3 and m = 6. In the former case, R3

is identified with the Lie algebra SL(2,R) and X is the orbit of a certain lattice L◦ under
the adjoint action of SL(2,R). Similarly in the six dimensional case, we will consider the
lattices obtained from a fixed lattice in SL(2,C) via the adjoint action of SL(2,C). ♠

We can now introduce the important notion of a principal bundle. A principal bundle is
a quadruple (G,P, π,X) (or simply P → X) where π : P → X, G is a Lie group acting on
the right on P and such that

1. There is a covering U = {Uα} of X such that π−1(Uα) ' Uα × G with the restriction
of π to π−1(Uα) being projection on the first factor;

2. G acts (simply transitively) on the fibres of π, i.e., on the sets π−1(x) for all x ∈ X
according to the rule (x, h)

g→ (x, hg−1).
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Just as in the case of vector bundles, a principal bundle is trivial if it is the product of
the base and the fibre (' G) with the obvious projection map. Note that a principal
bundle is trivial if and only if it admits of a section. In fact, if P

π→ X admits of a
section s : X → P , then we have the trivialization P ' X × G given by p → (π(p), g(p))
where g(p) is the unique element of G such that s(π(p)).g(p) = p. From a vector bundle
one can construct certain principal bundles. For example, given a vector bundle of rank
k, E

π→ M , we let PE be the set of all bases (or frames) for all the fibres of π. This
means PE = {(x; ξ1, · · · , ξk)|x ∈ M, (ξ1, · · · , ξk) a basis for π−1(x)}. Since bases for Rk are
parametrized by GL(k,R), we have the structure of a principal bundle with G = GL(k,R).

Let P be a manifold and G a compact Lie group acting on P freely on the right, i.e., for
all x ∈ P and e 6= g ∈ G, x.g 6= x. Assume M = P/G is a manifold, then it is trivial to
show that P → M is a principal fibre bundle. It is clear that all principal fibre bundles on
manifolds are of this form (regardless of the compactness of the group G).

Given a principal bundle (G,P, π,X), one can construct associated vector bundles as
follows: By a real or complex representation of a group G we mean a continuous (and
therefore real analytic for Lie groups) homomorphism ρ : G→ GL(n,K), whereK = R, or C.

Let F = Kn, and consider the action of G on P × F by (p, v)
g→ (p · g−1, ρ(g)v). Let Eρ be

the orbit space of the action of G on P ×F , i.e., the quotient of P ×F under the equivalence
relation (p, v) ∼ (p ·g−1, ρ(g)v). Therefore we have a map P ×F → Eρ. Then the projection
on the first factor P × F → P followed by P → M factors through Eρ, and defines the
structure of a vector bundle on Eρ →M which is diagramatically represented as follows:

P × F −→ Eρ
↓ ↓
P

π−→ X
As an example note that if E → M is a rank k vector bundle, PE → M the associated

bundle of frames, and ρ the natural representation of GL(k,R), then Eρ →M is the original
vector bundle E → M . Similarly, to various tensor powers of the representation ρ are
associated tensor products of the bundle E →M as described earlier.

Example 0.2.1.10 Since a subgroup G ⊂ GL(m,K) is given a a group of m × m ma-
trices, we may call the inclusion map of G in GL(m,K) as its natural representation.
Given any representation ρ : G → GL(m,K) of a group G, one can construct many
other representations from it. In fact, every A ∈ GL(m,K) induces linear transforma-
tions A⊗ · · · ⊗A⊗A′−1⊗ · · · ⊗A′−1 acting on V ⊗ · · · ⊗ V ⊗ V ?⊗ · · · ⊗ V ? where V = Km.
Therefore ρ gives rise to representations on tensor product of V and V ? any number of times.
Representations of groups are discussed later in this chapter. ♠
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Remark 0.2.1.1 It becomes necessary to consider bundles whose fibres spaces other than
a group or a vector space. For example, we will consider sphere bundles or ball bundles in
which case the transition functions ραβ take values in some group of transformations of the
sphere or the ball. Unless stated to the contrary, the sphere or ball bundles we consider are
subspaces of a vector bundle and transitions functions ραβ of the vector bundle are such that
they leave the sphere or the ball invariant. This will become more clear when we consider
metrics on vector bundles. Given a principal bundle (G,P, π,X) and homomorphism ρ of G
into the group of diffeomorphisms of a manifold F , we can construct, just as in the case of
the vector bundle Eρ → X, a bundle on X with fibre F . ♥

0.2.2 Homogeneous Spaces

Let G be a Lie group acting on the manifold M on the right. It is interesting to know under
what conditions the orbit space N = M/G is a manifold with the projection p : M → N a
submersion, i.e., Dp(x) is surjective for all x ∈ M . The answer to this question is based on
the following observation: IfM/G is a manifold with the above proviso, then p×p : M×M →
N ×N is also a submersion. Let ∆ = {(q, q)|q ∈ N}. Then R = (p× p)−1(∆) ⊂ M ×M is
a closed submanifold. We have

Proposition 0.2.2.1 With the above notation, N has the structure of a manifold with M →
N a submersion if and only if R is a closed submanifold. If M and R are analytic, then so
is N .

Proof - We have already established the necessity. Closure of R implies that R ∩ {x} ×M
is closed for all x ∈ M , i.e., every orbit of G in M is closed. Consequently N is a normal
topological space. To complete the proof we have to show that for every x ∈ M there is a
neighborhood V of x and a submanifold T such that for every y ∈ V , T ∩ y.G is a single
point t(y) ∈ T . Then the coordinate charts in T ’s describe the manifold structure of M/G.
Since R is a submanifold for every (x, y) ∈ R there is a neighborhood U ×U ⊂M ×M and
a smooth function H : U × U → Rk such that R ∩ U × U = {(w, z) ∈ U × U |H(w, z) = 0},
and DH has rank k everywhere. Let F be the restriction of H to {x}×M . Since the kernel
of DH(x, x) : Rm × Rm → Rk contains the diagonal {(ξ, ξ)|ξ ∈ Rm}, DF (y) has rank k for
all y sufficiently close to x. Then T = {y ∈M |F (y) = 0} is the required submanifold by the
implicit function theorem. The analyticity assertion is a consequence of the analytic implicit
function theorem. clubsuit

By a homogeneous space we mean a manifold of the form G/H where G is a Lie group
and H is a closed subgroup. An immediate consequence of proposition 0.2.2.1 is
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Corollary 0.2.2.1 Let G be a Lie group and H a closed subgroup, then G/H is an analytic
manifold.

We now use corollary 0.2.2.1 to give some important examples of manifolds.

Example 0.2.2.1 Let Gk,n(R) be the set of k-dimensional subspaces of Rk+n. Let us show
that Gk,n(R) is an analytic manifold. Clearly the orthogonal group O(k+n) acts transitively
on Gk,n(R), and the isotropy subgroup of the subspace where the first k coordinates are
arbitrary and the remaining are zero, is O(k)×O(n). Therefore Gk,n(R) ' O(k+n)/O(k)×
O(n) which is a compact analytic manifold. Note that we can also write Gk,n(R) ' SO(k+
n)/S(O(k) × O(n)) which shows that Gk,n(R) is connected. Similarly, one can consider
the set G◦

k,n(R) of oriented k-dimensional subspaces of Rk+n, i.e., every point of G◦
k,n(R) is

a k-dimensional subspace together with an orientation of the subspace. Then SO(k + n)
acts transitively on G◦

k,n(R) and G◦
k,n(R) ' SO(k + n)/SO(k)× SO(n) which is a compact

analytic manifold. Gk,n(R) (resp. G◦
k,n(R)) is called the real Grassmann manifold of (resp.

oriented) k-planes in Rk+n. G1,n(R) is called the real projective space of dimension n and is
also denoted by RP (n). Note that G◦

1,n(R) ' Sn and RP (n) = G1,n(R) is the quotient of
Sn where the points x ∈ Sn and −x (anti-podal points) are identified. ♠

Example 0.2.2.2 Let s : 0 < s1 < · · · < sr < n be a sequence of positive integers. By a
flag in the complex vector space V ' Cn we mean a sequence f : 0 =⊂ V1 ⊂ · · · ⊂ Vr ⊂ V
of subspaces with dim(Vj) = sj. If r = n− 1 then necessarily dimVj = sj = j and we call a
sequence f : 0 =⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ V a complete flag. The set of flags for a given fixed
sequence s is homogeneous space Fs for the unitary group U(n). In fact, let {e1, · · · , en} be
the standard basis for V = Cn with the standard Hermitian inner product <,>, and Ej be
the span of {e1, · · · , esj

}. Then it is easy to see that

Fs = U(n)/Ut1 × · · · × Utr+1 ,

where Utj is the unitary group in the orthogonal complement of Esj−1
in Esj

, tr = sr − sr−1

with s◦ = 0 and sr+1 = n. Thus Fs is a compact analytic manifold. The manifold of complete
flags will be denoted by Fn. In this case all tj’s are 1 and each Uj ' U(1) = {eiθ}. Complex
Grassmann manifold Gk,n of k dimensional linear subspaces of Cn+k is the flag manifold Fs

with r = 1 and s1 = k (and n replaced by n+ k). ♠

Exercise 0.2.2.1 Combine the ideas of examples 0.2.2.1 0.2.2.2 to define real flag manifolds
and realize them as homogeneous spaces of compact groups. Distinguish between the cases
where an orientation requirement is or is not imposed.
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Exercise 0.2.2.2 Let LGn denote the set of Lagrangian subspaces of R2n with the symplec-
tic structure J . Show that LGn ' U(n)/O(n). (See example 0.2.1.7. LGn is called the
Lagrangian Grassmanian.)

Example 0.2.2.3 In example 0.2.2.2 we showed that the complex flag manifolds are homo-
geneous spaces of the unitary group and are therefore compact real analytic manifolds. We
now show that they are actually complex manifolds as well. Let G = GL(n; C) and B ⊂ G
be the closed subgroup of upper triangular matrices. Then G and B are complex groups
and corollary 0.2.2.1 is applicable to show that the manifold of complete flags Fn = G/B is
a complex manifold. Similar considerations apply to the flag manifolds Fs. ♠

Example 0.2.2.4 The complex projective space CP (n) is probably the most common ex-
ample of a compact complex manifold. It is defined as the set of lines through the origin
(i.e., one dimensional linear subspaces) of Cn+1 and is therefore the complex manifold G1,n.
It is useful to give it the following equivalent description: Let C× be the multiplicative group
of non-zero complex numbers. Then C× acts on Cn+1 \ {0} by multiplication, [z◦, · · · , zn]→
[λz◦, · · · , λzn], for λ ∈ C×. Proposition 0.2.2.1 is applicable (the same proof works for the
complex analytic case provided all data are complex analytic), and the quotient space is
CP (n). The complex manifold structure of CP (n) is easy to describe. A point of CP (n) is
specified by its homogeneous coordinates [z◦, · · · , zn] (not all zi’s zero) which is defined up
to multiplication by a non-zero complex number. Consider the covering {Ui}, i = 0, · · · , n
of CP (n) defined by Ui = {z = [z◦, · · · , zn]|zi 6= 0}. Dividing by zi we obtain a homeomor-
phism of Ui with Vi = Cn given by [z◦, · · · , zi−1, 1, zi+1, · · · , zn]→ (z◦, · · · , zi−1, zi+1, · · · , zn).
The transition functions ϕij : Vi ∩ Vj → Vi ∩ Vj are simply multiplication by zi

zj
. From the

definition of the complex projective space as the quotient of Cn+1 \ {0} under the action of
the multiplicative group C×, it follows that Cn+1 \ {0} → CP (n) is a principal bundle with
fibre C×. This bundle is called the tautological principal bundle. The associated complex line
bundle corresponding to the natural representation C× → GL(1,C) ' C× given by λ→ λ is
called the tautological bundle and denoted by L → CP (n). The complex line bundle corre-
sponding to the representation λ→ λ−1 is called the hyperplane section bundle and denoted
by L−1 → CP (n). We denote L ⊗ · · · ⊗ L → CP (n) simply as Lk → CP (n) and similarly
L−k → CP (n) is defined. Notice that homogeneous polynomials of degree k are sections of
L−k → CP (n). ♠

Exercise 0.2.2.3 Show that homogeneous polynomials of degree k in n + 1 variables are
sections of L−k → CP (n) and conversely.

Example 0.2.2.5 Just as in the case of the projective space CP (n), every Grassmann
manifold Gk,n, Gk,n(R), G◦

k,n(R) carries a tautological bundle which we denote by Ek → Gk,n,
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Ek → Gk,n(R), or Ek → G◦
k,n(R) respectively. Often we drop the subscript k from the total

space when there is no concern for confusion. The fibre over a point of the Grassmann
manifold is the subspace of the Euclidean space that it represents. In case of Ek → G◦

k,n(R),
the fibre carries an orientation as well. ♠

Exercise 0.2.2.4 Compute the transition functions for the vector bundles in example 0.2.2.5.

Example 0.2.2.6 Let F (z◦, · · · , zn) be a homogeneous polynomial, and set

ZF = {[z◦, · · · , zn]|F (z◦, · · · , zn) = 0}.

In view of homogeneity of F , ZF is a well-defined subset of CP (n). For ZF to be a subman-
ifold, it suffices to verify the hypothesis of the implicit function theorem on each coordinate
chart Ui. This means we set zi = 1 to obtain a polynomial F i in n variables and check
non-vanishing of at least one partial derivative ∂F i/∂zj for j 6= i. The extension to the
common zeros of k homogeneous polynomials is in the obvious manner. Thus one constructs
many compact complex manifolds. ♠

0.2.3 Invariant Forms on Lie Groups and Homogeneous Spaces

It is very useful to have an understanding of what left invariant forms are like. For a closed
subgroup G ⊂ GL(m,K) (therefore a Lie group), let dg denote the (exterior) derivative of
g ∈ G relative to any local parametrization of the group G. Then the matrix of 1-forms
g−1dg is clearly invariant under left translations by any fixed h ∈ G. Therefore the entries
of the matrix g−1dg are left invariant 1-forms on G. For G = GL(m,K) (we can let the
parametrization be the identity mapping) and then the 1-forms that appear as entries of
g−1dg are linearly independent and form bases for cotangent spaces. For G = SL(m,K) the
situation is a little different in view of (0.2.1.1). In fact, it is a simple exercise to see that
the same computation leading to (0.2.1.1) shows for (ωij) = g−1dg we have

Tr(g−1dg) =
∑

ωii = 0. (0.2.3.1)

Notice that this equation is valid regardless of what parametrization of SL(m,K) we use.

Example 0.2.3.1 Let us make some calculations on SL(2,R). Consider the parametriza-
tions

g =

(
cosφ − sinφ
sinφ cosφ

) (
et 0
0 e−t

) (
1 x
0 1

)
, g =

(
1 0
y 1

) (
et 0
0 e−t

) (
1 x
0 1

)
. (0.2.3.2)
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Note that the first parametrization (φ, t, x) is a special case of the Iwasawa decomposition
and the second (y, t, x) is only valid in an open (and dense) subset as is familiar from
elementary linear algebra for engineers (see also chapter 3, and the discussion of the Bruhat
decomposition). Computing g−1dg we obtain matrices of 1-forms(
−e2txdφ+ dt (e2tx2 − e−2t)dφ+ 2xdt+ dx

e2tdφ e2txdφ− dt

)
,

(
−e2txdy + dt e2tx2dy + 2xdt+ dx

e2tdy e2txdy − dt

)
.

(1, 1), (1, 2) and (2, 1) entries of the above matrices form bases for left invariant 1-forms
on SL(2,R). While these expressions look complicated, we shall see that one can extract
interesting information from these and similar expressions for other groups. ♠

A left invariant volume element together with an orientation defines a left invariant
measure on a Lie group which we may assume to be positive. Every locally compact group
admits of a unique up to scalar multiplication left (or right) invariant measure (called Haar
measure), and in the case of Lie groups this can be proven very easily:

Proposition 0.2.3.1 On a Lie group there is a unique, up to scalar multiplication by a
scalar, left invariant volume element.

Proof - Let dim(G) = N and ω1, · · · , ωN be linearly independent 1-forms appearing as
matrix entries of ω = g−1dg. Notice that if these 1-forms are linearly independent at one
point, then they are linearly independent everywhere by left invariance. Clearly dv = ω1 ∧
· · · ∧ ωN is a left invariant nowhere vanishing N -form on G. Any other volume element
dv′ will differ from dv at one point by multiplication by a constant c and by left invariance
dv′ = cdv everywhere. ♣

Example 0.2.3.2 Let us explicitly compute the invariant volume element on SL(2,R). In
the (φ, t, x) and (y, t, x) parametrizations, the (1, 1), (2, 1) and (1, 2) entries of the matrix
ω given in example 0.2.1.1 are linearly independent. Taking their wedge product we obtain
the expressions

e2tdφ ∧ dt ∧ dx, and e2tdy ∧ dt ∧ dx,

for the volume element on SL(2,R). ♠

Exercise 0.2.3.1 Compute the matrix ω = g−1dg and the left invariant volume element for
GL(2,R) relative to the parametrizations

g =

(
cosφ − sinφ
sinφ cosφ

) (
et1 0
0 et2

) (
1 x
0 1

)
, g =

(
1 0
y 1

) (
et1 0
0 et2

) (
1 x
0 1

)
.
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Exercise 0.2.3.2 Show that in the parametrization

g =

(
1 0
y 1

) (
1 x
0 1

) (
et 0
0 e−t

)
,

the left invariant volume element is dy ∧ dx ∧ dt. What is the corresponding expression for
the volume element on GL(2,R).

It is clear that by looking at dg.g−1 rather than g−1dg we obtain right invariant 1-forms
and consequently a right invariant volume element. In general, for nonabelian groups, right
invariant and left invariant volume elements, and a fortriori 1-forms, are not identical. In
many cases of interest the left and right invariant volume elements turn out to be identical.
Groups for which right invariant and left invariant (Haar) measures are identical are called
unimodular. Since dg−1 = −g−1(dg)g−1, the transformation g → g−1 maps left invariant
1-forms to right invariant 1-forms, and unimodular groups have the property that for an
integrable function F and every h ∈ G∫

G

F (g)dvG =

∫
G

F (hg)dvG(g) =

∫
G

F (gh)dvG(g) =

∫
G

F (g−1)dvG, (0.2.3.3)

where the notation dvG(g) is intended to emphasize that integration is with respect to the
variable g. The simplest non-unimodular group is

Exercise 0.2.3.3 Let G be the group matrices of the form

(
s x
0 1

)
where s > 0 and x ∈ R

(the connected component of the group of affine transformations of the line). Show that
the left invariant volume element is s−2ds ∧ dx while the right invariant volume element is
s−1ds ∧ dx.

Let us try to understand when a group is unimodular. Let dvG denote the left invariant
volume element on the Lie group G. Then right translation of ω by an element h ∈ G is
obtained from the matrix of 1-forms (gh)−1d(gh)) = h−1(g−1dg)h by taking wedge product
of the appropriate entries of this matrix as explained earlier. Denoting this new left invariant
volume element by dvGh , we obtain

dvGh = ∆(h)dvG,

where ∆(h) is the determinant of the linear tranformation α → h−1αh of G? and therefore
∆ is a continuous homomorphism of G to the multiplicative group of real numbers R×. Let
[G,G] denote the closed normal subgroup generated by the commutators xyx−1y−1, then
then homomorphism ∆ maps [G,G] to 1 and so ∆ : G/[G,G] → R×. This observation
implies
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Corollary 0.2.3.1 Every compact Lie group is unimodular.

Corollary 0.2.3.2 The groups GL(m,K) and SL(m,K) are unimodular.

Proof of corollary 0.2.3.1 - Clearly the only continuous homomorphism of a compact Lie
group G to R× takes values in {±1} and consequently G is unimodular. ♣
Proof of corollary 0.2.3.2 - Using the fact that for GL(m,K) the left invariant volume
element is the wedge product of all the entries of the matrix g−1dg, we obtain after a simple
calculation

∆(h) = det(h)m det(h)−m = 1.

It is an exercise in linear algebra that all normal subgroups of SL(m,K) are contained in {ζI}
where ζ runs over all mth roots of unity in K. Therefore [SL(m,K), SL(m,K)] = SL(m,K),
and consequently ∆(h) = 1. ♣

Let G and N be Lie groups and ρ : G → Aut(N) be a homomorphism where Aut(N)
is the group3 of continuous automorphisms of N . The semi-direct product N.G is the Lie
group whose underlying manifold is N ×G and the group operation given by

(n, g)(n′, g′) = (n ? ρ(g)(n), gg′),

where ? denotes the group operation on N . Note that if ρ is the trivial homomorphism then
semi-direct product becomes direct product. Clearly both N and G are embedded in N.G as
(closed) subgroups {(n, eG)} and {eN , g)} respectively. We simply write N and G for these
subgroups. N is a normal subgroup of N.G and unless ρ is the trivial homomorphism, G is
not a normal subgroup. Note that

gng−1 = (eN , g)(n, eG)(eN , g
−1) = (ρ(g)(n), eG) = ρ(g)(n).

Semi-direct products occur naturally in group theory. For example, for Sn denoting the
symmetric group on n letters we have

Exercise 0.2.3.4 Show that S3 is isomorphic to the semi-direct product N.G with N =
Z/3 = {0, 1, 2}, G = Z/2 = {1, ε}, and ρ(ε) the automorphism of Z/3 mapping 2 → 1 and
1→ 2.

Exercise 0.2.3.5 Show that N = {e, (12)(34), (13)(24), (14)(23)} ' Z/2×Z/2 is a normal
subgroup of S4 and we have the semi-direct product decomposition S4 ' N.S3. Describe
explicitly the homomorphism ρ. Show also that Sn ' An.Z/2 where An ⊂ Sn is the alternating
group.

3Aut(N) is itself a Lie group with the compact open topology, but we omit the proof of this fact since in
cases of interest to us its validity will be almost immediate.
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Example 0.2.3.3 Let G ⊂ GL(m,K) be any closed subgroup and N = V = Km. Then
G acts on N as a group of automorphisms (linear transformations of V = Km) and so the
semi-direct product V.G is defined. Note that V.G can be represented as (m+ 1)× (m+ 1)

matrices

(
g v
0 1

)
, where v ∈ V = Km is a column vector and g ∈ G an m×m matrix since(

g v
0 1

) (
g′ v′

0 1

)
=

(
gg′ v + g(v′)
0 1

)
.

For G = GL(m,R), V.G is called the group of affine transformations of Rm. The group of
Euclidean motions of Rm is V.G with G = O(m). Replacing O(m) with SO(m) gives the
group of proper Euclidean or rigid motions of Rm. We use the notation E(m) = Rm.O(m)
and SE(m) = Rm.SO(m). Clearly, (v, g)−1 = (−g−1(v), g−1). Denoting a typical element of
V.G by h we obtain, in matrix notation,

h−1dh =

(
g−1 −g−1(v)
0 1

) (
dg dv
0 0

)
=

(
g−1dg g−1(dv)

0 0

)
. (0.2.3.4)

This equation enables one to effectively reduce the computation of left invariant 1-forms on
V.G to those of G and V . The left invariant volume element dvSE(m) on SE(m) is called the
kinematic density. Since det(g) = 1 for g ∈ SO(m) we obtain

dvSE(m) = dvSO(m) ∧ dv1 ∧ · · · ∧ dvm, (0.2.3.5)

where vi’s are the components of the vector v and dvSO(m) is the left invariant volume element
on SO(m). For an arbitrary closed subgroup G ⊂ GL(m,R) we clearly have

dvV.G = det(g)−1dvG ∧ dv1 ∧ · · · ∧ dvm. (0.2.3.6)

The significance of kinematic density in geometry will become clear in the next chapter. ♠

Exercise 0.2.3.6 Let G ⊂ GL(m,R) be a closed subgroup and assume that the left and right
invariant volume elements on G are identical (resp. G is unimodular). Compute the right
invariant volume element on V.G. Show that if det(g) = 1 (resp. det(g) = ±1) then left and
right invariant volume elements are identical (resp. V.G is unimodular).

Exercise 0.2.3.7 Let Um be the group of (real) m ×m upper triangular matrices with 1’s
along the diagonal, V = Rm−1. Then Um−1 acts on V as group of linear transformations in
the natural fashion. Show that Um ' V.Um−1 (semi-direct product) and deduce that the left
and right invariant volume elements on Um are identical and given by

dvUm =
∧
i<j

duij,

where (uij) ∈ Um and duij denotes the standard 1-form (or Lebesgue measure) on R.
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Exercise 0.2.3.8 Show that the 1-forms
dzj

zj
are invariant on the multiplicative abelian group

C××· · ·×C× and an invariant volume element is 1
(−2i)m

dz1∧dz̄1
|z1|2 ∧ · · · ∧

dzm∧dz̄m

|zm|2 . Let T be the
group of complex m×m upper triangular matrices. Prove that

T ' (C×)m.UC (semi− direct product).

Specify the action of (C×)m on UC, and deduce that a left invariant volume element on T is

dvT =
1

(−2i)
m(m+1)

2

dz1 ∧ dz̄1

|z1|2
∧ · · · ∧ dzm ∧ dz̄m

|zm|2
∧
j<k

(dzjk ∧ dz̄jk),

where we have used the parametrization representing a matrix in T as a.u with a an invertible
complex diagonal matrix with eigenvalues zj, and u = (zjk) an upper triangular matrix all
whose eigenvalues are 1. Derive a similar formula for the real case.

Example 0.2.3.4 Let us compute a (left) invariant volume element for GL(m,R) using the
paramerization given by the Iwasawa decomposition. Writing g = kau ∈ SO(m)AU we
obtain

g−1dg = u−1a−1(k−1dk)au+ u−1(a−1da)u+ u−1du. (0.2.3.7)

From the defining relation k′k = I for SO(m) it follows that k′dk+ (dk′)k = 0, i.e., k−1dk is
a skew-symmetric matrix of 1-forms. Consequently, the wedge product of its entries below
the diagonal is an invariant volume element for SO(m). Denoting the diagonal entries of a
by et1 , · · · , etm , the first term on the right hand side of (0.2.3.7) becomes (the not necessarily
skew-symmetric matrix)

u−1a−1(k−1dk)au =


? ? · · · ?

γ21 + et1−t2ω21 ? · · · ?
...

...
. . . ?

et1−tmωm1 γm2 + et2−tmωm2 · · · ?

 ,

where ?’s are unspecified linear combinations of ωij’s, and γij, (i > j), is a linear combination
of only those ωkl’s for which k−l > i−j. (Compute the matrix u−1Xu where u ∈ U and X is
arbitrary.) In particular, γm1 = 0. Similarly, the matrix u−1(a−1da)u is upper triangular with
diagonal entries dt1, · · · , dtm and entries above the diagonal certain linear combinations of
dt1, · · · , dtm. Finally u−1du is upper triangular with zeros along the diagonal and the wedge
product of its entries above the diagonal is the invariant volume element on U . An invariant
volume element on GL(m,R) is the wedge product of all the entries of g−1dg. Therefore,
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starting with ωm1 taking wedge product with γm−11 +ωm−11 and γm2 +ωm2 etc. we see that
γij’s do not contribute to the product, and we easily obtain

dvGL(m,R) = (
∏
i<j

eti−tj)dvSO(m) ∧ dvA ∧ dvU . (0.2.3.8)

It is easy to see that (0.2.3.8) is valid for SL(m,R) as well. ♠

Exercise 0.2.3.9 Show that the invariant volume element on GL(m,C) or SL(m,C) is
given by

(
∏
i<j

e2(ti−tj))dvK ∧ dvA ∧ dvUC ,

where K = U(m) or SU(m).

Exercise 0.2.3.10 Consider the parametrization of an open dense subset of GL(m,R) as
U ′AU where U ′ is the group of lower triangular matrices with 1’s along the diagonal. Show
that relative to this parametrization an invariant volume element is

dvGL(m,R) = (
∏
i<j

eti−tj)dvU ′ ∧ dvA ∧ dvU .

Show that the same formula is valid for SL(m,R). Derive similar expressions for GL(m,C)
and SL(m,C).

Example 0.2.3.5 There is a classical parametrization of the group SO(3) known as Euler
angles which was motivated by the study of the rotational motion of a rigid body. Let
e1, e2, e3 be the standard basis for R3, R ∈ SO(3) and fi = R(ei). Denote by θ the angle
between e3 and f3 which we take it to be in [0, π]. The plane f1 ∧ f2 intersects the plane
e1∧e2 along a line L (called line of nodes in physics literature). We fix a unique unit vector l
along L by the requirement that l, f3× l defines the same orientation as f1, f2 and f3, l, f3× l
is positively oriented basis for R3. Let φ be the angle between e1 and l and ψ the angle
between l and f1. Then φ, ψ ∈ [0, 2π]. The quantities θ, φ, ψ are called the Euler angles.
To see how SO(3) is parametrized by the Euler angles, first rotate space by θ in the e1 ∧ e3
plane fixing e2. Next rotate space in e1 ∧ e2 plane (fixing e3) through φ − π

2
. Let f ′i be the

position of ei after application of these two rotations. Finally rotate space through angle
π
2

+ ψ in f ′1 ∧ f ′2 plane (fixing f ′3). The result of these three transformations is given bysinφ − cosφ 0
cosφ sinφ 0

0 0 1

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 − sinψ − cosψ 0
cosψ − sinψ 0

0 0 1


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Denoting the above product by g, we obtain after a simple calculation

g−1dg =

 0 cos θdφ− dψ − cosψ sin θdφ− sinψdθ
− cos θdφ+ dψ 0 sinψ sin θdφ− cosψdθ

cosψ sin θdφ+ sinψdθ − sinψ sin θdφ+ cosψdθ 0


Taking the wedge product of entries above the diagonal we obtain the expression

dvSO(3) = sin θdθ ∧ dφ ∧ dψ.

for the volume element of SO(3) relative to Euler angles. This formula is of interest in the
study of dynamics of rigid bodies. ♠

Example 0.2.3.6 In practice it becomes essential to integrate class functions ψ (i.e., func-
tions ψ satisfying ψ(hgh−1) = ψ(g) for all h, g ∈ G) on the group G. The expression for Haar
measure simplifies in this case. To see how this simplification comes about let us consider
the case of the unitary group G = U(n). Since every unitary matrix is diagonalizable, we
consider the parametrization of U(n) given by

G/T × T −→ U(n), (uT, t)→ utu−1,

where T ⊂ U(n) is the subgroup of diagonal matrices. We note that mapping is not injective.
On the set of regular elements (i.e., unitary matrices with distinct eigenvalues) the map in n!
to 1 since permutation matrices4 are unitary. Since the complement of this set has measure
zero, we can ignore the complement for the purpose of this calculation. Let u denote a
variable point on the flag manifold G/T , then

(utu−1)−1d(utu−1) = u[t−1(u−1du)t+ (t−1dt)− u−1du]u−1.

To express the Haar measure relative to this parametrization, we simply take the wedge
product of the entries of the matrix (utu−1)−1d(utu−1) which are the left invariant 1-forms
on U(n). The effect of conjugation by u on the volume element is by multiplication by

4Consider Rn with the (standard) basis e1, · · · , en. The symmetric group Sn acts on Rn by permuting
the basis vectors. Matrices representing these transformations are called permutation matrices and are
characterized by the properties

1. All entries are 0 or 1;

2. Every row or column contains exactly one 1.

Conjugation of a diagonal matrix by a permutation matrix has the effect of permuting the digonal entries.
In particular, permutation matrices lie in the normalizer of digonal matrices.
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det(un) det(u−n) = 1, and therefore to compute the volume element it suffices to take wedge
product of the entries of the matrix t−1(u−1du)t−u−1du+(t−1dt). Let u−1du = (ωjk) which
is a skew hermitian matrix of left invariant 1-forms. Let t denote the diagonal matrix with
diagonal entries eiϕk , for k = 1, · · · , n. The differentials dϕj appear only in t−1dt. Then it
is a simple matter to see that the wedge product of entries of t−1(u−1du)t− u−1du+ (t−1dt)
yields the expression

[
∏
j<k

(ei(ϕj−ϕk) − 1)(ei(ϕk−ϕj) − 1)ωjk ∧ ω̄jk] ∧ dϕ1 ∧ · · · ∧ dϕn,

where c is a constant depending only on n. Now if a function ψ on G is invariant under
conjugation then the (n2 − n)-form

∏
ωjk ∧ ω̄jk, which depends only on the variable u, can

be integrated out to obtain the important formula∫
U(n)

ψ(g)dg = c

∫ 2π

◦
· · ·

∫ 2π

◦

∏
j<k

|eiϕj − eiϕk |2ψ(t)dϕ1 ∧ · · · ∧ dϕn, (0.2.3.9)

for some constant c > 0 which depends on the normalization of measures. The constant
c will be determined explicitly in the subsection on Characters. One can similarly derive
analogous formulae for othe compact groups. ♠

0.2.4 Finite Subgroups of O(3)

Finite subgroups of O(2) are easy to determine. In fact we have:

Exercise 0.2.4.1 Show that a finite subgroup of order n of SO(2) is cyclic and is generated
by the rotation through angle 2π

n
. Deduce that a finite subgroup of O(2) is either cyclic, or

is the dihedral group of order 2n generated by rotation through angle 2π
n

and a reflection

conjugate to

(
1 0
0 −1

)
.

The determination of finite subgroups of SO(3) and O(3) is more difficult. The char-
acteristic roots of an orthogonal matrix are roots of unity and occur in conjugate pairs.
Therefore the eigenvalues of a 3 × 3 orthogonal matrix A are e±iθ,±1 where ±1 occurs as
a root according as detA = ±1. Therefore if detA = 1, then A fixes a line (called axis of
rotation) and is a rotation in the plane orthogonal to the axis (called plane of rotation). For
I 6= A ∈ SO(3), the unit vectors ±v which are eigenvectors for eigenvalue 1 are called the
poles of A ∈ SO(3). For a finite subgroup W ⊂ O(3), we denote by PW the set of poles of
non-identity elements of W ′ = W ∩ SO(3). The key point which makes the determination
of finite subgroups of O(3) possible is the following observation:
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Lemma 0.2.4.1 The action of W on R3 preserves the set of poles PW .

Proof - Follows from the fact that for A,B ∈ W , v ∈ PW , and Av = v, Bv is fixed by
BAB−1. ♣

Let X = {(A, v) | I 6= A ∈ W ∩ SO(3), v pole for A}. Then W acts on the finite set X
by

(A, v)
B−→ (BAB−1, Bv).

Under the action of W , PW splits as a union of l orbits and we choose representatives
v1, · · · , vl one for each orbit. Let W ′ = W ∩SO(3), and W ′

v denote the isotropy subgroup of
v in W ′. Denoting the order of W ′ by w, we see immediately that |X| = 2(w − 1). On the
other hand, we can calculate this number by looking at the action of W ′ on PW . Note that

|X| =
∑
v∈PW

(|W ′
v| − 1). (0.2.4.1)

The right hand side of (0.2.4.1) can be reorganized in terms of the orbits of the action of W ′

on PW . To do so let wi = |W ′
vi
| and ni = w

wi
be the cardinality of the orbit of vi. Then right

hand side of (0.2.4.1) becomes

l∑
i=1

ni(wi − 1) = wl −
l∑

i=1

ni.

Since |X| = 2(w − 1), this equation together with (0.2.4.1) yield

2− 2

w
= l −

l∑
i=1

1

wi
. (0.2.4.2)

This is the basic equation which makes the determination of finite subgroups of O(3) and
SO(3) possible. Since wi ≥ 2, (0.2.4.2) implies

l = 2 or 3.

For l = 2, (0.2.4.2) becomes
2

w
=

1

w1

+
1

w2

. (0.2.4.3)

Since wi|w, the only solution is

w1 = w2 = w.



0.2. HOMOGENEOUS SPACES AND INVARIANT ELEMENTS 33

This implies that for l = 2, W ′ is a cyclic group of rotations in the plane orthogonal to the
line through the poles ±v.

Consider the case l = 3. Recalling that ni = w
wi

is an integer, one easily obtains the
complete set of solutions to (0.2.4.2). Arranging the solutions such that w1 ≤ w2 ≤ w3 we
obtain four sets of solutions which are exhibited in the following table:

Solution Set w w1 w2 w3 n1 n2 n3

1 2m 2 2 m m m 2
2 12 2 3 3 6 4 4
3 24 2 3 4 12 8 6
4 60 2 3 5 30 20 12

It is not difficult to give geometric meaning to the solutions. We analyze sets 1 and 4
and leave cases 2 and 3 to exercises 0.2.4.2 and 0.2.4.3 below. In case one consider the pole
v3 whose isotropy subgroup W ′

v3
is a group of order m. The line through ±v3 is fixed by

W ′
v3

, so Wv3 is a cyclic group of rotations of the plane Π orthogonal to v3. Thus W ′
v3

is
realized as the group of rotations of a regular m-gon ∆m in R2. There is only one orbit of
poles whose isotropy subgroups are cyclic of order m, namely, ±v3. Thus if σ ∈ W ′\W ′

v3
,

then σ ∈ W ′
v1
∪W ′

v2
, and σ has order 2 since w1 = w2 = 2 in case 1. It follows that σ is a

rotation through angle π. Let ζ ∈ W ′
v3

be a generator, then σζ 6∈ W ′
v3

and is also a rotation
through π. By looking at the regular m-gon ∆m we see that the rotations σ and σζ have
their axes in the plane Π and that they make angle π

m
. This geometric construction gives an

injective homomorphism of the dihedral group of order 2m into SO(3). Analytically it can
be described as the mapping(

cos θ sin θ
sin θ − cos θ

)
−→

cos θ sin θ 0
sin θ − cos θ 0

0 0 −1


where θ = 2π

m
.

Next we consider the fourth solution set from the table. Here the subgroup W ′
v3

has order
5 and therefore the orbit of v3 under W ′ has cardinality 12. There are ten poles other than
±v3 which are permuted by W ′

v3
. These ten poles cannot lie on an equator. In fact consider

a rotation through angle 2π
5

whose axis contains one (and therefore necessarily two) of these
poles. This generates more than twelve poles with isotropy subgroup cyclic of order 5 which
is not possible. These ten poles are permuted by W ′

v3
, and are split up into two orbits of

cardinality five. Each set of five is equidistant from v3 and −v3 since ±v3 is fixed W ′
v3

. The
representative v3 was arbitrary, the same is true for every pole with isotropy subgroup of
order 5. Thus we can realize the twelve poles as the vertices of icosahedron and W ′ is a group
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of proper symmetries of it. The remaining poles are the mid-points of the edges and the
centroids of faces. Since w = 60, W ′ is the group of proper symmetries of the icosahedron
which is isomorphic to A5.

Exercise 0.2.4.2 Show that the second solution set of the table gives the group of proper
symmetries of the regular tetrahedron.

Exercise 0.2.4.3 Show that the third solution set of the table gives the group of proper
symmetries of the cube or the regular octahedron.

We summarize the above analysis as

Proposition 0.2.4.1 A finite subgroup of SO(3) is conjugate to one of the following:

1. A cyclic group of order m of rotations.

2. A dihedral group of order 2m ≥ 4.

3. The group of order twelve (' A4) of proper symmetries of the regular tetrahedron.

4. The group B′
3 of order twenty four of proper symmetries of the cube or the regular

octahedron.

5. The simple group of order sixty (' A5) of proper symmetries of the icosahedron.

A finite subgroup W ⊂ O(3) is either one of the above or contains one of the above as a
subgroup of index two.
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0.3 Special Tensors and Geometric Structures

0.3.1 Metrics and Volume Elements

Let E � E → M be the vector bundle associated to the principal bundle PE → M via the
second symmetric power representation GL(k,R). A section g of E? � E? → M defines a
(possibly indefinite and degenerate) inner product on the fibres of E → M in the obvious
manner. If furthermore the inner product g(x) is positive definite for every x ∈ M , we say
g is a metric. Metrics always exist. In fact, let U = {Uα} be a covering of M such that
Eα = π−1(Uα) ' Uα×F . Let gα be a metric for the trivial vector bundle π−1(Uα)→ Uα, i.e.,
a section of the trivial bundle E?

α � E?
α → M . Let {φα} a partition of unity subordinate to

U . Then
∑
φαgα is a section of the bundle E? � E? → M , and is positive definite on every

fibre of E → M . Similarly, for a complex vector bundle we have the notion and existence
of an hermitian metric. Now given a real rank k vector bundle E → M with a fixed metric
g, there is the associated bundle Pg →M of orthonormal frames. This is a principal bundle
with group G = O(k). If E → M is orientable, we can fix an orientation and only consider
positively oriented orthonormal frames. This gives us a new principal bundle with group
G = SO(k). A metric for the tangent bundle of M is called a Riemannian metric. A
manifold M together with a Riemannian metric (generally denoted by g or ds2) is called a
Riemannian manifold.

Example 0.3.1.1 Once a metric is fixed on a vector bundle E → M , then it makes sense
to consider orthonormal frames for the bundle. The set of orthonormal frames for the
vector bundle E → M is a principal bundle (O(k), P, π,M). By considering change of
orthonormal frames, we obtain a set transition functions ραβ for E → M which take values
in the orthogonal group O(k). If in addition an orientation is fixed for E → M , then we
can restrict ourselves to positively oriented frames and consequently the transition functions
take values in SO(k). Therefore a metric allows one to obtain transition functions taking
values in the orthogonal group, and an orientation makes it possible to choose transitions
functions with positive determinant. This process of choosing transition functions in a way
that they take values in a subgroup of GL(k,K) is called reduction of the structure group.
The subset of E consisting of points

{(x, v) | v ∈ Ex, and < v, v >x= 1}

is meaningful since we have a metric < ., . >x on each fibre Ex. This is a called the associated
unit sphere bundle. Similarly we can replace the condition < v, v >= 1 with < v, v >≤ h(x),
where h is a positive function (possibly identically 1) on M to obtain a ball bundle. Notice
that the specification of a metric is the tool which enables one to obtain a sphere or a ball
bundle from a vector bundle. ♠
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Exercise 0.3.1.1 Let E →M be a k-plane bundle and let ω be a nowhere vanishing section
of ∧kE? → M (see subsection Orientation and Volume Element). Show that ω enables one
to choose transition functions for E →M taking values in SL(k,R).

The space of all possible Riemannian metrics on a manifold is very large, however in
specific circumstances there are preferred metrics. For example, for submanifolds of RN

it is natural to use the induced metric from the ambient space. Let us clarify this point.
The metric on RN is given by ds2 =

∑N
A=1 dx

2
A. Note that this is a section of the second

symmetric power of the cotangent bundle of RN . Its significance is that given a C1 curve
γ : I → RN , where I = [0, 1], the arc length of γ is computed by the formula∫ 1

0

√√√√ N∑
A=0

(
dγA(t)

dt

)2

dt,

where γ(t) = (γ1(t), · · · , γN(t)). Note that
∑N

i=0(
dγA(t)
dt

)2 is the result of the evaluation of
the quadratic form ds2 on the tangent vector to the curve γ, i.e. ds2(γ̇). Let f : M → RN

be a submanifold. Then, as described earlier, f ?(ds2) = ds2
M is a positive definite symmetric

covariant 2-tensor on M , i.e., a Riemannian metric. If f is given by the expression xA =
xA(u1, · · · , um), relative to the standard coordinates in Rm and RN , for A = 1, · · · , N , then
ds2

M is obtained by substituting

dxA =
m∑
i=0

∂xA
∂ui

dui,

in ds2 =
∑N

A=1 dx
2
A. This is the induced metric on M , or more precisely f(M), which

depends on the embedding f . Therefore it has the general form ds2
M =

∑m
i=1 gijduiduj

where gij = gji, and the symmetric positive definite matrix g = (gij) = (Df)′Df . Here Df
is the derivative of f (relative to u1, · · · , um) which is an N × m matrix, and superscript
′ denotes the transposed matrix. Thus if we represent a curve γ : I → M in terms of the
coordinate system (u1, · · · , um), i.e., γ(t) = (γ1(t), · · · , γm(t)), then its arc length is∫ 1

0

√√√√ m∑
i,j=1

gij(γ(t))
dγi
dt

dγj
dt
dt. (0.3.1.1)

A Riemannian metric on a manifold M (not necessarily embedded in RN) is generally written
as

ds2
∑
i,j

gijduiduj
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relative to a coordinate system u1, · · · , um, where g = (gij) is a symmetric positive definite
matrix. Its relation to the computation of arc length is given by (0.3.1.1).

Since a non-degenerate bilinear form defines an isomorphism between a vector space and
its dual, a Riemannian metric defines an isomorphism between the tangent and cotangent
bundles of a manifold. Furthermore, an orientation for M (i.e., for TM) gives an orientation
for T ?M for example by requiring the basis dual to a positively oriented basis for TxM to
be positively oriented. There is a volume element associated to a Riemannian metric on an
oriented manifold M . Let us fix an orientation for M , and a let U = {Uα} be a covering
of M such that the (co)tangent bundle of M is trivial on each Uα. Then for each α we can
choose a basis of 1-forms (ωα1 , · · · , ωαm) such that (ωα1 (x), · · · , ωαm(x)) is a positively oriented
orthonormal basis for each T ?xM , x ∈ Uα. Thus ds2

M =
∑

(ωαi )2. Set dvα = ωα1∧· · ·∧ωαm. Two
choices of such basis of 1-forms differ by a special orthogonal transformation A(x) ∈ SO(m)
at each point x ∈ Uα. Therefore if x ∈ Uα ∩ Uβ then dvα = det(A)dvβ = dvβ. Hence we can
simply state

dv = ω1 ∧ · · · ∧ ωm (0.3.1.2)

is a volume element on M . This is the volume element associated to a Riemannian metric
on an oriented manifold. In terms of the matrix g = (gij) it has the expression

dv =
√

det gdu1 ∧ · · · ∧ dum. (0.3.1.3)

Example 0.3.1.2 Consider the sphere Sn−1
r ⊂ Rn of radius r > 0. In spherical polar

coordinates it is described by
x1 = r cosϕ1 0 ≤ r <∞
x2 = r sinϕ1 cosϕ2 0 ≤ ϕk ≤ π, 1 ≤ k ≤ n− 2
. . . . . . . . . . . . . . . . . . . 0 ≤ ϕn−1 < 2π
xn = r sinϕ1 · · · sinϕn−1

Then the Riemannian metric on Sn−1
r has the expression

ds2 = r2(dϕ2
1 + sin2 ϕ1dϕ

2
2 + sin2 ϕ1 sin2 ϕ2dϕ

2
3 + · · ·+ sin2 ϕ1 · · · sin2 ϕn−2dϕ

2
n−1);

and the corresponding volume element is

dv = rn−1 sinn−2 ϕ1 sinn−3 ϕ2 · · · sinϕn−2dϕ1 ∧ · · · ∧ dϕn−1.

Integrating dv we obtain the volume of Sn−1

vol(Sn−1
r ) = rn−1 2πn/2

Γ(n/2)
.
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Taking wedge product of dv with dr and integrating we obtain

vol(Bn
r ) = rn

2πn/2

nΓ(n/2)
= rn

πn/2

Γ(n
2

+ 1)
,

as the volume of the ball of radius r > 0. ♠

The following exercises demostrate some rather surprising properties of the volumes of
the balls Bn

r for n large.

Exercise 0.3.1.2 Use Stirling’s formula to show that the volume of the ball of radius 1, for
n large, is approximately

(
2πe

n
)n/2.

Deduce that, for n large, the radius of the ball of unit volume is approximately√
n

2πe
.

(Notice that this means that the ball of unit volume has arbitrarily large radius as n→∞,
and the the volume of the ball of radius r = 1 goes to zero very fast as n→∞.)

Exercise 0.3.1.3 Let Bn ⊂ Rn denote the ball of unit volume centered at the origin, and
Ht denote the half space x1 ≤ t. Define Φ(t) = vol(Bn ∩ Ht). Show that as n → ∞, Φ(t)
approaches

(
e

2π
)1/4

∫ t

−∞
e−πes

2

ds.

Deduce that for every ε > 0 the volume of the portion of the ball Bn which lies in the region
−ε ≤ x1 ≤ ε approaches a positive limit as n → ∞. In particular, for ε = 1

2
, this limit is

about .96. (This exercise can be re-stated as the volumes of infinitesimally thin slabs of Bn

bounded by affine hyperplanes intersecting Bn is approximately given by the normal curve
with mean 0 and variance 1

2πe
as n→∞.)

Example 0.3.1.3 Let F be a C2 real valued function on Rm+1 with rankDF = 1 everywhere
on the zero set F (x1, · · · , xm+1) = 0 which consequently defines a C1 hypersurface M ⊂
Rm+1. If ∂F

∂xm+1
(x) 6= 0, then in a neighborhood of x we can represent the set M as the graph

of a function xm+1 = xm+1(x1, · · · , xm) (see example 0.1.1.3), and the derivative of xm+1 as
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a function (x1, · · · , xm) is expressible in terms of partial derivatives of F as given in example
0.1.1.3. It follows that the Riemannian metric on M (i.e., the restriction of dx2

1 + · · ·+dx2
m+1

to M) is given by the matrix g = (gij) where

gij = δij +
1

( ∂F
∂xm+1

)2

∂F

∂xi

∂F

∂xj
.

For m = 2,
√

det gdx1 ∧ · · · ∧ dxm simplifies to√
( ∂F
∂x1

)2 + ( ∂F
∂x2

)2 + ( ∂F
∂x3

)2

| ∂F
∂x3
|

dx1 ∧ dx2.

as the element of area on the surface F = 0. The maximality of rank condition on DF
implies that a normal direction

gradF = (
∂F

∂x1

, · · · , ∂F

∂xm+1

)

is defined everywhere on M . Consequently M is orientable and the normal bundle of M
(which is a line bundle) is trivial since it has a nowhere vanishing section gradF . ♠

Example 0.3.1.4 Let Q = Im ⊂ Rm denote the unit cube, and ω be a nonwhere vanishing
m-form on Q. A diffeomorphism ϕ : Q → Q transforms the Euclidean volume element
dv = dx1 ∧ · · · ∧ dxm to ϕ?(dv). One may ask under what conditions on ω there is a
diffeomorphism ϕ such that

ω = ϕ?(dv). (0.3.1.4)

An obvious necessary condition is ∫
Q

ω =

∫
Q

dv = 1. (0.3.1.5)

By a simple argument we show that (0.3.1.5) is also sufficient5. We set ω = f(t1, · · · , tm)dt1∧
· · ·∧dtm where f is a positive function onQ. Definem positive functions h1(t1), h2(t1, t2), · · · , hm(t1, · · · , tm),
0 ≤ tj ≤ 1, as follows: Set

h1(t) =

∫ 1

◦
· · ·

∫ 1

◦
f(t, x2, · · · , xm)dx2 ∧ · · · ∧ dxm,

5In essence this example has long been known to statisticians who routinely use it for transforming a
distribution to the uniform measure on [0, 1]n.
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and inductively define hj’s by

h1(t1)h2(t1, t2) · · ·hj(t1, · · · , tj) =

∫ 1

◦
· · ·

∫ 1

◦
f(t1, · · · , tj, xj+1, · · · , xm)dxj+1 ∧ · · · ∧ dxm.

(0.3.1.6)
Now set ϕ(t1, · · · , tm) = (x1, · · · , xm) where

xj(t1, · · · , tm) =

∫ tj

◦
h(t1, · · · , tj−1, t)dt.

Since xj is a function of (t1, · · · , tj) only, the derivative of ϕ is a triangular matrix and its
determinant (Jacobian) is

∂x1

∂t1

∂x2

∂t2
· · · ∂xm

∂tm
= h1(t1)h2(t1, t2) · · ·hm(t1, · · · , tm).

In other words, (0.3.1.4) is valid. Integrating (0.3.1.6) on [0, 1] with respect to tj and using
the definition of h1, · · · , hj−1 we obtain

xj(t1, · · · , tj−1, 1) = 1, j = 1, · · · ,m.

Now it follows easily that ϕ is a diffeomorphism of Q mapping the boundary onto itself. Our
analysis implies that if ω and ω′ are volume elements on Q such that∫

Q

ω =

∫
Q

ω′,

then there is a diffeomorphism ϕ of Q, mapping the boundary onto the boundary, such that
ϕ?(ω′) = ω. ♠

The notion of Lie dervative is quite useful in differential geometry. Let ξ be a vector field
on a manifold M , ϕt the corresponding one parameter family of diffeomorphisms, defined
for t ∈ (−ε, ε), and ω a contravariant tensor field. Define the Lie derivative of ω relative to
ξ as

Lξ(ω) = lim
t→◦

ϕ?−t(ω)− ω
t

.

To compute the effect of Lie derivative on forms we introduce the notion of interior multi-
plication ıX mapping p-forms to (p− 1)-forms defined as

ıξ(ω)(η1, · · · , ηp−1) = ω(ξ, η1, · · · , ηp−1).
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Then we have the formal identity (known as H. Cartan’s formula) for Lie derivative of p-forms

Lξ(ω) = (dıξ + ıξd)(ω). (0.3.1.7)

The proof of this important relation is a formal calculation and is omitted (see, e.g. [KN]).
The operator of interior differentiation is an anti-derivation on forms in the sense that

|ıξ(ω ∧ ω′) = (ıξω) ∧ ω′) + (−1)degωω ∧ ω′. (0.3.1.8)

Example 0.3.1.5 The vanishing of the Lie derivative of a 1-form relative to a vector field
has an interpretation in terms of integrating factors in elementary differential equations.
Let ξ = a ∂

∂x
+ b ∂

∂y
be a vector field on an open subset U ⊂ R2 which may be written

as the differential equation bdx − ady = 0. Let α be a 1-form such that α(ξ) is nowhere
vanishing on U . Assume that Lξ(α) = 0, then in view of (0.3.1.7) we have ıξdα = −d(α(ξ)).
Now dα ∧ α, being a 3-form, vanishes identically on R2 and in view of (0.3.1.8) we have
ıξdα ∧ α = −α(ξ)dα. Therefore

d(
1

α(ξ)
α) =

1

α(ξ)2
(ıξdα) ∧ α+

1

α(ξ)
dα = 0. (0.3.1.9)

Hence 1
α(ξ)

is an integrating factor for the differential equation α = Mdx + Ndy = 0 if

Lξ(α) = 0. ♠

The notion of Lie derivative allows us to generalize the notion of divergence from advanced
calculus to manifolds with a given volume element ω. For a vector field ξ on M define div(ξ)
by

Lξ(ω) = (div(ξ))ω.

Note that div(ξ) is a function on M . It is clear that the volume element ω is invariant under
the one parameter family ϕt if and only if Lξ(ω) = 0.

Exercise 0.3.1.4 Let M ⊂ Rm be an open set and ω = eρdx1 ∧ · · · ∧ dxm where ρ is a
function on M . For a vector field ξ =

∑
ξj

∂
∂xj

, use H. Cartan’s formula to prove

div(X) = e−ρ
m∑
j=1

∂(eρξj)

∂xj
.



42

Example 0.3.1.6 Consider the two dimensional torus T 2 = R2/Z2 with the volume element
ω = dx1 ∧ dx2. The one parameter group ϕt generated by a vector field ξ = ξ1

∂
∂x1

+ ξ2
∂
∂x2

,
leaves the volume element ω invariant if and only if

∂ξ1
∂x1

+
∂ξ2
∂x2

= 0. (0.3.1.10)

The solutions to this partial differential equation are easy to obtain. Given a pair of smooth
periodic functions ξ1 and ξ2 on R2 with vanishing constant term (in their Fourier expansion)
and satisfying (0.3.1.10), one easily constructs a smooth periodic function H such that

∂H

∂x2

= −ξ1,
∂H

∂x1

= ξ2.

Then the system of ordinary differential equations on the torus defined by ξ is identical with
the system

dx1

dt
= −∂H

∂x2

,
dx2

dt
=
∂H

∂x1

.

Let ϕt denote the one parameter group of diffeomorphisms of T 2 associated with ξ. Then the
above analysis shows that every smooth periodic function H gives a one parameter group
of volume element preserving diffeomorphisms of the torus T 2 equipped with the volume
element dx1 ∧ dx2. Therefore the group of dx1 ∧ dx2 preserving diffeomorphisms of T 2 is
an infinite dimensional group. The effect of the one parameter group ϕt can more or less
be described geometrically. The essential point is that the curves H(x1, x2) = const. (called
level curves or sets) are invariant under the flow ϕt. This follows from6:

dH

dt
=
∂H

∂x1

dx1

dt
+
∂H

∂x2

dx2

dt
= 0.

Thus the level curves for H are invariant under the flow ϕt which also preserves dx1 ∧ dx2.
♠

0.3.2 Manifolds with Boundary

The generalization of the notion of a manifold to that of a manifold with boundary is very
important. By a manifold with boundary we mean a Hausdorf separable topological space
M such that every point y ∈ M has a neighborhood U homeomorphic to either an open

6See also the subsection on Contact and Symplectic Structures.
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subset of Rm or the set {x = (x1, · · · , xm)|xm ≥ 0} with y mapped to the origin. Points for
which xm = 0 are called boundary points. We assume that the transition functions for M
are smooth up to the boundary. There are some technical issues regarding well-definedness
of the notion of boundary which we simply ignore. The idea of the boundary is sufficiently
intuitive that no confusion should arise. Non-boundary points are called interior points. We
normally denote the set of interior points of M by M̆ , and its boundary by ∂M . Clearly M̆
and ∂M are manifolds. Notice that at the boundary points we have (co)tangent spaces and
(co)tangent bundles to the boundary and also the restriction of the (co)tangent spaces and
(co)tangent bundles of M to the boundary. The transition functions for the latter bundles
are obtained by the restriction of the transition functions to Uα ∩ ∂M . Smoothness up to
the boundary implies that the transition functions for the (co)tangent bundles exist and are
smooth up to the boundary, and therefore their restrictions to the boundary make sense.
We denote the restriction of the tangent and cotangent bundles to the boundary by T∂MM
and T ?∂MM respectively. The fibre of T∂MM at x ∈ ∂M will be denoted by T∂M,xM . In
practice it often helpful and harmless to think of a manifold with boundary M as the subset
of another manifold M ′ of the same dimension, and M defined by single inequality of the
form f(x) ≥ 0 near each boundary component (i.e., connected component of the boundary)
N and df is non-vanishing in a neighborhood of N . The boundary component N is the set
{x ∈M ′|f(x) = 0}. The meaning of the notion of inward normal is immediately clear in this
context. In fact, ξ ∈ T∂M,xM points inward if df(x)(ξ) > 0. Unless stated to the contrary, a
Riemannian metric on M is assumed to continue smoothly to a section of T ?∂MM � T ?∂MM
on the boundary. Given a Riemannian metric g on M , the gradient of a function ψ is the
vector field grad(ψ) defined by the requirement

dψ(ξ) = g(grad(ψ), ξ). (0.3.2.1)

Clearly grad(f) always points inward regardless of the choice of the Riemannian metric. An
orientation for M induces an orientation on ∂M . In fact, we fix an inward pointing vector
field η, e.g. η = grad(f), on ∂M . Then a basis (ξ1, · · · , ξm−1) for Tx∂M is positively oriented
if (−η(x), ξ1, · · · , ξm−1) is a positively oriented basis for T∂M,xM . With this orientation of
the boundary we can state the fundamental result

Theorem 0.3.2.1 (Stokes) Let ω be an (m − 1)-form on the oriented manifold M with
possibly non-empty boundary ∂M and oriented as specified above. Then∫

M

dω =

∫
∂M

ω.

The proof of this theorem is not difficult and reduces to integration by parts. It can also
be found in many standard texts.



44

Example 0.3.2.1 Theorem 0.3.2.1 contains the theorems of Green and Stokes given in
advanced calculus texts. For example, Stokes theorem is often stated as∫

U

(divξ)dx1dx2dx3 =

∫
∂U

< ξ,n > dσ, (0.3.2.2)

where ξ = (ξ1, ξ2, ξ3) is a vector field on the relatively compact region U ⊂ R3 which we
assume is defined by the inequality F (x1, x2, x3) < 0, dx1dx2dx3 denotes the element of
volume on R3, < ., . > is the standard inner product on R3, n is the unit outward normal to
∂U and the differential dσ is the element of area on ∂U . Since ∂U is defined by the equation
F (x1, x2, x3) = 0, under the assumption of ∂F

∂x3
6= 0, we can represent the surface ∂U as

the graph of a function x3 = x3(x1, x2) by the implicit function theorem. Then by example
0.3.1.3 we have

dσ =

√
( ∂F
∂x1

)2 + ( ∂F
∂x2

)2 + ( ∂F
∂x3

)2

| ∂F
∂x3
|

dx1dx2,

and similar equations in terms of dx2 ∧ dx3 and dx3 ∧ dx1. Since n = gradF
||gradF || , we have

< e1,n > dσ = dx2 ∧ dx3, < e2,n > dσ = dx3 ∧ dx1, < e3,n > dσ = dx1 ∧ dx2,

where e1, e2, e3 is the standard basis for R3. By using the wedge notation we have incorpo-
rated the orientation which has to be taken into account. To derive (0.3.2.2) from theorem
0.3.2.1 we set

ω = ξ1dx2 ∧ dx3 + ξ2dx3 ∧ dx1 + ξ3dx1 ∧ dx2.

This clearly gives (0.3.2.2). This argument generalizes almost verbatim to any number of
dimensions to yield ∫

U

(divξ)dx1 ∧ · · · ∧ dxm+1 =

∫
∂U

< ξ,n > dσ, (0.3.2.3)

where U ıRm+1 is an open relatively compact subset with smooth boundary ∂U . In particular,
setting ξ = x = (x1, · · · , xm+1) we obtain

(m+ 1)vol(U) = (m+ 1)

∫
U

dx1 ∧ · · · ∧ dxm+1 =

∫
∂U

< x,n > dv∂U , (0.3.2.4)

which is a useful special case of Stokes’ theorem. ♠
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In practice it becomes necessary to integrate forms on objects more general than manifolds
or manifolds with boundary. For example, a triangle T with its interior is a manifold with
corners which is more general than a manifold with boundary. It is clear that integration of
2-forms is permissible on T . There are technical results describing the level of permissible
generality in Stokes’ theorem. We shall not dwell on such results, and in many applications
the validity of Stokes’ theorem is quite clear.

The simplest manifolds with boundary are open subsets of Rm with smooth boundary.
Even for m = 2 there are interesting geometric problems which have inspired exciting devel-
opments in geometry and analysis. For instance, one may ask among simple curves in the
plane enclosing a region of a given fixed area, which one has minimal length. By looking at
arbitrarily thin rectangles and smoothing out the corners we obtain curves of arbitrarily large
length enclosing a region of fixed area. It has been conjecturally known since antiquity that
the circle is the unique solution to this problem, however, the first completely satisfactory
proof appeared only late in the nineteenth century. More precisely, we know that if Γ is a
simple closed curve in the plane of length L enclosing a region of area A then

L2 − 4πA ≥ 0, (0.3.2.5)

with equality if and only if Γ is a circle. The inequality (0.3.2.5) is known as the isoperimetric
inquality in the plane. This problem has an obvious generalization to higher dimensions and
the inequality analogous to (0.3.2.5) is

Am ≥ mmcmV
m−1, (0.3.2.6)

where cm is the volume of the unit ball in Rm, A = vol(∂U), V = vol(U) and U ⊂ Rm

is a relatively compact open subset with smooth boundary ∂U . Naturally A is calculated
relative to the volume element corresponding to the Riemannian metric induced from Rm.
We also refer to (0.3.2.6) as the isoperimetric inequality. There are a number of proofs of
(0.3.2.5) which often do not generalize to higher dimensions. Here we give a proof of (0.3.2.6)
based on the Brunn-Minkowski inequality. To state this inequality we need to introduce a
definition. Given subsets K◦, K1 ⊂ Rm and λ ∈ R we define

K◦ +K1 = {x+ y | x ∈ K◦, y ∈ K1}, λKi = {λx | x ∈ Ki}.

We refer to K◦ +K1 as the sum of K◦ and K1. For a compact set K ⊂ Rm let

vm(K) =

∫
K

dx1 ∧ · · · ∧ dxm.

The notion of volume of a compact subset of Rm relative to the Lebesgue measure is defined,
and in particular, if K is contained in a hyperplane then vm(K) = 0. The fundamental
inequality of interest to us is given in the following proposition:
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Proposition 0.3.2.1 (Brunn-Minkowski Inequality) Let K◦, K1 ⊂ Rm be closures of rela-
tively compact open subsets and λ ∈ [0, 1] we have(

vm((1− λ)K◦ + λK1)

) 1
m

≥ (1− λ)vm(K◦)
1
m + λvm(K1)

1
m .

In order to appreciate the significance of this proposition, we show that it implies the
isoperimetric inequality. Let Bε be a ball of radius ε > 0 centered at the origin and Uε =
U +Bε. It follows from proposition 0.3.2.1 that

vm(Uε) ≥
(
vm(U)

1
m + vm(Bε)

1
m )m > vm(U) +mc

1
m
m vm(U)

m−1
m .

Therefore
vm(Uε)− vm(U)

ε
≥ mc

1
m
m vm(U)

m−1
m (0.3.2.7)

It is not difficult to show that the left hand side of (0.3.2.7) tends to vol(∂U) as ε→ 0 (see

also example ?? of chapter 2). This yields vol(∂U) ≥ mc
1
m
m vm(U)

m−1
m which is precisely the

isoperimetric inequality (0.3.2.6).

Remark 0.3.2.1 There are many versions of the isoperimetric dependiong on the class of
objects under consideration. For instance one may limit oneself to triangles in the Euclidean
plane. Let a, b and c denote the lengths of the sides of a triangle, and p = 1

2
(a+ b+ c). Then

the arithmetic geometric mean inequality implies

(p− a)(p− b)(p− c) ≤ p3

27
,

with equality if and only if a = b = c. Since the area of a triangle isA =
√
p(p− a)(p− b)(p− c)

we obtain
p2

3
√

3
≥ A, (0.3.2.8)

with equality for the equilateral triangle. This in particular implies that among all triangles
with the same perimeter, the equilateral triangle has maximum area. Other inequalities of
this type are given in [Had]. The three dimensional situation is considerably more complex.
F. Tóth has shown in [Tot] that if K is a polytope (i.e., the convex closure of a finite set of
points in R3) with non-empty interior, A its surface area and V its volume, then

A3

V 2
≥ 54(n− 2) tanα(4 sin2 α− 1), (0.3.2.9)

where n is the number of 2-faces of K and α = πn
6(k−2)

. This inequality is sharp in the sense
that equality holds for the regular tetrahedron, the cube and the regular dodecahedron. ♥
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Before giving the proof of this proposition it is useful to make some observations. The
quantities vm(K) have the homogeneity property vm(αK) = αmvm(K). If vm(K) = 0, then
the obvious inclusion (1− λ)x+ λK1 ⊂ (1− λ)K◦ + λK1, for all x ∈ K◦ implies

vm((1− λ)K◦ + λK1) ≥ vm((1− λ)x+ λK1) = λmvm(K1),

and the validity of Brunn-Minkowski inequality follows. So we limit ourselves to the case
vm(Ki) > 0. Now if we replace Ki with 1

vm(Ki)
1
m
Ki and λ with

λ′ =
λvm(K1)

1
m

(1− λ)vm(K◦)
1
m + λvm(K1)

1
m

,

the proof of the proposition reduces to the case where vm(Ki) = 1 in which case it will suffice
to prove

[vm((1− λ)K◦ + λK1)]
1
m ≥ 1. (0.3.2.10)

Given a vector ξ ∈ Rm, c ∈ R we let Hξ,c (resp. H−
ξ,c) be the hyperplane (resp. the half-

space) defined by the < x, ξ >= c (resp. < x, ξ >≤ c) where < ., . > denotes the standard
inner product on Rm. Having fixed ξ, for a compact set K ⊂ Rm we set

vm−1(K, c) = vm−1(K ∩Hξ,c), vm(K, c) = vm(K ∩H−
ξ,c) =

∫ c

−∞
vm−1(K, t)dt.

If α is the supremum of all real numbers α′ such that vm−1(K, γ) = 0 for all γ ≤ α′, then we
can change the lower limit of the above integeral from −∞ to α. Let β be the infimum of all
β′ such that for all γ ≥ β′ we have vm−1(K, γ) = 0. In view of the convexity assumption and
vm(K) > 0, vm(K, c) is a strictly increasing function of c on the interval (α, β). Therefore
it has an inverse which we denote by yK(s), i.e., yK(s) = t means vm(K, t) = s. If we
furthermore assume vm(K) = 1 then the domain of yK is (0, 1). Clearly vm(K, t) is a
differentiable function of t since it is defined as an integral of a continuous function, and

y′K(s) =
1

vm−1(K, yk(s))
. (0.3.2.11)

We also need the following elementary lemma:

Lemma 0.3.2.1 Let α, λ, a, b be positive real numbers with λ ∈ (0, 1). Then(
(1− λ)aα + λbα

) 1
α
(

1− λ
a

+
λ

b

)
≥ 1.
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Proof - Taking logarithms from both sides the inequality reduces to

1

α
log

(
(1− λ)aα + λbα

)
+ log

(
1− λ
a

+
λ

b

)
≥ 0.

The convexity property

log((1− λ)a+ λb) ≥ (1− λ) log a+ λ log b (0.3.2.12)

implies the required result. ♣
With these preliminaries out of the way we can prove the Brunn-Minkowski inequality.

Proof of proposition 0.3.2.1 - The proof is by induction on the dimension m. To under-
stand the key point of the argument we first assume the sets Ki are convex. For m = 1,
Ki’s are unit intervals and the proof is immediate. We may assume vm(Ki) = 1 and that it
suffices to establish (0.3.2.10). It is convenient to set Kλ = (1− λ)K◦ + λK1, and

yK,λ(s) = (1− λ)yK◦(s) + λyK1(s).

Define the numbers αλ, βλ as α, β with Kλ replacing K. We have

vm(Kλ) =

∫ βλ

αλ

vm−1(Kλ, t)dt =

∫ 1

◦
vm−1(Kλ ∩Hξ,yK(s))y

′
Kλ

(s)ds.

Using (0.3.2.11) and the obvious inclusion (1 − λ)(K◦ ∩ Hξ,yKλ
(s)) + λ(K1 ∩ Hξ,yKλ

(s)) ⊂
Kλ ∩H(ξ, yKλ

(s)) we obtain

vm(Kλ) ≥
∫ 1

◦
vm−1((1− λ)(K◦ ∩Hξ,yK◦

(s)) + λ(K1 ∩Hξ,yK1
(s)))

(
1− λ
a

+
λ

b

)
ds,

where a = vm−1(K◦, yK◦(s)) and b = vm−1(K1, yK1(s)). In view of the induction hypothesis
this yields

vm(Kλ) ≥
∫ 1

◦

(
(1− λ)a

1
m−1 + λb

1
m−1

)m−1(
1− λ
a

+
λ

b

)
ds. (0.3.2.13)

Applying lemma 0.3.2.1 to (0.3.2.13) we obtain vm(Kλ) ≥ 1 proving the proposition for Ki

convex. The convexity assumption was used to ensure that vm(K, t) is a strictly increasing
function of t. For finite unions of convex sets we can replace the interval (α, β) with finitely
many intervals (αj, βj) on each of which the function vM(K, t) is strictly increasing. We then
approximate the sets Ki with such finite unions. This requires a technical modification of
the proof and will not be pursued here. ♣
Remark 0.3.2.2 The Brunn-Minkowski inequality is valid for Borel sets Ki of finite volume
in Rm. Minkowski established a variety of isoperimetric inequalities for convex sets in Rm.
His work led to the introduction of the concept of mixed volumes by Alexandrov and Fenchel-
Jessen. For an account this subject see [Schn] which also contains extensive references. ♥



0.3. SPECIAL TENSORS AND GEOMETRIC STRUCTURES 49

0.3.3 Vector Fields

A vector field ξ on a manifold determines a system of first order ordinary differential equations
and vice versa. The correspondence is easily described in local coordinates. In fact, in
local coordinates x = (x1, · · · , xm) a vector field has representation ξ =

∑
j ξj

∂
∂xj

and the

corresponding system of differential equations is

dxj
dt

= ξj, for j = 1, 2, · · · ,m. (0.3.3.1)

Note that the right hand side of (0.3.3.1), i.e., the functions ξj, are independent of t (time
independence) so that at every x ∈ M we have a unique tangent vector ξ(x) ∈ TxM .
The transition functions for the tangent bundle or equivalently the chain rule shows that
this coorespondence is well defined. A system of first order ordinary differential equations
admits of a unique solution once the initial data xj(0) = x◦j are specified. A system of the
form

du

dt
= F (t, u), (0.3.3.2)

with explicit time dependence on right hand side, can be converted to one of the form (0.3.3.1)
by replacing the vectors u = (u1, · · · , un) and F with the vectors x = (t, u1, · · · , un) and
f = (1, F1, · · · , Fn).

It is customary to denote the solution x of (0.3.3.1) subject to the initial condition
x(0) = x◦ by ϕt(x

◦) or ϕξt (x
◦), so that in local coordinates

ϕt(x
◦) = (x1(t), x2(t), · · · , xm(t)),

and xj(.) is the unique solution to (0.3.3.1) for initial data xj(0) = x◦j . The maps t →
ϕt(x), defines a curve on M whose tangent vector fields are ξ (along the curve). From time
independence of the functions ξj and the uniqueness of the solution to (0.3.3.1) once the
initial conditions are specified, it follows that ϕt+s(x

◦) = ϕt(ϕs(x
◦)). For this reason ϕt is

sometimes called the one parameter group of the vector field ξ or the differential equation
(0.3.3.1), and the mappings t→ ϕt(x

◦) its trajectories. It is important to note that since the
existence theorem for ordinary differential equations is only a local result, the one parameter
groups ϕt(.) only exist for t in a neighborhood of 0 ∈ R. The mappings x → ϕt(x), for
fixed t ∈ R, are diffeomorphisms of M (of course assuming ϕt(x) exists) and the inverse is
given by x → ϕ−t(x). The one parameter group ϕξt is complete if it exists for all t ∈ R. By
removing points from a manifold we may have situations where ϕξt (x) exists for all t ∈ R but
ϕξt (y) may exist only for t in a bounded interval where x, y ∈M . However,

Lemma 0.3.3.1 Let M be a compact manifold and ξ a vector field on M . Then ϕξt is
complete.



50

Proof - Let x ∈ M and T be the supremum of all s such that the solution ϕt(x) exists for
t ∈ [0, s), and assume T <∞. Let tj ∈ [0, T ) be such that limj tj = T and limj→∞ ϕ

ξ
tj(x) = y

exists (compactness of M). The solution ϕξt (y), t ∈ (−ε, ε) shows that ϕξt (x) extends beyond
T and so ϕξt is complete. ♣

If A is an m×m real matrix then the system of differential equations

dx

dt
= Ax (0.3.3.3)

on Rm is called a linear system and can be explicitly solved. In fact, its solution is given by

x(t) = eAtx◦ =
∞∑
j=0

tj

j!
Ajx◦.

Exercise 0.3.3.1 Consider the linear system (0.3.3.3) for m = 2. Draw the trajectories for
this system (near the origin) for the following cases:

1. Both eigenvalues λ1, λ2 of A have norm > 1 (resp. < 1);

2. A has one positive and one negative eigenvalue;

3. |λ1| = 1 = |λ2|.

A singularity or singular point of a vector field is a point where it vanishes. Clearly
this condition is independent of the choice of coordinate system and is meaningful on a
manifold. Choosing local coordinates x1, · · · , xm in U ⊂ M , we represent a vector field
as ξ = (ξ1(x), · · · , ξm(x)) or more precisely (x1, · · · , xm, ξ1(x), · · · , ξm(x)). Let D denote
differentiation with respect to the variable x ∈ U . A change of variables yi = yi(x1, · · · , xm)
will transform the representation ξ to η given by

η = J−1ξ, where J = (
∂yi
∂xj

),

and ξ denotes the column vector of ξj(x)’s representing the vector field ξ. Note that det J−1 6=
0. We have

Dη = −J−1(DJ)J−1ξ + J−1Dξ.

Since at a singular point ξ(x) = 0, non-vanishing of det(Dξ) is independent of the choice of
the coordinate system. A singularity of the vector field ξ is called simple or nondegenerate
if it satisfies the condition det(Dξ) 6= 0.
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Recall that the gradient of a function ψ on a Riemannian manifold M is defined by the
(0.3.2.1). Since the tangent spaces to the submanifolds ψ = constant are defined by dψ = 0,
the gradient vector field gradψ is orthogonal to the submanifolds ψ = constant. One easily
verifies that in terms of local coordinates (x1, · · · , xm) the gradient vector field is given by
the (row) vector

gradψ ←→ Ψ′g−1, where Ψ′ = (
∂ψ

∂x1

, · · · , ∂ψ
∂xm

). (0.3.3.4)

It is clear that the singularities of gradψ are precisely the critical points of the function
ψ, i.e., points where dψ vanishes. From the local representation of the gradient vector field
it follows that nondegeneracy of a singular point of gradψ is equivalent to nonsigularity of
the Hessian of ψ which is defined as

H(ψ) = (
∂2ψ

∂xj∂xk
). (0.3.3.5)

While the above argument establishes independence of nonsingularity of the Hessian at a
critical point from the choice of coordinate system, it is useful to calculate the transformation
formula for the Hessian. Clearly we have

∂2ψ

∂xj∂xi
=

∑
k,l

∂2ψ

∂yk∂yl

∂yk
∂xj

∂yl
∂xi

+
∑
k

∂ψ

∂yk

∂2yk
∂xj∂xi

(0.3.3.6)

At a critical point the second sum in (0.3.3.6) vanishes. Therefore the Hessian at a critical
point transforms as a quadratic form under a linear change of coordinates. Consequently, the
non-vanishing of det H(ψ) and the number of positive and negative eigenvalues of H(ψ) at a
critical point are independent of the choice of the coordinate chart. The Morse index of ψ at
a nondegenerate critical point x ∈M is the number of negative eigenvalues of the symmetric
matrix H(ψ). A function ψ : M → R all whose critical points are nondegenerate is called a
Morse function. The set of critical points of a Morse function is necessarily discrete. The
most basic example of a Morse function f : Rm → R with a unique critical point of Morse
index p is:

f(x) = −x2
1 − · · · − x2

p + x2
p+1 + · · ·+ x2

m. (0.3.3.7)

We shall return to the discussion of Morse index and its geometric implications later.

Example 0.3.3.1 Let R > r > 0 and consider the surface defined by the equation

F (x1, x2, x3) ≡ (x2
1 + x2

2 −R2)2 + x2
3 − r2 = 0.
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It is not difficult to see that this equation defines a compact submanifold M diffeomorphic
to a torus. Let ψ be the restriction of the linear map

Ψ : (x1, x2, x3) −→ ax+ cz

where a, c are real numbers, to M . The critical points of ψ are computed by solving the
equations

(
∂Ψ

∂x1

,
∂Ψ

∂x2

,
∂Ψ

∂x3

) = λ(
∂F

∂x1

,
∂F

∂x2

,
∂F

∂x3

), F (x1, x2, x3) = 0.

These equations mean that we are on M and the derivative of the function Ψ is normal to
the surface M . In other words, dΨ vanishes on the tangent space to M . Examining these
equations in detail one sees easily that if a 6= 0 then ψ has four critical points. If a = 0, then
the subsets

x2
1 + x2

2 − 4 = 0, x3 = ±1

consist of critical points of the function ψ. It is a simple calculation to see that if a 6= 0, then
the four critical points of ψ are nondegenerate. There is one maximum and one minimum
which have indices two and zero, and the other two critical points have index one. Figure
(XXX) explains the situation intuitively. For a = 0, ψ is not a Morse function. ♠

0.3.4 Poincaré Lemma and the Theorem of Frobenius

A p-form ω is closed if dω = 0, and is exact if there is η such that dη = ω. Since dd = 0,
every exact form is closed. The local converse to this fact is the Poincaré lemma.

Theorem 0.3.4.1 (Poincaré Lemma) Let ω be an closed p-form on a star shaped region U
in Rn. Then ω is exact, i.e., there is a p− 1-form η defined in U such that dη = ω.

The reader is referred to [Ca] for the standard proof of this theorem. Poincaré lemma and
corollary 0.3.4.1 below are valid for forms with values in a vector or even a Banach space.
The proof carries over without change. The special case of the Poincaré Lemma for 1-forms
may be restated as follows:

Corollary 0.3.4.1 Let f1, · · · , fn be C1 functions on a star-shaped region in Rn. Then there
is a function f such that ∂f

∂xi
= fi if and only if ∂fi

∂xj
=

∂fj

∂xi
for all i, j.
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A remarkable application of the Poincaré Lemma (and the implicit function theorem) is
the celebrated integrability theorem of Frobenius which we now describe. Let I = (−1, 1),
In denote the product of n copies of I, E = Rk (or even a Banach space), U ⊂ E an open
ball centered the origin, and

f : In × U → L(Rn, E),

where L(Rn, E) denotes the set of linear maps of Rn into E. Consider the system of partial
differential equations

Dtu = f(t, u), (0.3.4.1)

where Dt denotes the derivative with respect to the variable t = (t1, · · · , tn) ∈ In, and
u : In → E is the unknown function. The theorem of Frobenius gives necessary and sufficient
conditions for integrability of (0.3.4.1). By integrability of (0.3.4.1) we mean the existence,
for every (t◦, x◦) ∈ In × U , of a unique (local) solution u(.) such that u(t◦) = x◦. Note
that for n = 1, (0.3.4.1) reduces to a system of ordinary differential equations for the (time
dependent) system (0.3.3.2). The proof given below is an adoptation of the argument in [R]
for the existence theorem of ordinary differential equations. For n > 1 there is an obvious
necessary condition, namely

D1f(t, x)(τ1)(τ2) +D2f(t, x)(f(t, x)(τ1))(τ2) = D1f(t, x)(τ2)(τ1) +D2f(t, x)(f(t, x)(τ2))(τ1)
(0.3.4.2)

This condition is simply the symmetry of the second derivative, and is derived from (0.3.4.1)
by applying Dt to both sides of (0.3.4.1), and using the chain rule. To show sufficiency
we use Corollary 0.3.4.1 and the implicit function theorem. Let k ≥ 1, Ck(In;E) denote
the space of k times continuously differentiable mappings of In to E, and Ck,◦(In;E) the
subspace consisting of maps v with v(0) = 0. We also let Ck,◦(In;U) ⊂ Ck,◦(In;E) be the
open subset consisting of those maps with take values in U . Let Ck

s (I
n;L(Rn, E)) be the

subspace of Ck(In;L(Rn, E)) consisting of maps v : In → L(Rn, E) such that

Dtv(τ1, τ2) = Dtv(τ2, τ1),

for all τi ∈ Rn. Consider the map F : R× U × Ck,◦(In;E)→ Ck−1
s (In;L(Rn, E)) given by

F (a, x, v)(t) = Dtv(t)− af(at, x+ v(t, x))

In view of (0.3.4.2) the image of F lies in Ck−1
s (In;L(Rn, E)). The derivative of F relative

to the third variable Ck,◦(In;E) is

D3F (0, x,0)(δ)(t) = Dtδ(t) : Rn → L(Rn, E).
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From corollary 0.3.4.1 to the Poincaré Lemma we see that D3F (0, x, 0) is a topological
isomorphism onto the linear space Ck−1

s (In;L(Rn, E)). Therefore the implicit function the-
orem is applicable and we obtain an open set (−2ε, 2ε) × V ⊂ R × U and a mapping
ϕ : (−2ε, 2ε)× V → Ck,◦(In;E) such that

F (a, x, ϕ(a, x)) = 0.

Define u : (−ε, ε)n × V → U by

u(t;x) = ϕ(ε, x)(t/ε) + x.

It follows that u is the desired (local) solution to (0.3.4.1). Uniqueness follows from the
uniqueness assertion of the implicit function theorem. Therefore we have shown

Corollary 0.3.4.2 (Frobenius Integrability Theorem) The system (0.3.4.1) is integrable if
and only if f satisfies the integrability condition (0.3.4.2).

The above proof of the integrability theorem of Frobenius demonstrates the general prin-
ciple that sometimes a nonlinear problem (e.g. (0.3.4.1) under the assumption (0.3.4.2))
may be solved by linearizing the problem which is more easily solvable (in this case via the
Poincaré Lemma or corollary 0.3.4.1) and then using the implicit function theorem to obtain
the solution to the original nonlinear problem.

It is customary to restate corollary 0.3.4.2 in a form more suitable for applications. To
this end let ω1, · · · , ωk be smooth 1-forms on the manifold M , and assume that at every point
x ∈ M , ω1(x), · · · , ωk(x) are linearly independent. Let Ex = {τx ∈ TxM |ωj(x)(τx) = 0}.
Then E = ∪x∈MEx is a sub-bundle of rank m − k the tangent bundle TM . A sub-bundle
of the tangent bundle of a manifold is often called a distribution. A system of the form
ω1 = 0, · · · , ωk = 0, where ωj’s are 1-forms linearly independent at every point of a manifold
M is called a Pfaffian system.

Corollary 0.3.4.3 (Frobenius) With the above notation and hypotheses, for every x ∈ M
there is an immersed submanifold N ⊂M through x such that the restriction EN of E to N
is the tangent bundle of N , if and only if any one of the following three equivalent conditions
is satisfied:

1. For every pair of sections ξ, η of E →M , the bracket [ξ, η] is also a section of E →M ;

2. For every j, dωj lies in the ideal I generated by ω1, · · ·ωk in the ring of all smooth
differential forms on M , (this means there are 1-forms αjl such that

dωj =
m∑
l=1

αjl ∧ ωl

for every j;)
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3. For every j

dωj ∧ ω1 ∧ · · · ∧ ωk = 0.

If N exists we say the distribution E →M is integrable.

Proof - The equivalence of (a) and (b) follows easily from the exterior differentiation formula
for a p-form ω

dω(ξ◦, · · · , ξp) = 1
p+1

∑p
i=0(−1)iξi(ω(ξ◦, · · · , ξ̂i, · · · , ξp))+

1
p+1

∑
0≤i<j≤p(−1)i+jω([ξi, ξj], ξ◦, · · · , ξ̂i, · · · , ξ̂j, · · · , ξp),

(0.3.4.3)

where ξ̂i means ξi is omitted. In this formula ξi(ω(ξ◦, · · · , ξ̂i, · · · , ξp)) means ξi is applied

as a differential operator to the function ω(ξ◦, · · · , ξ̂i, · · · , ξp). The equivalence of (b) and
(c) is a simple exercise. To see the equivalence of this formulation and the statement of
corollary 0.3.4.2, let (U,ϕU) be a coordinate chart and (x1, · · · , xm) be the coordinates of a
point in ϕU(U). Let n = m− k and identify U with ϕU(U). After a possible permutation of
the coordinates we may assume that dx1, · · · , dxn, ω1, · · · , ωk is a basis at every point of U .
To relate condition (b) to the integrability condition of corollary 0.3.4.2, i.e. (0.3.4.2), it is
convenient to introduce some notation. Let

x =

x1
...
xm

 , x′ =

x1
...
xn

 , u =

xn+1
...
xm

 , ω =

ω1
...
ωk

 .

Then there is an invertible k × k matrix A = (αij) of smooth functions such that

du = Aω + fdx′, (0.3.4.4)

where f = (fij) is a k × n matrix of smooth functions of x. Taking exterior derivative of
(0.3.4.4) we obtain

dA ∧ ω + Adω = −df ∧ dx′. (0.3.4.5)

Now by (0.3.4.4)

dfij =
n∑
k=1

∂fij
∂xk

dxk +
m∑

s=n+1

n∑
l=1

∂fij
∂xs

fsldxl mod I. (0.3.4.6)
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In view of (0.3.4.5) the condition dω ∈ I is equivalent to the vanishing of the coefficient of
dxi ∧ dxj, for 1 ≤ i < j ≤ n, for all the entries of df ∧ dx′. Substituting (0.3.4.6) in df ∧ dx′,
this condition becomes

∂fij
∂xk

+
m∑

s=n+1

∂fij
∂xs

fsk =
∂fik
∂xj

+
m∑

s=n+1

∂fik
∂xs

fsj. (0.3.4.7)

This is precisely the integrability condition of corollary 0.3.4.2 for the solvability of the system
of partial differential equations Aω ≡ du− fdx′ = 0, where u is the unknown function of the
independent variables x′. Since A is invertible, solvability of this system is equivalent to the
integrability assertion of the corollary as desired. ♣

Remark 0.3.4.1 Note that the integral manifold for the Pfaffian system ωj = 0, j =
1, · · · , k, is represented as the graph of an Rk-valued function u defined on an open subset of
Rm−k. It is in this form that we have uniqueness of local solution to the system (0.3.4.1), that
is, there is a unique integral manifold of the Pfaffian system passing through a pre-assigned
point (t◦, x◦) ∈ Rm−k × Rk. This is similar to converting the differential equation (0.3.3.2)
to the time independent form (0.3.3.1). Since in geometric applications of Pfaffian systems,
the variables t = (t1, · · · , tm−k) are not a priori separated, it is judicious to directly treat
(0.3.4.1) rather than the form analogous to time idependent form (0.3.3.1) of a system of
ordinary differential equations. ♥

Let E → M be an integrable distribution defined by linearly independent 1-forms
ω1, · · · , ωk. By maximally extending a local solution N to the integrable distribution E →M
we obtain an immersed submanifold of M . The fact that local solutions can be patched to-
gether to obtain maximal global solutions which are immersed submanifolds uses the unique-
ness part of the the definition of integrability. The maximal or global solutions are, in
general, not embedded submanifolds. For example on the torus T 2 = S1 × S1 the 1-form
ω = a1dx1 + a2dx2 where a1 and a2 are real numbers linearly independent over the rational
numbers, defines an integrable distribution with every maximal integral manifold dense in
T 2.

By a foliation of a manifold N we mean a decomposition N = ∪Nα into disjoint union
of submanifolds Nα of the same dimension; dimN − dimNα is called the codimension of
the foliation, and each Nα is a leaf of the foliation. An integrable Pfaffian system defines a
foliation of the underlying manifold.

Remark 0.3.4.2 One often encounters the situation where a submanifold M ⊂ RN is given
and we want to study the geometry of M . We shall see in the next chapter that it is
generally convenient to specify M as an integral manifold of a system of 1-forms ωp = 0
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where p = m + 1, · · · , N . This means that we are considering a family of submanifolds of
RN which more or less look like M . It is no loss of generality to regard the manifold M
as the zero set of an RN−m-valued function F = (F1, · · · , FN−m) of N variables. To embed
M in a family we consider for every fixed value of t = (t1, · · · , tN−m), the submanifold
defined by F (x1, · · · , xN) = t, provided the hypotheses of the implicit function theorem
are fulfilled relative to the variables x1, · · · , xN . The submanifolds Mt fill out an open
set in RN . These submanifolds are the integral manifolds for the Pfaffian system ωp = 0
where p = m + 1, · · · , N and ωm+j = dFj. Of course some mild assumptions on F are
necessary. For example we want to avoid equations such as F (x1, x2) = (x2

1 + x2
2 − 1)2 since

F (x1, x2) = t < 0 makes no sense for real quantities. It is unnecessary for our purposes to
elaborate on this issue. (This should not be construed as the assertion that points where
the implicit function theorem fails are not of interest, since significant information is often
encoded in singularities. The point is that it is generally clear from the context whether we
want to examine the nature of a singularity or dealing with the generic nonsingular case.) The
exact form of the vector valued function F is generally inconsequential. It should be pointed
out that there are many situations where it is convenient/essential to consider equations
of the form F (x1, · · · , xN ; t1, · · · , tk) = 0 with t = (t1, · · · , tk) regarded as k-parameters.
In such cases we generally make reasonable assumptions about the rank of the matrix of
partial derivatives relative to tj’s so that the implicit function theorem becomes applicable
and proceed in the natural manner. Such necessary assumptions are often implicit and not
necessarily explicitly stated. These points and their significance will become more clear when
we study Riemannian geometry in the next chapter, and the example that follows describes
an elementary situation. ♥

Example 0.3.4.1 Assume k = 1 and N = 3 in the preceding remark so that we have
a one parameter family of surfaces Mt defined by the equation F (x1, x2, x3; t) = 0. It is
understood that the surfaces in question are in the (x1, x2, x3)-space and the hypotheses of
the implicit function theorem are satisfied to avoid singularities and unnecessary pathologies.
For ∂F

∂t
(x1, x2, x3; t) 6= 0, we can locally solve F = 0 for t = Φ(x1, x2, x3) and thus the surfaces

Mt are also represented as integral manifolds for a 1-form θ = 0. Differentiating F with
respect to t we obtain the family of surfaces defined by G(x1, x2, x3; t) = 0 where G = ∂F

∂t
.

Solving this equation for t we obtain t = Ψ(x1, x2, x3). For each value of t, the system of
equations

Φ(x1, x2, x3) = t, Ψ(x1, x2, x3) = t,

defines a curve γt in R3 called the characteristic of the surfaceMt. Now as t varies, the system
of curves γt gives a surface in R3 which we denote by Γ. Γ is called the enveloping surface
of the family of surfaces F (x1, x2, x3; t) = 0. Notice that Γ is an integral manifold for the
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1-form ω = 0 where ω = d(Φ− Ψ). The enveloping surface Γ which is an integral manifold
for ω = 0 is obviously defined by the equation H(x1, x2, x3) = 0 where H is obtained by
eliminating t from the equations

F (x1, x2, x3; t) = 0, G(x1, x2, x3; t) = 0.

Geometrically this locus is the (orthogonal) projection of the surface in R4 defined by F =
0, G = 0 on the three dimensional space with (x1, x2, x3) coordinates. We shall return to this
example in the subsection Flat Surfaces and Parallel Translation in the next chapter. ♠

Exercise 0.3.4.1 Let R > r > 0 and consider the family of spheres of radius r > 0 (fixed)
and centers on the circle x2

1 + x2
2 = R2, x3 = 0. Show the envelope of family of spheres is

given by

(x2
1 + x2

2 + x2
3 + r2 −R2)2 − 4r2(x2

1 + x2
2) = 0.

Which familiar surface is this envelope?

Exercise 0.3.4.2 Assume a one parameter family of surfaces is defined implicitly as

F (x1, x2, x3; s, t) = 0, ψ(s, t) = 0.

Show that the equation of the enveloping surface is obtained by eliminating s and t from the
equations

F = 0, ψ = 0,
∂F

∂s

∂ψ

∂t
− ∂F

∂t

∂ψ

∂s
= 0.

0.3.5 Lie Algebras and Maurer-Cartan Equations

Consider GL(m,R) ⊂ Rm2
. A left invariant vector field has a simple description in this case.

Let A ∈ Mm(R) be an m ×m matrix regarded as a tangent vector at I to GL(m,R). Left
translation by g ∈ GL(m,R) is the linear map h → gh, and its derivative is linear map
A → gA. Therefore the left (resp. right) invariant vector field ξA determined by A assigns
the tangent vector gA (resp. Ag) at the point g ∈ GL(m,R). The ordinary differential
equation determined by the left invariant vector field ξA is

dg

dt
= gA, (0.3.5.1)
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on GL(m,R). Then the solution curve to this equation passing through I is g(t) = exp(tA)
(see also (0.3.3.3)) where

exp(A) =
∑
k

Ak

k!
.

(Similar remark applies to the right invariant case by replacing gA with Ag in (0.3.5.1).)
The map A → exp(A) is called the exponential map. The considerations are valid if we
replace R by C, and we can even consider the complex analogue of the ordinary differential
equation (0.3.5.1), however, we are generally only interested in the real structure. Clearly,
exp satifies the equation

exp((t+ s)A) = exp(tA) exp(sA), for s, t ∈ K, (0.3.5.2)

so that, for every fixed matrix A, t → exp(tA) is a group homomorphism K → GL(m,K)
where K = R or C. However, if A and B do not commute, then exp(A) exp(B) 6= exp(A+B)
(see remark 0.3.5.1 below).

Lemma 0.3.5.1 The tangent vector field to the curve exp(tA), where A is an m×m matrix
is the restriction to exp(tA) of the left (or right) invariant vector field ξ on GL(m,K)
represented by the matrix A.

Proof - Follows from the identification of A with a left (or right) invariant vector field on
GL(m,R). ♣

Exercise 0.3.5.1 Show that the derivative of exp at 0 ∈ Mm(K) is the identity map and
exp is an analytic diffeomorphism of a neighborhood of the origin onto a neighborhood of
I ∈ GL(m,K).

Exercise 0.3.5.2 Show that exp : GL(m,C) → GL(m,C) is surjective, and the same con-
clusion is valid for SL(m,C).

Now if G ⊂ GL(m,R) is an analytic group, and A is tangent to G at e = I, then for
g ∈ G, both vectors gA and Ag will be tangent to G at g since multiplication on left or
right by g maps a neighborhood of e ∈ G onto a neighborhood of g ∈ G. Consequently the
solution curves exp(tA) remain in G for all t ∈ R. Let ρ : G→ GL(N,R) be a representation
Of G, and define the linear map ρ′ : G → GL(N,R) as

ρ′(A) = lim
t→0

ρ(t exp(A))− I
t

=
dρ(t exp(A))

dt |t=0
. (0.3.5.3)
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Then exp(tρ′(A)) is the solution to the differential equation (0.3.5.1) on GL(N,R) passing
through I at t = 0. It follows that we have the commutative diagram

G ρ′−→ GL(N,R)
exp ↓ ↓ exp

G
ρ−→ GL(N,R)

(0.3.5.4)

Since there is no likelihood of confusion, we shall also use ρ rather than ρ′ for the linear map
of Lie algebras defined by (0.3.5.3).

The linear space G of left invariant vector fields on the Lie group G has an important alge-
braic structure. A left invariant vector field ξ maybe regarded as a homogeneous differential
operator of first order on G which is invariant under the left action of the group. Therefore
the composition of two left invariant vector fields, ξ and η, is a left invariant differential
operator of second order. On the other hand, the bracket or commutator defined by

[ξ, η] = ξη − ηξ (0.3.5.5)

is a left invariant homogeneous first order differential operator since the second order terms
cancel out for obvious reasons. Therefore G is closed under the bracket operation. Clearly
[ξ, η] + [η, ξ] = 0 and by a simple substitution from (0.3.5.5) we see that the Jacobi identity
is valid:

[ξ, [η, ζ]] + [ζ, [ξ, η]] + [η, [ζ, ξ]] = 0. (0.3.5.6)

A vector space G together with an antisymmetric pairing [, ] : G × G → G, and satisfying
the Jacobi identity is called a Lie algebra. In classical literature, the elements of the Lie
algebra are referred to as infinitesimal generators. Naturally we denote the Lie algebras of
GL(m,K), SU(m) etc. by GL(m,K), SU(m) etc.

To understand the commutator of left invariant vector fields and for important geometric
reasons, we now introduce the Maurer-Cartan equations. Denote the matrix of 1-forms g−1dg
on GL(m,K) by ω. Since dg−1 = −g−1(dg)g−1 we obtain the important relation (known as
Maurer-Cartan equations)

dω + ω ∧ ω = 0. (0.3.5.7)

Notice that here by ω∧ω we mean matrix multiplication except that ordinary multiplication
of scalars is replaced by wedge product of 1-forms. In long hand notation (0.3.5.7) means

dωij +
∑
k

ωik ∧ ωkj = 0. (0.3.5.8)
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If ϕ : G→ GL(m,K) is a homomorphism, then ϕ?(ω) is matrix of left invariant 1-forms on
G and satisfies

dϕ?(ω) + ϕ?(ω) ∧ ϕ?(ω) = 0, or dϕ?(ωij) +
∑
k

ϕ?(ωik) ∧ ϕ?(ωkj) = 0.

Note also that if ϕ is injective then the matrix ϕ?(ω) contains a basis of left invariant 1-
forms for G. If G is a closed subgroup of GL(m,K) we simply write ω instead of ϕ?(ω). The
Maurer-Cartan relations have profound geometric implications which to some extent will be
exploited in this text.

We had noted earlier that G can be identified with the tangent space at the identity,
which for matrix groups such as SL(m,R), SO(m) etc. was a linear space of matrices. The
Maurer-Cartan equations enable us to translate the bracket operation [, ] on the Lie algebra
into an algebraic operation in the corresponding linear spaces of matrices. To do so, first
consider G = GL(m,R) so that G = GL(m,R) = Mm(R) is the linear space of m ×m real
matrices. (We use the notation GL(m,R) rather than Mm(K) to emphasize the Lie algebra
structure.) The entries ωij of the matrix ω = g−1dg form a basis for left invariant 1-forms.
Let the dual left invariant vector fields be denoted by ξij so that ωij(ξkl) = δikδjl. The
formula for exterior differentiation simplifies into

dβ(η, ζ) = −1

2
β([η, ζ]) (0.3.5.9)

for a left invariant 1-form β and left invariant vector fields η and ζ. Setting η =
∑
Aklξkl,

ζ =
∑
Bklξkl and β = ωij and using the Maurer-Cartan equations dωij +

∑
ωik ∧ ωkj = 0

and (0.3.5.9), we obtain after a simple calculation

ωij([A,B]) =
∑
k

(AikBkj −BikAkj). (0.3.5.10)

This equation means that under the identification of left invariant vector fields on G =
GL(m,R) with m × m matrices, the bracket of left invariant vector fields translates into
the commutator [A,B] = AB − BA of matrices. In this manner, the complex operation of
computing the commutator of differential operators becomes the much simpler problem of
algebraically calculating brackets of matrices. A Lie algebra G is abelian if for all ξ, η ∈ G we
have [ξ, η] = 0. A homomorphism ρ : G → L of Lie algebras is a linear mapping such that

ρ([ξ, η]) = [ρ(ξ), ρ(η)].

A representation of a Lie algebra G is a Lie algebra homomorphism ρ : G → GL(N,K) where
K = R or C. Sometimes it may be necessary to specify whether a representation is real or
complex. The trivial homomorphism of a Lie algebra is a mapping taking everything to 0.
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Remark 0.3.5.1 According to the Baker-Campbell-Hausdorff formula (abbreviated as BCH)
we have

exp(A) exp(B) = exp(γ(A,B)),

where

γ(A,B) = (A+B) +
1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]]) + · · ·

(The nth term of γ(A,B) is the sum of certain n-fold brackets of A and B.) This formula
has the limitation that the series for γ(A,B) is generally divergent and generically converges
only when both A and B are in a small neighborhood of the origin. For example, consider

g =

(
−es 0
0 −e−s

)
∈ SL(2,R), and note that g = exp(A) exp(B) where

A =

(
0 π
−π 0

)
, B =

(
s 0
0 −s

)
.

We will show that γ(A,B) is necessarily divergent for s 6= 0. First we prove that if s 6= 0
then g 6= exp(C) for any real matrix C. In fact, the eigenvalues λi of C are either both real
or they are complex conjugates of each other. In either case it is impossible to satisfy both
equations

eλ1 = −es, and eλ2 = −e−s.

Since A−1 exp(C)A = exp(A−1CA) we have shown g 6= exp(C) for s 6= 0. (See also exercise
0.3.5.2 above.) Since g = exp(A) exp(B), this implies that the series γ(A,B) is necessarily
divergent for all s 6= 0. The proof of BCH can be found in many texts on Lie groups and/or
Lie algebras (e.g. [Ho]).

Let G ⊂ GL(m,R) be a Lie subgroup. In view of (0.3.5.4) and the convergence of the
series γ(

√
tA,
√
tB) in BCH for t > 0 sufficiently small, and (0.3.5.4) we have

ρ(exp(t[A,B]))(v)− v
t

=
ρ(exp(

√
tA) exp(

√
tB))(v)− ρ(exp(

√
tB) exp(

√
tA))(v)− v

t
+O(t1/2).

It then follows easily that the linear map ρ : G → GL(N,R) is a representation of Lie
algebras, i.e., ρ([A,B]) = [ρ(A), ρ(B)]. ♥
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Example 0.3.5.1 The Lie algebra operation [., .] on SO(3) is related to the vector product
× on R3 familiar from advanced calculus. Consider the basis

f1 =

0 −1 0
1 0 0
0 0 0

 , f2 =

0 0 −1
0 0 0
1 0 0

 , f3 =

0 0 0
0 0 −1
0 1 0

 ,

for SO(3) which is orthonormal relative to the inner product 1
2
Tr(AB). Furthermore,

[f1, f2] = f3, [f2, f3] = f1, [f3, f1] = f2.

It follows that the linear mapping fj → ej, where e1, e2, e3 is the standard basis for R3,
preserves inner products and maps Lie algebra operation [., .] into vector product. Jacobi
identity for SO(3) translates into the vector identity

a× (b× c) = c× (b× a)− b× (c× a).

The invariance condition Tr(ad(ξ)η, ζ) + Tr(η, ad(ξ)ζ) = 0 translates into

(a× b).c− (c× a).b = 0,

where . denotes the standard inner product on R3. The standard identity

a× (b× c) = (a.c)b− (a.b)c

is proven by using tri-linearity and checking its validity on basis vectors ej or fj. ♠

Example 0.3.5.2 In this example we look at the group SO(4) which plays an important
role in geometry and has features different from other orthogonal groups. It is most easily
understood by introducing Hamilton’s quaternions. Let H be the division algebra of Hamil-
ton quaternions, i.e., the real vector space of dimension 4 with basis 1, i, j,k and law of
multiplication given by (1 is the identity)

ij = k = −ji, jk = i = −kj, ki = j = −ik.

There is the operator of conjugation on H given by

q = a◦1 + a1i + a2j + a3k −→ q? = a◦1− a1i− a2j− a3k.

We define inner product on H via the positive definite quadratic form ||q||2 = qq?. Since
||qq′|| = ||q|| ||q′||, the unit sphere in H is a group with the inverse of q being q?. It is called
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the group of unit quaternions. Quaternions can be represented as 2 × 2 complex matrices.
In fact, the mapping

1→
(

1 0
0 1

)
, i→

(
i 0
0 −i

)
, j→

(
0 1
−1 0

)
, k→

(
0 i
i 0

)
,

realizes H as a division algebra of 2× 2 matrices over R. Since SU(2) is the set of complex

matrices

(
a+ ib c+ id
c− id a− ib

)
such that a2 + b2 + c2 + d2 = 1, it can be identified be the

unit quaternions. Note that multiplication of unit quaternions is identical with the group
operation in SU(2). This enables us to define a homomorphism δ : SU(2)×SU(2)→ SO(4)
by

δ(q′, q)(x) = q′xq?, x ∈ H, q, q′ ∈ SU(2).

Now ker δ = ±(I, I) and therefore SO(4) ' SU(2)× SU(2)/(±(I, I)) for dimension reasons
and connectivity. ♠

Example 0.3.5.3 It is useful to look at the Lie algebra version of the isomorphism of
example 0.3.5.2. The Lie algebra of K = SO(4) is the space of 4 × 4 skew symmetric
matrices. To compute the decomposition of K corresponding to the product structure of
SO(4), we consider the basis for SU(2) consisting of matrices

κ1 =

(
i 0
0 −i

)
, κ2 =

(
0 −1
1 0

)
, κ3 =

(
0 i
i 0

)
.

Regarding exp(tκl) as a quaternion we compute the linear transformations

q → d

dt |t=0

exp(tκl)q, q → d

dt |t=0

q exp(tκl), l = 1, 2, 3,

and regard them as 4 × 4 matrices. After a simple calculation we see that the desired
isomorphism at the level of Lie algebras translates into the decomposition K = K1 ⊕ K2

where Ki is the set of real matrices of the form

K1 :


0 −a −b −c
a 0 −c b
b c 0 −a
c −b a 0

 , K2 :


0 −a −b −c
a 0 c −b
b −c 0 a
c b −a 0


Note Ki ' SO(3) and SO(3) ' SU(2)/± I. ♠
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Quaternions can be used to give an alternative interpretation to the compact symplectic
group. For an n×n matrix A = (Aij) with entries from H, define its conjugate as A? = (A?ij)
where

(A?)ij = (Aji)
?.

Then it is easily verified that (AB)? = B?A?. Consequently the subset of those A’s with
the property A?A = I is a group which we temporarily denote by U(n,H). This is the
analogue of the unitary group where complex numbers are replaced by quaternions. It is
readily verified that U(n,H) is a compact group. To better understand U(n,H) we make
use of the isomorphism between the space Hn of n-tuples of quaternions and C2n by writing
each component of q = (q1, · · · , qn) as

qj = 1zj + jzn+j,

where zk’s are complex numbers. This gives the embedding  : U(n,H) → U(2n). The
following exercise shows that U(n,H) ' USp(n):

Exercise 0.3.5.3 With the above notation show that Im is the subgroup of 2n× 2n unitary
matrices leaving the bilinear forms

2n∑
j=1

z̄jwj and
n∑
j=1

(zjwn+j − zn+jwj)

invariant. Deduce the isomorphism U(n,H) ' USp(n), and in particular USp(1) ' SU(2).

Example 0.3.5.4 In this example we use the algebra of quaternions to give a generalization
of the upper half plane with the action of fractional linear transformation to dimension three.
The upper half space is defined as

H3 = {z + tj | z ∈ C, t > 0}.

For g =

(
a b
c d

)
∈ SL(2,C), ζ ∈ H3 define

g : ζ −→ g · ζ = (aζ + b)(cζ + d)−1.

Here ζ = z + tj is regarded as a quaternion and all algebraic operations are carried in the
algebra of quaternions. Naturally i is identified with i =

√
−1. It is straightforward to verify

that g · ζ has no component along the quaternion k and its j-component is positive. The
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isotropy subgroup of the quaternion j is the special unitary group SU(2) ⊂ SL(2,C). The
upper half space can be identified with the space P2 of 2 × 2 positive definite hermitian
matrices of determinant 1. In fact, consider the mapping

p : SL(2,C) −→ P2, A −→ AA?,

where A? denotes the complex conjugate transpose of A. Then p is surjective and endows
p : SL(2,C)→ P2 with the structure of a principal fibre bundle with structure group SU(2).
Every P ∈ P2 has the unique decomposition of the form

P = AA?, where A =

(
1 z
0 1

) (√
t 0

0 1√
t

)
.

To relate left action of SL(2,C) on P2 ' SL(2,C)/SU(2) to that on H3 we make use of a
simple trick. Write ζ = z + tj and note(

1 z
0 1

) (√
t 0

0 1√
t

) (
j
1

)
=

(
ζ
1

)
1√
t

A matrix

(
u v
−v̄ ū

)
∈ SU(2) is identified with the quaternion u+ jv and(

u v
−v̄ ū

) (
j
1

)
=

(
j
1

)
(ū− v̄j).

To calculate the effect of g =

(
a b
c d

)
∈ SL(2,C) we therefore write

gA

(
j
1

)
=

(
j′

1

)
1√
t′

(ū− v̄j)

for some positive real number t′ and quaternion u + jv. Setting ζ = z + tj this equation
yields (

aζ + b
cζ + d

)
1√
t

=

(
ζ ′

1

)
1√
t′

(ū− v̄j), (0.3.5.11)

where ζ ′ = g · ζ ∈ H3, t
′ is the component of ζ ′ along j. Comparing the components of the

vectors on both sides of (0.3.5.11) we obtain

ζ ′ = (aζ + b)(cζ + d)−1, t′ =
t

|cζ + d|2
. (0.3.5.12)

This simple trick is also applicable to SL(2,R) acting on H2. ♠
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Let G ⊂ GL(m,R) be an analytic group. From the validity of BCH for A,B in a
small neighborhood of 0 ∈ G, it follows that if g ∈ G is sufficiently close to e = I, then
G is invariant under the linear transformation A → gAg−1. Since G is generated by any
neighborhood of identity, G is invariant under the conjugation action of G. We denote the
linear transformation A→ gAg−1 by Ad(g) and call it the adjoint representation of G. Recall
that for G = GL(m,K), and m×m matrix A representing a tangent vector at the identity,
then the left (resp. right) invariant vector fields extending A is the tangent vector field gA
(resp. Ag) at g ∈ G. Therefore, identifying GL(m,K) with left invariant vector fields, the
adjoint representation describes the effect of right translation on a left invariant vector field.
The representation of G corresponding to Ad is denoted by ad and it is easily verified that
it is given by

ad(A)(B) = AB −BA = [A,B].

Note that the Jacobi identity implies that ad is a representation of Lie algebras.
It should be pointed out that there are circumstances where the meaning of left invariant

vector fields as differential operators and not just as matrices plays a pivotal role. Further-
more, the product of two left invariant vector fields does not correspond to their matrix
product. In fact, the associative algebra generated by products of left invariant vector fields
regarded as differential operators, is infinite dimensional and plays an important role in
representation theory. It is called the universal enveloping algebra of G.

Let G ⊂ GL(m,R) be a Lie group and assume G acts on the manifold M smoothly. An
important special case is when M = KN where K = R, or C and we have a representation
ρ : G → GL(N,K) so that G acts as group of linear transformations. Now we show that
any smooth action of G on M allows one to assign to every left invariant vector field on G,
a homogeneous first order differential operator on M , and in fact, induces a homomorphism
of the universal enveloping algebra of G to the algebra of differential operators on M . This
assignment of differential operators to left invariant vector fields is defined by

ξ(f)(x) = lim
t→0

f((exp tξ)(x))− f(x)

t
=

d

dt |t=0

f((exp(tξ))(x)). (0.3.5.13)

for a smooth function f on M , ξ ∈ G and x ∈M . Note that for M = G and action of G on
M by left translation the induced first order differential operator is the left invariant vector
field itself.

Example 0.3.5.5 Let us compute left invariant differential operators as first order homo-
geneous differential operators on the simplest examples of Lie groups. On Rm left or right
invariant vector fields are simply first order constant coefficient differential operators. On
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the torus S1×· · ·×S1, they are linear combinations with constant coefficients of ∂
∂θj

’s where

θj’s are the variables on S1’s. On the multiplicative group of positive real numbers, the
operator r ∂

∂r
is invariant under multiplication. On the multiplicative group C× of nonzero

complex numbers, the operators

z
∂

∂z
+ z̄

∂

∂z̄
= r

∂

∂r
, i(z

∂

∂z
− z̄ ∂

∂z̄
) =

∂

∂θ

are left (or right) invariant, where (r, θ) is the polar coordinates representation. All these
facts are simple consequences of the chain rule. Exhibiting left invariant vector fields on
noncommutative matrix groups is more subtle than left invariant 1-forms. ♠

Example 0.3.5.6 Next consider SO(2) acting on R2 as the group of rotations. Let R(θ) =

exp(θκ) be rotation through angle θ where κ =

(
0 −1
1 0

)
is a basis for SO(2). Then R(θ)

maps the point x = (x1, x2) to the point

(x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ).

Therefore differentiating f(R(θ)(x)) relative to θ at θ = 0 we obtain the representation of κ
as the differential operator

x1
∂

∂x2

− x2
∂

∂x1

.

Similarly in R3, the differential operators

x1
∂

∂x2

− x2
∂

∂x1

, x2
∂

∂x3

− x3
∂

∂x2

, x3
∂

∂x1

− x1
∂

∂x3

.

correspond to rotations in the (x1, x2), (x2, x3) and (x3, x1) planes respectively. ♠

Example 0.3.5.7 Let G = SL(2,R) and M = H = {z = x + iy|y > 0} be the upper half

plane with g =

(
a b
c d

)
∈ G acting on H by fractional linear transformations:

z −→ az + b

cz + d
.

We want to exhibit elements of SL(2,R) as linear differential operators onH. It is convenient
to introduce some notation. Let g = kφatux following the Iwasawa decomposition G = KAU ,
so that

kφ =

(
cosφ − sinφ
sinφ cosφ

)
, at =

(
et 0
0 e−t

)
, ux =

(
1 x
0 1

)
.
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Bases for the Lie algebras K, A and U are given by

κ =

(
0 −1
1 0

)
, α =

(
1 0
0 −1

)
, υ =

(
0 1
0 0

)
.

We use the right hand side of (0.3.5.13) and the chain rule to compute the desired differential
operators. For example, to compute the operator representing κ we have to calculate

d

dθ |θ=0

f((exp(θκ))(z), (exp(θκ))(z̄)) = (
dz

dθ

∂

∂z
+
dz̄

dθ

∂

∂z̄
)|θ=0

f((exp(θκ))(z), (exp(θκ))(z̄)),

where f is a C∞ function of (x, y) or equivalently of (z, z̄). Consequently

κ←→ −(1 + z2)
∂

∂z
− (1 + z̄2)

∂

∂z̄
.

Similarly, we obtain the operators representing α and υ:

α←→ 2(z
∂

∂z
+ z̄

∂

∂z̄
), υ ←→ ∂

∂z
+

∂

∂z̄
.

As operators on G = SL(2,R) the operators corresponding κ, α and υ are given in exercise
0.3.5.4. ♠

Exercise 0.3.5.4 We continue with G = SL(2,R) and the notation of example 0.3.5.7.
Show that relative to the parametrization (φ, t, x) of the Iwasawa decomposition, the differ-
ential operators κ, α and υ are given by

κ←→ e−2t ∂

∂φ
+ x

∂

∂t
+ (e−4t − 1− x2)

∂

∂x
.

and

α←→ ∂

∂t
− 2x

∂

∂x
, υ ←→ ∂

∂x
.

0.3.6 Subgroups and Subalgebras

For the same reason that in the definition of a submanifold it was necessary to distinguish
between immersed and embedded submanifolds, it is judicious to exercise some care in the
definition of a Lie subgroup. Recall from example 0.1.1.1 that if 1, x1, · · · , xn are linearly
independent over the rationals, then the image of

ρ : t −→ (e2πix1t, · · · , e2πixnt)



70

is dense in T n− S1× · · · × S1. In particular, Imρ, which is isomorphic to R, is an immersed
and not an embedded subgroup of T n. By a Lie subgroup H ⊂ G we mean a Lie group
H together with an injective homomorphism  : H → G. The manifold structure on H
need not be induced from that G. This kind of phenomenon occurs often when constructs
a “submanifold” by invoking the theorem of Frobenius on integrability of a Pfaffian system.
All Lie subgroups can be obtained via the theorem of Frobenius, and as long as one keeps in
mind that the manifold structure of the subgroup may be different (and more natural) than
that induced from the ambient group, no problem should arise. In circumstances when it
necessary to avoid the density phonomenon described in 0.1.1.1 we consider closed subgroups
of a Lie group G.

For a Lie subgroup G ⊂ GL(m,R), taking commutators of two left invariant vector fields
on G and GL(m,R) coincide. Therefore the reduction of [η, ζ] to the algebraic operation of
matrix bracket remains valid for Lie subgroups of G ⊂ GL(m,R) as well. We summarize
this important fact as

Proposition 0.3.6.1 Let G ⊂ GL(m,R) be a Lie group. Then under the natural identifica-
tion of the Lie algebra G of G with the tangent space to G at e = I ∈ G, the commutator of
two left invariant vector fields translates into the commutator of the corresponding matrices.

Let η1, · · · , ηr be left invariant 1-forms on the Lie group GL(m,R). Then the equations
ηj = 0 at e = I ∈ GL(m,R) is a system of homogeneous linear equations and define a
subspace of G ⊂ GL(m,R). Then in view of the above proposition and the integrability
theorem of Frobenius, the Pfaffian system ηj = 0, j = 1, · · · , r is integrable if and only if
the corresponding subspace G is closed under [, ] of matrices. We have shown

Corollary 0.3.6.1 A left invariant Pfaffian system on a Lie group GL(m,R) is integrable
if and only if the corresponding subspace of matrices is a Lie algebra.

Clearly this corollary implies the more general

Corollary 0.3.6.2 A left invariant Pfaffian system on a Lie group G ⊂ GL(m,R) is inte-
grable if and only if the corresponding subspace of matrices is a Lie algebra.

Having clarified the notion of subgroup and subalgebra, we can now discuss invariant
volume elements and Riemannian metrics on certain homogeneous spaces. Let H ⊂ G be
a Lie subgroup of the Lie group G. Then H is invariant under Ad(h) and therefore we
have representation AdG/H(h) of H on G/H. This concept in often useful in understanding
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homogeneous spaces. For example, let G ⊆ GL(n,R) be a Lie subgroup and ω1, · · · , ωn be
a basis of left invariant 1-forms on G. Let H ⊂ G be a subalgebra defined by the equations

ω1 = 0, · · · , ωk = 0,

and assume H ⊂ G a closed subgroup (not necessarily connected) with Lie algebra H.
We want to see whether we can define a G-invariant volume element on G/H. A natural
candidate is dvG/H = ω1 ∧ · · · ∧ ωk, however, a priori, dvG/H is defined on G and not on
G/H. It is evident that right invariance of dvG/H under H is a necessary and sufficient for
dvG/H to be defined on G/H. Invariance under right translation is identical with the the
algebraic condition

det(AdG/H(h)) = 1 for h ∈ H. (0.3.6.1)

Summarizing, we have

Proposition 0.3.6.2 With the above notation and hypothesis, there is at most one (up
to multiplication by a constant) G-invariant k-form on G/H and relation (0.3.6.1) is a
necessary and sufficient condition for the G-invariant k-form dvG/H to be defined on G/H.

Example 0.3.6.1 As a special case consider the oriented inhomogeneous Grassmann man-
ifold G̃k,n(R) which is defined as the oriented k-dimensional affine subspaces of Rk+n. Let
SE(n) be the group of proper Euclidean motions of Rn (see example 0.2.3.3), and SE(k) ⊂
SE(k + n) be closed subgroup of the group of rigid motions of Rk+n acting on the first k
coordinates. Then G̃k,n(R) = SE(k + n)/SE(k) × SO(n), where SO(n) acts on the last n
coordinates of Rk+n. It is trivial that condition (0.3.6.1) is satisfied and therefore we have
a G-invariant volume element on G̃k,n(R). Similarly, (oriented or complex) flag manifolds
carry invariant volume elements. ♠

Exercise 0.3.6.1 Let SO(n) be embedded in SO(n+1) as the subgroup of matrices {
(

1 0
0 A

)
},

A ∈ SO(n). Show that SO(n + 1)/SO(n) ' Sn and the SO(n)-invariant volume element
obtained by the above procedure is identical (up to multiplication by a nonzero constant) with
the usual volume element on Sn given in example 0.3.1.2.

Proposition 0.3.6.3 Let I = {η1, · · · , ηr} be a integrable Pfaffian system consisting of left
invariant 1-forms ηj on GL(m,R). Set G = {ξ ∈ GL(m,R)|ηj(ξ) = 0, j = 1, · · · , r}, and
let G be the maximal connected integral manifold for I passing through e = I ∈ GL(m,R).
Then G is an analytic group with Lie algebra G.
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Proof - It suffices to show G is closed under multiplication and inversion. Let g, h ∈ G. By
left invariance of the of the Pfaffian system I, the 1-forms ηj vanish on h−1G as well as on
G. Clearly h−1G∩G 6= ∅ since both sets contain e = I. Therefore h−1G = G and h−1g ∈ G
proving the proposition. ♠

By an analytic subgroup we mean a connected Lie subgroup (with the manifold struc-
ture of the Lie subgroup not necessarily induced from the ambient group). An immediate
consequence of proposition 0.3.6.3 is

Corollary 0.3.6.3 Let G ⊂ GL(m,R) be a Lie subgroup. Then there is a one to one
correspondence between subalgebras of G and analytic subgroups of G.

Together with lemma 0.3.5.1, this corollary implies

Corollary 0.3.6.4 Let G be a subalgebra of GL(m,K). Then exp maps G into the corre-
sponding Lie subgroup G.

We can also construct G-invariant Riemannian metrics on certain homogeneous spaces of
compact Lie groups G. It is a consequence of the following lemma, sometimes called Weyl’s
unitary trick, that every compact Lie group G carries Riemannian metric which is invariant
under both left and right translations:

Lemma 0.3.6.1 Let ρ : G → GL(m,C) be a representation of a compact group G. Then
there is an hermitian inner product <,> on Cm such that the linear transformations ρ(g) are
unitary with respect to an orthonormal basis relative to <,>. Similarly, if ρ : G→ GL(m,R),
then there is an inner product <,> on Rm such that the linear transformations ρ(g) are
orthogonal with respect to an orthonormal basis relative to <,>.

Proof - Let (., .) be any hermitian inner product, then we define

≺ v, w �=

∫
G

(ρ(g)(v), ρ(g)(w))dvG,

where dvG is an invariant volume element on G. Clearly ≺ .,� has the required properties.
♣

Corollary 0.3.6.5 Every compact Lie group G carries a Riemannian metric which is in-
variant under both left and right translations.
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Proof - Applying lemma 0.3.6.1 to the adjoint representation ofG we obtain an inner product
≺ ., . � on G which is invariant under the adjoint action. It follows that left translation of
≺ ., . � is required Riemannian metric. ♣

Assume the algebra G admits of the decomposition

G = K ⊕M (0.3.6.2)

where M is the orthogonal complement of K in G relative to an inner product ≺ ., . �
which is invariant under the adjoint action. We shall show in §5.1 that M is necessarily
invariant under the adjoint action of K. Since K acts by orthogonal transformations onM,
the restriction of ≺ ., . � to M extends of a G-invariant Riemannian metric on G/K. If K
is defined by the Pfaffian system

ω1 = 0, · · · , ωk = 0,

and ω1, · · · , ωn is an orthonormal basis for G? relative to ≺ ., . � (or more precisely the dual
inner product), then then the G-invariant inner product on G/K is ω2

k+1 + · · ·+ ω2
n.

Example 0.3.6.2 Let G = U(m + 1), then for the inner product ≺ ., . � of the proof of
corollary 0.3.6.5 we can take

≺ A,B �= −Tr(AB)

where A,B ∈ U(m + 1) which is the space of skew hermitian matrices. Now let K =
U(1) × U(m) ⊂ U(m + 1) where U(1) (resp. U(m)) acts on the first coordinate (resp. last
m coordinates). ThenM is the set of matrices of the forms

0 z1 z2 · · · zm
−z̄1 0 0 · · · 0
−z̄2 0 0 · · · 0

...
...

...
. . .

...
−z̄m 0 0 · · · 0


The restriction of the inner product ≺ ., . � to M gives the standard hermitian inner
z1z̄1 + · · · + zmz̄m on Cm. Since CP (m) ' U(m + 1)/U(1)× U(m), we obtain a U(m + 1)-
invariant Riemannian metric on CP (m) which is generally called the Fubini-Study metric.
♠

Exercise 0.3.6.2 Constrict U(k +m)-invariant Riemannian metric on the complex Grass-
mann manifold Gk,m by repeating the argument of example 0.3.6.2.

Exercise 0.3.6.3 Repeat exercise 0.3.6.2 for real Grassmann manifolds.
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0.3.7 Contact and Symplectic Forms

So far we have encountered two important tensors namely the Riemannian metric which is a
contravariant symmetric 2-tensor and the volume element. In this subsection we introduce
two other forms which appear in geometry and physics.

A symplectic form ω on an open set U ⊂ Rn is a nondegenerate closed 2-form. Non-
degeneracy means that the restriction of ω to each tangent space is a non-degenerate (an-
tisymmetric) bilinear form. Thus from linear algebra n = 2m is an even integer, and non-
degeneracy of ω is equivalent to ω ∧ω ∧ · · · ∧ω (m-fold product) being a volume element. A
symplectic manifold is a pair (N,ω) where N is a manifold and ω is a symplectic form on N .
In other words, the restriction of ω to each coordinate neighborhood U is a symplectic form.
The simplest example of a symplectic manifold is R2m together with the symplectic form

ω◦ = dx1 ∧ dxm+1 + dx2 ∧ dxm+2 ∧ · · · ∧ dxm ∧ dx2m, (0.3.7.1)

where x1, · · · , x2m are standard coordinates in R2m. It follows from the definition of the
symplectic group that ω◦ is invariant under linear changes of coordinates by symplectic
transformations (i.e., elements of Sp(m,R)). Another simple example of a symplectic man-
ifold is an orientable surface M together with a volume element ω = dvM .

Example 0.3.7.1 The complex projective space CP (n) has the structure of a symplectic
manifold. In fact, we consider the realization CP (n) ' G/K where G = U(n + 1) and
K = U(1) × U(n) and the decomposition G = K ⊕M (see example 0.3.6.2). Let ≺,� be
the skew symmetric bilinear form onM defined by

≺ ξ, η �= −1

2
=Tr(ξη) =

1

2

∑
j

(ξj1ηj2 − ξj2ηj1),

where ξ, η ∈M as in example 0.3.6.2 and ξj = ξj1 + iξj2. Just as in the case of a Riemannian
metric, ≺,� extends to G-invariant nondegenerate 2-form ω on CP (n). From [M,M] ⊆ K
we see that dω(ξ, η) = 1

2
ω([ξ, η]) = 0 for ξ, η ∈ M and consequently ω is closed which

proves that (CP (n), ω) is a symplectic manifold. It is clear from our construction that the
symplectic form ω is invariant under U(n+1). Later we show that up to multiplication by a
non-zero scalar, it is the only U(m+1)-invariant symplectic form on CP (n). This symplectic
form is an example of a Kähler form which plays an important role in complex geometry. ♠

Exercise 0.3.7.1 By mimicking example 0.3.7.1 exhibit a U(k + n)-invariant symplectic
form on the complex Grassmann manifold Gk,n.
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Exercise 0.3.7.2 Let s : 0 < s1 < · · · < sr < n and Fs be the corresponding complex
flag manifold. Exhibit a U(n)-invariant symplectic form on Fs. If Fs is not a Grassmann
manifold, show that the space of U(n)-invariant symplectic structures on Fs has dimension
> 1.

Probably the most important example of a symplectic manifold is the cotangent bundle
N = T ?M of any manifold M together with the canonically defined exact 2-form ω which
we now describe. Let π : T ?M →M and for a tangent vector v to T ?M at a point θ ∈ T ?M
set

ε(θ) = θ(π?(v)),

and define ω = −dε. To understand ε and in particular show that (T ?M,ω) is a symplectic
manifold we let (x1, · · · , xm) be a coordinate system on U ⊂ M . Then the differentials
dx1, · · · , dxm form bases for the cotangent spaces T ?xM for x ∈ U . Therefore there are linear
functions θx,1, · · · , θx,m (or simply θi) on each T ?xM , x ∈ U , such that v =

∑
i θx,i(v)dxi,

i.e., θx,i(v)’s are the coefficients of the expression of v in terms of the basis dx1, · · · , dxm for
T ?xM for every x ∈ U . Therefore

ε =
∑
i

θidxi, and ω = −dε =
∑
i

dxi ∧ dθi. (0.3.7.2)

It is clear from (0.3.7.2) that (T ?M,ω) is a symplectic manifold. If a Riemannian metric
ds2 is fixed on M , then the symplectic structure on T ?M can be transported to the TM by
invoking the isomorphism T ?xM

∼→ TxM induced by ds2. More precisely the linear functions
θi are transported to the tangent space TxM to yield φi =

∑
j gijθj. Now set ε̃ =

∑
i φidxi,

then the symplectic form on the tangent bundle is

ω̃ = −dε̃ =
∑
i

dxi ∧ dφi, (0.3.7.3)

which has the same form as (0.3.7.1). This is in fact the general local normal form for any
symplectic form, i.e., by a diffeomorphism we can locally write a symplectic form as (0.3.7.1).
The method (due to J. Moser) for the proof of this fact, which we now describe has other
implications as well.

Let ω◦ be as given by (0.3.7.1) and ω be given. Let ξt, t ∈ R, be a time dependent vector
field on M . On M ×R we regard ξt as time independent vector field which for each fixed t is
tangent to the manifold M×R. Thus for fixed t, ξt defines a parameter group ϕts (relative to
s) of diffeomorphisms of M ×R. Let θ be a differential form M ×R and assume θ does not
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involve the differential dt. We want to compute the derivative of θ relative to the diagonal
in the sense

d

dt
(ϕtt)

?(θ).

This derivative involves two kinds of terms, viz., differentiation relative to the horizontal
component M and the vertical component R. The derivative along horizontal component
gives

lim
h→0

(ϕtt+h)
?(θ)− (ϕtt)

?(θ)

h
= (ϕtt)

?Lξt(θ)

where in the application of the Lie derivative Lξt , t is a fixed number. The vertical term
gives

(ϕtt)
?(
dθ

dt
),

where the derivative dθ
dt

means differentiating the coefficients of the differential form θ relative
to t. Thus, in view of H. Cartan’s formula, we obtain

d

dt
(ϕtt)

?(θ) = (ϕtt)
?

[
dθ

dt
+ iξtdθ + diξtθ

]
. (0.3.7.4)

We emphasize that in the application of iξt and d in second and third terms on the right
hand side, t is regarded as a fixed number. We apply (0.3.7.4) to the differential form
θ = (1− t)ω◦ + tω. Then dθ = 0 (exterior derivative does not involve differentiation relative
to t) and we obtain

d

dt
(ϕtt)

?(θ) = (ϕtt)
?

[
dθ

dt
+ dσt

]
, (0.3.7.5)

where σt = iξtθ. We can now prove

Proposition 0.3.7.1 (Darboux) - Let ω be a symplectic form on U ⊂ R2n, and 0 ∈ U .
Then there is a neighborhood B ⊂ U of 0 and a diffeomorphism φ : B → B such that
φ?(ω) = ω◦

Proof - By a linear transformation we may assume that ω and ω◦ are identical at 0. Let B
be a neighborhood of 0 such that θ = (1− t)ω◦+ tω is non-degenerate in B for all t ∈ I. Let
β be a 1-form such that dβ = ω◦ − ω1, and determine the time dependent vector field ξt by

iξtθ = β.
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Here d is exterior differentiation on R2n, and the existence of ξt follows from non-degeneracy
of θ. For this choice of ξt, right hand side of (0.3.7.5) vanishes and integrating the left hand
side we obtain

(ϕ1
1)
?(ω)− (ϕ◦◦)

?(ω◦) = 0.

Since ϕ◦◦ = id., the required result follows. ♣
The method of proof of proposition 0.3.7.1 can be applied to directly improve example

0.3.1.4 to a global result:

Exercise 0.3.7.3 Let M be a compact orientable manifold with volume elements ω1 and ω2.
Assume ∫

M

ω1 =

∫
M

ω2.

Show that there is a diffeomorphism φ of M such that φ?(ω2) = ω1.

A notion related to symplectic structure is that of contact form. Let U ⊂ R2m+1 be an
open subset and α be a 1-form such that

α ∧ dα ∧ · · · ∧ dα︸ ︷︷ ︸
m times

is a volume element (i.e., nowhere vanishing) is called a contact form. A contact form on
an odd dimensional manifold is a 1-form whose restriction to any coordinate neighborhood
is a contact form, equivalently α ∧ dα ∧ · · · ∧ dα is a volume element on M . Note that the
condition of contactness is more or less opposite to that of being integrable (see theorem of
Frobenius). With coordinates (x1, · · · , x2m, t) on R2m+1, a basic example of a contact form
is

α◦ =
m∑
j=1

xjdxm+j − cdt (0.3.7.6)

where c 6= 0 is any constant. The following example gives a method for constructing contact
forms from symplectic forms:

Example 0.3.7.2 Let (N,ω) be a symplectic manifold and ξ be a vector field such that
Lξω = ω. Let M be a hypersurface in N which is everywhere transverse to ξ. Set α = iξω.
Then

ω = Lξω = diξω = dα,
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which implies

α ∧ dα ∧ · · · ∧ dα = α ∧ ω ∧ · · · ∧ ω.

From transversality of ξ to M and the fact that ω is a symplectic form, it easily follows that
α is a contact form on the manifold M . A instance of this situation is when N = Cm+1\0
with the usual symplectic structure

ω◦ = dx1 ∧ dy1 + · · ·+ dxm+1 ∧ dym+1,

where zj = xj + iyj’s are standard coordinates in Cm+1. Let M be the hypersurface S2m+1 :∑
|zj|2 = 1 and let

ξ =
1

2

[m+1∑
j=1

xjdxj +
m+1∑
j=1

yjdyj

]
.

It follows that the restriction of

α = iξω◦ =
1

2

m+1∑
j=1

(xjdyj − yjdxj).

is a contact form on S2m+1. It is known that every compact orientable manifold of dimension
three admits of a contact structure, however, the proof involves ideas which we have not
discussed. ♠

Remark 0.3.7.1 The notion of contact manifold is more general than the description in
terms of 1-forms given here. An odd dimensional manifold N is a contact manifold if it
admits of a covering {Uj} and 1-forms αj defined on Uj such that αj is a contact form on
Uj and

Ker(αj,x) = Ker(αk,x) for all x ∈ Uj ∩ Uk.

Here αj,x is the linear function TxN → R determined by αj. There is no requirement that the
αj’s can be patched together to yield a globally defined 1-form with the required properties.
When we have a globally defined contact 1-form on M , then there is well-defined global
transversal direction to the subspaces Ker(αj,x) which is not the case in general. This issue
will not be of concern to us. ♥
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A motivation for studying symplectic and contact forms is physics. When a problem
of classical physics is formulated as the solution to a variational problem, the integrand
is often a contact form. The system of differential equations characterizing critical points
of the variational problem, is transformed into the more convenient form of a first order
system by realizing it on a symplectic or contact manifold. This formulation has far-reaching
consequences for both classical and quantum physics. The aspect of this subject related
to analytical mechanics can be found in classics such as [Whit] or in more introductory
expositions such as [tH] where some applications to quantum physics are also discussed.
Here we introduce the related mathematical notions and briefly specialize to some situations
in physics to demonstrate the theory.

The underlying symplectic manifold (often called phase space) for most (but not all)
systems of time independent first order ordinary differential equations arising in classical
physics, is the cotangent bundle of a manifold (M is generally called the configuration space).
Given a function f on a symplectic manifold (N,ω), the Hamiltonian vector field Υf is defined
by the requirement

df = ω(Υf , .).

An important consequence of this definition is that the symplectic form ω is invariant under
the Hamilton flow Υf :

LΥf
ω = dω(Υf , .) + iΥf

dω = 0.

Let us consider the cotangent bundle N = T ?M with the symplectic form ω =
∑
dxi∧dxm+i

with xm+i = θi in the notation of (0.3.7.2). Then the vector field Υf is

Υf =
m∑
i=1

∂f

∂xm+i

∂

∂xi
−

∑
i

∂f

∂xi

∂

∂xm+i

,

which is equivalent to the system of ordinary differential equations

dxi
dt

=
∂f

∂xm+i

,
dxm+i

dt
= − ∂f

∂xi
. (0.3.7.7)

Many equations of physics are of the form (0.3.7.7) where f is replaced by the total energy
or Hamiltonian H and xm+i’s and xi’s are replaced by pi’s and qi’s in the traditional notation
of physics literature. A system of the form (0.3.7.7) is called a Hamiltonian system.

Let f1 and f2 be functions on the symplectic manifold (M,ω). The Poisson bracket of f1

and f2 is denoted by {f1, f2} and is defined as the function Υf1(f2). From the definition of
Hamiltonian vector field Υf we have

Υf1(f2) = df2(Υf1) = ω(Υf2 ,Υf1),
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which implies that {f1, f2} = −{f2, f1}. From {f, g} = Υf (g) it follows that the condition
{f, g} = 0 means that the function g is constant along integral curves of Υf (or flow of
(0.3.7.7)). It is clear that for ω =

∑
dxi ∧ dθi we have

{f1, f2} =
∑
i

(∂f1

∂θi

∂f2

∂xi
− ∂f1

∂xi

∂f2

∂θi

)
.

Note also that {f1, f2} = 0 means that the vector fields Υf1 and Υf2 commute since Υ{f1,f2} =
[Υf1 ,Υf2 ] which is easily verified.

A function g on N is called an integral of the Hamiltonian system (0.3.7.7) if Υf (g) =
{Υf ,Υg} = 0. A set of functions g1, · · · , gk on N are said to be in involution if {Υgi

,Υgj
} = 0

for all i, j. Clearly the system (0.3.7.7) has one integral namely the function f itself. Let
dimN = n = 2m. The system (0.3.7.7) is completely integrable if there are m functions
g1, · · · , gm such that

1. The functions gi’s are involution,

2. The functions gi’s are invariant under the flow of Υf , i.e., {gi, f} = 0.

3. The differentials dgi’s are linearly independent on a dense (necessarily open) subset.

Often one takes g1 = f so that condition (2) becomes a consequence of (1). For c =
(c1, · · · , cm) ∈ Rm, let Nc be the subset of N defined by the equations g1 = c1, · · · , gm = cm.
Condition (c) of complete integrability implies that Nc is a submanifold of dimension m.

Lemma 0.3.7.1 Let f and g be two functions in involution on the symplectic manifold
(N,ω) and denote by N ′

α the subset of N defined by f(y) = α which we assume is a subman-
ifold. Then N ′

α is invariant under the flow ϕ of Υg.

Proof - Υg(df) = 0 implies that the vector field Υg is tangent to the submanifold N ′
α which

proves the required invariance. ♣
In particular, for a completely integrable Hamiltonian system the submanifolds Nc are

invariant under the above described action of Rm. Let ϕit denote the one parameter group
corresponding to the vector field Υgi

. Since [Υgi
,Υgj

] = 0, the actions of the one parameter

groups ϕiti and ϕjtj commute. Therefore if the system (0.3.7.7) is completely integrable then
we have an action of Rm on N by

t = (t1, · · · , tm) : y −→ ϕ1
t1
(ϕ2

t2
· · · (ϕmtm(y)) · · · ). (0.3.7.8)

Notice that the order of applying the one parameter groups ϕj is immaterial since they
commute. The inverse of the mapping in (0.3.7.8) gives a parametrization of N relative to
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which the action of Rm is by translation (linear). To understand the significance of this we
need one further observation about symplectic manifolds and Hamiltonian systems. We can
now state the following important and almost obvious proposition:

Proposition 0.3.7.2 Assume the Hamiltonian system (0.3.7.7) is completely integrable with
the functions g1 = f, g2, · · · , gn effecting complete integrability. Assume Nc is a compact
submanifold, and the orbits of the above described action of Rm on Nc are of dimension m.
Then each connected component of Nc is an m-torus Tm ' Rm/Zm. The action of Rm on
each connected component of Nc is induced by the translation action of Rm. In particular, if
ϕi has one closed orbit on an Nc of dimension > 1, then ϕi has a continuum of closed orbits.

Proof - Since the orbits are of dimension m, they are open submanifolds of Nc and by
compactness of Nc, Rm acts transitively on each connected component. Therefore each
connected component is of the form Rm/L where L is the isotropy subgroup of a point which
is necessarily a lattice (i.e., g(Zm) for some g ∈ GL(m,R)) for dimension reasons. This
proves the proposition. ♣

Exercise 0.3.7.4 Let f be a (locally defined) function on the symplectic manifold (N,ω),
and P be a submanifold of N which is transverse to the Hamiltonian vector field Υf (i.e.,
TxP and Υf span TxN). Then for sufficiently small open sets U ⊂ N and for every x ∈ U
there are unique y ∈ P and t ∈ (−δ, δ) with ϕft (y) = x, where ϕft is the one parameter group
corresponding to the Hamiltonian vector field Υf and we require t = 0 if x ∈ P . Define
h(x) = t, and for c1, c2 ∈ (−δ, δ), a sufficiently small interval, set Nc1,c2 = f−1(c1)∩h−1(c2).

1. Show that dh(Υf ) = 1 or equivalently {f, h} = 1.

2. Prove that {Υf ,Υh} = 0 and deduce that the one parameter groups ϕft and ϕhs commute.

3. Show that Nc1,c2 is a submanifold of codimension 2.

4. Prove that (Nc1c2 , ω|Nc1c2
) is a symplectic manifold.

5. Show how the preceding can be used to give an alternate proof of proposition 0.3.7.1.

The existence of n functions g1 = f, · · · , gn effecting complete integrabiilty is related
to the existence of a maximal number of conservation laws. One generally takes gj’s to be
conserved quantities in the physical problem under consideration. Relative to the coordinate
system adopted to the description of the system according proposition 0.3.7.2, the differential
equations (0.3.7.7 take the simple form

dyj
dt

= 0,
dym+j

dt
= γj, j = 1, · · · ,m. (0.3.7.9)
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The first m equations express the invariance of the tori Nc of proposition 0.3.7.2 under
the flow. The second set of m equations exhibit the flow along the tori Nc linearly as
required by proposition 0.3.7.2. Naturally, one can take the coordinates y1, · · · , ym as the
conserved quantities (assuming they exist) of the problem under study. It is customary to
call the variables ym+1, · · · , y2m as the angle and y1, · · · , ym as the action variables. For
the symplectic form in the standard representation (0.3.7.1), the quantities xj and xm+j are
called conjugate variables.

Remark 0.3.7.2 The quantities γj depend on c = (c1, · · · , cm) and vary continuously with
c. Therefore under some genericity assumption, for a completely integrable system, there
are tori Nc for which the orbits of the flow of Υf are closed (periodic). For systems which
are not completely integrable, the existence of periodic orbits for the system of differential
equations is a subtle issue. Contact forms are useful in detecting periodic solutions to
(0.3.7.7). Specifically, one can show that certain compact hypersurfaces with a contact
structure necessarily contain periodic orbits of the Hamiltonian system. A digression into
the issue of the existence of periodic orbits is not appropriate in this context and so will not
pursued any further (see for example [HZ]). ♥

A diffeomorphism preserving a symplectic form is called a symplectic diffeomorphism or
a canonical transformation. A mapping

F : xj = xj(y1, · · · , y2m), for j = 1, 2, · · · , 2m (0.3.7.10)

is a canonical trasnsformation relative to the standard symplectic form (0.3.7.1) if and only
if the derivative DF (y) ∈ Sp(m,R) for every y = (y1, · · · , y2m). It is readily verified that the
form of the system of equations (0.3.7.7) is preserved by symplectic diffeomorphisms, i.e.,
it remains Hamiltonian with the Hamiltonian given by the function f expressed relative to
the new variables. Implementing proposition 0.3.7.2 and reducing the Hamiltonian system
to the form (0.3.7.9) requires constructing symplectic diffeomorphisms which transform the
differential equations to the desired form. Obtaining the required transformation in a specific
situation often adds to our insight about the physical problem under consideration.

In example 0.3.1.6 we noted that the group of volume preserving diffeomorphisms of a
surface (or equivalently canonical transformations of the symplectic form) is infinite dimen-
sional. In general, the group of canonical transformations of a symplectic manifold is infinite
dimensional. Although symplectic transformations exist in abundance, they should be ex-
hibited in a manner that the computation of the transformed equations and the verification
of the condition DF ∈ Sp(m,R) become practical. We now show how this can be done
(by a method due to Jacobi) and demonstrate the principle by applying to the one body
problem and deriving Kepler’s equation of classical physics which has a quantum analogue.
The following observation simplifies the verification of the condition DF (y) ∈ Sp(m,R):



0.3. SPECIAL TENSORS AND GEOMETRIC STRUCTURES 83

Lemma 0.3.7.2 The diffeomorphism of the form (0.3.7.10) is symplectic if and only if one
and therefore all the expressions

1. α1 =
∑m

k=1 xm+kdxk −
∑m

k=1 ym+kdyk;

2. α2 =
∑m

k=1 xkdxm+k +
∑m

k=1 ym+kdyk;

3. α3 =
∑m

k=1 xm+kdxk +
∑m

k=1 ykdym+k;

4. α4 =
∑m

k=1 xkdxm+k −
∑m

k=1 ykdym+k.

become exact differentials upon substitution in terms of yj’s and dyj’s for xk’s and dxk’s.

Proof - The diffeomorphism F (0.3.7.10) is symplectic if and only if dαj = 0 (for one and
therfore all j), from which the required result follows. ♣

Now we construct four types of canonical transformations corresponding to the 1-forms
αj, j = 1, 2, 3, 4. For example for α1, let S = S(x1, · · · , xm, y1, · · · , ym) be a function with
the property

det

(
∂2S

∂xi∂yj

)
6= 0,

and define

∂S

∂xk
= xm+k,

∂S

∂yk
= −ym+k.

By the implicit function theorem we can solve the equations ∂S
∂yk

= −ym+k, k = 1, · · · ,m,
for xk’s in terms of yj, ym+j’s and so we obtain a mapping F expressing xj, xm+j’s in terms
yk, ym+k’s. Substituting in α1 we get

α1 →
m∑
j=1

∂S

∂xj
dxj +

m∑
j=1

∂S

∂yj
dyj

which is an exact differential as required by lemma 0.3.7.2. The fact that we can solve for
xj, xm+j’s in terms of yk, ym+k’s and vice versa shows that the mapping F is in fact a (local)
diffeomorphism. Similar construction applies to the other cases:

2. (α2): S = S(xm+1, · · · , x2m, y1, · · · , ym), det( ∂2S
∂xm+j∂yk

) 6= 0; ∂S
∂xm+j

= xj,
∂S
∂yj

= ym+j.

3. (α3): S = S(x1, · · · , xm, ym+1, · · · , y2m), det( ∂2S
∂xj∂ym+k

) 6= 0; ∂S
∂xj

= xm+j,
∂S

∂ym+j
= yj.
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4. (α4): S = S(xm+1, · · · , x2m, ym+1, · · · , y2m), det( ∂2S
∂xm+jym+k

) 6= 0; ∂S
∂xm+j

= xj,
∂S

∂ym+j
=

−yj.

In this manner we have at our disposal, in an explicit manner, an infinite dimensional space of
symplectic diffeomorphisms which we can use to advantage to simplify a given Hamiltonian
system. A function S of the above form is often called a generating function.

Recall that we like to obtain a symplectic diffeomorphism which implements the conclu-
sion of proposition 0.3.7.2 (in the completely integrable case), or equivalently exhibits the
action-angle variables explicitly. This requires making use of conservation laws expressed by
the functions g1 = f, g2, · · · , gm which are involution. This effectively helps determine the
function S and the corresponding symplectic diffeomorphism. For instance by setting the
Hamiltonian H = f equal to y1 (regarded as a constant) and substituting ∂S

∂xj
for xm+j in

the expression for f should lead to a valid identity. In other words, we must require that S
satisfy the first order (generally non-linear) partial differential equation

f(
∂S

∂x1

, · · · , ∂S
∂x1

, x1, · · · , xm) = y1. (0.3.7.11)

This equation, known as the Hamilton-Jacobi equation, is often quite helpful in understand-
ing the behavior of the system of ordinary differential (0.3.7.7). In (0.3.7.11) yj is regarded
as constant defining the total energy or Hamiltonian of the system.

Exercise 0.3.7.5 below demonstrates the above considerations in the simplest realistic
physical system, namely a single harmonic oscillator. This simple system can be integrated
easily without the above theory and is included here only to demonstrate the principles
involved. Such a system is described by the Hamiltonian H = 1

2m
p2 + k

2
q2 (Hooke’s Law)

which yields the differential equations

dq

dt
=

p

m
,

dp

dt
= −kq. (0.3.7.12)

(Here m is the mass of the particle and k is Hooke’s constant, but the physical significance
of these quantities is not material for our calculation. (q, p) are the coordinates (x1, x2) and
(Q,P ) below correspond to (y1, y2) in preceding notation.)

Exercise 0.3.7.5 Show that a generating fyunction S = S(q,Q) preserving the energy sur-
face H(q, p) = Q of the harmonic oscillator satisfies the differential equation

1

2m

(
∂S

∂q

)2

+
k

2
q2 = Q.
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Solve this equation to obtain the generating function

S(q,Q) =

√
m

k
sin−1

(√
k

2Q
q

)
.

Show that the corresponding symplectic diffeomorphism is

q = −
√

2Q

k
sinλP, p =

√
m

2Q cos2 λP
.

Prove also that this diffeomorphism transforms (0.3.7.12) into the standard form

dQ

dt
= 0,

dP

dt
= −1,

The following example is an application of the above theory to a classical problem in
physics and serves to demonstrate some aspects of the theory:

Example 0.3.7.3 The Lagrangian for the one body problem in the gravitaional field gen-
erated by a massive body has polar coordinate representation

L =
m

2

[
ṙ2 + r2ϕ̇2 + r2sin2 ϕθ̇2

]
+
Km

r
,

where the constant K = GM is the product of the gravitational cosntant and the mass M
of the massive body. Since the variable θ does not explicitly appear in L, θ̇ is a conserved
quantity (angular momentum). This means motion takes place in a plane with constant θ.
Without loss of generality we may choose coordinates so that θ ≡ 0 and the Lagrangian
reduces to

L =
m

2

[
ṙ2 + r2ϕ̇2

]
+
Km

r
.

The corresponding Hamiltonian is

H =
1

2m

(
p2
r +

1

r2
p2
ϕ

)
− Km

r
.

To find the appropriate symplectic diffeomorphism, we seek a generating function of the
special form

S(r, ϕ, q1, q2) = R(r, q1) + Φ(ϕ, q2).
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Substituting in the Hamiltonian or total energy which is a conserved quantity, we obtain the
corresponding Hamilton-Jacobi equation:(

dR

dr

)2

+
1

2m

[
1

r2

(
dΦ

dϕ

)2]
− Km

r
= q1. (0.3.7.13)

The law of conservation of angular momentum suggests that we should set ∂S
∂ϕ

= q2 (a

constant). Substituting in (0.3.7.13) we obtain an ordinary differential equation which we
can solve to obtain the expression

S = c+ q2ϕ+

∫ r

r◦

√
2m

(
q1 +

Km

u

)
− q2

2

u2
du. (0.3.7.14)

Let pj denote the variable conjugate to qj. Since p2 = − ∂S
∂q2

we obtain

p2 = −ϕ+ q2

∫ r

r◦

1√
2m

(
q1 + Km

u

)
− q22

u2

du

u2
.

Making a change of variable u = 1
s

we obtain

p2 + ϕ = −q2
∫ s

s◦

1√
2m

(
q1 +Kms

)
− q2

2s
2

ds.

Let α < β be the roots of the equation λ2 − 2Km2

q22
λ− 2mq1

q22
= 0, and set

s =
β + α

2
+
β − α

2
y

to transform the integral to

p2 + ϕ =

∫ v

v◦

dy√
1− y2

.

Integrating this equation we obtain after a starightforward calculation

1

r
=

1 + ε cos(ϕ+ p2)

a(1− ε2)
, (0.3.7.15)
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where α = 1
a(1+ε)

and β = 1
a(1−ε) . (0.3.7.15) is the equation of an ellipse in polar coordinates

with eccentricity ε and major axis 2a. Since time is the variable conjugate to energy7, we
can relate time and the position of the body of mass m by

t =
∂S

∂q1
= −m

q2

∫ s

s◦

dx

x2
√

(x− α)(β − x)
.

This integral can evaluated if we make a change of variable to eccentric anomaly u of conic
(see figure (XXXX)) to obtain

γt = u− ε sinu, where γ =

√
K

a3
. (0.3.7.16)

This is Kepler’s equation. ♠.

7In the formulation of a time dependent system as a variational problem, the contact form which appears
as the integrand contains the terms Edt which exhibits energy and time as conjugate variables.
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0.4 Mappings of Manifolds

0.4.1 Constructing Manifolds

In this subsection we study how new manifolds can be constructed from old ones. Let M
and N be manifolds of dimension m, and C1 ⊂ M and C2 ⊂ N be “small” balls (e.g. each
contained in one coordinate neighborhood), M ′ = M \C1 and N ′ = N \C2. M

′ and N ′ are
manifolds with boundary and ∂M ′ ' Sm−1 ' ∂N ′. The idea is to identify the boundaries of
M ′ and N ′ to obtain a new manifold M]N . In general, M]N depends on the identification
map of the boundaries f : ∂M ′ → ∂N ′. We carry out this construction a little differently8.
A convenient of describing M ′ and N ′ is by smooth real valued functions f and h on M and
N such that

M ′ = {x ∈M | f(x) ≤ 0}, N ′ = {x ∈ N | h(x) ≤ 0},

with df and dh nonzero on (and therefore near) the zero sets f = 0 and h = 0 (i.e., boundaries
of M ′ and N ′). We are assuming that the sets {x ∈M | f(x) ≥ 0} and {x ∈ N | h(x) ≥ 0}
are small closed discs. For ε > 0 and sufficiently small the sets

Mε = {x ∈M | − ε < f(x) < ε}, Nε = {x ∈ N | − ε < h(x) < ε}

are (small) tubular neighborhoods of ∂M ′ and ∂N ′ in M and N . We denote the boundary
components of Mε by M+

ε and M−
ε corresponding to f(x) = ε and f(x) = −ε respectively.

Let r > 1, Br ⊂ Rm the ball of radius r centered at the origin, and

Ar = {x ∈ Br |
1

r
< ||x|| < r}, ∂Ar = Si ∪ So,

with Si = {x | ||x|| = 1
r
} and So = {x | ||x|| = r}. Let φ1 : Ar → Mε and φ2 : Ar → Nε be

diffeomorphisms. We assume that φj’s are obvious extensions of diffeomorphisms of Sm−1

onto ∂M ′ and ∂N ′ so that we have diffeomorphisms

φ1(So)
∼→M−

ε , φ1(Si)
∼→M+

ε , φ2(So)
∼→ N−

ε , φ2(Si)
∼→ N+

ε .

Define the involution  : Aε → Aε by

(x) =
x

||x||2
.

8It will be clear that the construction is valid for manifolds with boundary provided Mε ∩ ∂M = ∅ and
Nε ∩ ∂N = ∅ where Mε and Nε are defined below. For simplicity of notation we assume M and N are
without boundary.
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which is an analytic diffeomorphism. Let ψ : Mε → Nε be defined by

ψ(x) = φ2φ
−1
1 (x). (0.4.1.1)

Set M ′′ = M ′ ∪Mε and N ′′ = N ′ ∪Nε, and

M]ψN = M ′′ ∪N ′′/{x ∼ ψ(x)}, (0.4.1.2)

i.e., M]ψN is the union of M ′′ and N ′′ with the points x and ψ(x) identified. It is trivial
that M]ψN so constructed has the structure of a manifold. It is also clear that if we replace
ε by ε′ with 0 < ε′ < ε, then the resulting manifolds M]ψN will be diffeomorphic. The
functions f and h played only an auxilliary role and M]ψN is independent of their choice as
long as the necessary hypotheses are fulfilled. Furthermore, if M and N are compact then
so is M]ψN . Now assume the manifolds M and N are oriented, φ1 is orientation preserving
and φ2 is orientation reversing relative to the standard orientation for Br ⊂ Rm. Since 
is orientation reversing, ψ = φ2φ

−1
1 is orientation preserving and M]ψN is also orientable

with orientation compatible with those of M and N . The manifold M]ψN depends on the
the diffeomorphism ψ and the degree of this dependence is clarified by

Lemma 0.4.1.1 Let ψ be as above, and ψ′ = φ′2φ
′−1
1 (x) be another such diffeomorphism.

If ψ and ψ′ are isotopic, then M]ψN and M]ψ′N are diffeomorphic.

Proof - Let M̃ε denote the image of Mε in M]ψN , and F ′ : Mε × I → Nε be an isotopy
with F ′(., 0) = ψ and F ′(., 1) = ψ′. Then F ′ yields an isotopy F : M̃ε × I → M]ψN with
(., 0) = id and F (., 1) = ψ′ψ−1. By lemma 0.4.7.1, after possibly replacing ε be a smaller
positive number ε′, F extends to an isotopy F : M]ψN × I →M]ψN . Since F (., 1) = ψ′ψ−1,
F (., 1) gives the desired diffeomorphism. ♣

A consequence of lemma 0.4.1.1 and corollary 0.4.7.2 is

Corollary 0.4.1.1 Assume the manifolds M and N are oriented, φ1 is orientation preserv-
ing and φ2 is orientation reversing, and both φj’s extend to diffeomorphisms of the disc.
Then, up to diffeomorphisms, M]N is independent of the particular choice of φj’s satisfying
the hypotheses.

Proof - The required result follows from lemma 0.4.1.1 and the fact that any embedding of
a disc is isotopic to a linear embedding (see example 0.4.7.5). ♣

Exercise 0.4.1.1 For an orientable manifold M of dimension m show that M]Sm ' M
and M]Rm is diffeomorphic to M with one point removed.
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M]ψN is called the connected sum of M and N relative to ψ. When the hypotheses of
corollary 0.4.1.1 are fulfilled, we simply write M]N and refer to it as the connected sum of M
and N . The ]-construction can be vastly generalized and is an important tool in topology.
For instance, let B2

r ⊂ R2 denote the open disc of radius r > 0. Assume r > 1 > 1
r

and

Nr ' S1 × B2
r ⊂ R3 ⊂ S3 be a solid torus. Then Nr, 1

r
= Nr\N 1

r
is a tubular neighborhood

of ∂N1. Let M = S3\N 1
r
, M1 and M2 be two copies of M , and denote the corresponding

copies of Nr, 1
r

in Mi by N i
r, 1

r

. The boundary of Nr, 1
r

has two components which we denote by

∂rNr, 1
r

and ∂ 1
r
Nr, 1

r
respectively, and their images in Mi by the addition of superscript i. Let

φi : Nr, 1
r
→ N i

r, 1
r

be diffeomorphisms extending to diffeomorphisms of ∂rNr, 1
r

(resp. ∂ 1
r
Nr, 1

r
)

onto ∂rN
i
r, 1

r

(resp. ∂ 1
r
N i
r, 1

r

). The map  is defined as an orientation reversing involution of

Nr, 1
r

leaving ∂N1 pointwise fixed. Near every x ∈ ∂N1,  is like a reflection relative to the
tangent plane Tx∂N . In particular,  interchanges the boundary components ∂rNr, 1

r
and

∂ 1
r
Nr, 1

r
. Then by the same formulae (0.4.1.1) and (0.4.1.2) we define the M1]ψM2. The fact

that M1]ψM2 has the structure of a manifold is clear. M1]ψM2 depends on the maps φi. To
emphasize this dependence we introduce ψ = φ2φ

−1
1 and use the notation M1]ψM2. The

fact that we deleted solid tori from S3 is not critical and similar construction can be carried
out if, for example, we delete solid surfaces of genus g from S3. The construction is not
limited to S3 and can be extended to arbitrary manifolds, however since the construction
proceeds in the obvious manner we will not dwell on a more formal description.

Example 0.4.1.1 There is an important concept in complex geometry known as blow-up,
σ-process or quadratic transform. In this example we consider a special case of this notion
for complex manifolds and relate it to the ] construction. Let Cm ⊂ CP (m) be the open
subset defined by the inhomogeneous coordinates zm = 1 and z◦, · · · , zm−1 ∈ C arbitrary.
Denote homogeneous coordinates for CP (m−1) by w◦, · · · , wm−1. Let X ⊂ Cm×CP (m−1)
(resp. Y ⊂ CP (m)× CP (m− 1)) be defined by the equations

wjzk − wkzj = 0, j, k = 0, 1, · · · ,m− 1, (0.4.1.3)

and π1 : Cm×CP (m−1) −→ Cm be the projection on the first factor. If (z◦, z1, · · · , zm−1) 6=
0, then the solution to (0.4.1.3) is wj = zj. Thus if we denote the restriction of π1 to X by
π1 again, then

π1 : X \ π−1
1 (0) −→ Cm \ 0

is a complex analytic diffeomorphism. On the other hand, π−1
1 (0) is complex analytically

diffeomorphic to CP (m−1). The assignment of X to Cm or Y to CP (m) is called the blow-up
of Cm or CP (m) at a point (here 0 ∈ Cm.) It is not difficult to see that this construction is
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independent of the choice of complex analytic coordinates, i.e., different choices of complex
analytic coordinates lead to holomorphically diffeomorphic complex manifolds. Observe that
given (z◦, z1, · · · , zm−1) 6= 0, we have in Y ,

lim
λ→0

(λz◦, · · · , λzm−1) = [w◦, · · · , wm−1], where wj = zj; (0.4.1.4)

and also

lim
λ→∞

[λz◦, · · · , λzm−1, 1] = [z◦, · · · , zm−1, 0] (0.4.1.5)

which lies in the hyperplane at infinity (zm = 0). The blow-up of CP (m) at a point has
a simple and familiar topological description as well. We regard CP (m) as a real manifold
of dimension 2m, then CP (m)]CP (m) is an orientable manifold of dimension 2m. We now
show that CP (m)]CP (m) is (real analytically) diffeomorphic to the blow-up of CP (m) at
one point9. Consider the mapping ∆ : Cm \ 0→ Cm × CP (m− 1) defined by

∆ : (z◦, · · · , zm−1) −→ (z◦, · · · , zm−1, [w◦, · · · , wm−1])

where wj’s are related to zk’s by the equations (0.4.1.3). Now Im(∆) has a real analytic
involution defined by

τ((z◦, · · · , zm−1, [w◦, · · · , wm−1])) = (
z◦
||z||2

, · · · , zm−1

||z||2
, [w◦, · · · , wm−1]),

where ||z||2 = |z◦|2 + · · · + |zm−1|2. τ leaves the unit sphere S2m−1 ⊂ Cm pointwise fixed.
In view of (0.4.1.4) and (0.4.1.5), τ extends to a real analytic involution of the blow-up of
CP (m) at one point and maps the hyperplane at infinity (zm = 0) diffeomorphically onto
π−1

1 (0). Therefore CP (m) \ (one point) is real analytically diffeomorphic to the blow-up of
Cm at the origin. From this and the ] construction, it immediately follows that the blow-up
of CP (m) at one point is real analytically diffeomorphic to CP (m)]CP (m). ♠

9It is customary to write CP (2)]CP (2) for the blow-up of CP (2) at one point where CP (2) denotes the
complex projective plane with the reverse orientation. It seems to the author that this notation is rather
confusing and may create misconceptions. For example it suggests that the orientation on one of the copies
of CP (2) is the reverse of that imposed by its complex structure. The situation is even more confusing if we
blow-up CP (2) at two points to obtain CP (2)]CP (2)]CP (2) or maybe CP (2)]CP (2)]CP (2)! This confusing
notation is a consequence of the fact that the involution  : Aε → Aε is not incorporated in the prevalent
definition of the ] construction. The definition given above using the involution  is more compatible with
our intuitive notion of joining surfaces than the prevalent one.
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0.4.2 Critical Points and Critical Values

Understanding the structure and geometric implications of critical points of maps of mani-
folds is an important problem. The general case is far from understood. Even understanding
the significance and implications of critical points of a smooth mapping of a manifold into
the circle presents challenging problems. In this section we gather two basic facts about
critical points which properly speaking belong to foundations of differential topology. A
general reference for the material of this section is [Hi].

Let U ⊂ Rm be an open subset, and F : U → Rn a C1 mapping. A point x ∈ U where
DF (x) has rank min(m,n) is called a regular point of F . Otherwise it is called a critical
point. The set of critical points of F will be denoted by CF . A point y ∈ Rn is a regular value
for F if every x ∈ F−1(y) is a regular point. In particular, y 6∈ ImF is a regular value. It
is clear that the notions of critical point and regular point extend to mappings of manifolds
since the defining conditions are invariant under diffeomorphisms. Recall that a subset of
a (metrizable) topological space is called residual if it is a countable intersection of dense
open sets. By the Baire category theorem a residual set is dense. Various versions of the
following fundamental theorem, often known as Sard’s theorem, are due to A. Brown, A. P.
Morse and A. Sard:

Theorem 0.4.2.1 Let F : M → N be a Cr map where r > max(0,m − n). Let µ be any
measure on N absolutely continuous relative to the Lebesgue measure on each coordinate
neighborhood. Then F (CF ) has µ-measure zero in N , and the set of regular values of F is
residual in N . If n > m then N \ F (M) is dense in N .

Remark 0.4.2.1 The differentiability assumption in theorem 0.4.2.1 is essential and subtle
problems emerge when sufficient differentiability is not assumed. ♥

We shall not prove this basic theorem, but will discuss some important consequences of
it in this and the following subsections.

Example 0.4.2.1 Let M ⊂ Rm be an open subset, x1, · · · , xm the standard coordinates on
Rm, and f : M → R a C2 function. Let< ., . > denote the standard inner product on Rm. We
use theorem 0.4.2.1 to show that for almost all λ ∈ Rm, the function fλ(x) =< λ, x > +f(x)
is a Morse function, i.e., all its critical points are nondegenerate. To this end define the
submanifold N ıM × Rm by the relation

ξ + gradf(x) = 0, where x ∈M, and ξ ∈ Rm,

where gradf = ( ∂f
∂x1
, · · · , ∂f

∂xm
) is computed relative to the standard metric on Rm. Let

ψ : N → Rm be the restriction of the projection M × Rm → Rm to N , and λ be a regular
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value for ψ. Taking (x1, · · · , xm) as coordinates on N and differentiating ψ as a function on
N (relative to coordinates x1, · · · , xn), we see that its derivative is negative of the Hessian
of f . Therefore by the regularity of λ, H(f) is everywhere nonsingular on N . Since critical
points of fλ lie on N and the Hessian of fλ is H(f), we have proven that all critical points
of fλ are nondegenerate. ♠

With a little care, example 0.4.2.1 can be generalized significantly. Let M ıRN be an
embedded submanifold, U ⊃ M an open set containing M and f : U → R a Ck function
where k ≥ N−m+2. Let U1, U2, · · · be open subsets of RN such that ∪Uj ⊃M . We assume
Ui’s sufficiently small so that after possibly an orthogonal change of cartesian coordinates in
RN , M ∩ Ui is represented as a graph

x = (x1, · · · , xm)→ (x, hm+1(x), · · · , hN(x)).

Let Wi denote the linear subspace {(x1, · · · , xm, 0, · · · , 0)} relative to linear coordinates
noted above, and πi : RN → Wi be orthogonal projection. Consider the submanifold N ıM ×
RN defined by the relation

ξ + πigradf(x) = 0,

where grad is relative to the standard metric on RN . The restriction of the projection
M × RN → RN to the submanifold N composed with orthogonal projection πi gives a
mapping ψ : N → Wi which satisfies the hypothesis of theorem 0.4.2.1 and therefore the
complement of the set of its regular value has Lebesgue measure zero. Denote this set of
regular values by Ri and its complement by R′i. Differentiating the function ψi on N we

see that λ ∈ Ri implies that the m × m matrix ( ∂2f
∂xj∂xk

), j, k = 1, · · · ,m, is nonsingular

everywhere on M ∩Ui. Let λ ∈ ∩iRi whose complement ∪R′i has measure zero. The critical
points of the function fλ(x) =< λ, x > +f(x) on M ∩Ui lie on the manifold N and therefore
are nondegenerate. Notice that since ∪R′i has measure zero, we can require λ 6= 0 to have
arbitrarily small norm greater than zero. Summarizing,

Proposition 0.4.2.1 Let M ıRN be an embedded submanifold, and f a Ck function defined
on a neighborhood of M where k ≥ N − m + 2. For ε > 0 there is λ ∈ RN such that
< λ, λ >≤ ε and the restriction of fλ to M is a Morse function on M .

Remark 0.4.2.2 The assumption that M is an embedded submanifold of RN is no loss
of generality by the Whitney Embedding theorem (proven later in this chapter) which also
implies that we can assume N ≤ 2m+ 1. Furthermore by the implicit function theorem we
can locally realize M as an affine subspace in RN so that we can locally extend a function
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f to a neighborhood. The local extensions of f can be patched together by a partition of
unity to give an extension of f to a neighborhood of M in RN . Therefore proposition 0.4.2.1
implies that for k ≥ m+ 3 a Ck function f on M can be approximated by a Morse function
arbitrarily closely in an appropriate topology. For M compact, the appropriate topology is
Ck topology which will be introduced in the subsection Smoothing and Transversality. ♥

Example 0.4.2.2 Let M ⊂ Rm+1 be a compact hypersurface, and consider the function

f(p) =< p− x, p− x >,

where p ∈ M and x ∈ Rm+1. The function f , defined on M , depends on the choice of the
origin x in the affine space space Rm+1. f may not be a Morse function on M . Perturbing
f by a small vector ε yileds the function

fε(p) =< p− x− ε, p− x− ε >= f(p)+ < ε, ε > +2 < ε, x > −2 < ε, p > .

The argument of example 0.4.2.1 is applicable to show that for almost all (small) vectors ε,
the function fε is a Morse function. The details are left to the reader. ♠

Using the above arguments one easily proves the following:

Exercise 0.4.2.1 Let M ıRN and f : M → R be a Morse function. Let x, y ∈ M be two
critical points of f with f(x) = f(y). Show that there is a λ ∈ RN with < λ, λ > arbitrarily
small such that fλ is a Morse function and fλ(x) 6= fλ(y).

The basic result about the structure of critical points of a Morse function is given in
proposition 0.4.2.2 below. Recall from our earlier discussion that at a critical point, the
Hessian of a function transforms like linear change of basis for a quadratic form. This
observation is used in the proof of proposition 0.4.2.2 which gives the canonical form for a
Morse function near a critical point. Applications of this result will be discussed in later
chapters.

Proposition 0.4.2.2 (Morse Lemma) Let f : M → R be a Morse function. Then for every
critical point x ∈ M of f , there is a coordinate chart containing x relative to which f has
the representation (0.3.3.7):

f(x) = −x2
1 − · · · − x2

p + x2
p+1 + · · ·+ x2

m.



0.4. MAPPINGS OF MANIFOLDS 95

Proof - We may assume M = Rm, the critical point of f is the origin and f(0) = 0. From
the Taylor expansion of f and the fact that 0 is a critical point we obtain the expression

f(x) =
∑
i,j

xixjhij(x), (0.4.2.1)

for some smooth functions hij with hij = hji. After possibly a linear change of coordinates
we may assume that h(0) is a diagonal matrix with ±1 along the diagonal. Clearly the
symmetric matrix h(x) = (hij(x)) is 1

2
H(f)(x). We claim that there is a matrix valued

function R such that
R(x)′h(x)R(x) = h(0), (0.4.2.2)

where superscript ′ signifies the transposition of the matrix. This is a consequence of the
implicit function theorem. In fact, consider the mapping

Φ : Rm × Rm2 −→ R
1
2
m(m+1), Φ(x, Y ) = Y ′h(x)Y.

Now Φ(0, I) = h(0) and

D2Φ(0, I)(Ψ) = Ψ′h(0) + h(0)Ψ,

where D2 denotes differentiation relative to the Y variable. Since h(0) is nonsingular, the
map D2Φ(0, I) is onto the space of symmetric matrices. Let N ⊂ Rm2

be its kernel, then
the implicit function theorem is applicable and gives a mapping S from a neighborhood of
the origin in Rm ×N to a complement C of N in Rm2

such that

Φ(x, S(x,X)) = h(0).

Now set R(x) = S(x,0) and note that R(0) = I and therefore the matrix R = (Rij(x)) is
invertible in a neighborhood of the origin. Let ρ = (ρij(x)) = R−1 and make the substitution
(change of variable) yj =

∑
k ρjk(x)xk in (0.4.2.1) and use (0.4.2.2) to obtain the desired

result. ♣

Corollary 0.4.2.1 Let M be a compact manifold admitting of a Morse function f with only
two critical points. Then M is homeomorphic to a sphere.

Proof - The two critical points p and q are necessarily a minimum and a maximum. We
may assume f(p) = 0 and f(q) = 1. It follows from the Morse lemma and example ?? that
f−1[0, a] (and f−1[b, 1]) are diffeomorphic to the disc. Therefore for every 0 < a < 1 we have
a diffeomorphism ψ of f−1[0, a] onto Sm with a disc (around north pole) removed. Now let
a→ 1, then f−1([1− a, 1]) shrinks to q and therefore ψ extends to a homeomorphism of M



96

onto the one point compactification of the disc which is Sm. (Note that there is no guarantee
that the extension of ψ to the point q remains a diffeomorphism. See example 0.4.2.3) ♣

Corollary 0.4.2.1 appears rather innocuous at first sight, however a deeper examination
of it reveals some remarkable facts. The following example is the first step:

Example 0.4.2.3 We construct a manifold which is not at all obvious to be homeomorphic
to S7, however, by exhibiting a Morse function with only two critical points we deduce from
corollary 0.4.2.1 that it is so. Identify S4 with the one point compactification of R4 and the
regard the latter space as the space of quaternions H. Denote by q∞ the point at infinity
for H ⊂ S4. Let

H◦ = {q ∈ H | ||q|| < 2}, H∞ = {q ∈ H | ||q|| > 1

2
}, H1 = H◦ ∩H∞.

Identify S3 with the group of unit quaternions. Let H̄∞ = H∞ ∪ {q∞}. We construct a
smooth manifold by exhibiting a transition function ψ

H̄∞ × S3 H◦ × S3

∪ ∪
H1 × S3 ψ−→ H1 × S3

defined by

ψ(u, v) = (u,
ujvuk

||u||
), where j + k = 1.

Here ujvuk is calculated according to multiplication of quaternions. Clearly we obtain a
smooth manifold which we denote by Mj,k. Now consider the function f : Mj,k → R defined
as

HEREWEARE

By setting f(q∞, v) = 0 we obtain an extension of f to a smooth function on Mj,k.
Furthermore, it is elementary that the only critical points of f are the points (0,±1). It
follows from corollary 0.4.2.1. that Mj,k is homeomorphic to the sphere S7. What is more
remarkable is that if j − k 6≡ ±1 mod 7, then Mj,k is not diffeomorphic to S7, but the proof
of this fact requires techniques we have not introduced. This is Milnor’s celebrated example
of a manifold homeomorphic but not diffeomorphic to S7. In particular, this shows that
“homeomorphic” in the assertion of corollary 0.4.2.1 cannot be improved to “diffeomorphic”.
♠
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0.4.3 Smoothing and Transversality

Let M and N be manifolds and let Mr(M,N) be the space of maps of class r from M to
N . There are standard ways of endowingMr(M,N) with a topology. Let {Ui, ϕi} be fixed
coverings of M by coordinate charts and we assume that every Ui is relatively compact.
It is convenient to fix an embedding of N in some Euclidean space Rq with the standard
inner product, although the end result is independent of the embedding. (This is no loss
of generality since it will be shown in the subsection on Whitney Embedding Theorem that
every manifold can be embedded in some Euclidean space.) Let F i = Fϕ−1

i : Ui → Rq, and
consider the semi-norms on the space of mappings of Ui into Rq:

||F ||i,s = sup
x∈Ui

[||F i(x)||+ ||DF i(x)||+ · · ·+ ||DsF i(x)||].

The semi-norms define a topology on Mr(M,Rq) and by standard real variable arguments
endow it with the structure of a metric space (in fact, a Fréchet space). Mr(M,N) is the
subset of this metric space defined by the requirement F (x) ∈ N . The induced topology on
Mr(M,N) is known as the Cr topology.

It is often useful to approximate a map with one with greater degree of smoothness.
The main tool for accomplishing this is by using a standard convolution argument from
elementary analysis. Let ψε : Rm → R+ be a non-negative C∞ function depending only on
||x||. Assume furthermore

1. ψε vanishes outside the ball of radius ε > 0 centered at the origin;

2. ψε has mass 1, i.e. ∫
Rm

ψε(x)dx1 · · · dxm = 1.

Then for any continuous function h : Rm → R

hε = ψε ? h(x) =

∫
Rm

ψε(x− y)h(y)dy1 · · · dym

is C∞. Furthermore, if h is Cr, r ≥ 0, then hε → h as ε→ 0 in Cr topology. (Here N = R.)
Note also that supphε is contained in an ε neighborhood of support of h. While this allows
one to smooth out any real valued function, we still have to smooth out a mapping from M
to N . To do so let {Ui, ϕ} be a covering of M by coordinate charts, and φi be a partition of
unity subordinate to this covering. Then φih is a real values function on Ui with the same
degree of smoothness as h. Now it is an exercise to show that if h is Cr, then∑

i

(φih)ε
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yields the desired approximation to h in the topology of Mr(M,R). The case of general
N ⊂ Rq requires an additional observation since once we modify the function h, its values
may no longer lie in N . The following lemma allows us to circumvent this problem:

Lemma 0.4.3.1 Let U ′ ⊂ U ⊂ Rm open subsets, h : U → V ′ ⊂ V̄ ′ ⊂ V ⊂ Rn, with U , V
and V ′ open and relatively compact. Assume h is Cr and its restriction to U ′ is C∞. Let
U ′′ ⊂ U ′ be such that Ū ′′ ∩ U ⊂ U ′. Then there is a sequence of C∞ mappings hn : U → V
converging to h such that hn = h on U ′′.

Proof - Let β1 and β2 be real valued non-negative C∞ functions on U such that

1. β1 is identically 1 on a neighborhood of U ′′ and vanishes outside of U ′;

2. β2 is identically 1 on U \ U ′;

3. β1 + β2 ≡ 1.

Then for ε > 0 sufficiently small, β1h+ (β2h)ε yields the required sequence. ♣
Now we can find smooth approximations to mappings h ∈ Ms(M,N). In fact consider

relatively compact open subsets

U ′′i ⊂ Ū ′′i ⊂ U ′i ⊂ Ū ′i ⊂ Ui ⊂M, and V ′
p ⊂ V̄ ′

p ⊂ Vp ⊂ N,

such that ∪U ′′i = M , ∪V ′
p = N with (Ui, ϕi,M)’s and (Vp, ϕp,N)’s coordinate charts. We

may also assume that for every i there is p = p(i) such that h(Ui) ⊂ V ′
p . It is clear

that ϕp(1),Nhϕ
−1
1,M can be approximated by a C∞ map. We then proceed inductively, using

lemma 0.4.3.1 to modify h only outside the union of certain U ′′i ’s to obtain the required C∞

approximation to h. The details are straightforward.
As an application of the concept and existence of smoothing and theorem 0.4.2.1 we

discuss the notion of transverse mappings and the transversality theorem. Let M and N be
manifolds, N ′ ⊂ N an embedded submanifold and K ⊂ M a subset. A mapping F (which
is always assumed to be at least C1) is transverse to N ′ along K if for every x ∈ K either
F (x) 6∈ N ′ or F (x) ∈ N ′ and

DF (TxM) + TF (x)N
′ = TxN.

Note that the sum is not required to be direct. In particular, if N ′ = y is a point, then
transverse to N ′ means y is a regular value, Often no mention of K is made in transvesality
statements which means K = M . Since N ′ is an embedded submanifold we can represent
it locally as the zero set Zh of a (smooth) function h on N , and by the implicit function
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theorem, N ′ is locally a linear space of dimension n′ in Rn. Assume K = M , and let
p : Rn → Rn−n′ a linear projection mapping Rn′ to the origin. If F is transverse to N ′,
locally pF is a submersion from an open set U ⊂ M to a subset of Rn−n′ . It follows that
F−1(N ′) ∩ U = (pF )−1(0) and

Lemma 0.4.3.2 Let F : M → N be tranverse to the embedded submanifold N ′. Then
F−1(N ′) is a submanifold of M .

The following key corollary depends on theorem 0.4.2.1:

Corollary 0.4.3.1 Let K be a compact subset of the manifold M , N = Rn and N ′ = Rn′ a
linear subspace of N . Then the set of mappings of M to N which are transverse to N ′ along
K is open and dense in Mr(M,N).

Proof - Let p : Rn → Rn−n′ be the canonical projection with kernel N ′. Then a map
h ∈ Mr(M,N) is transverse to N ′ along K if and only if for every x ∈ (ph)−1(0) ∩K, the
linear map Dh(x) : TxM → Rn−n′ is surjective. The open-ness statement of the corollary
follows. To prove density we note that we can assume that h is C∞. Then theorem 0.4.2.1
is applicable to ph and so the set of its regular values are dense. Let zj be a sequence of
points in N tending to the origin as j → ∞ and such that p(zj) is a regular value for ph.
Set hj(x) = h(x)− zj. Then hj → h inMr(M,N) and hj is tranverse to N ′. ♣

We can now deduce the global version of transversality theorem for mappings of a compact
manifold into another manifold. LetMr(M,N ;N ′) ⊂Mr(M,N) be the subset of Cr maps
of M to N which are transverse to N ′. Similarly, letMr(M,N ;K,N ′) ⊂Mr(M,N) be the
subset of Cr maps of M to N which are transverse to N ′ along K. Then we have

Proposition 0.4.3.1 (Transversality Theorem) Let KıM be a compact subset of the mani-
fold M , and N ′ an embedded submanifold of N . Then Mr(M,N ;K,N ′) is open and dense
in Mr(M,N).

Proof - The proposition follows easily from its local version corollary 0.4.3.1 and patching
together procedure described in lemma 0.4.3.1. The details are left to the reader. ♣

Remark 0.4.3.1 The assumption of compactness in proposition 0.4.3.1 is not essential,
and it is not difficult to see how the above can be adopted to the case where M is non-
compact. There is a point that sometimes requires attention. When M is non-compact, it
is convenient to endow C∞(M,N) with a stronger topology which is not even metrizable.
Situations of this kind occur often in analysis; for example, the standard topology of C∞◦ (Rn)
is not metrizable. We shall not dwell on these matters here. For a discussion of the strong
topology on Cr(M,N), when M is non-compact see [Hi]. ♥
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Remark 0.4.3.2 Let F : M → RN be an immersion so that F (M) is allowed to have
self-intersections. Let F (x) = F (y) where x, y ∈ M are distinct points, Ux and Uy be small
neighborhoods of x and y in M . Then applying the Transversality Theorem with N ′ = F (Uy)
we may assume that F (Ux) and F (Uy) intersect transversally. By using an argument similar
to one used in the proof of lemma 0.4.3.1 we may assume that all self intersections of the
immersion F are transverse. In particular this implies that for N ≥ 2m+ 1 we may assume
that the immersion F : M → RN is actually an embedding. For N = 2m the transversality
property implies that self intersections are isolated points, and if F (x) = F (y), x 6= y ∈ M ,
then

F?(TxM) + F?(TyM) = R2m.

This implies that near F (x) = F (y) we have two branches of F (M), viz., F (Ux) and F (Uy).
♥

Remark 0.4.3.3 The smoothing procedure described above can be used to show that a C1

manifold has a unique structure of a C∞ manifold and this is why we did not distinguish
between different degrees of smoothness of the manifolds under consideration. Notice how-
ever, a topological manifold may have none or many structures of a smooth manifold. This
is a subtle matter. ♥

0.4.4 Kronecker Index

Let M be an oriented manifold of dimension m with P and Q embedded oriented submani-
folds of dimensions p and q respectively. We assume P and Q are in general position which
means that if x ∈ P ∩Q, then dim(TxP ∩ TxQ) = p+ q−m if p+ q ≥ m. In other words, if
p+q < m, then P and Q do not intersect, and TxP+TxQ = TxM if p+q ≥ m. This condition
is equivalent to the inclusion of P in M to be transverse to Q, and by proposition 0.4.3.1 is
valid after arbitrarily small perturbation of the inclusion. Recall that the normal bundle of
the submanifold P of M is the quotient of the tangent bundle of M restricted to P by the
tangent bundle of P . Orientations for any two of M , P and its normal bundle, determine
an orientation for the third. For example, let {e1, · · · , ep} and {e1, · · · , ep, ep+1, · · · , em} be
positively oriented basis for TxP and TxM respectively. Then we may regard {ep+1, · · · , em}
as a basis for the normal bundle of P at x and declare it to be positively oriented.

By the intersection of P and Q we mean their set-theoretic intersection together with
the orientation of the normal bundle to P ∩Q given by the following rule: Let {e1, · · · , er}
be a basis for TxP ∩TxQ where r = p+ q−m. Extend this basis to positively oriented bases
{e1, · · · , ep} and {e1, · · · , er, ep+1, · · · , em} for TxP and TxQ respectively. Now {e1, · · · , em}
is a basis for TxM . If this basis is positively oriented, we declare {er+1, · · · , em} to be a
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positively oriented basis for the normal bundle to P ∩ Q at x ∈ P ∩ Q. Otherwise we
declare it to be negatively oriented. The intersection of P and Q together with this choice
of orientation for the normal bundle is denoted by I(P,Q). By a simple argument

I(P,Q) = (−1)(m−p)(m−q)I(Q,P ), (0.4.4.1)

where the factor (−1)(m−p)(m−q) refers to the orientation. Notice that the sign of the orien-
tation depends on the codimensions of the submanifolds.

The case p+ q = m is of special interest since, in this case, the set-theoretic intersection
of P and Q consists of a discrete set of points, and the normal bundle is the restriction of
the tangent bundle of M . In this case the intersection is a discrete set of points together
with a number ±1 at each intersection point. It is customary to write KI(P,Q;x) = ±1
according as the basis {e1, · · · , ep, ep+1, · · · , em} is a positively or negatively oriented basis
for TxM for x ∈ P ∩Q. KI(P,Q;x) is called the Kronecker index of P and Q at x ∈ P ∩Q.
If the number of intersections in finite, then we define the Kronecker index of P and Q as

KI(P,Q) =
∑

x∈P∩Q

KI(P,Q;x). (0.4.4.2)

It is a simple consequence of the argument in example 0.2.1.5 that KI(P,Q;x) = 1 if P and
Q are complex submanifolds of the complex manifold M .

Example 0.4.4.1 In this example we derive a formula for the Kronecker index of the in-
tersection of the graph Γ(f) of a C1 function f : M → M and the diagonal ∆ (i.e., graph
of the identity map) regarded as submanifolds of M ×M . Of course we are assuming that
Γ(f) and ∆ are in general position. Since the tangent space to Γ(f) at (x, x) is the span of
the column vectors {(ξ,Df(x)(ξ))|ξ ∈ Rm}, KI(Γ(f),∆; (x, x)) = ±1 according as

det

(
I I

Df(x) I

)
= det(I −Df(x))

is positive or negative, i.e.,

KI(Γ(f),∆; (x, x)) =
det(I −Df(x))

| det(I −Df(x))|
.

This formula has applications to Fixed Point theorems. ♣

Proposition 0.4.4.1 Let M be an oriented manifold of dimension m. Let P and Q be
compact oriented submanifold of M of dimensions p and q respectively, and assume that
∂Q 6= ∅ = ∂P . Assume also that p+ q = m+ 1 and P and Q are in general position in M .
Then KI(P, ∂Q) = 0.
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Proof - From transversality it follows that P ∩ Q consists of a finite number of circles
and smooth line segments Λi. Denote the end-points of Λi by ai and bi. Then ai, bi ∈
∂Q. Consider coordinate neighborhoods Ui ⊂ Q and Vi ⊂ P such that Ui ∩ Vi contains a
neighborhood Λ′i of ai in Λi. Furthermore, let {y1, · · · , yq} be positively oriented coordinate
functions in Ui such that Λi ∩ Ui is defined by 0 ≤ yq < 1 and yj = 0 for j < q. We may
assume ∂Q ∩ Ui is defined by yq = 0, and set Ri be the submanifold of Ui defined by the
equation yq = 1− ε for some ε > 0 small. The intersection of Ri and Λi consists of a single
point c. Since the orientations induced from Q on ∂Q∩Ui and Ri are given by dy1∧· · ·∧dyq−1

and −dy1 ∧ · · · ∧ dyq−1 respectively, we see that

KI(P, ∂Q; ai) + KI(P,Ri; c) = 0.

It is clear that there is a sequence of submanifolds Ri1, · · · , Ril of dimension q− 1 of Q such
that each Rij intersects Λi transversally at a single point cij, ci1 = ai, cil = bi and

KI(P,Rij; cij) + KI(P,Rij+1; cij+1) = 0.

Adding these relations we obtain KI(P, ∂Q; ai) + KI(P, ∂Q; bi) = 0. It now follows easily
that KI(P, ∂Q) = 0 as desired. ♣

Example 0.4.4.2 The mapping of f : R→ R2 defined by

f(t) = (− 1

1 + t2
, t− 2t

1 + t2
)

is an immersion and has precisely one self intersection which is at f(±1). The image of f ,
near (−1

2
, 0) looks approximately like ∝. We generalize this and construct an immersion

F : Rm → R2m with precisely one self intersection. Let t1, · · · , tm denote standard cartesian
coordinates in Rm, and define

ξ = (1 + t21)(1 + t22) · · · (1 + t2m).

Define F = (F1, · · · , F2m) : Rm → R2m by

F1(t) = t1 − 2t1
ξ
, F2(t) = t2, · · · , Fm(t) = tm

Fm+1(t) = 1
ξ
, Fm+2(t) = t1t2

ξ
, · · · , F2m(t) = t1tm

ξ

.

It is clear that for
∑
t2i large, the map F is approximately

Fi(t) ∼ ti, Fi+m(t) ∼ 0, for i = 1, 2, · · · ,m.



0.4. MAPPINGS OF MANIFOLDS 103

It is elementary that F is injective except for a double point, namely,

F (1, 0, · · · , 0) = F (−1, 0, · · · , 0).

Computing the matrix of partial derivatives one sees that F is an immersion. For example,
for m = 4 this matrix is given by

1− 2(1−t21)

ξ(1+t21)
0 0 0 −2t1

ξ(1+t21)

t2(1−t21)

ξ(1+t21)

t3(1−t21)

ξ(1+t21)

t4(1−t21)

ξ(1+t21)

4t1t2
ξ(1+t22)

1 0 0 −2t2
ξ(1+t22)

t1(1−t22)

ξ(1+t22)
−2t1t2t3
ξ(1+t22)

−2t1t2t4
ξ(1+t22)

4t1t3
ξ(1+t23)

0 1 0 −2t3
ξ(1+t23)

−2t1t2t3
ξ(1+t23)

t1(1−t23)

ξ(1+t23)
−2t1t3t4
ξ(1+t23)

4t1t4
ξ(1+t24)

0 0 1 −2t4
ξ(1+t24)

−2t1t2t4
ξ(1+t24)

−2t1t3t4
ξ(1+t24)

t1(1−t24)

ξ(1+t24)


from which the assertion regarding maximality of its rank follows easily. At the point of self
intersection the matrix of partial derivatives is

A± =


1 0 0 0 ∓1

2
0 0 0

0 1 0 0 0 ±1
2

0 0
0 0 1 0 0 0 ±1

2
0

0 0 0 1 0 0 0 ±1
2

 (0.4.4.3)

corresponding to neighborhoods of (±1, 0, 0, 0). Similar formula is valid for all m. It is a
simple consequence of the transversality theorem (and the arguments leading to its proof)
that we can require an immersion F : M → R2m, as usual dimM = m, to have only
transversal self intersections. This means that if F (x) = F (y), then

F?(TxM) + F?(TyM) = R2m.

Thus at the self intersection point p = F (x) = F (y) we have two “branches” of M passing
through p which we denote by P and Q. If m = 2k, then we define the self intersection
number at p by

KI(F ; p) = KI(P,Q; p).

Note that since m is even, KI(P,Q; p) = KI(Q,P ; p) and the definition is meaningful. There-
fore for m even, we obtain

det

(
A+

A−

)
| det

(
A+

A−|

) . (0.4.4.4)

for the self-intersection number of the mapping F at p = F (±1, 0, · · · , 0). ♠
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The singularities of a vector field has an interpretation in terms of transversality of
intersections. A vector field is a section of the tangent bundle, it maybe regarded as a
submanifold of dimension m of the tangent bundle TM of M . Identifying M with the zero
section of the tangent bundle, we may regard a vector field ξ and M as two m-dimensional
submanifolds of TM . Let us assume that ξ and M are in general position so that we can
apply our notions of intersections to them. Essentially the same calculation that allowed us
to define the notion of simplicity of a singular point makes it possible to assign an index
±1 to simple singular point. In fact that calculation shows that the non-vanishing and the
sign of det(Dξ) are independent of the choice of positively coordinate system. Consequently,
the sign of the determinant det(Dξ) 6= 0 is defined as the index of the vector field ξ at the
singular point. To formulate this in terms of intersections we transform the problem by
mapping a neighborhood of the zero section of TM onto a neighborhood of the diagonal in
M ×M diffeomorphically. To do this we can for example fix a Riemanian metric on M and
consider the mapping (y, η)→ (y,Expyη), which does the job if ‖η‖ is small. In particular,
the manifold M becomes identified with the diagonal. Let φt(y) be the 1-parameter group
associated to ξ. For small t > 0 we consider the submanifold M(t) = {(y, φt(y))|y ∈ M},
then our problem is that of computing the intersection of the diagonal and M(t). First we
make sure that M(t) and M (i.e., the diagonal) intersect transversally. To do so notice that
the Taylor expansion of φt(x) is

φt(x) = x+ tξx + t2r(t, x).

Therefore

(Dφt)(x)− I = t(Dξ)(x) + t2Dr(t, x).

Since M(t) is the graph of the function y → φt(y), non-vanishing of det(Dξ)(x) implies that
M(t) and M intersect transversally at (x, x) for t > 0 small. We have, by example 3.1,

KI(M(t),M) =
∑ det(Dφt(x)− I)
| det(Dφt(x)− I)|

,

where the summation is over all the singularities x of the vector field ξ. The transversality
assumption implies that the singularities of ξ form a discrete set which we assume to be
finite. Now

det(Dφt(x)− I)
| det(Dφt(x)− I)|

=
det((Dξ)(x) + tDr(t, x))

| det((Dξ)(x) + tDr(t, x))|
=

det(Dξ(x))

| det(Dξ(x))|
,

since t > 0 is small. This quantity is of course ±1 according as the mapping y → ξy is
orientation preserving or reversing near x.



0.4. MAPPINGS OF MANIFOLDS 105

Let us look a different way at the vector field ξ at an isolated singular point x. We
identify a neighborhood of x with an open subset U ⊂ Rm, via an orientation preserving
diffeomorphism, and regard ξ as a tangent vector field on U . Assuming the only singularity
of ξ in U is x, we define

g : U \ {x} −→ Sm−1 by g(y) =
ξy
‖ξy‖

.

Let dvSm−1 denote the volume element on Sm−1, ε > 0 be sufficiently small so that the closure
of the ball Dε of radius ε in contained in U . Define the index of ξ at x by

Ind(ξ, x) =
1

cm−1

∫
∂Dε

g?(dvSm−1),

where cm−1 =
∫
Sm−1 dvSm−1 . We shall see below that Ind(ξ, x) is independent of the choice of

the orientation preserving diffeomorphism and ε > 0. The transversality assumption implies
that det(Dxξ) 6= 0 and hence the mapping y → ξy is a diffeomorphism onto a neighborhood
of 0. From differential calculus we know that y → ξy maps small spheres centered at x
onto compact convex hypersurfaces containing the origin in their interiors. It follows that
g|∂D is a diffeomorphism onto Sm−1. Consequently, under the assumption of transversality,
Ind(ξ, x) = ±1 depending on whether g|∂D is orientation preserving or reversing. Hence
the index of a vector field is simply the intersection number discussed above. Note also
that the above argument shows that Ind(ξ, x) is independent of the choice of the orientation
preserving diffeomorphism, and hence it is meaningfully defined on a manifold.

One should note that the definition of the index of a vector field did not require the
assumption of transversality. If the vector field of ξ does not satisfy the transversality
assumption and vanish to some finite order, then by an arbitrarily small perturbation we
can make it transverse, and we may assume that that the perturbation is the identity on
Sε(x) = ∂D. Let ξ′ be the perturbed vector field. Then the singular point x of ξ bifurcates
into several, say n, singular points x1, · · · , xn of ξ′ in the interior of D. We may apply the
above consideration to ξ′. Let Di be a small closed disc centered at xi with Di ∩Dj = ∅ for
i 6= j. Let V = D \ (∪Di) and modify the definition of g by setting g(y) = ξy

‖ξy‖ for y ∈ V .

Then by Stokes’ theorem∫
∂D

g?(dvSm−1)−
∑ ∫

∂Di

g?(dvSm−1) =

∫
V

dg?(dvSm−1) = 0.

Therefore the index is equal to the sum of the indices of the n bifurcated points. Notice
that the argument involving Stokes’theorem also proves independence on the index from the
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choice of ε > 0. We shall further discuss these concepts later in connection with the linking
number.

For a vector field ξ with a finite number of singular points we we define the index of ξ as

Ind(ξ) =
∑

Ind(ξ, x),

where the summation is over all singular points of ξ. In view of the above considerations,
the index of ξ is simply the intersection number of the diagonal and the mapping y → φt(y),
where t > 0 is sufficiently small.

Exercise 0.4.4.1 Let f be a real-valued function defined in a neighborhood of 0 in Rm.
Assume that the vector field grad(f) has an isolated singularity at 0. Then grad(f) satisfies
the transvesality condition discussed above if and only if the Hessian H(f) = (∂2f/∂xi∂xj)
is non-singular at 0. Prove that if det(H(f)) 6= 0, then

Ind(gradf,0) = (−1)ν(f),

where ν(f) is the number of negative eigenvalues of H(f).

Example 0.4.4.3 Let G be a compact analytic group and K a closed connected subgroup.
Denote the Lie algebras of right invariant vector fields on G and K by G and K respectively.
We have G = K ⊕M where M is the orthogonal complement of K in G relative to a fixed
bi-invariant metric. Let ξ ∈ K and ξ′ denote the vector field induced on M = G/K by ξ.
This means

ξ′gK =
d

dt |t=0
exp(tξ)gK.

Since a one parameter subgroup tangent to K at one point lies entirely in K, the singularities
of ξ′ are precisely the point set {gK|Ad(g)ξ ∈ K}. We want to understand the nature of
the singular points of ξ′gK when K = T is a maximal torus and ξ is a generic element, i.e.,
exp ξ generates T . Clearly in this case the singular set becomes {gT |g ∈ N(T )} where N(T )
is the normalizer of T in G. Since the isotropy subgroup of the left action of G on M at
gT is gTg−1, the tangent space to M at gT may be identified Ad(g−1)(M). Therefore a
neighborhood of the point gT , g ∈ N(T ), in M has coordinatization

η −→ (exp η)gT, η ∈M and ‖η‖ small.

By Baker-Campbell-Hausdorf formula

exp(ξ) exp(η) = exp(ξ + η +
1

2
[ξ, η] + · · · ).
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Therefore if D denotes differentiation with respect to η, then

Dη=0ξ
′
gT =

1

2
adξ : η −→ 1

2
[ξ, η].

By compactness,M is also invariant under the action of T (the Lie algebra of T ). Therefore
to understand the singularity of ξ at gT , we have to look at det(adξ), where adξ is regarded
as a linear operator ofM. It is immediate that this determinant is independent of g ∈ N(T )
so that all the singularities have the same sign. Furthermore, gT , g ∈ N(T ), is a simple zero
since by maximality of T and genericity of ξ, adξ, as an operator on M, has only non-zero
eigenvalues. Note also that non-vanishing of det(adξ) also implies that ξ has only isolated
zeros. ♠

0.4.5 Whitney Embedding Theorem

In this subsection we mainly consider the question of immersing and embedding of manifolds
in Euclidean spaces and some of their ramifications. Let M be a compact Ck manifold and
(Ui, ϕi), i = 1, · · · , N , a finite covering of M by coordinate charts. It is clear that there are
open sets Vi ⊂ Wi, i = 1, · · · , N , such that

V̄i ⊂ Wi ⊂ W̄i ⊂ Ui,

and Vi’s cover M as well. Let ψi be a Ck function on Ui such that ψi is identically 1 on
Vi and vanishes outside of Wi. The mapping ψi and therefore ψiϕi extend by zero to M .
Consider the mapping

Ψ : M −→ RmN , Ψ(x) = (ψ1(x)ϕ1(x), · · · , ψN(x)ϕN(x)).

It is immediate that Ψ embeds M in RmN . Now we can use theorem 0.4.2.1 to improve this
obsevation by embedding M in R2m+1 and immersing it in R2m. This is done inductively by
showing that if Ψr : M → Rr is an embedding, then we can embed M in Rr−1 if r > 2m+1;
and if r = 2m+ 1 we can immerse it in R2m. The trick in doing this is to show that there is
y ∈ RM such that if πy : Rr → Rr−1 is orthogonal projection on the orthogonal complement
Ry⊥ ' Rr−1, then πyΨr is also an embedding or an immersion if r = 2m+ 1. This requires
establishing

1. The derivative D(πyΨr) is injective everywhere if r ≥ 2m+ 1;

2. πyΨ is injective if r > 2m+ 1.
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To prove the first assertion we fix a Riemannian metric g on M and let T1M be the unit
tangent bundle of M , i.e., {(x, ξ) ∈ TxM |g(ξ, ξ) = 1, x ∈M}. Then we have a map

Φr : T1M → Sr−1 ⊂ Rr, Φr(x, ξ) =
Ψr?(ξ)

||Ψr?(ξ)||
.

(Note that Ψr?, at x ∈ M , is a linear map of TxM to Rr and ||Ψr?(ξ)|| 6= 0 since Ψr is an
embedding.) This is well-defined since Ψr?(ξ) 6= 0. Note that if ±y ∈ (Sr−1 \ Φr(T1M)),
then the map πyΨr is an immersion. Let Φ̃r : T1M → RP (r − 1) be the composition of Φr

and the projection Sr−1 → RP (r−1) where antipodal points are identified. For r ≥ 2m+1,
2m− 1 ≤ r − 2 < r − 1 and RP (r − 1) \ Φ̃r(T1M) is open and dense in RP (r − 1) proving
the existence of y such that πyΨr is an immersion. This proves that for r ≥ 2m, M can be
immersed in Rr.

Next let ∆M = {(x, x)|x ∈M} ⊂M ×M and consider the mapping

P : M ×M \∆M −→ Sr−1, P (x, x′) =
Ψr(x)−Ψr(x

′)

||Ψr(x)−Ψr(x′)||
.

To ensure that there is y ∈ Rr such that the immersion πyΨr is an embedding we have to
prove the existence of

y ∈ Sr−1 \ Im(P ).

Since r > 2m + 1, 2m < r − 1 and by theorem 0.4.2.1 Sr−1 \ Im(P ) is dense. Therefore for
±y ∈ Sr−1 \ (Im(P ) ∪ Im(Φr)) both conditions (1) and (2) are fulfilled and we have proven

Theorem 0.4.5.1 (Whitney Embedding Theorem) Let M be a Ck compact manifold of
dimension m and k ≥ 2. Then for r ≥ 2m there is an immersion of M in Rr, and for
r ≥ 2m+ 1 there is an embedding of M in Rr.

Remark 0.4.5.1 The version of Whitney embedding theorem given above can be improved.
One direction is that the compactness assumption can be removed. In fact an examination
of the proof shows that if we represent M as an expanding union U1 ⊂ U2 ⊂ · · · of open
subsets, then each Ui can be embedded in R2m+1 (resp. immersed in R2m) and we obtain
the desired result by an application of Zorn’s lemma. One can also prove that M can be
embedded in R2m. The proof given above does not preclude Im(πyΨ2m+1) from having self-
intersections and this is the issue that should be addressed. One may be tempted to think
that by a perturbation of an immersion one can remove self-intersections and obtain an
embedding. However the immersion of the circle as figure ∞ in R2 shows that the issue of
removing self-intersections cannot be resolved by a perturbation argument. We shall return
to this matter later. ♥
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Remark 0.4.5.2 Whitney Embedding theorem is also valid for manifolds with boundary.
In fact if M is a compact manifold of dimension m with boundary ∂M 6= ∅, and H ⊂ R2m+1

denotes the closed half space defined by x2m+1 = 0, then there is an embedding ψ : M → H
such that ψ(∂M) ⊂ ∂H. A similar statement is true about immersions. The proof is a
technical extension of the same for manifolds without boundary and will not be presented
here. ♥

Example 0.4.5.1 Let ψ : M → R2m be an immersion of the compact oriented manifold M
of dimension m = 2k. We had noted earlier that we may assume that all self intersections
are isolated points (see remark 0.4.3.2) and therefore finite in number. In example 0.4.4.2
we defined a self intersection at such a point. If the number of such points is finite then the
self intersection number is naturally defined as

KI(ψ) =
∑

p self intersections

KI(ψ; p). (0.4.5.1)

We now show that example 0.4.4.2 and Whitney’s theorem imply that we can immerse M
into R2m with arbitrary pre-assigned self intersection number. To show this let R > 0 be
fixed, and φ be a smooth function on R with values in [0, 1] such that φ(u) = φ(−u) and

HEREWEARE
We furthermore require φ to have nonzero derivative everywhere on the interval (R,R+1).

Modifying F (t) of example 0.4.4.2 by multiplying the components Fm+1, · · · , F2m with φ(|t|)
for R > 0 sufficiently large, “flattens out” the image of F for large values of |t|. We denote
the flattened out modification of F by F̃ . For the given immersion ψ we can assume that a
neighborhood of a point of non-self intersection ψ(x) lies in a linear space of dimension m. It
is now clear that composing the given immersion ψ near ψ(x) with the mapping F̃ (properly
scaled) we add a new point of self intersection. The self intersection number at the new
point of self intersection is given by equation (0.4.4.4). Let T : R2m → R2m be a reflection
relative to a hyperplane. Then replacing the mapping F̃ (t) with t → T F̃ (t) (for a proper
choice of the hyperplane) we create a self intersection point with the opposite self intersection
number. The claim that we can construct an immersion of M with arbitrary self intersection
number follows immediately. It should be pointed out that the same argument works for m
odd or for a nonorientable manifold if we work in Z/2 so that at every intersection point
KI(F ; p) = 1 ≡ −1 and define addition in (0.4.5.1) to be in Z/2 rather than Z. ♠

Example 0.4.5.2 In this example we explicitly embed RP (n) in S2n and therefore in R2n

by removing one point from S2n. The key idea in this example is to construct a symmetric
bilinear map P : Rn+1 × Rn+1 → Rn+k+1 which is strongly nondegenerate, i.e.,

P (x,y) = 0 implies x = 0 or y = 0.
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Given such a map we define an immersion p : RP (n)→ Sn+k by

p(x) =
P (x,x)

||P (x,x)||
,

where ||.|| denotes the standard Euclidean norm and x ∈ Rn+1 \ 0. Notice that since P is
quadratic, its restriction to Sn gives a mapping of RP (n) to Rn+k+1. The derivative of p is
given by

Dp(x)(ξ) =
P (x, ξ)

||P (x,x)||
+ g(x, ξ)P (x,x) = P (x,

ξ

||P (x,x)||
+ g(x, ξ)x),

for some scalar valued function g : Rn+1 × Rn+1 → R. If ξ is tangent to Sn ⊂ Rn+1, then it
is orthogonal to x and

ξ

||P (x,x)||
+ g(x, ξ)x 6= 0,

which implies Dp(x)(ξ) 6= 0 and Dp has maximal rank everywhere. A simple example of
such a strongly nondegenerate symmetric bilinear map P with k = n is

P (x◦, x1, · · · , xn) = (y◦, y1, · · · , y2n), where yk =
∑
i+j=k

xixj.

It is elementary that this choice of P yields an embedding of RP (n) in S2n. In fact, if
p(x) = p(x′), then by multiplying x = (x◦, · · · , xn) by a positive scalar we may assume
||P (x,x)|| = ||P (x′,x′)||. Therefore p(x) = p(x′) implies x′◦ = ±x◦. Assuming x◦ 6= 0, the
relation x◦x1 = x′◦x

′
1 implies x′1 = ±x1. Thus we see that xj = ±x′j with the same sign ±

for all j. If x◦ = x1 = · · · = xj−1 = 0 then we start by looking at the component y2j and
proceeding in the same manner. ♠

Exercise 0.4.5.1 Identifying R4 with the quaternions H, explain why the pairing (q, q′)→
qq′ fails to satisfy the hypotheses of the above example and does not yield an immersion of
RP (3) to S3.

The algebraic problem of constructing strongly nondegenerate symmetric bilinear forms
and thereby obtaining embeddings of real projective spaces is not a trivial one. There are
more powerful but less explicit methods for dealing with the immersion/embedding problem
of manifolds which we will touch upon in later chapters. The requirement of symmetry of
the strongly nondegenrate bilinear form can also be relaxed and still obtain immersions. The
following example shows that the general construction of example 0.4.5.2 can be improved
for n odd.
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Example 0.4.5.3 Assume n+1 = 2m and identify R2m with Cm so that a point (x1, · · · , x2m)
is represented as ξ = (ξ1, · · · , ξm) where ξj = x2j−1 + ix2j. Consider the symmetric bilinear
pairing P : Cm × Cm → C2m−1 defined by

P (ξ, η) = (P2, · · · , P2m), where Pl =
∑
j+k=l

ξjηk.

It is clear that P yields a strongly nondegenerate pairing R2m × R2m → R4m−2. Thus we
obtain an immersion of RP (2m−1) into S4m−3. In particular we can immerse RP (3) into S5

or R5. However this result is not sharp either since one can immerse any compact orientable
manifold of dimension three in R4. This issue will be discussed later in the text. The method
of examples 0.4.5.2 and 0.4.5.3, as it stands, will not yield an immersion of RP (3) into S4

since there is no strongly nondegenerate symmetric bilinear pairing R4 × R4 −→ R5. The
proof of this algebraic fact is omitted since it is not relevant to the methods used in this text.
For a table of immersions and embeddings of real projective spaces the reader is referred to
[DMD] which contains references to original papers. ♠

Exercise 0.4.5.2 Show that by restricting the mapping

ψ : R3 → R4, ψ(x1, x2, x3) = (x1x2, x2x3, x3x1, x
2
1 − x2

2)

to S2 ⊂ R3, we obtain an embedding of RP (2) into R4.

Exercise 0.4.5.3 Let M ⊂ Rm+1 be a compact orientable hypersuface. Show that M × Sn
can be embedded in Rm+n+1.

Exercise 0.4.5.4 Construct an immersion of T 2\{point} onto an open subset of R2.

Exercise 0.4.5.5 Show that the mapping

(z◦, z1, z2) −→
(z◦z̄1, z1z̄2, z2z̄◦, |z◦|2 − |z1|2)

ζ

where ζ = |z◦|2 + |z1|2 + |z2|2 induces an embedding of CP (2) into R7.

Exercise 0.4.5.6 Let M be a compact manifold of dimension m and ψ : M → RN , N ≥
2m + 1, a smooth map. Show that for every ε > 0 there is an embedding Ψ : M → RN

such that Ψ is ε close to ψ relative to the sup-norm in RN . (Hint - Consider an embedding
φ : M → Rl and the the embedding (ψ, φ) : M → R2m+1+l. Now use the projection argument
of the proof of Whitney’s theorem.)
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Exercise 0.4.5.7 Let M be a manifold of dimension m, and f, g : M → R2m+2 immersions.
Show that there is a smooth map F : M × I → R2m+2 such that F (., 0) = f , F (., 1) = g and
for every u ∈ I, x→ F (x, u) is an immerion of of M into R2m+2.

Exercise 0.4.5.8 Let M be a compact manifold of dimension m with ∂M consisting of
two connected components N1 and N2. Let H ⊂ R2m+1 be the closed subset defined by the
iequalities 0 ≤ x2m+1 ≤ 1. Denote the boundary components of H by ∂◦H and ∂1H. Show
that there is an embedding ψ : M → H such that ψ(Ni) ⊂ ∂iH.

The idea that allowed us to embed a compact manifold M in RmN for some sufficiently
large N is applicable to yield a mapping of a bundle E → X to the tautological bundle over a
Grassmann manifold. The construction for complex, real or oriented real bundles is the same
and the mapping is into the complex, real or the Grassmann manifold of oriented k-planes.
To make this construction precise, let us consider real k-plane bundles for definiteness, and
recall that Gk,n(R) denotes the Grassmann manifold of k dimensional linear subspaces of
Rk+n. Let π : E → X be a k-plane bundle over the compact10manifold M . Let {U1, · · · , UN}
and {V1, · · · , VN} be coverings of M with open sets such that Vj ⊂ V̄j ⊂ Uj and that E is a
trivial k-plane bundle on each Uj. We fix trivializations

θj = (θj1, θj2) : π−1(Uj) ' Uj × Rk ⊂ Rm × Rk

for every j. Let ψj be a C∞ non-negative function which is identically 1 on V̄j vanishes
outside of Uj. Now every mapping φjθj extends to a smooth mapping E → Rm × Rk. The
mapping

Θ′ : E → R(m+k)N , Θ′(e) = (ψ1(π(e))θ1(e), · · · , ψN(π(e))θN(e)),

is an embedding which is an affine map on each fibre of the bundle E → M . We can easily
modify Θ′ to make it linear on each fibre. In fact, consider Θ : E → RkN defined by

Θ(e) = (ψ1(π(e))θ12(e), · · · , ψN(π(e))θN2(e)).

Notice that under Θ every fibre of π : E → M is mapped onto a k-dimensional subspace of
RkN , and therefore it induces a map θ : M → Gk,kN−k(R) and we have the diagram

E
Θ−→ E

↓ ↓
M

θ−→ Gk,q(R)

(0.4.5.2)

10The assumption that M is a compact manifold is inessential and is only a matter of convenience. Similar
arguments work for more general topological spaces (see e.g. [Hi] for not necessarily compact Cr manifolds).
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where q = kN − k and Θ is injective on every fibre of π : E → M . The above construc-
tion realizes the bundle E → M as the pull back θ?(E) of the tautological bundle over a
Grassmann manifold. The map θ is generally not injective. The same argument works for
complex or real oriented vector bundles. We can prove the following important proposition:

Proposition 0.4.5.1 Every complex, real or real oriented k-plane bundle E → M over a
compact manifold can be realized as the pull back of the tautological bundle over Gk,q, Gk,q(R)
or G◦

k,q(R) where q ≥ m.

Proof - We have already established the proposition for q = kN −k, and it remains to show
any q ≥ m works. We follow the idea of the proof of the Whitney Embedding Theorem.
For q = kN − k we established a map from E to Rq+k which was linear on the fibres of
the vector bundle E → M . We want to reduce the dimension q + k by composing the map
with a projection onto a linear subspace of codimension 1 and proceed inductively. Now the
projection p : Rq+k → Rq+k−1 should be such that pθ remains a linear isomorphism on each
fibre of the bundle. A straightforward application of theorem 0.4.2.1 just as in the proof of
theorem 0.4.5.1 shows such a projection exists as long as q > m completing the proof of the
proposition. ♣

Remark 0.4.5.3 It can be shown that one can set q = dimM , in proposition 0.4.5.1,
however, this would not significantly affect the application of this proposition. ♥

0.4.6 Immersions of the Circle

In view of the transversality theorem every immersion of the circle in Rq, q ≥ 3, may be
perturbed to an embedding by an arbitrarily small perturbation. However, the situation is
different for q = 2 and in this subsection we analyze immersions γ : S1 → R2. We often regard
such a mapping as a C1 function γ : [0, 2π] → R2 such that γ(0) = γ(2π), γ′(0) = γ′(2π)
and γ′ nowhere vanishing. We assume that all crossing of γ are normal which means that
if γ(t1) = γ(t2) then the vectors to γ′(t1) and γ′(t2) are linearly independent vectors in the
plane. Two immersions γ, δ : S1 → R2 can be deformed into or are deformations of each
other if there is a C1 map F : S1 × I → R2 such that

1. F (t, 0) = γ(t) and F (t, 1) = δ(t);

2. For every u ∈ I, F (., u) : S1 → R2 is an immersion.

This is clearly an equivalence relation. We want to classify immersions of S1 into the plane
up to this equivalence relation. The second requirement (namely, F (., u) is an immersion
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for every u) is essential for otherwise all curves will be equivalent to the constant mapping
taking S1 to the origin via F (t, u) = uγ(t). Since γ : S1 → R2 is an immersion, the mapping
Gγ : S1 → S1 given by

Gγ(t) =
γ′(t)

||γ′(t)||
,

is well-defined. Let dθ = 1
i
dz
z

denote the standard arc length11 on S1. We define the winding
number of γ as

W (γ) =
1

2π

∫
S1

G?γ(dθ). (0.4.6.1)

Writing γ(t) = (γ1(t), γ2(t)) the differential G?γ(dθ) is

G?γ(dθ) = d tan−1(
γ′2(t)

γ′1(t)
) =

γ′1(t)γ
′′
2 (t)− γ′′1 (t)γ′2(t)

γ′21 (t) + γ′22 (t)
dt. (0.4.6.2)

Now define

Φγ(t) =

∫ t

0

G?γ(dθ),

which, in view of (0.4.6.2), measures the number of times the tangent vector field to γ has
wound around the circle. The orientation of γ determines the sign of Φγ(t). In particu-
lar, Φγ(2π) differs from Φγ(0) by an integral multiple of 2π since γ′(2π) = γ′(0). By the
fundamental theorem of calculus

W (γ) =
1

2π
(Φγ(2π)− Φγ(0)) = k ∈ Z,

which shows that the winding number of an immerison of S1 into the plane is an integer.
Note also that if t is the arc length along the curve γ then

G?γ(dθ) = κdt,

where κ is the curvature of the plane curve γ.
The integrality of the winding number implies that its value, which depends continuously

on deformations of the curve γ, is constant on each equivalence class (of deformations). The

11dθ is an unfortunate notation since it is not an exact differential on S1. On the other hand, if we regard
θ as a smooth many valued function on S1, then dθ becomes an exact differential. There is no need to
introduce further general theory to clarify this idea.
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converse is also true and will be proven below. First we need some preliminaries. It is clear
that the immersion γ can be deformed into one with γ(0) = 0 and γ′(0) pointing along the
positive x1-axis. Replacing γ by rγ for some fixed real number r 6= 0 we can furthermore
assume that if W (γ) 6= 0 then γ has length 2π|W (γ)|. For γ parametrized by arc length we
use complex notation and set

γ′(t) = eiϕγ(t), t ∈ [0, 2πW (γ)]. (0.4.6.3)

We can now prove

Proposition 0.4.6.1 Two immersions γ, δ : S1 → R2 are equivalent, with respect to the
equivalence relation defined above, if and only if W (γ) = W (δ).

Proof - The only if has already been established. Let γ, δ be curves with winding number
W (γ) = W (δ). Since a reflection has the effect of multiplying the winding number by -
1, we may assume W (γ) = W (δ) ≥ 0. Without loss of generality we may assume that
δ(0) = γ(0) = 0 and their tangents at 0 are identical. First consider the case where W (γ) 6= 0
so that we can assume γ and δ have length 2πW (γ) and are parametrized by arc length. For
every u ∈ I = [0, 1] define the function

F (t, u) =

∫ t

0

ei((1−u)ϕγ(s)+uϕδ(s))ds− C(t, u),

where C(t, u) is any complex valued function with the following properties:

1. C(0, u) = 0 for all u ∈ [0, 1];

2. C(2πW (γ), u) =
∫ 2πW (γ)

0
ei((1−u)ϕγ(s)+uϕδ(s))ds;

3. |dC
dt

(t, u)| < 1;

4. dC
dt

(0, u) = dC
dt

(2πW (γ), u) = 0.

Since we can assume that for every u ∈ I, the function (1− u)ϕγ(t) + uϕδ(t) is not constant
as a function of t (since otherwise one directly constructs a deformation of γ to δ), the
Cauchy-Schwartz inequality implies

|
∫ 2πW (γ)

0

ei((1−u)ϕγ(s)+uϕδ(s))ds| < 2πW (γ).
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From this, the existence of the function C follows easily. Condition (3) on C ensures that
the map t→ F (t, u) has non-vanishing derivative. It is now immediate that F (t, u) defines
the desired deformation of γ to δ. This proves the proposition for W (γ) 6= 0. The case of
W (γ) = 0 is done similarly except that here we normalize the domain of γ and δ to be the
unit interval since W (γ) = 0. The details are left to the reader. ♣

Looking at the immersion γ as a mapping of I = [0, 1] into the plane such that γ(0) = γ(1)
and γ′(0) = γ′(1), we endow the image of γ with a definite orientation, namely that of
increasing value of t ∈ I. At a self intersection, which we have assumed to be a normal
crossing, there are two branches of γ. To be more precise, let 0 < t1 < t2 < 1 be such
that γ(t1) = γ(t2) and by the hypothesis the tangent vectors γ′(t1) and γ′(t2) are linearly
independent vectors in R2 = Tγ(ti)R2. Let P and Q be the images of neighborhoods of t1
and t2 respectively under γ. P and Q have natural orientations in the increasing direction
of t. Fixing an orientation for R2, the self intersection number of γ at γ(t1) = γ(t2) is

KI(P,Q; γ(t1)).

Notice that this self interesection number is Z-valued in spite of the fact that immersed
manifold is odd dimensional. This is because in dimension one we can choose order of the
“branches” of the immersed manifold at self intersection points in a consistent manner which
is not possible in higher dimensions. Let ν+ and ν− be the number of positive and negative
self intersections. Our goal is to express W (γ) in terms of ν±. To do so we first note the
following:

Lemma 0.4.6.1 Assume γ is an embedding so that it has no self-intersections. Then
W (γ) = ±1 according as its orientation is counter-clockwise or clockwise.

While one can give an elementary proof of this lemma, it is more instructive to present
the simple and elegant proof of it based on theory of covering spaces. This is done in chapter
4, and for the time being we assume the validity of this lemma. An examination of special
cases suggests that the statement of the lemma is indeed very plausible. One often refers to
an embedding γ : S1 →M as a simple closed curve in M .

For definiteness let us fix the standard orientation for R2 and assume

1. (Normalization 1) γ(0) = 0 and γ′(0) points along the positive x1-axis;

2. (Normalization 2) γ(t) and γ(1− t) for t > 0 small lie in the half plane x2 > 0.

We can now state
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Proposition 0.4.6.2 Let γ be an immersion of S1 into the plane. Then, with the above
normalizations,

W (γ) = 1 + ν−(γ)− ν+(γ) = 1−KI(γ).

The second equality in the proposition is the definition of self-intersection number.
Lemma 0.4.6.1 establishes the validity of the proposition for simple closed curves in the
plane. The effect of self intersections on the winding number W (γ) is easy to understand
by a decomposition argument. The decomposition of the image of an immersion near a self
intersection shows that we have to analyze the effect of the winding number of figure ∞ on
W (γ). We can remove a self intersection as shown in figure (??), and this maybe regarded
as a special case of ] construction but the present situation is specially simple and does
not require the general construction. Notice that removing a self intersection γ(t1) = γ(t2),
t1 < t2, as shown in figure (??) results in two curves γ1 and γ2 corresponding approximately
to values of t ∈ [0, t1] ∪ [t2, 1] and t ∈ [t1, t2]. Near t1 and t2 it is necessary to modify the
mapping γ to remove the self intersection γ(t1) = γ(t2) and obtain two immersed closed
curves. The curves γ1 and γ2 may intersect, and their intersection number is

KI(γ1, γ2) =
∑

p intersection point

KI(γ1, γ2; p). (0.4.6.4)

We have

Lemma 0.4.6.2 Let γ1 and γ2 be two immersions of S1 into the plane, then KI(γ1, γ2) = 0.

Proof - Clearly intersection numbers are invariant under deformations of the curves γi. Let
x 6= 0 and consider the curves γ1 and δα(t) = αx + γ2(t). Then for α sufficiently large,
KI(γ1, δα) = 0, whence the required result. ♣

With these preliminaries out of the way we can now prove the proposition.
Proof of proposition 0.4.6.2 - The proof is by induction on the number of self intersection
points. We have already established the result when γ is an embedding. In removing a self
intersection p ∈ Im(γ) two cases occur. Either near p both curves lie on the same side of a
virtual line L as shown in the figure or on opposite sides. In the former case the normalization
conditions 1 and 2 are identical for both curves γ1 and γ2 and therefore by induction on the
number of self intersections we may state

W (γ1) = 1 + ν−(γ1)− ν+(γ1), and W (γ2) = 1 + ν−(γ2)− ν+(γ2). (0.4.6.5)

Joining γ1 and γ2 together to reconstruct γ, we regenerate the intersection point p and clearly
the intersection number at p (in the former case) is −1. Thus adding W (γ1) and W (γ2) (in
view of lemma 0.4.6.2) and adding the intersection number at p we obtain:

W (γ) = 1 + ν−(γ)− ν+(γ). (0.4.6.6)
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In the latter case the normalization condition is reversed for the curve γ2 and the intersection
number at p is +1. Taking account of the sign changes in the appropriate manner we similarly
arrive at the same formula thereby completing the proof of the proposition. ♣

Remark 0.4.6.1 The proposition remains valid, with some minor modifications, for con-
tinuous but only piece-wise smooth curves. In this case the quantity G?γ(dθ) is defined in the
complement of the set {s1, · · · , sn} of the points where γ is not differentiable. We assume
that at the points of non-differentiability, one-sided derivatives exist but are not equal. The
angle between the tangents at the point si will be denoted by θi. Then the winding number
of γ is defined by

2πW (γ) =
∑
i

θi +

∫ 1

0

G?γ(dθ).

The essential point is that we can approximate a piece-wise smooth closed curve with a
smooth immersion of the circle (by smoothing the corners), and this process does not affect
the winding number as defined above. This is can be made formal and rigorous by smoothing
techniques introduced earlier, but such pedantry is superfluous. ♥

0.4.7 Homotopy and Isotopy

In the preceding subsection we considered the notion of deformation of curves in the plane
with the additional condition that the derivative remained non-zero at all times. Here we
give some useful definitions and examples of different kinds of deformations of spaces and/or
maps which will be useful in the sequel. For reasons that will become clear later it is
convenient to make use of pairs (X,A) where X is a Hausdorf second countable topological
space, and A ⊆ X a subspace. A map f : (X,A)→ (Y,B) is a continuous map of X into Y
mapping A into B. The pair (X, ∅) is identified with X. Two maps f◦, f1 : (X,A)→ (Y,B)
are homotopic relative to the subspace X ′ of X if there is a continuous map F : X × I → Y ,
(I = [0, 1]), such that

1. F (x, 0) = f◦(x) for all x ∈ X,

2. F (x, 1) = f1(x) for all x ∈ X,

3. F (x, t) = f◦(x) for all x ∈ X ′ and all t ∈ I.

For X ′ = ∅ we simply say f◦ and f1 are homotopic. Initially we will use the concept of
homotopy in the case X ′ = ∅, and the importance of relative homotopy (i.e., X ′ 6= ∅) will
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become clear later. It is easy to see that the relation of being homotopic is an equivalence
relation. A topological space X is contractible if the identity map of X is homotopic to a
constant map X → X, (a constant map y : X → Y means y(x) = y for all x ∈ X). For
example, Rn and the disc are contractible, and we can take the homotopies to be F (x, t) = tx
in both cases. A map f : X → Y is a homotopy equivalence if there is h : Y → X such that
both hf and fh are homotopic to the identity map. In such a case we say that X and Y
are homotopically equivalent or of the same homotopy type. For example, any constant map
of a contractible space to itself is a homotopy equivalence.

Related to homotopy is the concept of retract. A subspace A ⊆ X is a retract of X if the
inclusion map i : A → X has a left inverse, i.e., if there exists a map j : X → A such that
ji = idA. If furthermore the map j can be chosen such that ij is homotopic to the identity
map idX , then we say that A is a deformation retract of X.

One can easily think of many homotopic maps and deformation retracts. For example,
the sphere Sn−1 = {x ∈ Rn|‖x‖ = 1} is a deformation retract of Rn \ 0 with the map
j(x) = x/‖x‖. The following examples are a little less obvious:

Example 0.4.7.1 Let ξ be a vector field on the manifold M , and φt the corresponding one
parameter group of transformations of M . The mapping x → φ1(x) is homotopic to the
identity map and the homotopy is given by F (x, t) = φt(x). ♠

Example 0.4.7.2 Let f : Sn → Sn with no fixed points. We show that f is homotopic to
the antipodal map. Since f has no fixed points, x and −f(x) are not antipodal points. Let
t → φt(x) be the unique shortest great circle (segment) starting at x with φ1(x) = −f(x).
Then φt(x) gives the desired homotopy. ♠

Exercise 0.4.7.1 Show that if f and g are maps of of Sm to itself such that f(x) and g(x)
are distinct for all x, then f and −g are homotopic.

Example 0.4.7.3 Let f be a real-valued function on the manifold M and assume that f has
no critical points on [a, b]. Let Ma = f−1((−∞, a]), and assume that f−1([a, b]) is compact.
Then Ma is a deformation retract of Mb. To prove this let ψ be a non-negative C∞ function
identically 1 on f−1([a, b]) and vanishing outside a compact neighborhood of f−1([a, b]). Fix
a Riemannian metric g on M and let ξ be the vector field

ξ =
−ψ · gradf

g(gradf, gradf)
.

Since ξ vanishes outside a compact set, the one parameter φt corresponding to ξ is defined
for all time t. Now

f(φt(x))− f(x) =

∫ t

0

d

ds
f(φs(x))ds =

∫ t

0

g(ξ, gradf)ds.
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Hence f(φt(x)) ≤ f(x) for all t > 0, and if x ∈ Mb and t ≥ f(x) − a then f(φt(x)) ∈ Ma.
Define

HEREWEARE
Then j1i = idA, and ij1 is homotopic to id.X , and the homotopy is given by F (x, t) =

jt(x). Notice that we have also proved that Ma and Mb are diffeomorphic. The assumption
of compactness of f−1([a, b]) cannot be removed. In fact, let M be the cylinder I × S1,
N = M\{p} where p = (1

2
, eiθ◦) is an interior point, and f(t, eiθ) = t. Then f has no critical

point but f−1([0, α]) and f−1([0, β]) are not homotopic for α < 1
2
< β. This is perhaps

plausible, yet a rigorous proof is given in chapter 3 exercise ?? using homology. ♠

A notion more restrictive than homotopy is isotopy. Two injective continuous maps
f◦, f1 : X → Y are called isotopic if there is a homotopy F : X × I → Y such that for every
t ∈ I the map F (., t) : X → Y is also injective. The homotopy F (x, t) of example 0.4.7.1 is
in fact an isotopy. If X = M and Y = N are manifolds, we assume that that the maps fj
are smooth (unless stated to the contrary) and we introduce the notion of smoothly isotopic
by the additional requirement that for all t ∈ I, F (., t) is a diffeomorphism. Similarly, two
immersions f◦, f1 : M → N are called isotopic immersions if there is a smooth homotopy
F : M × I → N such that for every t ∈ I the map F (., t) : M → N is also an immersion.
This is the generalization of the notion of deformation of immersions of the circle investigated
in the preceding subsection. It is straightforward to show that homotopy, isotopy, smooth
isotopy and isotopic immersion are equivalence relations.

Exercise 0.4.7.2 Exhibit a smooth isotopy between antiopodal map  : Sm → Sm and the
identity map for m an odd integer. Show that for m even,  is not smoothly isotopic to to
the identity map.(Look at det(). It is shown is chapter 3 that  is not even homotopic to
the identity map.)

Example 0.4.7.4 Let A : Rm → Rm be a linear transformation with det(A) > 0. Since
GL(m,R) has two connected components corresponding to the signs of determinant, there
is a smooth curve γ : I → GL(m,R) with γ(0) = I and γ(1) = A. Thus γ gives a smooth
isotopy between the diffeomorphism A and I by F (x, t) = γ(t)(x). Similarly every two linear
transformations of Rm with negative determinant are smoothly isotopic. Since GL(m,C) is
connected, any nonsingular linear transformation of Cm is smoothly isotopic to the identity
map. This suggests that if we look at more complex groups such as the group Diff(M) of
diffeomorphisms of a compact manifold M (with the appropriate topology), then smooth
isotopy classes of diffeomorphisms are the same as path components of this group. ♠

A (smooth) embedding γ : S1 → R3 (or S3) is called a knot. We often use the word knot
to denote both the embedding γ and its image. One way of distinguishing between trivial
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and non-trivial knots is to define a knot γ to be trivial (or the unknot) if γ is smoothly
isotopic to a linear embedding of S1 into R3, i.e., γ is smoothly isotopic to the restriction of
an injective linear map of R2 into R3.

Example 0.4.7.5 Let m ≤ n, Dm denote the unit disc in Rm centered at the origin 0
and f : Dm → Rn be a smooth embedding. We show that f is smoothly isotopic to
a linear embedding. Composing f with a translation we may assume f(0) = 0. Define
F : Dm × I → Rn as

HEREWEARE
Then F defines the necessary smooth isotopy. The above construction also shows that

any diffeomorphism of Rm is smoothly isotopic to an affine isomorphism.
In particular, if a knot γ : S1 → R3 extends to an embedding of the disc D2 into R3

then the knot is trivial. Phrased differently, if a knot (regarded as the image of γ now)
bounds a disc, then it is the unknot. This observation will be useful in the study of knots
(see the proof of Fary-Milnor theorem in chapter 2, §1.4). For any knot there is always a
surface whose boundary is the given knot, but the surface is generally not a disc except for
the unknot. The relevance of the bounding surface to the study of knots is discussed in the
next volume, and special cases are considered in chapter 4. ♠

Exercise 0.4.7.3 Show that every diffeomorphism of the circle S1 = ∂D2 extends to a
diffeomorphism of the disc D2. Deduce that every diffeomorphism of the circle is smoothly
isotopic to either the identity map or complex conjugation.

We noted in example 0.4.7.1 that the one parameter group φt of a vector field gives a
homotopy between φ◦ and φ1 assuming that the latter quantity is defined. It is clear that
φt is in fact a smooth isotopy. In particular, let ξ = −gradf where f is a Morse function on
a Riemanian manifold M , f−1([a, b]) is compact and f has no critical values in [a, b], then
a slight modification of the construction in example 0.4.7.3 gives a smooth isotopy between
the manifolds f−1(b) and f−1(a). More generally a time dependent vector field ξx,t yields a
smooth isotopy provided the solutions exist for t in an interval [0, a], a > 0. In fact, consider
the time independent vecctor field (ξx,at,

∂
∂t

) on the manifold M ×R, then the corresponding
one parameter group φs defines the required smooth isotopy by F (x, s) = φs(x, 0). If M is
compact, then it is easily verified, as in the time independent case, that the solutions φx,t
exist for all t ∈ R. A sufficient condition for the existence of φs when M is not necessarily
compact is given in chapter 2. Time dependent vector fields and isotopies are useful tools
for the construction of differentiable manifolds. For a continuous mapping ψ : M → M we
define the support of ψ as the closed set

suppψ = {x ∈M | ψ(x) 6= x}.
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The following simple lemma or more precisely its corollaries will be used in the next subsec-
tion:

Lemma 0.4.7.1 Let M be a manifold (without boundary) and X ⊂ M a compact subset.
Let U be an open neighborhood of X and F : U × I →M a smooth isotopy such that

1. F (., 0) is the inclusion of U in M .

2. F (U × I) is open in M × I.

3. ∪t∈IsuppF (., t) is a compact subset of F (U × I).

Then there is a smooth isotopy F ′ : M × I →M and a compact subset K ⊂M such that

1. F ′ is an extension of the restriction of F to a neighborhood of X × I.

2. For every t ∈ I, suppF ′(., t) ⊂ K.

Proof - Let F̃ (x, t) = (F (x, t), t). The tangent vectors to curves t → F̃ (x, t), x ∈ U ,
define a time dependent vector field ξ′ in U . Let φ = φ(x) be a C∞ function identically 1
in a neighborhood of ∪t∈IsuppF (., t) and vanishing outside of a compact neighborhood of
∪t∈IsuppF (., t) in F (U × I). Then the vector field

ξ = φξ′ +
∂

∂t

in M × I generates the desired smooth isotopy. ♣
Remark 0.4.7.1 below shows that some technical assumption, such as the hypotheses of

lemma 0.4.7.1, is necessary for the validity of the conclusion of the lemma.

Corollary 0.4.7.1 Let f, h : Dk →M be embeddings of the disc where k ≤ m− 1. Then f
and h are smoothly isotopic.

Corollary 0.4.7.2 Let M be an oriented manifold, and f, h : Dm → M be embeddings of
the disc. Assume both f and h are either orientation preserving or orientation reversing.
Then f and h are smoothly isotopic.

Proof of corollaries 0.4.7.1 and 0.4.7.2 - Let k = 0, then there is a smooth embedding
γ : [0, 1] → M with γ(0) = f(0) and γ(1) = h(0). Denote the image of γ by X, and let U
be a small (tubular) neighborhood of X. Clearly there is a smooth isotopy F : U × I →M
such that between f and h and lemma 0.4.7.1 gives the desired isotopy. From the case k = 0
we deduce that for all k ≤ m we can assume f(0) = h(0). Replacing f and h by smoothly
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isotopic maps x → f(αx) and x → h(αx), for some 0 < α < 1 if necessary, we can assume
that images of f and h are contained in one coordinate neighborhood. Now example 0.4.7.5
is applicable to show that f and h are smoothly isotopic linear maps. The conclusions of
both corollaries follows immediately. ♣

A slight modification of the proof of lemma 0.4.7.1 establishes the following analogue of
it for manifolds with boundary:

Lemma 0.4.7.2 Let M be a manifold with boundary N ⊂M be a compact submanifold and
F : N × I →M be a smooth isotopy with F (x, 0) = x and such that

1. Either F (N × I) ⊂ ∂M ;

2. Or ∪t∈IsuppF (., t) ∩ ∂M = ∅.

Then F extends to a smooth isotopy F ′ : M × I →M .

The relevance of groups of diffeomorphisms of manifolds to problems of geometry, topol-
ogy and physics has already been established in a number of problems. We will make
occasional references to these groups. Let us briefly consider the group Diff(Sm) of diffeo-
morphisms of Sm and its subgroup Diff+(Sm) consisting of orientation preserving diffeo-
morphisms. Let Diff+(Bm+1) be the group of orientation preserving diffeomorphisms of the
closed unit ball Bm+1 ⊂ Rm+1. By restriction we obtain a homomorphism

ρ : Diff+(Bm+1) −→ Diff+(Sm).

Denote the image of ρ by G.

Lemma 0.4.7.3 With the above notation, G is a normal subgroup of Diff(Sm) and conse-
quently Γm+1 = Diff+(Sm)/G is a group.

Proof - Let g ∈ G and ψ ∈ Diff(Sm). By corollary 0.4.7.2 there is a smooth isotopy
F : Sm × I → Sm such that F (., 0) = id. and F (., 1) = g. Consequently ψFψ−1 gives a
smooth isotopy between the identity map and ψgψ−1. By lemma 0.4.7.2 ψgψ−1 extends to
a diffeomorphism of Bm+1 which proves the assertion. ♣

Proposition 0.4.7.1 Γm+1 is an abelian group.

Proof - Let ψg ∈ Diff+(Sm) represent an element g ∈ Γm+1, and p ∈ Sm be the north pole.
Since SO(m) ⊂ Diff+(Bm+1) we may assume ψg(p) = p. Let Ū 6= Sm be the closure of any
open subset, then ψg(Ū) misses an open set in Sm and after composing ψg with an element
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of Diff+(Dm+1) we may assume ψg(Ū) misses a neighborhood of the south pole q. Let U
be a (small) neighborhood of the closed northern hemisphere N+. Identifying Sm\{q} with
Rm It follows from corollary 0.4.7.2 that the restriction of ψg to Ū is smoothly isotopic to
the identity map. Let F (., .) be such a smooth isotopy. By lemma 0.4.7.1 F (., .) extends
to a smooth isotopy of Sm which agrees with F on N+. We denote this extension again
by F . F (., .) extends to a smooth isotopy of Bm+1 by lemma 0.4.7.2 with F (., 1) = ψg on
N+. Consequently F (., 1)−1ψg ≡ ψg in Γm+1 and we may assume ψg is the identity on the
northern hemisphere N+. Similarly if ψh represents an element of h ∈ Γ, then we can assume
ψh is the identity on the southern hemisphere N−. For these representatives of g and h it is
trivial that ψgψh = ψhψg proving the proposition. ♣

It is a consequence of exercise 0.4.7.3 that Γ2 = 0. It is known that Γm is finite, and the
smallest m for which Γm 6= 0 is m = 7. Vanishing of Γ3 is shown in example 0.4.7.6 below.
The fact that Γ4 = 0 is considerably more difficult (see e.g. [Ce2]). In [Ce1] one finds a
number of foundational results.

Remark 0.4.7.1 An examination of the proof of proposition 0.4.7.1 shows that any dif-
feomorphism ψ of Sm is smoothly isotopic to one supported in a hemisphere and therefore
can be regarded as a diffeomorphism with compact compact support of Rm. Assume the
diffeomorphism is orientation preserving. Such a diffeomorphism is isotopic to an affine iso-
morphism and therefore to the identity map, however, it may not be possible to find such a
compactly supported isotopy. (The isotopy in example 0.4.7.5 is not compactly supported.)
In fact, the existence of such a compactly supported isotopy implies ψ, as a diffeomorphism
of Sm, is isotopic to the identity map. Therefore it extends to a diffeomorphism of Bm+1

and ψ vanishes in Γm+1. Using Γ7 6= 0, we can establish the necessity of some technical
hypotheses for the validity of the conclusion of lemma 0.4.7.1. To understand this point
let ψ : Rm → Rm be a diffeomorphism with suppψ ⊂ Bm

1
2

where Bm
1
2

denotes the open ball

of radius 1
2
. We furthermore assume that ψ(0) = 0 and Dψ(0) is the identity map. Now

consider the diffeomorphism Φ : Rm ' Bm
1 defined by

Φ(r, θ) = (φ(r), θ),

where (r, θ) denotes spherical polar coordinates, and φ is C∞ decreasing function of r > 0
with

HEREWEARE
Now let X = Bm

1
2

, U = Bm
1 , Ψ = Φ−1ψΦ and F ′ be the isotopy between ψ and the

identity map constructed in example 0.4.7.5. Then F = Φ−1F ′Φ gives gives an isotopy
between Φ−1ψΦ and the identity map. Clearly F (U × I) = U is open Rm × I. However

∪t∈IsuppF (., t) = U
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is not a compact subset of F (U × I) = U . In view of the arbitrariness of ψ, F does not
admit of any extension of the form specified in the conclusion of lemma 0.4.7.1, for other-
wise every compactly supported orientation preserving diffeomorphism would be smoothly
isotopic through a compactly supported isotopy, to the identity map. ♥

Example 0.4.7.6 We show that Γ3 = 0. Let ψg ∈ Diff+(S2) be a representative for g ∈ Γ3.
The proof of proposition 0.4.7.1 shows that we can assume ψg is the identity on the northern
hemisphere N+. Therefore we can regard ψg as a diffeomorphism of R2 which is the identity
outside a compact subset K which we may take to be a rectangle with vertices A,B,C,D.
Consider lines parallel to the side AB. Then the diffeomorphism ψg distorts the portions of
these line segments in the interior of K while keeping their end points fixed. It is a standard
result in the theory of first order ordinary differential equations in the plane that through a
smooth isotopy fixing the boundary one can straighten out all the lines. (This is strictly a
two dimensional theorem.) The composition of this isotopy with a reparametrization of the
the straightened out curves, which can be implemented by a smooth isotopy, one obtains a
smooth isotopy between ψg and the identity which is identity outside of K. It follows from
lemma 0.4.7.2 that F extends to a smooth isotopy of the disc B3 and therefore so does ψg
which proves Γ3 = 0. ♠
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0.5 Representations of Groups

0.5.1 Representations of Groups and Lie Algebras

Let V = KN where K = R, or C and ρ : G → GL(N,K) be a representation of G.
We say ρ (or V ) is irreducible (or V is an irreducible G-module) if V has no nontrivial
proper ρ(G)-invariant subspaces. ρ is completely reducible if V admits of a decomposition
V = V1 ⊕ · · · ⊕ Vl where each subspace Vj is irreducible. In matrix notation, complete
reducibility means that the matrices ρ(g) can be simultaneously block diagonalized with
each diagonal block corresponding to one irreducible representation. For example, for l = 2
this means that for a proper choice of basis, all matrices ρ(g) are of the form

ρ(g) =

(
ρ1(g) 0

0 ρ2(g)

)
,

and ρi’s are representations of G. It is also customary to write ρ = ρ1⊕· · ·⊕ρl when a repre-
sentation ρ can be so block diagonalized even if ρi’s are not irreducible. By a complementary
subspace W ⊂ V to an invariant subspace V ′ ⊂ V we mean an invariant subspace W such
that V = V ′ ⊕W . It is a simple matter to see that ρ (or V ) is completely reducible if and
only if every invariant subspace admits of a complementary subspace. Two representations
ρ and ρ′ of a group G are equivalent if there is an invertible linear transformation T such
that for all g ∈ G we have ρ(g)T = Tρ′(g). For a Lie subgroup G ⊂ GL(m,K) we have the
natural representation ρ1 of G given ρ1(g) = g. The representation mapping every g ∈ G
to the identity matrix is called the trivial representation of G. The underlying field K is
specified by referring to the representation as real or complex. The field K is generally clear
from the context.

Exercise 0.5.1.1 Let G = Z and T and S be fixed m × m complex matrices. Show that
the representations ρ, ρ′ : G → GL(m,C) given by ρ(1) = T and ρ′(1) = S are equivalent if
and only if the matrices T and S have identical Jordan decompositions. Two representation
ρ, ρ′ : Z→ GL(m,K) are equivalent if and only if the matrices ρ(1) and ρ′(1) have identical
rational forms over the field K.

Example 0.5.1.1 Let G = S1 = {e2πiθ}. Then for every n ∈ Z

ρn(e
2πiθ) = e2πinθ

is an irreducible representation of G. The representations ρn and ρm are inequivalent for
n 6= m. The mappings

(e2πiθ1 , · · · , e2πiθk) −→ e2πi
∑

j njθj ,
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for n1, · · · , nk ∈ Z are irreducible representations of S1 × · · · × S1. Two such representation
are equivalent if and only if the corresponding integers nj are identical. ♠

Example 0.5.1.2 Consider the representation β of S3 given by

β((12)) =

(
−1 1
0 1

)
, β((23)) =

(
1 0
1 −1

)
, β((123)) =

(
0 −1
1 −1

)
, etc.,

By computing the eigenspaces for the matrices β((12)), β((123)) etc., one verifies that β is
irreducible. The geometric meaning of β can be easily described. Let v1, v2 be a (positively
oriented) basis for R2 such that the angle between v1 and v2 is 2π

3
. Then β((12)) and β((23))

are reflections with respect to the orthogonal complements of v1 and v2 respectively. In
view of exercise 0.2.3.5, we have a semi-direct product decomposition S4 ' N.S3 with N a
normal subgroup. Therefore β extends to a two dimensional irreducible representation of S4

by defining β(σ) = I for σ ∈ N . The mapping which assigns to every permutation σ ∈ Sn
its sign εσ is also a representation of Sn. ♠

Exercise 0.5.1.2 Let G be the group of order 8 of symmetries of the square (i.e., generated
by reflections relative to the coordinate axes and rotation by π

2
.) Construct an irreducible

representation of degree 2 of G.

Example 0.5.1.3 The notion of irreducibility depends on whether K = R or C. For ex-

ample, consider the group SO(2) = {
(

cos θ − sin θ
sin θ cos θ

)
. It is clear that R2 is an irreducible

SO(2)-module. On the other hand, since the matrices

(
cos θ − sin θ
sin θ cos θ

)
can be simultane-

ously diagonalized into

(
eiθ 0
o e−iθ

)
, the complexification C2 of R2 is not irreducible under

SO(2). ♠

Example 0.5.1.4 Let G ⊂ GL(m,C) acting on V = Cm as a group linear transformations
via the natural representation ofGL(m,C). Writing z = (z1, · · · , zm) = ((x1, y1), · · · , (xm, ym)) ∈
R2m we obtain a representation ρ : G → GL(2m,R) where every entry gjk of g ∈ G is re-

placed by the 2× 2 matrix

(
<gjk −=gjk
=gjk <gjk

)
, and <z and =z denote the real and imaginary

parts of the complex number z. Now assume V is an irreducible G-module. It is not difficult
to see that R2m is an irreducible GL(m,C)-module, i.e, ρ is irreducible. On the other hand,
C2m decomposes into the direct sum of irreducible subspaces, namely,

V1 = {(z1,−iz1, · · · , zm,−izm)}, V2 = {(z1, iz1, · · · , zm, izm)}.



128

Note that Vi ' V and V ⊗C ' V1 ⊕ V2. This can be restated by saying that if the complex
vector space is irreducible as a G-module, then regarding V as a real linear space Ṽ , its
complexification Ṽ ⊗ C decomposes into equivalent irreducible G-modules V1 and V2. ♠

Exercise 0.5.1.3 Let T be the group of m × m upper triangular matrices and ρ be its
natural representation. Let e1, · · · , em be the standard basis for Km and Vj be the subspace
spanned by e1, · · · , ej. Show that Vj is a invariant under T , however, it does not admit of a
complementary subspace. Conclude that ρ is not completely reducible.

Exercise 0.5.1.4 Show that the group T of exercise 0.5.1.3 is solvable by exhibiting a se-
quence of closed normal subgroups

{e} ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tm = T

such that every successive quotient Ti/Ti−1 is abelian. Show that there is more than one way
of exhibiting such a sequence. Find a sequence such that each Ti has the semi-direct product
decomposition Ti ' Ti−1.(Ti/Ti−1) and describe the action of (Ti/Ti−1) on Ti−1.

Exercises 0.5.1.3 0.5.1.4 show that representations of solvable groups are not necessarily
completely reducible. For compact groups the situation is completely different. An important
general tool for the study of compact groups is the following lemma, sometimes called Weyl’s
unitary trick:

If W ⊂ V is invariant under ρ(g) for all g ∈ G, then from lemma 0.3.6.1 we have

< ρ(g)−1(w), v >=< w, ρ(g)(v) >, (0.5.1.1)

which implies that the orthogonal complement W⊥ of W is also invariant under ρ(g). Hence,
in sharp contrast to the case of solvable analytic groups, we have

Proposition 0.5.1.1 Every representation of a compact Lie group is completely reducible.

Proposition 0.5.1.2 (Schur’s Lemma) Let ρ : G → GL(m,C) be a completely reducible
representation of a group G. Then G is irreducible if and only if the only matrices commuting
with all ρ(g)’s are multiples of identity.

Example 0.5.1.5 By example 0.5.1.3, C cannot be replaced with R in the statement of
Schur’s lemma. An immediate consequence of Schur’s Lemma is that an irreducible repre-
sentation of an abelian group over a complex vector space is necessarily one dimensional. The
hypothesis of complete reducibility cannot be removed since the only matrices commuting

with the group G = {
(
a b
0 1

)
|a ∈ C×, b ∈ C} are multiples of identity. ♠
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Remark 0.5.1.1 The proof of Schur’s lemma follows easily from basic structure theorems
for algebras. Let Aρ(G) be the algebra over a field K ⊃ Q generated by the matrices
ρ(g), g ∈ G. The key point is the observation that if ρ is irreducible, then the set C(ρ) of
matrices commuting with Aρ(G) is a division algebra. In fact, the kernel of such a matrix
is an invariant subspace and therefore the matrix is either 0 or invertible. Since the only
division algebra over C is C itself, this proves part of proposition 0.5.1.2. It follows from
general theorems on structure of algebras and complete reducibility that the algebra Aρ(G)
is a direct sum of full matrix algebras over division algebras over K. These division algebras
are isomorphic to C(ρ)’s for each irreducible summand. Schur’s lemma now follows easily.
Note that we have also obtained some understanding of the structure of C(ρ) when fields
are other than complex numbers. Example 0.5.1.3 shows that C(ρ) for SO(2) acting on
R2 is isomorphic to C. Let G = SU(2) be the group of unit quaternions as introduced in
example 0.3.5.2. G acts on R4, identified with H, by left multiplication as quaternions. C(ρ)
is isomorphic to H with H acting on itself by right multiplication. These examples illustrate
how the situation will change if complex numbers are replaced by real numbers. We will
concentrate on some consequences of Schur’s Lemma. ♥
Example 0.5.1.6 Let ρ and ρ′ be irreducible representations of groups G and G′ on vector
spaces V and V ′ of dimensions d and d′. Then ρ ⊗ ρ′ is a representation of G × G′ on the
vector space V ⊗V ′ given by the tensor product of the linear transformations ρ(g) and ρ′(g′).
Fix bases {ei} and {e′p} for V and V ′. Then B = {ei⊗e′p} is a basis for V ⊗V ′, and we order
them by the condition that ei ⊗ e′p precedes ej ⊗ e′q if i < j, and if i = j then p < q. The
matrices representing ρ(g) ⊗ ρ′(g′), relative to B, are obtained by multiplying the dd′ × dd′
commuting matrices

ρ(g) 0 0 · · · 0
0 ρ(g) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · ρ(g)

 ,


[ρ′11(g

′))] [ρ′12(g
′)] · · · [ρ′1d′(g

′)]
[ρ′21(g

′))] [ρ′22(g
′)] · · · [ρ′2d′(g

′)]
...

...
. . .

...
[ρ′d′1(g

′))] [ρ′d′2(g
′)] · · · [ρ′d′d′(g

′)]

 , (0.5.1.2)

where [ρ′jk(g
′))] is the d × d matrix which is ρ′jk(g

′) times the identity. If V and V ′ are
complex vector spaces and ρ and ρ′ are irreducible, then by remark (0.5.1.1), Aρ and Aρ′ are
full matrix algebras Md(C) and Md′(C) and so Aρ ⊗Aρ′ is the full matrix algebra Mdd′(C).
Consequently, ρ ⊗ ρ′ is an irreducible representation of G × G′. Note that if G = G′, then
g → ρ(g) ⊗ ρ′(g) is a representation of G. Generally, this representation is not irreducible
even if ρ and ρ′ are. Normally ρ ⊗ ρ′ refers to this representation of G. The cases where
ρ⊗ ρ′ refers to a representation of G×G′ will be clear from the context. ♠

Let ρ be a representation of a group G on a vector space V ' KN . By a G-invariant of
V we mean a vector v ∈ V such that ρ(g)(v) = v for all g ∈ G. The set of G-invariants is
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denoted by V G. From the representation ρ we can construct its contragredient representation
defined by ρ?(g) = (ρ(g−1))′ where ′ denotes transpose12. Naturally, ρ? is a representation on
the dual vector space V ?. Let τ be a representation of G on a vector space V ′ ' KN ′

, and
Hom(V, V ′) denote the set of linear maps of V into V ′. Then we have a representation of G on
Hom(V, V ′) defined by T → τ(g)Tρ?(g). Now Hom(V, V ′) ' V ?⊗V ′ and the representation
on Hom(V, V ′) is equivalent to the representation ρ? ⊗ τ . Let U and V be G-modules, and
U? denote the dual of U with G acting on it via the contragredient representation. Then we
have the useful and simple identity

(U? ⊗ V )G ' HomG(U, V ), (0.5.1.3)

where superscript G denotes G-fixed elements. An immediate consequence of Schur’s Lemma
and (0.5.1.3) is the useful statement

Corollary 0.5.1.1 Let ρ be an irreducible representation of G on the complex vector space
V . Then

(V ? ⊗ V )G = {λI|λ ∈ C}.

Now assume ρ is an irreducible representation and τ is a completely reducible represen-
tation of G. Then it is customary to write τ = τ1⊕ · · · ⊕ τk and V ′ = V ′

1 ⊕ · · · ⊕ V ′
k with the

representation τj irreducible and acting on the vector space V ′
j . Some of the representations

τj may be equivalent to ρ. If l of them are equivalent to ρ we say the multiplicity of ρ in τ is
l (or ρ occurs l times in ρ′), and write n(ρ, τ) = l. Completely analogous to corollary 0.5.1.1
is

Corollary 0.5.1.2 Let ρ be an irreducible and τ a completely reducible representation of the
group G on the complex vector spaces V and V ′. Then

dim(V ? ⊗ V ′)G = n(ρ, τ), dim(V ′? ⊗ V ′)G =
∑

n(η, τ)2,

where the summation is over all irreducible representations η of G occuring in τ .

As an application of corollary 0.5.1.2 we determine a distinguished Riemannian metric on
certain homogeneous spaces. Let G be an analytic group and K a closed subgroup. Assume
G admits of a decomposition

G = K ⊕M, (0.5.1.4)

with the following properties

12It should be noted that the reason for taking transpose is that we assuming that matrices act on the left
on (column) vectors. If the vectors in the dual space are written as row vectors so that matrices are written
on the right, then transpose sign would be unnecessary.
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1. M is invariant under the adjoint action of K;

2. There are inner products < ., . >K and < ., . >M on K andM relative to which adjoint
action of K is by orthogonal transformations.

Let Ad?G = Ad? denote the representation contragredient to the adjoint representation of G.
Ad? is called the co-adjoint representation. For k ∈ K, Ad?(k) leaves the subspaces K? and
M? invariant. Let ω1, · · · , ωm and ωm+1, · · · , ωn be orthonormal bases for on M? and K?
respectively. Then the left invariant symmetric 2-tensor ds2 = ω2

1 + · · ·+ω2
m is defined on G.

It follows that ds2 is defined on M = G/K if and only if ds2 is invariant under the co-adjoint
representation of K on S2M? (second symmetric power of M?). If the representation of
K on M? is absolutely irreducible, then by corollary 0.5.1.2 ds2 is the unique vector, up
to scalar multiplication, in S2M? invariant under K. Clearly ds2 is positive definite as
symmetric bilinear form onM. Summarizing

Proposition 0.5.1.3 With the above notation and hypothesis, the homogeneous space M =
G/K admits of a G-invariant Riemannian metric which is unique, up to multiplication by a
positive scalar, if the co-adjoint representation of K on M? is absolutely irreducible.

Example 0.5.1.7 We present some examples where the hypotheses of proposition 0.5.1.3
are fulfilled. We let e1, · · · , eN be the standard basis for RN . Let k ≤ n, k 6= 2, G = SO(k+n)
and K = SO(k) × SO(n)ıG be the subgroup leaving the subspace spanned by e1, · · · , ek
invariant. Then G/K is the Grassmann manifold G◦

k,n(R) of oriented k-planes in Rk+n. We
have the decomposition G = K ⊕M whereM is the set of skew symmetric matrices of the
form (

0 A
−A′ 0

)
,

and A is an arbitrary k× n matrix. The representation of K onM is the tensor product of
the natural representations of SO(k) and SO(n) on Rk and Rn and is therefore absolutely
irreducible13. Therefore G◦

k,n(R) has a unique up to scalar multiplication G-invariant metric.
For k = 1, G◦

k,n(R) = Sn and the standard metric on Sn which is invariant under SO(n+1) is
this distinguished metric. Similarly the homogeneous spaces Gk,n(R), Gk,n carry a unique, up
to scalar multiplication, O(k+n) or U(k+n) invariant metric. For flag manifolds the situation

13In case k = 2 (or k = 1 < n = 2) the representation is irreducible but not absolutely irreducible. It
follows easily from example 0.3.5.2 that the space of SO(4) invariant metrics on SO(4)/SO(2) × SO(2) is
one dimensional. For the remaining cases where k = 2 or n = 2 the required uniqueness of the G-invariant
Riemannian metric can be checked directly.
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is a little different. For instance, let 0 < k < l < n and consider the flag manifold Fk,l of
pairs of subspaces V1 ⊂ V2 of dimensions k and l in Cn. Here K = U(k)×U(l−k)×U(n− l)
andM is the set of skew hermitian matrices of the form 0 A12 A13

−Ā′12 0 A23

−Ā′13 −Ā′23 0

 ,

where A12 is a k × (l − k) matrix etc. It is clear that M is not irreducible under K and
therefore the uniqueness part of proposition 0.5.1.3 does not hold. In fact representing a
basis for M? as ωij, ω̄ij we obtain the general expression for a U(n)-invariant Riemannian
metric on Fk,l as

c1

i=k,j=l∑
i=1,j=k+1

ωijω̄ij + c2

i=k,j=n∑
i=1,j=l+1

ωijω̄ij + c3

i=l,j=n∑
i=k+1,j=l+1

ωijω̄ij,

where c1, c2, c3 > 0. ♠

Since irreducibility under the sets of linear transformations {T} and {exp(T )} are the
same, irreducibility (or complete reducibility) of a representation ρ of an analytic group G
and the corresponding representation of its Lie algebra are identical. (Of course, if G has
more than one connected component, this assertion is no longer true.) In particular Schur’s
Lemma is valid for complex irreducible representation of the Lie algebra of an analytic group.
Let ρ and ρ′ be representations of the analytic group G, then writing

(ρ(exp(tA))⊗ ρ′(exp(tA)))(v ⊗ v′)− (v ⊗ v′) = (ρ(exp(tA))(v)− v)⊗ (ρ′(exp(tA)))(v′)+
v ⊗ ((ρ′(exp(tB)))(v′)− v′),

we obtain (just as in the proof of Leibnitz’ rule)

(ρ⊗ ρ′)(A)(v ⊗ v′) = ρ(A)(v)⊗ v′ + v ⊗ ρ′(A)(v′). (0.5.1.5)

Exercise 0.5.1.5 Let G = SU(2) and ρ1 be the natural representation of SU(2) on C2.
Show that the representation ρ1 ⊗ · · · ⊗ ρ1 (k-times) maps the space of symmetric tensors
Sk(C2) into itself. Let ρk denote the representation of SU(2) on Sk(C2). By computing
the representation ρk of the Lie algebra SU(2) and using Schur’s Lemma, show that ρk is
irreducible.

Exercise 0.5.1.6 Let G = SU(n) and ρ1 be its natural representation on Cn. Show that
ρ1 ⊗ · · · ⊗ ρ1 (k times, k ≤ n) leaves the space of skew-symmetric tensors ∧kCn invariant,
and let λk be this representation of SU(n) on ∧kCn. By computing the matrices λk(A) for
some simple matrices A ∈ SU(n), show that λk is irreducible.
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On GL(m,C) we have the symmetric bilinear form

< A,B >= −1

2
Tr(AB) (0.5.1.6)

The symmetric pairing <,> is a positive definite inner product on the real subspace of skew
hermitian matrices (the Lie algebra U(m) of the unitary group U(m).) Furthermore for a
unitary matrix g ∈ U(m), we have

< Ad(g)A,Ad(g)B >=< A,B > .

Therefore <,> is the inner product provided by the Weyl unitary trick. Notice that in terms
of an orthonormal basis relative to <,>, the matrices Ad(g), g ∈ U(m), are orthogonal
matrices. In dealing with the adjoint representation of a closed Lie group of U(m) we always
assume that the inner product <,> has been fixed.

Exercise 0.5.1.7 Show that the adjoint representation of G = SU(2) is equivalent to the
representation ρ2 of exercise 0.5.1.5.

Exercise 0.5.1.8 Show that the adjoint representation of SO(4) decomposes into two irre-
ducible and inequivalent representations. (See example 0.3.5.2 above.)

Exercise 0.5.1.9 Show that the adjoint representations of SO(n) (n 6= 4) and of SU(n) are
irreducible.

Example 0.5.1.8 It is not true that every representation of the Lie algebra G of an analytic
group G comes from a representation of G. In fact, let G = SO(3) so that G is the space
of anti-symmetric 3 × 3 matrices. Now the adjoint representation Ad maps SU(2) onto
SO(3) and the kernel is ±I. Then the adjoint represention ad is an isomorphism SU(2) '
SO(3). Now consider the representation ρ1.ad−1 : SO(3) → GL(2,C) where ρ1 is the
natural representation of SU(2). It is a simple exercise to see that this representation of
SO(3) does not come from a representation of SO(3). The difficulty is that using exp to
obtain a representation of SO(3), leads to a double valued representation reflecting the fact
that ker Ad = ±I. More generally, all the representations ρ2k of exercise 0.5.1.5 lead to
double valued representations of SO(3). These and similar double valued representations for
orthogonal groups in higher dimensions led to the discovery of spinors by É. Cartan (and
independently later by P. A. M. Dirac). This subject will be revisited later in connection
with spin groups. ♠
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Finally in this subsection we derive Schur’s orthogonality relations as an application of
Schur’s Lemma and consider some of their consequences. Let ρ and τ be two irreducible
representations of the compact Lie group G ⊂ GL(m,R) of degrees d and d′. As noted
earlier we may assume all matrices ρ(g) and τ(g) are unitary. Let T : Cd → Cd′ be any
linear mapping, and consider

Φ =

∫
G

τ(g)Tρ(g−1)dvG(g) : Cd −→ Cd′ , (0.5.1.7)

Clearly τ(g)Φ = Φρ(g) for all g ∈ G by (0.2.3.3), and consequently ker Φ is an invariant
subspace. By irreducibility ker Φ = 0 or Cd. Similarly, ImΦ = 0 or Cd′ . Therefore Φ either
establishes equivalence of the representations ρ and τ or is the zero map. If ρ and τ are
inequivalent, then Φ is necessarily the zero map. Set T = Ejk (Ejk is the d′× d matrix with
a single nonzero entry, viz., a 1 at (j, k)th spot) to obtain

Φ =

∫
G


τ1j(g)ρk1(g

−1) τ1j(g)ρk2(g
−1) · · · τ1j(g)ρkd(g

−1)
τ2j(g)ρk1(g

−1) τ2j(g)ρk2(g
−1) · · · τ2j(g)ρkd(g

−1)
...

...
. . .

...
τd′j(g)ρk1(g

−1) τd′j(g)ρk2(g
−1) · · · τd′j(g)ρkd(g

−1)

 dvG. (0.5.1.8)

Therefore if ρ and τ are inequivalent representations of G, then∫
G

τij(g)ρkl(g
−1)dvG(g) = 0. (0.5.1.9)

If ρ(g) = τ(g), then the matrix Φ is a multiple λ = λ(T ), possibly non-zero, of the
identity. For T = Ejk, we obtain

∫
G

ρij(g)ρkl(g
−1)dvG = 0, unless i = l.

By (0.2.3.3) the integral is invariant under the transformation g → g−1 and therfore∫
G

ρij(g)ρkl(g
−1)dvG = 0, unless i = l and j = k. (0.5.1.10)

Lemma 0.5.1.1 Assuming ρ = τ , we have in the above notation

λ(Eii) = λ(Ejj).
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Proof - It suffices to show λ(E11) = λ(E22). From the integral representation for Φ and the
invariance of the integral under the transformation g → g−1, we obtain

λ(E11) =
∫
ρ11(g)ρ11(g

−1)dvG
=

∫
ρ21(g)ρ12(g

−1)dvG
=

∫
ρ12(g)ρ21(g

−1)dvG
= λ(E22),

proving the lemma. ♣
Now setting T = I = E11 + · · ·+ Edd, using lemma 0.5.1.1 and (0.5.1.10) we obtain∫

G

ρij(g)ρkl(g
−1)dvG =

1

d
δilδjkvol(G). (0.5.1.11)

Formulae (0.5.1.9) and (0.5.1.11) are known as Schur’s orthogonality relations. Note
that they generalize similar orthogonality properties of the exponential functions e2πinθ in
Fourier analysis. In fact, the subject of group representations may be justifiably regarded as
a generalization of Fourier analysis.

The character of a representation ρ of a group G is defined as

χρ(g) = Tr(ρ(g)).

A character is a class function, i.e., a function φ on G satifying φ(hgh−1) = φ(g) for all
g, h ∈ G. On the space of continuous class function on the compact group G we define the
inner product

≺ φ, ψ �=
1

vol(G)

∫
G

φ(g)ψ̄(g)dvG(g)

An immediate consequence of the Schur orthogonality relations is

Corollary 0.5.1.3 Let ρ and τ be irreducible representations of the compact Lie group G.
Then

HEREWEARE

Therefore a representation of a compact Lie group is completely determined (up to equiva-
lence) by its character. It follows that corollary 0.5.1.2, in the case of compact groups, can
be restated as (with the notation and hypotheses of the corollary)

n(ρ, τ) =

∫
G

χρ(g)χ̄τ (g)dvG,
∑
η

n(η, τ)2 =

∫
G

|χτ (g)|2dvG. (0.5.1.12)
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In particular, consider the case of a finite group G of order |G|, and let C[G] be the complex
group algebra of G, i.e., complex vector space consisting of formal linear combinations of
elements of G. The left regular representation R : G→ GL(|G|,C) is defined as

R(g)(
∑

ahh) =
∑

ahgh.

From the basis {h|h ∈ G} of C[G] we obtain
HEREWEARE
From (0.5.1.12) and (??) it follows that if ρ is an irreducible representation of G of degree

d (on a complex vector space), then

n(ρ,R) = d. (0.5.1.13)

Therefore we obtain

Corollary 0.5.1.4 The multiplicity of an irreducible representation of degree dρ of a finite
group G in its regular representation is dρ, and consequently∑

ρ

d2
ρ = |G|,

where the summation is over all complex irreducible representations of G.

Since the trace of the tensor product of two linear transformations is the product of their
traces, the character of the representation ρ⊗ τ is

χρ⊗τ = χρχτ . (0.5.1.14)

This formula and (0.5.1.12) in principle tell us how the tensor product of two irreducible
representations of a compact groups decomposes into a direct sum of irreducible ones.

Example 0.5.1.9 Let G = SU(2), then the character χk of the representation ρk is

χk(g) =
k∑
j=0

e(k−2j)iθ;

where e±iθ are the eigenvalues of g ∈ SU(2). It is now easy to verify that

χkχl =
k+l∑

j=|k−l|

χj.

We shall not pursue extensions of this formula here. ♠
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As noted earlier, representations of a finite or compact group G is a generalization of the
exponential fiunctions einθ on the circle. Let us exploit this analogy and derive some non-
trivial consequences. The first fundamental theorem in the Fourier analysis is the Parseval
or Plancherel theorem which is

1

2π

∫ 2π

◦
|f(θ)|2dθ =

∑
−∞<n<∞

|an|2

where f is an L2-function on S1 with Fourier series expansion f(θ) =
∑
ane

inθ. For an L1

function on a compact Lie group G and representation ρ of G, the analogue of the Fourier
coefficient an is the matrix

ρ(f) =

∫
G

f(x)ρ(x−1)dvG.

An important property of ρ(f) is that it converts convolutions to matrix multiplication

ρ(f ? h) = ρ(h)ρ(f), (0.5.1.15)

which follows from the change of variable14:∫
G

∫
G

f(xy−1)h(y)ρ(x−1)dvG(y)dvG(x) =

∫
G

∫
G

f(z)h(y)ρ(y−1z−1)dvG(y)dvG(z) = ρ(h)ρ(f).

To avoid some technical issues (e.g., convergence) we develop the analogous theory for a
finite group G only although the main results (0.5.1.16) and (0.5.1.19) are valid for compact
groups as well. For the left regular representation R, we have

HEREWEARE
Therefore for a function φ on G we have

1

|G|
TrR(φ) =

1

|G|
∑
x∈G

TrR(x−1)φ(x) = φ(e). (0.5.1.16)

Define f ?(x) = f(x−1). Then

(f ? f ?)(e) =
∑
x∈G

f(x−1)f̄(x−1) = ||f ||2L2 . (0.5.1.17)

14If we define the convolution of f and h as
∫

f(y−1x)h(y)dvG(y) rather than
∫

f(xy−1)h(y)dvG(y), then
the right hand side of (0.5.1.15) becomes ρ(f)ρ(h). The same can be accomplished by modifying the definition
of ρ(f) as

∫
f(x)ρ(x)dvG.
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Therefore by (0.5.1.16)
1

|G|
TrR(f ? f ?) = ||f ||2L2 . (0.5.1.18)

In view of (0.5.1.15) and the fact that the multiplicity of an irreducible representation ρ of
G in R is equal to its dimension dρ, we can rewrite (0.5.1.18) as

||f ||2L2 =
1

|G|
∑
ρ∈Ĝ

dρTr(ρ(f)ρ(f)?), (0.5.1.19)

where Ĝ is the set of irreducible representations of G and ρ(f)?) is the transpose complex
conjugate of the matrix ρ(f). Note that Tr(ρ(f)ρ(f)?) is simply the sum of the squares of
the absolute values of the entries of the matrix ρ(f) (generally called the Hilbert-Schmidt
norm).

Example 0.5.1.10 Let A,B and C be conjugacy classes in a finite group G. As an appli-
cation of the above analysis we obtain a formula for the number ν(A,B,C) of solutions of
the equation

abc = e, with a ∈ A, b ∈ B and c ∈ C.

Define
HEREWEARE
It follows that

ν(A,B,C) = (fA ? fB ? fC)(e) =
1

|G|
TrR(fA ? fB ? fC). (0.5.1.20)

Now

R(fA ? fB ? fC) =
∑
ρ∈Ĝ

dρρ(fC)ρ(fB)ρ(fA).

By Schur’s lemma ρ(fA) = λρ(f)I is a scalar multiple of the identity. It follows that

λρ(fA) =
|A|
dρ
χρ(A

−1),

where |A| etc. is the cardinality of A etc. Substituting in (0.5.1.20) we obtain

ν(A,B,C) =
|A| |B| |C|
|G|

∑
ρ∈Ĝ

χρ(A
−1)χρ(B

−1)χρ(C
−1)

dρ
. (0.5.1.21)

This formula is of interest in the study of of spaces of curves on surfaces and the evaluation
of certain important integrals in theoretical physics. ♠
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Exercise 0.5.1.10 Show that (0.5.1.21) remains valid if we replace A−1, B−1 and C−1 on
the right hand side by A,B and C.

Inducing a representation from a subgroup is a method for constructing representations
of a group and has played an important role in the development of theory of group rep-
resetnations. Its construction resembles that of vector bundles from a principal one15. To
avoid some technical complications we only consider finite (rather than compact) groups and
complex representations. Let ρ : H → GL(V ) be a representation of a subgroup H ⊂ G,
and L(G) denote the space of complex valued functions on G. Let W = L(G)⊗C[H] V where
L(G) is regarded as an H (or C[H]) module via right action of H:

ψ
h−→ ψ(xh−1), ψ ∈ L(G).

Thus W is the quotient of the vector space W = L(G) ⊗C V by the subspace spanned by
elements of the form

ψ(xh−1)⊗ v − ψ(x)⊗ ρ(h)(v).

Regarding L(G)⊗CV as the space of of V -valued functions on G, we may equivalently define
W as the vector space of V -valued functions ψ on G which under right translation by h ∈ H
transform according to the representation ρ, i.e.,

ψ(xh−1) = ρ(h)ψ(x).

Define the representation ρ̃ of G on W by

(ρ̃(g)ψ)(x) = ψ(gx).

ρ̃ is called the representation induced from ρ and is often denoted by IndGHρ. Note that for
H = e, ρ is necessarily the trivial representation and IndGHρ is the regular representation. It
is clear that the degree of the representation IndGHρ is dim(V ).|G/H|. For a subset A ⊂ G
let

CG(A) = {g−1ag | g ∈ G, a ∈ A}.

Lemma 0.5.1.2 The character χρ̃ of the induced representation ρ̃ = IndGHρ is
HEREWEARE

15The connection between induced representations and homogeneous vector bundles can be made precise
and has geometric implications, however, this will not be pursued here.
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Proof - Follows immediately from the definitions. ♣
Note that χρ(x

−1hx) appearing in lemma 0.5.1.2 may not be equal to χρ(h) for x 6∈ H.
For x 6∈ H, let Hx = H∩x−1∩Hx. Then ρx : h→ ρ(x−1hx) is a representation of Hx which,
in general, is not equivalent to the restriction of the representation ρ to Hx. A particularly
important special case of lemma 0.5.1.2 is

Corollary 0.5.1.5 Let ρ be the trivial (one dimensional) representation of H. Then

χρ̃(g) =
|G|
|H|
|CG(g) ∩H|
|CG(g)|

.

The following proposition is an important tool in analyzing induced representations.

Proposition 0.5.1.4 (Frobenius Reciprocity) Let τ be an irreducible representation of the
group G on a complex vector space W , and ρ a representation of H. Then the number of
times τ appears in ρ̃ = IndGHρ is equal to the number of times ρ appears in the restriction τ
to H (denoted by ResHτ). In terms of inner products of characters we have

≺ χτ , χρ̃ �G=≺ χResHτ , χρ �H .

Proof - Let U be a right G-module. Applying the basic and elementary algebraic identity

U ⊗C[G] (L(G)⊗C[H] V ) ' U ⊗C[H] V, (0.5.1.22)

with U = W ? (and the dual of the representation τ acting on the right), and corollary 0.5.1.1
we obtain the first assertion. The second assertion follows from the first and corollary 0.5.1.3.
♣

The (left) regular representation is a special case of induced representations where H
consists of the identity element. The fact that the number of times a representation occurs
in the regulasr representation is equal to its dimension is also a special case of the Frobenius
reciprocity.

Exercise 0.5.1.11 Identify S/2 with the subgroup of S3 generated by the transposition (12).
Let ε be be the representation of S2 mapping (12) to −1. What is the decomposition of IndS3

S2
ρ

into irreducible S3-modules?

Exercise 0.5.1.12 Let H = S2 × S2 ⊂ S4 = G be the subgroup generated by the transposi-
tions (12) and (34), and ρ be the trivial representation of H. What is the decomposition of
IndGHρ into irreducible G-modules?
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Example 0.5.1.11 We specialize corollary 0.5.1.5 to the case G = Sn and H = Sn1 × Sn2

where n1 + n2 = n and as usual Sn1 permutes {1, 2, · · · , n1} and Sn2 acts on the remaining
integers. It is clear that |H| = n1!n2!. The conjugacy class of an element σ ∈ Sn is determined
by specifying the cycle structure of the permutation. If there are α cycles of length 1, β cycles
of length 2, γ cycles of length 3, etc., then it is customary to denote the cycle structure of the
permutation σ as 1α2β3γ · · · . For instance the permutation (345)(67)(8910) ∈ S11 has cycle
structure 132132. The non-negative integers α, β, γ, · · · are subject to the obvious relation

α+ 2β + 3γ + · · · = n.

It is not difficult to determine the centralizer in Sn of a permutation with cycle structure
1α2β3γ · · · and in particular show that it has order α!2ββ!3γγ! · · · . It follows that

|CG(σ)| = n!

α!2ββ!3γγ! · · ·
. (0.5.1.23)

From (0.5.1.23) one easily calculates the order of CG(σ) ∩H. In fact, we have

|CG(σ) ∩H| =
∑ n1!

α1!2β1β1!3γ1γ1! · · ·
n2!

α2!2β2β2!3γ2γ2! · · ·
, (0.5.1.24)

where the summation is over all α1, α2, β1, β2, · · · such that
α1 + 2β1 + 3γ1 + · · · = n1, α2 + 2β2 + 3γ2 + · · · = n2,
α1 + α2 = α, β1 + β2 = β, γ1 + γ2 = γ, · · ·

Substituting in corollary 0.5.1.5, we obtain a formula for characters of the representation
IndSn

Sn1×Sn2
1, (1 denotes the trivial representation):

χ1̃(1
α2β3γ · · · ) =

∑ n1!

α1!β1!γ1! · · ·
n2!

α2!β2!γ2! · · ·
, (0.5.1.25)

where the summation has the same range as in (0.5.1.24). ♠

Example 0.5.1.12 It is clear that the above example extends to the case where the sub-
group H = Sn1 × · · · × Snk

where n = n1 + · · ·+ nk, Sn1 permutes the integers {1, · · · , n1},
Sn2 permutes the integers {n1 + 1, · · · , n1 + n2}, etc. In fact, the same argument gives

χ1̃(1
α2β3γ · · · ) =

∑ n1!

α1!β1!γ1! · · ·
· · · nk!

αk!βk!γk! · · ·
, (0.5.1.26)

where the summation is over all α1, · · · , αk, β1, · · · , βk, γ1, · · · , γk, · · · , such that
α1 + 2β1 + 3γ1 + · · · = n1, · · · , αk + 2βk + 3γk + · · · = nk,
α1 + · · ·+ αk = α, β1 + · · ·+ βk = β, γ1 + · · ·+ γk = γ, · · ·

The subgroups Sn1 × · · · × Snk
are called Young subgroups16. ♠

16Frobenius used the the induced representations IndSn

H 1 to obtain characters of irreducible representations
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0.5.2 Young Diagrams

The material of this section will not be used extensively. It is relevant to some special
topics in chapters 2, 5 and 6. In this subsection we briefly study some representation theory
of GL(m,K), Sn etc. (K = R, or C) which pertains to geometric considerations of later
chapters. Let V ' Km, T n(V ) denote the nth tensor power of V , and Sn(V ) the nth

symmetric power of V . For n = 2 we have the decomposition T 2(V ) ' S2(V ) ⊕ ∧2V . The
group G = GL(m,K) acts on T 2(V ) and leaves the subspaces S2(V ) and ∧2V invariant. By
experimenting with the effect of simple matrices, it is not difficult to see that each of the
subspaces S2(V ) and ∧2V is irreducible under the action of G. For n > 2, the decomposition
of the tensor space generalizing T 2(V ) ' S2(V )⊕∧2V requires the notion of Young diagrams
and tableaux defined below. While one can approach the subject from a more abstract and
powerful view point of representation theory of Lie groups and algebras, it seems that the
classical approach is more suitable for our modest goals. We only give a summary of the
results of interest to us and demonstrate them by working out some examples in detail. The
omitted proofs generally can be found in [W].

By a Young diagram we mean a partition of a positive integer n = n1+n2+ · · ·+nk where
n1 ≥ n2 ≥ · · · ≥ nk. Normally one pictures a Young diagram as a collection of n squares
arranged with n1 squares in the first row, n2 squares in the second etc. and left justified. We
enumerate17 the squares in a Young diagram by starting from upper left corner, moving along
the first column from top to bottom, then along the second column etc. A Young tableau
is a Young diagram where the squares are filled with integers {1, 2, · · · , n}. For example, a
Young tableau corresponding to the partition 7 = 4 + 2 + 1 may be pictured as follows:

1 3 4 7

2 6

5
A permutation rearranges the integers in a Young tableau by moving the integers ac-

cording to the enumeration of the squares of the Young diagram. For example, applying the
permutation (2457) to the above Young tableau we obtain

1 2 4 6

7 3

5

of Sn. The representations IndSn

H 1 are not irreducible and the irreducible components were obtained by means
of the orthogonality relations and symmetric functions. It is perhaps more appropriate to refer to subgroups
Sn1 × · · · × Snk

as Frobenius subgroups.
17Our enumeration is different from the conventional one which moves along rows rather than columns.

The proposed enumeration appears to be more suitable for the study of the curvature tensor.
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If a Young diagram T is filled with integers in two different ways, we denote the corre-
sponding tableaux by {T} and {T}′ or other self-explanatory notation. A Young diagram
T , with the enumerations of squares as indicated above, specifies two subgroups of the sym-
metric group Sn, namely, the subgroup H = HT consisting of all permutations preserving
the rows, and H ′ = H ′

T consisting of all permutations preserving the columns. Let Z[Sn]
be the integral group algebra of the symmetric group, i.e., formal linear combinations with
integers coefficients and multiplication inherited from the group law in Sn. Define the Young
symmetrizer C = CT ∈ Z[Sn] as

C = CT = (
∑
τ∈H′

εττ)(
∑
σ∈H

σ) =
∑

σ∈H,τ∈H′

εττσ.

The symmetric group Sn and therefore its group algebra Z[Sn] act on the tensor space
T n(V ). In fact, given a tensor vi1⊗· · ·⊗ vin , vij ∈ V , and σ ∈ Sn, the action of σ is given by

vi1 ⊗ · · · ⊗ vin
σ−→ viσ(1)

⊗ · · · ⊗ viσ(n)
.

Notice that this action of the permutation group commutes with the induced action of
G = GL(m,K) on T n(V ), and therefore we have a representation τn of G × Sn on T n(V ).
It also follows that image of T n(V ) under a Young symmetrizer is invariant under G. For
example, for n = 2 there are two Young diagrams corresponding to the partitions 2 = 2
and 2 = 1 + 1. Denoting the transposition in S2 by ε, we see that the corresponding Young
symmetrizers are 1 + ε (for 2 = 2) and 1− ε (for 2 = 1 + 1). Therefore

T 2(V ) = Im(1 + ε)⊕ Im(1− ε) = S2V ⊕ ∧2V, (0.5.2.1)

yielding the decomposition of 2-tensors into symmetric and anti-symmetric ones.
By a standard Young tableau we mean a Young tableau such that the numbers are in-

creasing along every row (from left to right) and along every column (from top to bottom).
By a semistandard Young tableau for a partition of n we mean a Young diagram (with n
squares) whose squares are filled with integers from {1, 2, · · · ,m} (m = dimV ) in such a way
that the numbers are are nondecreasing along each row from left to right and are increasing
along each column from top to bottom.

Theorem 0.5.2.1 Every partition T : n = n1 + · · ·+nk with n1 ≥ n2 ≥ · · · ≥ nk determines
a unique irreducible representation λT of Sn, and every irreducible representation of Sn is of
the form λT . The degree of λT is the number of standard Young tableaux whose underlying
Young diagram is T .
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Remark 0.5.2.1 The standard construction of the representation λT and representation
theory of compact classical groups can be found in [W]. While the construction will not be
given here, the methods we develop on the basis of character theory and the duality between
representations of Sn and U(m) enable us to derive interesting information which may not
be so easily available directly through the explicit construction. In particular we will present
formulae for the degrees of representations and present a method for inductively computing
characters in the subsection on Characters below. ♥

Since actions of Sn and G on T n(V ) commute, Im(CT ) is invariant under G, and we
denote the representation of G on Im(CT ) by ρT . Implicit in this notation is the fact that
representations of G for distinct Young tableaux with the same underlying Young diagram
T are equivalent.

Example 0.5.2.1 The decomposition T 2(V ) given by (0.5.2.1) is particularly simple. The
reason for introducing Young diagrams is that we want to understand the decomposition
of T n(V ). Before explaining the general case let n = 3 which captures some of the spirit
and complexities of the general case. For n = 3, then there are three Young diagrams
corresponding to the partitions T1 : 3 = 3, T2 : 3 = 2 + 1, and T3 = 1 + 1 + 1. Since there
are two standard tableaux for T2 we denote the Young symmetrizers by C1, C2, C2′ and C3.
It is straightforward to verify that

CiCj = δijti, where i 6= j = 1, 2, 2′, 3. (0.5.2.2)

where ti 6= 0 is an integer. Furthermore

C1 + C2 + C2′ + C3 = 4e. (0.5.2.3)

e ∈ S3 is the identity. Let Z1 = ImC1, Z3 = ImC3 and Z2 = ImC2 + ImC2′ . Then relations
(0.5.2.2) and (0.5.2.3) imply

T 3(V ) = Z1 ⊕ Z2 ⊕ Z3. (0.5.2.4)

Z1 and Z3 are the spaces of symmetric and antisymmetric 3-tensors and the difference be-
tween (0.5.2.4) and (0.5.2.2) is the appearance of Z2. Zj’s are invariant under the action of
S3 and GL(m,K). Now Z2 = ImC2 + ImC2′ and the sum is direct since C2C2′ = 0. Each
summand of Z2 is invariant under GL(m,K) since the actions of GL(m,K) and S3 commute.
However neither summand is invariant under the action of S3 and it is not difficult to verify
that Z2 is irreducible under the action of GL(V ) × S3. In fact, the action of GL(V ) × S3

on Z2 is isomorphic to the representation ρT ⊗ λT . The general case is similar to this (see
theorem 0.5.2.2 below). The proof involves certain subtleties since the relations between
various Young symmetrizers are not quite so simple. ♠



0.5. REPRESENTATIONS OF GROUPS 145

The following theorem describes the decomposition of T n(V ) under the product group
GL(m,K)× Sn and relates the representations λT and ρT :

Theorem 0.5.2.2 The representation ρT of G is irreducible. For every Young diagram T
corresponding to a partition of n, let ZT ⊂ T n(V ) be the minimal linear subspace containing
ImCT and invariant under action of GL(m,K) × Sn. ZT has dimension deg(ρT ) deg(λT )
and is irreducible under the representation τT = ρT ⊗λT of GL(m,K)×Sn. deg(ρT ) is equal
to the number of semi-standard Young tableaux whose underlying diagram is T . Furthermore
T n(V ) admits of the decomposition, as a G× Sn-module (under τn),

T n(V ) '
∑
T

ZT ,

where the summation is over all partitions of T of n. Let AT (G) and AT (Sn) denote the
algebras of linear transformations of ZT generated by the matrices ρT (g) ⊗ I, (g ∈ G), and
I ⊗ λT (σ), (σ ∈ Sn). Then the full matrix algebra on ZT has the decomposition AT (G) ⊗
AT (Sn).

Some comments will help understand the meaning of this theorem. As noted earlier the
actions of G and Sn commute and as matrices, they are given by ρT (g) ⊗ I and I ⊗ λT (σ)
for g ∈ G and σ ∈ Sn. ZT regarded as a subspace of T n(V ) is given by

ZT =
∑
{T}

Im(CT ),

where the summation is over all standard Young tableaux {T} whose underlying Young
diagram is T . As G× Sn-modules, the linear spaces ZT are irreducible and inequivalent, so
that no representation of G×Sn occurs more than once in T n(V ). Each ZT decomposes under
the action G into deg(λT ) copies of the representation ρT , and similarly, under the action of
Sn, ZT decomposes into deg ρT copies of the representation λT (see example 0.5.1.6).

Example 0.5.2.2 Let us consider the special case n = 4. Then there are five partitions or
Young diagrams, namely,

T1 : 4 = 4; T2 : 4 = 3 + 1; T3 : 4 = 2 + 2; T4 : 4 = 2 + 1 + 1; T5 : 4 = 1 + 1 + 1 + 1.

It is easily verified that Im(cT1) (resp. Im(cT5)) is the space of symmetric tensors Sn(V )
(resp. skew-symmetric tensors ∧nV ); and the conclusion is valid for arbitrary n in the sense
that the diagram with one row (resp. one column) yields the indicated space of tensors. The
degrees of the representations of the symmetric group S4 are easily computed:

deg λT1 = 1; deg λT2 = 3; deg λT3 = 2; deg λT4 = 3; deg λT5 = 1.
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The degrees of the representations ρTi
of G are also easily computed:

deg ρT1 =
(
m+3

4

)
; deg ρT2 = m(m2−1)(m+2)

8
; deg ρT3 = m2(m2−1)

12
;

deg ρT4 = m(m2−1)(m−2)
8

; deg ρT5 =
(
m
4

)
.

The validity of
∑

(deg λTi
)(deg ρTi

) = m4 follows immediately. Consider the Young tableau
{T} given by

1 3

2 4
Then the Young symmetrizer is given by

CT = ((1)− (12)− (34) + (12)(34))((1) + (13) + (24) + (13)(24))
= (1)− (12)− (34) + (12)(34) + (13)(24)− (1324)− (1423) + (14)(23)+

(13)− (132)− (143) + (1432) + (24)− (124)− (234) + (1234).
Of interest in the study of the curvature tensor (which is introduced in the next chapter) is
the Young diagram T = T3. Therefore it is useful to explicitly construct the representations
of G and S4 corresponding to the partition T : 4 = 2 + 2. This is done in the next example.
♠

Example 0.5.2.3 The irreducible representation ρT of G = GL(4,R) has degree 20. To
construct this representation, let W ′ be the vector space of all 6 × 6 symmetric matrices
A = (Aij), Aij = Aji. Clearly dimW ′ = 21 and W ′ = S2(∧2V ) where V = R4. Let ρ2

denote the second exterior power representation of G, and consider the representation ρ
given by

ρ(g)(A) = ρ2(g)
′Aρ2(g),

where ′ denotes transpose. To understand the representation ρ and its relationship to ρT ,
it is convenient to introduce the basis e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4 for
∧2V . Let G′ = SL(4,R) and denote the Lie algebras of G and G′ by G and G ′ respectively.
Let L ⊂ S2(∧2V ) be the one dimensional subspace spanned by the symmetric matrix18

E =

(
0 E1

E1 0

)
where

E1 =

0 0 1
0 −1 0
1 0 0

 .

18The matrix E has an important interpretation. We regard E as a linear transformation of ∧2V = R6

relative to the above described basis. Recalling that a nonzero v ∧ v′ represents an oriented 2-plane in R4,
E maps the 2-plane v ∧ v′ to the 2-plane w ∧ w′ such that v, v′, w, w′ is a positively oriented basis for R4

relative to the standard orientation. As such, E is a special case of Weyl complementary tensor (see [W],
p.156) or Hodge ?-operator.
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We show that G′ acts trivially on L and is invariant under G. A simple way of proving that
G′ acts trivially is by looking at the action of the Lie algebra G ′. Let Eij be the 4× 4 matrix
whose sole nonzero entry is 1 at (i, j)th spot. For i 6= j, Eij ∈ G ′. Now

ρ2(Eij)(ek ∧ el) = Eij(ek) ∧ el + ek ∧ Eij(el),
ρ(Eij)(S) = ρ2(Eij)

′S + Sρ2(Eij),
where S is a symmetric 6× 6 matrix. Computing a few of these matrices for S = E one sees
easily that ρ(Eij)(E) = 0 for i 6= j. Since matrices Eij, i 6= j, generate G ′ we have shown
the triviality of the action of G′ on L. For a diagonal matrix D ∈ G, ρ2(D) is also diagonal
and we have ρ(D)(L) = L and invariance of L under G follows. In view of this argument we
have

SL(4,R)/± I ' SO(3, 3)◦,

where SO(3, 3) is the special orthogonal group of a symmetric bilinear form of signature
(3, 3), and SO(3, 3)◦ is its connected component. Now let

W = {S ∈ S2(∧2V )|S16 − S25 + S34 = 0}

where S = (Sij) is a symmetric 6 × 6 matrix. By an argument similar to one given above
it is easily shown that W is invariant under G. It follows that we have the G-module
decomposition

S2(∧2V ) ' L⊕W.

dimW = 20, and the action of ρ(g), g ∈ G on W is the representation ρT of G. ♠

While W is irreducible under G, it is not so under the orthogonal group K = O(4).
Generally the irreducible representation ρT of GL(m,K) decomposes further upon restriction
to O(m). To understand this phenomenon, consider the trace maps Trij : T n(V )→ T n−2(V ),
1 ≤ i < j ≤ n, which commute with the action of O(m) where V ' Rm. For example, for
F =

∑
Fi1···invi1 ⊗ · · · ⊗ vin ∈ T n(V ), where v1, · · · , vm is an orthonormal basis fo Rm,

Tr12(F ) is defined by

Tr12(F ) =
∑

j1,··· ,jn−2

∑
j

Fjjj1···jn−2vj1 ⊗ · · · ⊗ vjn−2 .

Similarly, one defines Trij. Since the maps Trij commute with the action of the orthogonal
group, ∩i<j ker(Trij) is invariant under O(m). Let VT = Im(CT ) ∩ (∩i<j ker(Trij)). It is
shown in ([W], chapter V) that
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Proposition 0.5.2.1 Each VT is irreducible under the restriction of the representation ρT
to O(m). VT remains irreducible under SO(m) unless m = 2n and the first column of T
contains exactly n squares in which case it decomposes into two irreducible representations.

Example 0.5.2.4 We consider the special case m = 4 with T the partition 4 = 2 + 2, and
explicitly describe the decomposition of W decomposes into into O(4) and SO(4) irreducible
subspaces. In view of the definition of the Young symmetrizer where the indices along
columns were antisymmetrized, the maps Trij vanish if i and j correspond to squares in the
same column of a Young diagram. In particular, for the diagram T corresponding to the
partition 4 = 2 + 2 the restriction of Tr12 and Tr34 to ImCT vanish. Similarly, one shows
that Tr13 and Tr24 are the same maps on this space so that there is only one function Tr to
consider. It is a simple exercise to show that this map Tr13 = Tr24 is realized as the map κ
from W to 4× 4 symmetric matrices (A = (aij) symmetric 6× 6 matrix):

κ(A) =


a11 + a22 + a33 a24 + a35 −a14 + a36 −a15 − a26

a24 + a35 a11 + a44 + a55 a12 + a56 a13 − a46

−a14 + a36 a12 + a56 a22 + a44 + a66 a23 + a45

−a15 − a26 a13 − a46 a23 + a45 a33 + a55 + a66


The kernel of κ is the set of matrices of the form

kerκ :


a11 a12 a13 a14 a15 a16

a12 a22 a23 a24 a25 −a15

a13 a23 a33 a34 −a24 a14

a14 a24 a34 a33 −a23 a13

a15 a25 −a24 −a23 a22 −a12

a16 −a15 a14 a13 −a12 a11


subject to the relations

a11 + a22 + a33 = 0, a16 − a25 + a34 = 0.

Let W1 = kerκ, then dimW1 = 10 and by proposition 0.5.2.1, W1 is irreducible under O(4).
However, W1 decomposes into two irreducible subspaces19 W1 = W ′

1 ⊕W ′′
1 . To understand

this decomposition, note that the matrix E commutes with the action of SO(4) (see e.g.,

19In general, under the action of a subgroup of index 2, an irreducible representation either remains
irreducible or decomposes into two, not necessarily equivalent, irreducible representations.
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the argument preceding exercise ??), and R6 decomposes into three dimensional subspaces
corresponding to eigenvalues ±1 of E:

eigenvalue + 1 :

(
v
E1v

)
; eigenvalue − 1 :

(
v
−E1v

)
,

where v ∈ R3. It follows that the decomposition W1 = W ′
1 ⊕W ′′

1 is given by

W ′
1 :

(
H E1Ĥ

E1H Ĥ

)
; W ′′

1 :

(
H −E1Ĥ

−E1H Ĥ

)
(0.5.2.5)

where the matrix Ĥ is related to the 3× 3 symmetric trace zero matrix H = (hij) by

Ĥ =

 h33 −h23 h13

−h23 h22 −h12

h13 −h12 h11

 .

Using E1HE1 = Ĥ we simultaneously block diagonalize W ′
1 and W ′′

1 by orthogonal transfor-
mations: (

I E1

−E1 I

) (
H E1Ĥ

E1H Ĥ

) (
I −E1

E1 I

)
=

(
4H 0
0 0

)
, (0.5.2.6)(

I E1

−E1 I

) (
H −E1Ĥ

−E1H Ĥ

) (
I −E1

E1 I

)
=

(
0 0

0 4Ĥ

)
. (0.5.2.7)

Note that the Lie algebra K1 (resp. K2) acts trivially on W ′′
1 (resp. W ′

1) so that the corre-
sponding representations of SO(4) are inequivalent. Finally in this example we note since
W1 = kerκ has dimension 10, Im(κ) is the 10 dimensional space of symmetric 4× 4 matrices
which we denote by S2(V ). Under O(4) and SO(4), it further decomposes into irreducible
subspaces

S2(V ) = S2
◦(V )⊕ {λI}, (0.5.2.8)

where S2
◦(V ) is the subspace of trace zero matrices and {λI} are the multiples of identity. ♠

Example 0.5.2.5 In the preceding example we showed that the kernel of κ can be block
diagonalized. It is natural and useful for geometric reasons which will be explained in the next
chapter, to understand the effect of this block diagonalization on the orthogonal complement
of kerκ in W which is also invariant under SO(4). (Here we are using the inner product on
the space 6× 6 symmetric matrices given by Tr(AB).) For this purpose, let A = (aij) be a
6× 6 symmetric matrix satisfying a16 − a25 + a34 = 0, and compute the matrix(

I −E1

E1 I

)
A

(
I E1

−E1 I

)
=

(
C B
B′ D

)
,
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where B,C and D are 3 × 3 matrices and C and D are symmetric. Note that the matrix(
I −E1

E1 I

)
commutes with the action of SO(4) via ρT , so that the above operation preserves

the SO(4)-module structure of W . We obtain after a brief calculation

B =

 −κ13 − κ24 −κ14 + κ23
1
2
(−κ11 − κ22 + κ33 + κ44)

κ12 − κ34
1
2
(κ11 − κ22 + κ33 − κ44) −κ14 − κ23

1
2
(−κ11 + κ22 + κ33 − κ44) κ12 + κ34 κ13 − κ24

 ,

where we have used the notation κ(A) = (κij). Therefore the block diagonalization process

maps S2
◦(V ) onto the set of symmetric matrices of the form

(
0 B
B′ 0

)
. Calculating the

matrices C and D we see that the condition a16 − a25 + a34 = 0 translates into

Tr(C) = Tr(D). (0.5.2.9)

Furthermore, (
C 0
0 D

)
− Tr(κ(A))

6
I =

(
4H 0

0 4Ĥ

)
(0.5.2.10)

where the 3 × 3 traceless matrix H is as given in the preceding example. This gives the
complete decomposition of W as an SO(4)-module.

In the preceding discussion of Young diagrams and representation theory of the symmetric
and general linear groups, the underlying field K could have been R or C. It is important to
note several points. Let K = C, then the irreducible representation ρT of GL(m,C) remains
irreducible upon restriction of ρT to GL(m,R) or U(m). The general reason is that since
ρT is given by polynomials and irreducibility is an algebraic condition, density (in the sense
of Zariski) of GL(m,R) or U(m) in GL(m,C) imply irreducibility under the former groups.
Note that the complexification of the Lie algebra U(m) (skew hermitian matrices) is the full
matrix algebra Mm(C). The situation is different for O(m) and SO(m). These groups are
not Zariski dense in GL(m,C) since they are defined by a set of (quadratic) equations.

0.5.3 Characters

Representation theory of the symmetric group was originally investigated by Frobenius using
character theory and symmetric functions. While this approach is no longer fashionable, yet
it has merits and it appears that it may have interesting geometric applications20. For this
reason we include a brief account of character theory of the symmetric and unitary groups.

20Some applications in connection with ramified coverings of Riemann surfaces were discovered by Adolf
Hurwitz in late nineteenth and early twentieth centuries.
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The Young diagram approach to representation theory of the symmetric and the general
linear groups leads to interesting formulae involving characters and symmetric functions with
applications and interpretations ranging from probability theory, combinatorics to geometry
and topology. We shall touch upon some applications later in connection with intersection
theory of Grassmann manifolds and Schubert’s enumerative geometry and ramified coverings.
For these reasons we give a brief discussion of character theory of Sn and U(m).

Finally in this chapter we establish a simple relationship between characters of the unitary
and symmetric groups and symmetric functions (example ?? below). To do so, we need some
notation. For an element σ ∈ Sn let [σ] denote its conjugacy class. Conjugacy classes in
Sn are determined by partitions of n, however, it is judicious not to use the Young diagram
notation T for denoting these partitions which parametrize conjugacy classes in Sn. Let
X1, · · ·Xm be indeterminates. For each conjugacy class [σ] in Sn we define a homogeneous
symmetric polynomial of degree n in Xj’s which we denote by Z[σ](X). To do so we look
at the cycle decomposition of σ = σ1σ2 · · ·σk, and denote the length of the cycle σi by |σi|.
Thus |σ1|+ · · ·+ |σk| = n. For example, let σ = (1)(2)(34)(56)(789) ∈ S9, then k = k(σ) = 5,
and |(1)| = |(2)| = 1, |(34)| = |(56)| = 2 and |(789)| = 3. Now set

Z[σ](X) =
∑
i1,··· ,ik

X
|σ1|
i1
X
|σ2|
i2
· · ·X |σk|

ik
, (0.5.3.1)

where the summation is over all choices of i1, · · · , ik from 1, 2, · · · ,m. In view of the summa-
tion Z[σ](X) depends only on the conjugacy class of σ. For example, for σ = e = (1)(2) · · · (n)
we have

Z[e](X) =
∑

Xi1 · · ·Xin = (X1 +X2 + · · ·+Xm)n.

For the other extreme case where σ = (12 · · ·n) we obtain

Z[(12···n)](X) = Xn
1 +Xn

2 + · · ·+Xn
m.

We can easily obtain a general formula for Z[σ]. To do so we introduce the power sum
symmetric function

Pk(X) =
∑
i

Xk
i .

With the usual representation of the cycle decomposition of the conjugacy class [σ] in form
1α2β3γ · · · where α+ 2β + 3γ + · · · = n, we obtain

Z[σ](X) = (P1(X))α(P2(X))β(P3(X))γ · · · (0.5.3.2)
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Let (g, σ) ∈ G× Sn where G = U(m). As before let τn be the representation of Sn × G
on T n(V ) discussed above, where V = Cm. We compute trace of τn((g, σ)) in two different
ways. For simplicity of notation we write τn(g) for τn((g, e)) and τn(σ) for τn(e, σ)). Let
g be a diagonal element of U(n) with eigenvalues eiφ1 , · · · , eiφn relative to a fixed basis
e1, · · · , em for V and consider the basis for T n(V ) consisting of all products of the form
ei1 ⊗ · · · ⊗ ein . Clearly τn(g) is diagonal relative to this basis. To compute Tr(τn((g, σ)))
we write τn((g, σ)) = τn(σ)τn(g). Now τn(σ) acts as a permutation matrix relative to this
basis, and to compute Tr(τn((g, σ))) (for g diagonal) we simply have to add the eigenvalues
of τn(g) corresponding to eigenvectors which are left fixed by τ(σ). For example, for σ =
(1)(2)(34)(56)(789) ∈ S9, the eigenvectors fixed by σ are precisely

ei1︸︷︷︸
1

⊗ ei2︸︷︷︸
1

⊗ ei3 ⊗ ei3︸ ︷︷ ︸
2

⊗ ei4 ⊗ ei4︸ ︷︷ ︸
2

⊗ ei5 ⊗ ei5 ⊗ ei5︸ ︷︷ ︸
3

,

where ij’s are chosen arbitrarily from 1, 2, · · · ,m (repetitions allowed). Now let X1 =
eiφ1 , · · · , Xm = eiφm , then it follows immediately that

Tr(τn((g, σ))) = Z[σ](X). (0.5.3.3)

This relation is valid for arbitrary g ∈ U(m) by substituting the eigenvalues of g for
eiφ1 , · · · , eiφm . Next we express Tr(τn((g, σ)) by invoking theorem 0.5.2.2. Let ℘T denote
the character of the irreducible representation ρT of G, and χT the character of the irre-
ducible representation λT of Sn. The functions ℘T are called Schur functions. Then theorem
0.5.2.2 implies

Tr(τn((g, σ))) =
∑
T

℘T (g)χT (σ), (0.5.3.4)

where the summation is over all partitions of n (or Young diagrams T with n squares). In
view of (0.5.3.3) and (0.5.3.4) we have proven the following proposition:

Proposition 0.5.3.1 The following relation holds between characters of irreducible repre-
sentation of Sn and those of the unitary group U(m):∑

T

℘T (g)χT (σ) = Z[σ](X),

where for X1, · · · , Xm on right hand side we substitute the eigenvalues of g ∈ U(m).

For each multi-index a = (a1, · · · , am) ∈ Zm
+ and monomial Xa1

1 · · ·Xan
n , the expression∑

σ∈Sm

εσX
a1

σ(1)X
a2

σ(2) · · ·X
am

σ(m),
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where εσ = ±1 denotes the sign of the permutation σ, is an anti-symmetric polynomial
in X1, · · · , Xm. It is clear that expressions of this form span the space of anti-symmetric
polynomials. Therefore it vanishes unless all the integers a1, · · · , am are distinct. It is no loss
of generality to assume a1 > a2 > · · · > am. It is convenient to introduce the multi-index
δ = (m−1,m−2, · · · , 1, 0) and define the partition (or Young diagram) T : ν = (n1, · · · , nm),
n1 + · · ·+ nm = n, by

a = ν + δ, nk = ak −m+ k.

Then nj ≥ nj−1. Define the anti-symmetric polynomial WT as

WT =
∑
σ∈Sm

εσX
n1+m−1
σ(1) Xn2+m−2

σ(2) · · ·Xnm

σ(m). (0.5.3.5)

For n1 = · · · = nm = 0, we denote the resulting polynomial by W◦. WT , being anti-
symmetric in X1, · · · , Xm is divisible by

W◦ =
∏
j<k

(Xj −Xk).

Therefore the quotient WT

W◦ is a symmetric polynomial in X1, · · · , Xm. The following prop-
erty of the antisymmetric function W◦ plays an important role in understanding the Schur
functions ℘T :

Lemma 0.5.3.1 Setting Xk = eiφk in W◦ we obtain∫ 2π

◦
· · ·

∫ 2π

◦
W◦W◦dφ1 · · · dφm = (2π)mm!

Proof - Expanding W◦ after the substitution Xk = eiφk we obtain

W◦ =
∑
σ∈Sm

εσe
i[(m−1)φσ(1)+(m−2)φσ(2)+···+φσ(m−1)],

which implies the required result. ♣
An immediate consequence of lemma 0.5.3.1 is the determination of the constant c in

(0.2.3.9):

c =
1

2mπmm!
. (0.5.3.6)
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In preparation for relating WT to Schur functions ℘T , it is convenient to introduce a
convention for the book-keeping of these expressions. The anti-symmetric expression WT

(0.5.3.5) may be written as

WT = Xn1+m−1
1 Xn2+m−2

2 · · ·Xnm
m + · · ·

where only the lead term is displayed. When looking at a sum
∑

T ′ aT ′WT ′ , it is generally
convenient to simply argue on the lead terms∑

T ′

aT ′X
n1+m−1
1 Xn2+m−2

2 · · ·Xnm
m ,

since the coefficients of the remaining terms are determined by the anti-symmetry require-
ment. This convention is often helpful in keeping track of things.

The fundamental fact relating symmetric functions to the characters of the unitary group
is the following special case of Weyl Character Formula (for U(n)):

Proposition 0.5.3.2 The Schur function ℘T is given by

℘T =
WT

W◦ ,

where T is the Young diagram corresponding to the partition n = n1 + · · ·+ nm.

Proof - Define VT =W◦℘T . Then VT is an antisymmetric function of X1, · · · , Xm. There-
fore it is a linear combination of WT ′ for Young diagrams T ′:

VT =
∑
T ′

cT ′TWT ′ .

Let Tm ' U(1)×· · ·×U(1) ⊂ U(m) denote the subgroup of diagonal matrices with diagonal
entries eiφk . The restriction of ℘T to Tm is a character. Since Sm ⊂ U(m) as permutation
matrices, and conjugation by permutation matrices permutes the diagonal entries of Tm, ℘T
is a symmetric function of X1, · · · , Xm. Substituting eiφk for Xk in ℘T (X), we see that ℘T
is a sum of exponentials eilkφk with positive coefficients, where lk ∈ Z, and ℘T is symmetric
in the variables φk. Therefore VT is an anti-symmetric polynomial in eiφk ’s. Writing VT in
terms of lead terms we see that the coefficients cT ′T are positive integers. Integrating and
using (0.2.3.9) we obtain∫

U(m)

℘T℘TdvU(m) =
1

2mπmm!

∫ 2π

◦
· · ·

∫ 2π

◦
VTVTdφ1 · · · dφm =

∑
T ′

c2T ′T .
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The irreducibility of the representation corresponding to the Young diagram T implies

1 =
∑
T ′

c2T ′T .

Therefore the sum has only one term and VT =WT proving the proposition. ♣

Remark 0.5.3.1 In the current language of representation theory, the vector ν = (n1, · · · , nm)
is called the highest weight of the irreducible representation of U(m) defined by the corre-
sponding Young diagram. ♥

For any set of non-negative integers b1 > b2 > · · · > bm we introduce the notation

D(b1, b2, · · · , bm) =
∏
j<k

(bj − bk) = det


1 1 · · · 1
b1 b2 · · · bm
...

...
. . .

...
bm−1
1 bm−1

2 · · · bm−1
m

 .

Corollary 0.5.3.1 The dimension of the irreducible representation ρT of U(m) determined
by the Young diagram T : n = n1 + · · ·+ nm is

D(a1, a2, · · · , am)

D(m− 1,m− 2, · · · , 0)

where ak = nk +m− k.

Proof - The dimension of a representation is equal to its character at e, however, the
substitution g = e ∈ U(m) (or Xj = 1) in proposition 0.5.3.2 leads to an indeterminacy 0

0
.

To make sense out of the quotient WT

W◦ we first make the substitution φk = (m − k)φ and
then let φ→ 0. The substitution φk = (m− k)φ leads to a van der Monde determinant and
the required result follows immediately. ♣

Corollary 0.5.3.2 The irreducible representation λT of Sn corresponding to the Young di-
agram T : n = n1 + n2 + · · ·+ nm has dimension

n!
D(a1, a2, · · · , am)

a1!a2! · · · am!

where ak = nk +m− k.
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Proof - Substituting from proposition 0.5.3.2 in 0.5.3.1 we see that the dimension of the
irreducible representation λT of Sn is the coefficient of Xa1

1 X
a2
2 · · ·Xam

m in

W◦Z[e](X) =
∑
T

χT (e)WT ,

or equivalently, in

(X1 +X2 + · · ·+Xm)n
∏
j<k

(Xj −Xk).

Now
∏

j<k(Xj −Xk) is a homogeneous polynomial and a typical term is of the form

εXb1
1 X

b2
2 · · ·Xbm

m ,

where (b1, b2, · · · , , bm) is a permutation of (m − 1,m − 2, · · · , 0) and ε is the sign of this
permutation. Therefore to obtain the required term in W◦Z[e](X) we should multiply this
term by ther term

n!

(a1 − b1)!(a2 − b2)! · · · (am − bm)!
Xa1−b1

1 Xa2−b2
2 · · ·Xam−bm

m

from (X1 +X2 + · · ·+Xm)n. Therefore

deg λT =
∑

ε
n!

(a1 − b1)!(a2 − b2)! · · · (am − bm)!
= n! det


1

(a1−m+1)!
1

(a1−m+2)!
· · · 1

a1!
1

(a2−m+1)!
1

(a2−m+2)!
· · · 1

a2!
...

...
. . .

...
1

(am−m+1)!
1

(am−m+2)!
· · · 1

am!


It is a simple calculation that the above determinant is equal to

1

a1!a2! · · · am!
det


a1 · · · (a1 −m+ 2) a1 · · · (a1 −m+ 3) · · · a1(a1 − 1) a1 1
a2 · · · (a2 −m+ 2) a1 · · · (a2 −m+ 3) · · · a2(a2 − 1) a2 1

· · · ...
. . .

...
...

...
am · · · (am −m+ 2) am · · · (am −m+ 3) · · · am(am − 1) am 1

 .

The latter determinant is equal to D(a1, · · · , am), whence the required result. ♣
From propositions 0.5.3.1 and 0.5.3.2 we obtain

W◦Z[σ](X) =
∑
T

χT (σ)WT , (0.5.3.7)
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which is a form useful for applications. In fact we can use (0.5.3.7) to give recursion fomulae
and even explicitly calculate characters of irreducible representations of the symmetric group.
Let σ ∈ Sn have cycle decomposition 1α12α2 · · · and σ′ be the permutation obtained from σ
by removing one of the cycles. For example if we remove one cycle of length l from σ then
σ′ will have cycle structure 1β12β2 · · · where

βi = αi for i 6= l, and βl = αl − 1.

We want to express χT (σ) in terms of χT ′(σ
′)’s. The symmetric function Z[σ](X) on the left

hand side (0.5.3.7) can be written in the form

Z[σ](X) = Z[σ′](X)(X l
1 +X l

2 + · · ·+X l
m). (0.5.3.8)

Now χT (σ) is the coefficient of the antisymmetric polynomial on the right hand side of
(0.5.3.7) with lead term Xa1

1 x
a2
2 · · ·Xam

m where we recall that aj = nj +m− j. By applying
(0.5.3.7) to Z[σ′] on the left hand side of (0.5.3.7) and using (0.5.3.8) we conclude that χT (σ)
is expressible in terms of χT ′(σ

′)’s with T ′ ranging over Young diagrams T ′ obtained from
T by removing l squares from a row. To carry this out and obtain the desired recursive
formula, we seek anti-symmetric polynomials on the right hand side of

W◦Z[σ′] =
∑
T ′

χT ′(σ
′)WT ′

containing a monomial

Xb1
1 X

b2
2 · · ·Xbm

m

where for all but one index i, bj = aj and bi = ai − l. This monomial may not appear
with + sign in WT ′ since the integers b1, · · · , bm are not necessarily in decreasing order. To
determine whether or not this monomial appears and its sign if it does, it is clear that we
simply have to follow the following rule:

1. If for all j, bj > bj−1, then the monomial appears with + sign;

2. If bj = bk, j 6= k, then the monomial does not appear in view of the antisymmetry;

3. If bj < 0, then the monomial does not appear;

4. If bj < bj−1 neither rule (2) nor (3) is applicable, then move jth row of the diagram
down k rows until the numbers appear in decreasing order. The sign is (−1)k.

To illustrate this let us consider a simple example.
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Example 0.5.3.1 Consider the representation of S14 corresponding to the partition 14 =
5 + 3 + 3 + 2 + 1, σ a permutation containing a 3-cycle, and σ′ differ from σ by the deletion
of a 3-cycle. The integers a1, · · · , a5 are

a1 = 9, a2 = 6, a3 = 5, a2 = 2, a1 = 1.

There are five ways of subtracting 3 from a1, · · · , a5, but according to rules (2) and (3) three
of them do not make any contribution, viz.,

(b1, b2, b3, b4, b5) = (6, 6, 5, 3, 1), (9, 3, 5, 3, 1), (9, 6, 5, 3,−2).

The other two terms appear with negative sign since

(9, 6, 2, 3, 1)→ −(9, 6, 3, 2, 1), (9, 6, 5, 0, 1)→ −(9, 6, 5, 1, 0).

The partitions corresponding to the the above values for (b1, · · · , b5) are T ′ : 11 = 5 + 3 +
1 + 1 + 1 and T ′′ : 11 = 5 + 3 + 3, and therefore

χT (σ) = −χT ′(σ′)− χT ′′(σ′)

which reduces the calculation of the character from S14 to S11. ♠

An immediate consequence of the above reduction procedure is the Branching Law:

Corollary 0.5.3.3 Let T : n = n1 + · · ·+nm, and we may assume nm > 0. The representa-
tion λT of Sn when restricted to Sn−1 is the direct sum of representations λT ′ of Sn−1 where
T ′ : n− 1 = n′1 + · · ·n′m and

n′1 ≥ n′2 · · · ≥ · · · ≥ n′m, 0 ≤ nj − n′j ≤ 1, for all j ≤ m.

Each such representation occurs exactly once.

Proof - If σ ∈ Sn−1 ⊂ Sn, then the cycle decomposition of σ as an element of Sn contains at
least one 1-cycle. The required result follows from the application of the the above procedure
for the deletion of a 1-cycle. ♣

The Branching Law is easily remembered if one draws a picture of the Young diagram
to see which squares can be eliminated. For instance, the restriction of the representation
corresponding to the partition 9 = 4 + 2 + 2 + 1 to of S9 to S8 is the direct sum of the
representations of S8 corresponding to the partitions

8 = 3 + 2 + 2 + 1, 8 = 4 + 2 + 1 + 1, 8 = 4 + 2 + 2.

The reduction procedure can be effectively used to calculate characters of representations
of the symmetric group. A complete discusssion is not relevant to this context, and we briefly
indicate its application to the case of a 2-cycle to demonstrate the principle.
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Example 0.5.3.2 To derive a formula for the characters of the irreducible representations of
Sn at a transposition we make use of the reduction procedure by removing a cycle. Since the
cycle structure of a transposition is 1n−221, the result is in terms of the degrees of irreducible
representations of Sn−2 and it admits of simplifications. The left hand side of (0.5.3.7) is

W◦(X1 + · · ·+Xm)n−2(X2
1 + · · ·+X2

m).

Applying the reduction for removal of a 2-cycle and corollary 0.5.3.2 we obtain

χT (σ) = (n− 2)!
m∑
j=1

D(a1, · · · , aj − 2, · · · , am)

a1! · · · (aj − 2)! · · · am!
, (0.5.3.9)

where certain terms may become 0 in accordance with rules (2) and (3). Therefore

χT (σ)

χT (e)
=

1

n(n− 1)

m∑
j=1

aj(aj − 1)D(a1, · · · , aj − 2, · · · , am)

D(a1, · · · , am)
. (0.5.3.10)

Now we regard the integers a1, · · · , am as indeterminates. The denominator in (0.5.3.10) is
an anti-symmetric function of a1, · · · , am and is independent of j. It is not difficult to see
that the sum of the terms in the numerator is also an anti-symmetric function of a1, · · · , am.
Therefore χT (σ)

χT (e)
is a symmetric polynomial of degree 2 in a1, · · · , am:

χT (σ) = χT (e)

[
C1

∑
a2
j + C2

∑
ajak + C3

∑
aj + C4

]
.

It is straighforward, though somewhat tedious, to evaluate the constants Ci by looking at
the coefficients of corresponding terms on both sides of the equation. We obtain after some
algebraic manipulations

C1 = 1, C2 = 0, C3 = −(2m− 1), C4 =
m(m− 1)(2m− 1)

3
.

This leads to the formula

χT (σ) =
deg λT
n(n− 1)

[ m∑
j=1

nj(nj + 1)−
m∑
j=1

jnj

]
(0.5.3.11)

for the character of the representation λT at a transposition σ. ♠
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