Chapter 1

DIFFERENTIAL GEOMETRY OF
REAL MANIFOLDS

1.1 Simplest Applications of Structure Equations

1.1.1 Moving Frames in Euclidean Spaces

We equip RV with the standard inner product <,>. By a mowving frame in U C RY we
mean a choice of orthonormal bases {e1(x),--- ,ex(x)} for all T,U, x € U. Taking exterior
derivatives we obtain

dx:ZwAeA, deA:ZwBAeB (1.1.1)
A B

where wy’s and wp’s are 1-forms. Since w4 and wap depend on the point x and the choice
of the moving frame {ey,- - ,ex}, their natural domain of definition is the principal bundle
F, — U of orthonormal frames on U. However, due to the functorial property of the
exterior derivative (f*(dn) = df*(n)), the actual domain is immaterial for many calculations
and sometimes we use local parametrizations in our computations. The orthonormality
condition implies 0 = d < e, ep >=< des,eg > + < ea,deg > and consequently

wap +wpa = 0. (1.1.2)

That is, the matrix valued 1-form w = (wap) takes values in the Lie algebra SO(N). From
ddr = 0 and ddey = 0 we obtain

de—i-ZwAB/\wB:O; deB—f-Zu)Ac/\wCB:O. (1.1.3)
B C
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These equations are often called the structure equations for Euclidean space or more precisely
for the group of rigid motions of Euclidean space. The second set of equations is also known
as the structure equations for the (proper) orthogonal group. These equations are a special
case of Maurer-Cartan equations as discussed in chapter 1, and here we have given another
derivation of them. In fact, by fixing an origin and an orthonormal frame the set of (positively
oriented) frames on R™ can be identified with the group of (proper) Euclidean motions, and
(1.1.3) becomes identical with the Maurer-Cartan equations where we have represented the
(N +1) x (N + 1) matrix U~*dU in the form (see chapter 1, §3.5)

Wil ot WIN W1
WN1 °r WNN WN
0 .. 0 0

1.1.2 Curves in the Plane

Geometry of curves in the plane is the simplest and oldest area of differential geometry. Let
us interpret the 1-form wqo in the context of plane curves. Choose the orthonormal moving
frame ey, e; such that ey is the unit tangent vector field to v and ey, es is positively oriented
for the standard orientation of the plane. Then we have de; = wo1e9 and dey = wige;. The
1-form woy; or way(eq) has a familiar geometric interpretation. Set () = (z(¢),y(t)) and let
T = ‘fi—f etc. Then

Y — 1Y
2 + 9
where tan ¢ = %, i.e., tan ¢ is the slope of the tangent to v at ~(t). Therefore wyi(ey) is
the curvature s of the plane curve as defined in elementary calculus. (This interpretation of
wo1 may be somewhat misleading in higher dimensions as we shall see later.) The quantity
|wa1(e1)] is independent of the parametrization of 4 although the sign of wo(e1) depends on
the choice of orientation for R? and whether we are traversing the curve in the counterclock-
wise or the clockwise direction. Since it is conventional to assign positive curvature to the
circle, we use the standard orientation for R? and move counterclockwise along the curve.
It is also convenient to parametrize v by its arc-length s, i.e. ¢t = s, so that @2 + ¢? = 1.
We shall do so for the remainder of this subsection. We also recall from our treatment of
immersions of the circle into R? (chapter 1, §5.5 (?77?)) that if G : C — S' C C is defined
by G(s) =e;(s), i =1 or 2, and df denotes the standard measure on the circle, then

G*(df) = k(s)ds. (1.1.5)

Wa1 =

dt = do, (1.1.4)

Therefore |, ¢ wiz is the winding number of the curve C'.
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Example 1.1.1 Let v : I — R? be a curve with curvature x and assume v is parametrized
by arc-length s. We give a geometric interpretation of curvature of I' which is sometimes
useful. Assume k # 0 and by reversing the orientation of v we assume xk > 0. Let eq, es be
moving frame with e; (resp. ey) tangent (resp. normal) to the curve. Consider the mapping
®:1x[0,6) > R?

P(s,t) = v(s) + tea(s).

From calculus we know that if € < ming m, then the mapping ® is injective. Furthermore,

the image of (0,1) x (0, ¢) is an open subset of R?. A general point in U = ®((0,1) x (0, ¢))
has a unique representation g = y(s) + te; and

dq = [dS + tw21]61 (S) + dt@g(S).
We obtain
dvy = ds A dt + twey A dt

for the volume element on U C R?. This expression for the volume element is no longer valid
if € is large. In fact, if x(s) > 0 (for the chosen orientation of the curve), and the point y
along the normal e3 is at a distance > % from v(s), then there are points s’ # s arbitrarily

(s)
close to s such that
d(y,v(s)) > d(y,~(s)), (1.1.6)

and the map @ is no longer a diffeomorphism. This observation will be useful later. #

Let v : [0,L] — R? be a simple closed curve parametrized by arc length s and denote
its image by I'. Such a curve decomposes the plane into two connected components which
are the interior I'; and the exterior I'. of I'. This is a topological fact which is so familiar
from experience that assuming its validity will not be a cause for concern. For a C! simple
closed curve, we can define the interior I'; as the set of points ¢ € I" such that a generic ray
(i.e., half infinite straight line) starting at ¢, intersects I' is an odd number of points. Later,
we will discuss a generalization and rigorous proof of this fact. We say I" is convez if I'; is a
convex set. It is not difficult to show that the convexity of I is equivalent to any one of the
following conditions:

1. For every tangent line T to I', I; N T = ().
2. For every tangent line T, I'; lies on one side of T'.

3. The intersection of any straight line with I" has at most two connected components.
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These descriptions of convexity in the plane are so familiar that if necesary we will make use
of them without further ado.

There is also a differential geometric condition which implies convexity. Intuitively, this
condition says that if the curvature of I' does not vanish, then the angle that the inward
(or outward) normals to I' make with a fixed direction, e.g. the positive z-axis gives a
parametrization of the curve I' and IT" is convex, in other words,

Lemma 1.1.1 The Gauss map G : I' — S of a simple closed curve with nowhere vanishing
curvature is a diffeomorphism, and I' is convex.

Proof - Since the winding number of a simple closed curve is 27 (see chapter 1, §5.5) we
know that G is onto. If G(s1) = G(sz) then by Rolle’s theorem G'(t) vanishes for some ¢ and
consequently there is a point with zero curvature. Similarly, if I' does not lie on one side of a
tangent line 7', then it intersects I' in at least two distinct points ¢, ¢2. By Rolle’s theorem
there is a point between ¢; and ¢ where the tangent line is parallel to T". This contradicts
the first assertion of the lemma proving convexity of I'. &

It is customary to refer to a simple closed curve I' C R? with nowhere vanishing curvature
as strictly convex. Since lemma 1.1.1 shows that the unit circle parametrizes a simple closed
strictly convex curve, we ask whether any positive function s on S! can be realized as the
curvature of such a curve I' with k() the curvature at the unique point on I" with normal
ey = €. The following proposition shows that there is a necessary condition to be satisfied:

Proposition 1.1.1 Let ey, e5 denote the unit tangent and normal to the simple closed curve

' given by an embedding v : S* — R?, and & denote the curvature of I' regarded as a function
on S*. Then

1 1
/ —eqodf =0 or equivalently / —epdf = 0.
S S

1 R 1 R

If £ s positive, then this condition is also sufficient for the existence of a strictly convex
simple closed curve with curvature k relative to the parametrization of lemma 1.1.1

Proof - Since v is a simple closed curve, it can be given as an embedding of S! into R2. Let
s be the arc length along I and # the parameter along S*. Then

dy _ dyds
o dsdb’

Therefore dy = %eldﬁ and the necessity follows by integration | g1 dy =0 and the fact that
e; and ey differ by the constant rotation through 7. To prove the sufficiency assertion we
integrate the equation

(1.1.7)

dy 1

_* i(Z+0)
[

e1, where e; =e ,
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on the circle S'. The periodicity of the solution v follows from the hypothesis. From (1.1.7)
we see that & is the curvature of and e; is the unit tangent vector field to . From the
positivity of & it follows that for 0 < a < g <mw

B
/ L0 9 —

K

is not possible unless @ = 3. Let a, 8 € S!. Since one of the two circular arcs («, 3) or
(6,a) is < 7, y(a) = v(0) is not possible unless a« = 5. Therefore 7 is an embedding and
sufficiency follows. &

Probably the best known classical result in the geometry of simple closed curves in the
plane is the Four Vertex or Mukhopadhyaya’s theorem, namely,

Proposition 1.1.2 The curvature function of a simple closed curve in the plane has at least
two mazima and two minima. (If k is constant on any arc, then by convention it has infinitely
many maxima and minima.)

Proof - Assume xk has only one maximum and one minimum which occur at points with
parameter values 6, and 6_. It follows from the Intermediate Value theorem that there is a
pair of antipodal points e** such that

7(0,) = #(—0,).

This gives the decomposition of the circle into two semi-circles such that the curvature on
one is everywhere greater than on the other which contradicts the necessary condition of
proposition 1.1.1. The number of maxima and minima necessarily being equal, we obtain
the required result. &

Exercise 1.1.1 Show that the conclusion of proposition 1.1.2 may not be valid for an im-
mersion of S* into R2.

Remark 1.1.1 Proposition 1.1.1 has a higher dimensional analogue which will be discussed
in the subsection on Christoffel, Minkowski and Weyl problems. If we relax the particular
parametrization defined by the Gauss map G and only require that x be the the curvature
after some diffeomorphism of I' onto S*, then any positive function with at least two maxima
and two minima can be realized as the curvature function of a simple closed strictly convex
curve. Proving this requires studying the diffeomorphism group of the circle and will not
be pursued here. The Four Vertex theorem can be proven without reference to proposition
1.1.1, however, the above proof is preferable since it relates it to the Minkowski problem. In
[Ossl] an estimate for the number of critical points of the curvature of a simple closed curve
is given. ©
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In the above analysis we used integration to deduce from the local data (s) a global
result, namely, the existence of four critical points. The use of integration in going from local
information to global consequences is a common occurrence in differential geometry. Formu-
lating a problem as the solution to a variational problem (i.e., existence of critical points)
is another general device (besides integration) for obtaining global geometric information.
There are many examples of this kind of argument in geometry and physics. Example 1.1.2
below, due to Tabachnikov, demonstrates this general principle, in the context of convex
curves in the plane, in an elementary yet elegant manner. First we need to recall an obser-
vation from plane geometry. For vectors OA = (ay,b1) and OB = (ag, by) in the plane we
define

bi by

From elementary geometry we recall that OA x OB is the signed area of the parallelogram
determined by the vectors OA and OB or equivalently twice the signed area of the triangle
OAB. The sign is positive or negative according as the vectors OA, OB form a positively or
negatively oriented basis.

OAx OB = det (a1 a2> . (1.1.8)

Example 1.1.2 Let I" be a simple closed convex curve in R? and assume that its curvature
is nowhere zero. For an angle ¢ € S' we let ¢ also denote the unique point on I' with
G(¢) = ¢ which causes no confusion in view of lemma 1.1.1. We seek points ¢ € I" such that
the normals to ' at ¢ — %’T, ¢ and ¢ + %’r are concurrent. We refer to such a configuration of
normals as a tripod. It is clear that for such ¢ € I' (if exists), the three normals intersect at
angles of i%” at their common point of interesection. For arbitrary ¢, the intersections of
the three normals to I at ¢ — 2?", ¢ and ¢ + %’T form the vertices of an equilateral triangle,
and we will show as ¢’s moves along the curve this triangle degenerates (at least twice) into
a point and the three normals become concurrent. To prove the existence of a (or two)
tripod(s) fix an origin O not lying on the curve I and it is perhaps less confusing (although
unimportant) if we take the origin to be in the exterior of the curve. Let p = (z,y) denote
the vector from O to a point with coordinates (z,y) on I'. We make the convention that p(¢)
denotes the vector from O to the point on C' corresponding to the parameter value ¢ € S!
as described above, but p'(¢) and p”(¢) denote the first and second derivatives of p (at ¢)
relative to the arc length s on I'. Consider the function

F(8) = p(6 = ) #7/(6 — )+ 0(6) # 9(68) + Do + ) /(9 + )
defined on I'. Then
dF 2m ” 2m " 2m " 2m
25 (@) =p(¢ = =) xp (0 — o) +p(9) x1"(9) +p(d + ) x (0 + ). (1.1.9)
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As noted earlier, the three terms on the right hand side of (1.1.9) are twice the signed areas
of the triangles OAB, OAC and OBC' (see figure XXXX) and their sum is twice the area
of the triangle ABC where A, B and C are the intersections of the normals to the curve
I' at the points ¢ — %”, ¢ and ¢ + %’r The function F' has at least two critical points and
at these critical points, the triangle ABC' degenerates into a point (since the area of the
equilateral triangle ABC becomes zero) and we obtain the desired tripods. Tabachnikov
also established a similar property for convex polygons. For this and other material on the
Four Vertex theorem see [Tab] and references thereof. é#

A curve in the plane is completely determined, up to Euclidean motion, by its curvature.
In fact we have the differential equation de; = ke where the vector es is uniquely determined
by the requirement that eq, ey is positively oriented orthonormal frame. The differential
equation is uniquely solvable once the initial point and initial direction are specified. This
observation is both local and global and can be stated as follows:

Lemma 1.1.2 Let v,v : [0, L] — R? be two C? plane curves parametrized by arc length s,
and assume their curvatures as equal as a function of s. Then v and ~' differ by a Euclidean
motion.

1.1.3 Curves in Space

In order to make use of the structure equations to study geometry of curves in space, we
malke a special choice for the frame e, e, e3. Consider a curve I' C R?, and choose the frame
{e1, eq, €3} such that e; is the unit tangent to I' and set

1 1
de; = —eads, dey = ——e1ds + Tesds, des = —Teaqds. (1.1.10)
p p

The quantities kK = % and 7 are called the curvature and torsion of the curve. The frame

{eq, eq, €3} is called the Frenet frame for the curve I'. The notation % implicitly assumes that
the curve I' is generic in the sense that its curvature is nowhere zero. At a point where the
curvature is non-zero, there is an ambiguity of 4+ in the choice of e5 while at point where
curvature vanishes, e; can be any unit vector normal to e;. In the former case the ambiguity
can be removed by the requirement that 1 > 0. Note that the sign of the curvature of a
space curve cannot be intrinsically defined. In fact, since a reflection in the plane can be
extended to an element of SO(3), simple examples show that there is no continuous function
x on I' with the following properties:

1. In the limit of a plane curve, x tends to the curvature of the plane curve;
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2. k is SO(3)-invariant.

On the other hand, if we stipulate on the positivity of the curvature of a space curve, then as
we pass through a point of zero curvature, the vector field e may undergo a discontinuity. To
circumvent this difficulty, at least in the case where the curvature vanishes only at isolated
points, we choose Frenet frames on open connected subsets I'1, 'y, - -+ of I' where /l) # 0. By
appropriate choice of 4 sign of e; on each I'; we can obtain a smooth Frenet frame on the
entire curve. But by doing so we allow the curvature to take negative values as well. One
can remove any ambiguity in the sign of es or curvature by the (non-canonical) requirement
of positivity of curvature at one point in UI';. No confusion should arise as long as one keeps
these issues in mind. The analogue of lemma 1.1.2 is also valid for space curves:

Lemma 1.1.3 Let v,7 : [0, L] — R3 be two C* curves in space parametrized by arc length
s, and assume their curvatures and torsions as equal as a function of s. If the curvature of
v (or ~') vanishes nowhere, then vy and ~' differ by a Fuclidean motion.

Proof - Let A = (e, €2, e3) be the 3 x 3 matrix denoting the Frenet frame. Then the solution
to the differential equation

0 —x O
dA
—dZAKJOT
5 0 —7 0

lies in O(3) in view of skew-symmetry of the matrix A_l‘ff. By choosing the initial condition
to be a positively oriented orthonormal frame we ensure A € SO(3). Solving the differential

equation % = e; we obtain a curve 7’ which will coincide with either « or 4/ by a judicious

choice of the initial conditions, i.e. a Euclidean motion. &

Exercise 1.1.2 How should lemma 1.1.3 be modified if the curvature is allowed to vanish at
1solated points.

Example 1.1.3 As an application of the Frenet frame we calculate the volume of a tube of
small radius » > 0 around a curve I' in R?. The tube of radius » > 0 around T is

7.() = {p+taes + tzeslp €T, 5+ 15 < r}.
Denoting a generic point on 7,.(I") by ¢ = p + taes + tze3 we obtain

dq = (ds — takds)ey + (dty — tsTds)es + (dts + tords)es,
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so that the volume element on 7,.(I') is
ds A dtg VAN dtg - t2/€d$ VAN dtQ VAN dt3

It is clear that because of the factor ¢, the integral on 7,.(I") of the second term vanishes.
Therefore
vol(7,.(T")) = mr?(length(T)). (1.1.11)

Thus the volume of the tube depends only on the length of the curve and r but not the
curvature or torsion of I'. Of course this simple formula is valid for curves in RY if we
replace 7% by the volume of the ball of radius r > 0 in R¥~!. Formula (1.1.11) is valid only
for small values of r > 0 since the parametrization ¢ = p + toes + t3es is valid only for small
r > 0. One may be tempted to assume that the right hand side of (1.1.11) gives an upper
bound for the volume of 7,.(I') for all r, however simple examples show that this is not true.

)

Let 7 : [0, L] — R? be a curve in the plane (parametrized by arc length for convenience)
and M, be the cylinder based on v, i.e., {(z,y,2) | (z,y) € Im(v)}. Consider the mapping

®:(—1,1) x[0,L] = R® ®(u,t) = (y(t),u)

Let ey, €9, e3 be a positively oriented moving frame in R? with e3 normal to M, and e; tangent
to Im(y). A possible choice is to take e; parallel to the (x,y)-plane and e, in the direction
of z-axis. Then

dy = wiey, wy=du, wip =0.
The last equality follows from the fact that ey - de; = 0 since v is a plane curve. Let
d(t) = (01(t),02(t),05(t)) be a curve such that (61(¢),d2(t)) = () and d3(¢t) > 0 for all
t € [0, L]. Modify the frame to €}, €}, e3 differing from ey, es, e3 by an element SO(2) acting

on the ey, ey vectors so that e; is tangent to both v and § curves. Then it is a simple
calculation that wi, is related to wis by

w'12 = Wiy + df = d@,

where 6 is the angle of rotation relating the frames under consideration. Therefore dwi, = 0
and it follows from Stokes’ theorem that

L L
/Ww’u)—/ 0*(wha) = Ass, (1.1.12)
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where A.; is the contribution of the line integrals of wj, along the vertical lines joining the
initial and end points of v to those of §. We refer to wi,(e]) (on d) as the curvature ks of
the space curve 4. It is convenient to write the integrals on the left hand side of (1.1.12) as

J,wiz and [jwi,, and refer to these quantities as the total curvatures of v and 4.

Now assume ¢ is a simple closed curve in R?, i.e., § is a diffeomorphism of the circle onto its
image. One refers to such a curve as a knot. Let v denote the orthogonal projection of 9 in the
(x,y)-plane. Now ~ generally has self-intersections which we may assume (by transversality
or making small perturbations) are of the form of two branches passing through a point,
i.e., no triple or higher intersections. We can break up v into a union of curves 7y, -+ ,vn
with no self intersections, and accordingly decompose ¢ into a union 4, - - -, dy with ¢; lying
vertically above ~;. It follows from (1.1.12) that

/ r_
/Wm_/wlz— E :Ang.
Y é 7

Since d is a closed curve, the sum }; A, 5, vanishes and

o 6

The left (resp. right) hand side of (1.1.13) is the integral of the curvature of the space 7
(resp. plane 6). We want to obtain an estimate for f7 |ws| where absolute value sign means
we are calculating the integral of the absolute value of the curvature. The principle is best
demonstrated by looking at an example. Consider the knot ¢ in figure (XXXX) known as the
trefoil knot. This is the simplest non-trivial knot. Non-trivial means it cannot be deformed
into a circle without crossing itself. In chapters 4 and 6 we will make a systematic study of
knots, but for the time being the intuitive notions will suffice. Now break up the orthogonal
projection v of the trefoil knot in the plane into three simple closed curves as shown in the
figure and denote them by C}, Cy and C3. We orient C;’s in the counterclockwise direction.
Each simple closed curve in the plane has total curvature 27 as noted in chapter 1, §5.3. In
replacing v with three simple closed curves we created two issues which have to be addressed,
viz.,

1. There are additional contributions to the total curvature by twice the sum of the angles
of the triangle ABC' (see figure XXXX).

2. The orientation of of portions of the curves were reversed and consequently the curva-
ture was multiplied by -1 on these sections.
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The first point implies that if we estimate fv |wi,| by relating it to Y- [, wi,, then 27 should
be substracted from it to compensate for this additional contribution. The second issue is
addressed by noting we are looking at fv |w!s| and therefore we have the inequality

3
/|w12| > Z/C Wiy — 2 = 4. (1.1.14)
Y i=1 i

This simple argument can be applied to any knot to give a lower bound for f7 |wis|, but
carrying out the details rigorously involves a technical examination of knot crossings is not
very interesting. The reader should experiment with more complex knots to be convinced of
the validity of

/|w;2| > dr (1.1.15)
1

for any non-trivial knot 6. An elegant and simple proof of it, based on Crofton’s formula
for the sphere, is given in the next subsection. The inequality (1.1.15) is known as the
Fary-Milnor theorem.

1.1.4 Integral Geometry in Dimension 2

To further demonstrate the use of moving frames and how the group of proper motions
of Euclidean space enters into geometric problems we consider some problems in integral
geometry in the plane and on the unit sphere S2. These examples will not be used in the
discussion of Riemannian geometry and the reader may directly proceed to the next section
on Riemannian geometry. Let C' and C’ be curves in the plane R?, and pose the following
questions:

1. What is the average number of intersections of C' and ¢g(C’) as g ranges over SE(2)
(the group of proper Euclidean motions of R*?

2. What is the average number of intersections of C' and an affine line in R??

In both of these problems we have to give a meaning to the word average. Let N(g),
g € SE(2), denote the number of points of intersection of g(C”") and C. Then the desired
average is [ N(g) where the integration is over the space of all possible g(C"). To make this
more precise let SE(C,C") = {g € SE(2)|g(C") N C # 0}, and let m(SE(C,C")) denote the
measure of this set relative to the kinematic density dvsg2). Denote the lengths of C' and
C’" by [ and I, and let s and s’ be the arc-length along these curves. Consider the mapping

F 0,1 x [0,I'] X [-m,7) — SE(2),
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where F'(s,s',0) is the proper Euclidean motion which translates the point with coordinate
s’ on C' to the origin, followed by rotation through angle # and translation of the origin
to the point with coordinate s on C. Then computing m(SE(C,C")) can be restated as
integrating F*(dvsg(2)) on [0,1] x [0,'] x [=m, 7). Notice that in this calculation, distinct
points of intersection of the curves g(C”) and C' correspond to different values in the domain

of F'. Therefore we have
l I3 T
[vo=[ [ ] Favsee)
0 0 —T

To evaluate this integral let (z1(s),x2(s)) and (yi(s"), y2(s")) be parametrizations of C' and
C' by arc length. Then

cosf —sin® x1(s) —yi(s’) cosb + ya(s') sind
F(s,s',0) = [sinf cosf xo(s) — y1(s')sin€ — yo(s’) cos
0 0 1
Therefore
F*(dvgp(2)) = dvi A dva A df = —[(xhyy + 25y5) sin @ + (a1, — x5y;) cosOlds A ds’ A db.

Let a and o' be the angles of the tangents to C' and C" with z;-axis at the points corre-
sponding to s and s’ respectively. Then x| = cos «, x4, = sin a etc. and we obtain

(#1y1 + w5yp) sin @ — (w19 — 75y)) cos ) = —sin(0 — o’ + )

Note that ¢ = 0 — o’ + « is the angle between the curves C' and F(s, s’,0)(C"). Since o and
o' depend only on s and ¢ respectively, we have the expression

F*(dvgp(2) = £sinpds A ds' A dp, (1.1.16)

for the pull-back of the kinematic density. (The reason for the ambiguity in sign is that we
have not specified orientations when measuring the angles; we require the measure to be
positive which determines the sign.) Therefore

! U s
meas(S(C, (")) = / / / | sin g|dgds'ds — AIl' (1.1.17)
0 0 -

and

/N(g) =4l (1.1.18)
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The equation (1.1.18) is often called Poincaré’s formula. The second problem is only
slightly different. The set of all affine lines in R? is the inhomogeneous Grassmann manifold
Gil(R) = SE(2)/H, where H = R-O(1) = R-Z/2 is the group Euclidean motions of R. The
desired average is [ n(L) where n(L) is the number of intersections of the line L € é‘f»l with
the curve C, and integration is over é‘{l We consider the map F : [0,1] x [0,7) — Gy (R)
where F'(s,0) is the coset gH and g € SE(2) is rotation through angle 6 followed by trans-
lation of the origin to the point corresponding to the point with parameter s on C. By a

reasoning as before
l ™
/ n(L) = / / F*(dvgs ).
0 Jo b

From example 77 of chapter 1 we have dv@‘f =W A w12 which gives
* _ —
F (dUGi’,l) =+ cospds A dp,

where ¢ is the angle between the line L and the curve C'. Consequently

/n(L) =21 (1.1.19)

This is the simplest of a class of equations known as Crofton’s formula(e). The important
feature of (1.1.19) and (1.1.18) is that the right hand side is proportional to the length(s) of
the curve(s). In our computations we used a mapping F' to pull-back a canonically defined
form on a group or homogeneous space and then integrated it over the parameter space.
This kind of reasoning occurs frequently in differential geometry.

Exercise 1.1.3 With the notation and framework of example 77, let 3; be the angle between
g(C") and C at the j point of intersection. Show that

/ ; B; = 2nll,

where the integral is over all g € SE(2) such that g(C") N C # 0.

Example 1.1.4 We continue with the notation of example ??7. Let K be a compact sub-
set of R? with piece-wise smooth boundary and consider the problem of estimating the
number of intersections in the interior of K of n lines (in general position) in R?. Let
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dv, = dvago N -+ ANdva. be the invariant volume element on the product of n copies of
o G1,1 G1,11

-
n copies

Ci‘w‘fﬁl. Define ¢;; : é‘r‘l’l X oo X é‘l’l — R by

1 L, NL,NK #0,

0 otherwise.

€ij(L1, -+, Ln) = {
For n = 2 we obtain from Crofton’s formula (1.1.19)
[ . ElQ(L, L,)dvé(l) ) /\ dvé? ) - 2/ lLd,Ué‘i ) (L),
G711 xG7 4 ' ’ 7

where I, denotes the length of the segment LNK. Now it is trivial to show that [, lLdUGg ) (L) =
1,1 B
2ay, where ag is the area of K. Consequently

/ ~ 612(L, L/)dvégl /\d?}(”;(fl = 4CI,K. (1120)
G?1xGYP ’ ’

Let e =3, e, Ur = {L € é‘il|L N K # 0}, and M(n, K) be the measure of the set of
n-tuples of lines such that every pair intersect inside of K. Then

N(n,K) = / edv, = 2n(n — l)aK/ dv,_s.
Ugx--xUg Ug X---xUg

Another application of Crofton’s formula gives
N(n,K)=2""n(n — 1axli’.

where s is the length of the boundary curve 0K. To obtain the average N(n, K) of the
number of intersections, we have to properly normalize the quantity N(n, K). A natural
normalization is by dividing N (n, K') by the measure of the set of n-tuples of lines intersecting
K. From Crofton’s formula the latter quantity is 2"{},. Therefore we obtain

n(n —1)ag

for the desired average N(n, K). &
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One should exercise caution in the probabilistic interpretation of our calculation of aver-
ages as ezpected values. Our approach was based on the integration on a space (e.g., SE(2))
of infinite volume, but the integrals were convergent due to compactness of the domain of
integration. To give strict probabilistic interpretation it is necessary to clarify the undelying
probability space. We shall not pursue this issue here.

We define the signed total curvature of a real plane curve as ko = fc dop = fc k(s)ds (see
also notion of winding number in exercise ??). In interpreting this quantity one should be
cognizant of the fact that as one moves along a curve the angle ¢ can exceed 27 and the
signed total curvature of a general real plane curve can be any real number. If the curve
is only piece-wise smooth, again the same definition is applicable with the proviso that at
points of nondifferentiability, the derivative d¢/ds is a delta function which is equal to the
angle between the curves as the first rotates counterclockwise onto the second.

Example 1.1.5 Let D; and D, be open relatively compact regions in R? with piecewise
smooth boundaries dD;. Assume the boundary curves are parametrized by arc lengths s;,
and let ¢; be the corresponding angle. We apply proper Euclidean motions g € SE(2) to D,
and look at the intersections D(g) = g(D;1) N Dy which is an open relatively compact region
with piecewise smooth boundary. Let x; and x4, denote the signed total curvatures of the
curves 0D; and 0D(g) respectively. Just as in examples ?? and 1.1.4 we want to compute
the integral of k, as g ranges over SE(2). To do so we consider the mappings

¢y : 0D x [0,27) X Dy — 0Dy x SE(2), and ®y: 0Dy x [0,27) x Dy — 0Dy x SE(2),

where ®4(s1,60,x1,22) = (dp(s1)/dsy, F(s1,0,21,22)) and F(s1,0, 21, x9) is the proper Eu-
clidean motion of D; which translates the point with parameter s; on dD; to the origin,
then rotates the translate of D; through angle # and then translates it so that the point
with parameter s; will coincide with the point (z1,x3) € Ds. ®5 is similarly defined. It is a
simple calculation that

) dgs

d
(I)T(d_sl A dvspe)) = disﬁlld& Adf A dxf A day, and q)§<d_32 A dvsp()

Ao

where dz! A dr) is Euclidean volume element on the domain D;. The required average is

2

> do; /
CD: N d?} + B‘,
/aDlX[0,2Tr)><D2 ( ds SE(2)) E j

i=1

where 3; is the angle between g(0D;) and 9D at the j™ intersection point and the integral
is over all g € SFE(2) such that g(0D1) N Dy # . Notice that the reason for symmetrizing
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with respect to ¢ = 1,2 is that d(g(D;) N Dy) consists of two parts coming from g(dD;) and
0D,. From exercise 1.1.3 we have f > B; = 2mlyly and it is trivial to see that the first sum
is 2m(K1ag + Keap) where a; is the area of the region D;. Therefore we have shown that the
average of the signed total curvature is

/Iig = 271'(/{1@2 + Koay + l1l2>. (1121)

This equation is known as Blaschke’s formula. For a simple closed curve C, ko = 2.
Therefore if D; and D, are relatively compact convex domains in R? with piecewise smooth
boundary, then for all g € SE(2), d(g(D1)N Dy) is a simple closed curve. Blaschke’s formula
then implies for

meas({g € SE(2)|g(D1) N Dy # 0}) = 2n(a1 + az) + Ly,
under the additional hypothesis that D;’s are convex. #

Formulae of Crofton, Poincaré and Blaschke demonstrated the use of the group of Eu-
clidean motions of the plane in geometric problems dealing with averages. We now show
that the latter two imply the isoperimetric inequality in the plane which is independent of
the averages. Let C = 0D be a simple closed curve of length lsp in the plane bounding a
region D. As noted above k¢ = 27. Applying the formulae of Blaschke and Poincaré to the
case where D; = D and C' = C" = 0D we obtain

1
/N(g) =4l3,, and %/HQ = 4drap + 3p

where the integrals are taken over the set of g € SE(2) such that g(D) N D # (). Assume
furthermore that D is convex so that d(g(D) N D) is a simple closed curve (if nonempty).
Let m; be the measure of the set of g € SE(2) such that ¢(C') and C' intersect at exactly i
points. Then

) 1
o= [ Ny = imi, and tnan -+, = - [ ng = Y

Since m;’s are non-negative quantities and obviously m; = 0 (in fact, mg;_; = 0) we obtain
I5p — 4map > 0, (1.1.22)

for D compact convex with piecewise smooth boundary. For D non-convex let D’ be its
convex closure. Since ap < ap and lyp < lgp, the assumption of convexity in (1.1.22) is
unnecessary.
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While the isoperimetric inequality is sharp, the following clever idea gives an estimate
for the defect in the inequality for convex domains with piecewise smooth boundaries. Let
r; (resp. r.) denote the radius of the largest (resp. smallest) circle inscribed in (resp.
circumscribed about) the compact convex domain D = Dy. Let r; < r < r, and Dy denote
the disc of radius r. The inequalities of Poincaré and Blaschke imply

) 1
8mrisgp = /N(g) = szi, and 27 (ap + 7 +rlgp) = %//ig = Zmi.

Therefore, proceeding as before, we obtain
2nrlop — 2m(ap + 7r?) > 0.
Now we write
13, —4rap = (lap — 2mr)* + 2[27rlsp — 27 (ap + 7r?)] > (logp — 277)?,

whence, by averaging,
1
2p — 4map > 5[(181) —27re)* + (lap — 2713)?). (1.1.23)

Inequality (1.1.23) is called Bonnesen inequality.

Finally we derive an analogue of Crofton’s formula for the unit sphere S?. To formulate
the problem let 7 : [0,1,] — S? be a curve of length [, which we assume is parametrized by
arc length, and for every p € S? let C,, be the oriented great circle on S? which is the equator
relative to the north pole p. The set of C,’s is the homogeneous space SO(3)/S0(2) ~ S
Let N, (p) be the number of intersections of the great circle C,, with the curve y. The problem
is to calculate the average number of these interesections. More precisely we will prove

/ N, (p)dv(p) = 41, (1.1.24
50(3)/50(2)

where dv is the invariant volume element on SO(3)/SO(2). Let s denote arc length along
and y(s), e2(s), eg(s) form a positively oriented orthonormal frame. A great circle C,, passes
through ~(s) if and only if the vector p lies in plane spanned by es(s) and e3(s). Therefore
p has can be written as

D = Psr = COSTey + sinTes,



212 CHAPTER 1. DIFFERENTIAL GEOMETRY ...

and F(s,T) = ps., gives a (local) parametrization of S?. The structure equations for SO(3)
imply

g (1) 7(s)
o ea(s) | = A eas) |,
es(s) es3(s)

where A is a skew symmetric matrix depending on s and the hypothesis that v is parametrized
by arc length implies A%, + A2, = 1 and therefore we have Ay = cos @, A3 = sin ¢. Taking
exterior derivative of p,s . and using the structure equations we obtain

dps, = (—sinTey + cos Tes)(dr + Aazds) — (cos ¢ cos T + sin ¢ sin 7)ds.
Therefore the volume element of S? in (7, s) coordinates is
F*(dvgz) = cos(T — ¢)drds.

The desired average is the integral of |F*(dvg2)| = | cos(T — ¢)|drds on [0,1,] % [0, 27) where
the absolute value is necessary to make sure cancelations due to the signs of intersections do

not occur. We obtain
Iy 2T
/ ds/ | cos(T — ¢)|dT = 4l,,

which is the desired formula (1.1.24).

As an application of Crofton’s formula for the sphere, we give a simple proof of the Fary-
Milnor theorem (1.1.15). Consider a knot ¢ : S' — R? and let v : [0,]] — S? be the unit
tangent vector field to the knot. It is no loss of generality to assume that v is an immersion
of S* into S? and [ = [, is the length of the curve on S? traced out by 7. Let x denote the
curvature of § and first assume ¢ is only an arc on which « is positive. Then

dvy(s)
/kads:/ s ds =1,.

It follows from Crofton’s formula (1.1.24) that

/ﬁds _ i/Ny(p)dU(p). (1.1.25)

Clearly this formula remains valid if we break up ¢ into subsets where x does not change
sign and replace x by |k|. Now observe that N,(p) is the number of critical points of the
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function f,(t) =< p,d(t) > defined on the knot 6 where < .,. > denotes the standard inner
product on R3. (f, is the height function in the direction of p € S? and is the projection
of §(t) on the line through p.) It is elementary that the number of critical points of f, is
even. If the total curvature of the knot d is < 4, then (1.1.25) implies that there is p € S*
such that f, has only two critical points, namely, a maximum pyay and a minimum ppiy.
Therefore 0 is divided into two arcs where along one f, is increasing and is decreasing along
the other. This implies that planes perpendicular to the direction p (and between the planes
corresponding to Py and ppax) intersect the knot Im(¢) in exactly two points. The union of
straight line segments joining these pairs of points exhibit the knot Im(d) as the boundary
of a disc which means ¢ is not knotted (see example ?? in chapter 1).

Exercise 1.1.4 Let 6 : [0,L] — R® be a simple closed curve, and ~(s) denote the unit
tangent vector field to 6. Show that the curve s — (s) intersects every great circle on S* at
least twice. Deduce that

/ |k|ds > 2m,

For an extensive discussion of integral geometry and its applications see [S] and references
thereof.

where Kk denotes the curvature of J.
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1.2 Riemannian Geometry

1.2.1 Basic Concepts

We introduce the fundamental concepts of Riemannian geometry by first looking at Euclidean
space and its submanifolds, and determining which notions are dependent or independent
of the embedding. This special case, besides being of intrinsic interest, will serve as a good
example for the more abstract development of the general case. Let M C U be a submanifold.
To adapt the moving frame to M, we assume that x ranges over M and ei(x),- -, en(2)
form an orthonormal basis for 7, M. To simplify notation, we make the following convention
on indices:

1§A7B707"'§N7 1§Z7]7k7§m7 m_'_lSa?bap?q’"'SN'

Since x ranges over M, w, = 0, and hence dz =) . w;e;. This simply expresses the fact that
T.M is spanned by ey, -+ ,e,. In a more cumbersome language this can be rephrased as
follows: If f: M — U is a submanifold, then f*(w,) vanishes identically. By writing w, = 0
we emphasize the point of view that M is regarded as the solutions to the Pfaffian system

W1 =0, --+, wy =0.
The first set of structure equations becomes

du)i + szj /\u}j = 07 pri Nw; = 07 on M. (121)

J

A fundamental property of the w;’s is that relative to the Riemannian metric induced on
M, the metric has the form ds* = Y, w?. This is essentially obvious since for any curve
v : I — M, the element of arc length is ds?(¥) =< dz(¥),dz(§) >= Y, w;(¥)wi(%), where
4 is the tangent vector to the curve. In practice, w;’s are often computed from the relation
ds* =3, w?.

It is convenient to decompose the matrix (wap) in the form

The m x m matrix w = (w;;) is called the Levi-Civita connection for the induced metric on
M C U. Let us see how the connection w transforms under a change of orthonormal frame.
Let A = (A;;) be an orthogonal matrix, and the frames {e;} and {f;} be related by the
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orthogonal transformation e; = >, A;; fi. Setting f, = e, for m +1 <p < N, and denoting
the connection form relative to the f1’s by w’, we obtain after a simple calculation

w=A"WA+ AdA (1.2.2)

Notice that because of the additive factor A='dA, the connection w is not a tensor but a
collection of 1-forms transforming according to (1.2.2). As noted earlier, because of the
dependence of w on the choice of frame, its natural domain of definition is the principal
bundle of orthonormal frames, however, we shall not dwell on this point. The matrix-valued
function A effecting a change of frames is generally called a gauge transformation. Since the
entries of A~'dA contain a basis for left invariant 1-forms on the special orthogonal group,
for every point p € M there is a gauge transformation A defined in a neighborhood of p such
that w’ vanishes at p € M. In general, one cannot force w’ to vanish in a neighborhood of
pe M.

Before giving the formal definition(s) of curvature, let us give some general motivation
for the approach we are taking. In analogy with the definition of the curvature of a curve
in the plane, it is reasonable to try to define the curvature of a hypersurface in R™*!, or
more generally of submanifolds of Euclidean spaces, by taking exterior derivatives of the
normal vectors e,. We shall show below that the exterior derivative de, determines an
m x m symmetric matrix H, = (H};) for every direction e,. The matrix H, depends also on
the choice of the frame eq,--- , e, for the tangent spaces 7, M and therefore the individual
components Hfj are not of geometric interest. However, the eigenvalues of H, and their
symmetric functions such as trace and determinant are independent of the choice of frames
€1, ,em. Our first notions of curvature will be the trace and determinant of the matrices
H,. For the case of surfaces M C R*, Gauss made the fundamental observation (Theorema
Egregium) that det(Hs) (there is only one normal direction e3) is computable directly in terms
of the coefficients of the metric tensor ds? which is only the necessary data for calculating
lengths of curves on the surface M. Gauss’ theorem was taken up by Riemann who founded
Riemannian geometry on the basis of the tensor ds? thus completely freeing the notion (or
more precisely some notions) of curvature from the embedding. To achieve this fundamental
point of view, we make use of the fact, which is far from obvious without hindsight, that
the structure equations dwap + Y wac Awep = 0 express flatness (vanishing of curvature
which will be elaborated on below) of Euclidean spaces, and the 2-forms dw;; + ), wir A wi;
(recall 1 <i4,j < m) which quantify the deviation of structure equations from being valid on
M, contain much of the information about the curvature of the submanifold M C R™. The
2-form dw;; + ), wik A wi; reduces to dwyo for surfaces in R? and it will be demonstrated
shortly that

dw12 = — det(Hg)wl N\ Wa. (123)
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The point is that once a Riemannian metric is specified, one can calculate the quantities w;
and w;; although they depend on the choice of frames for the tangent spaces 7, M (see sub-
section on Levi-Civita Connection below). Therefore (1.2.3) contains Theorema Egregium.
It should be pointed out that Tr(Hs) is not computable from the data ds® alone, and it
contains siginifcant geometric information which will be discussed in this chapter. In view
of these facts, any quantity which is expressible in terms of w;’s and w;;’s is called intrinsic
to a Riemannian manifold M, and quantities which necessarily involve w,’s or wga,’s are
called extrinsic in the sense that they depend on the embedding. Our immediate goal in
this subsection is to make mathematics out of these remarks and specialize them to the
case of surfaces in R®. Various notions of curvature, based on the above comments, will be
introduced in the following subsections. We begin with the following algebraic lemma:

Lemma 1.2.1 (Cartan’s Lemma) - Let vy, - -+ , vy, be linearly independent vectors in a vector
space V', and wy, - -+ ,w,, be vectors such that

vy AWy 4 -+ Uy A w,y, = 0.
Then w; =Y H;;v; with H;; = Hj;. The converse is also true.

Proof - Let {vy, -+, v, -+ ,vn} be a basis for V, and set w; = ). H;jv; + Zp H,;vp. Then

m m m N
Zvi/\wi = Z(Hﬂ— Hij)vi/\vj+2 Z Hpi’Ui/\’Up.
i=1 i,j=1 i=1 p=k+1

Therefore H;; = Hj; and H,; = H;,. The converse statement is trivial. &
Applying Cartan’s lemma to the second equation of (1.2.1), we can write

Wip = Z HYjw;, (1.2.4)
J

where (H7;) is a symmetric matrix. The Second Fundamental Form of the submanifold M
in the direction e, is the quadratic differential given by

Hp = Z Hfjwiwj (125)
i3

This means that the value of H, on a tangent vector § € 7,M is 3, ; Hw;(§)w;(§). The rea-
son for regarding H, as a quadratic differential (i.e., a section of the second symmetric power
of 7*M) is its transformation property which descibed below. (The First Fundamental Form
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is the metric ds?.) Clearly H, may also be regarded as the symmetric linear transformation,
relative to the inner product induced from R, of T,M defined by the matrix (Hf;) with
respect to the basis {ey, - ,e,}. Note that there is a second fundamental form for every
normal direction to M.

Let us see how the second fundamental form transforms once we make a change of frames.
First assume that e,, .1, -+ , ey are kept fixed but ey, - - , e, are subjected a transformation
A € O(m). From the transformation property of the matrix (wap) we obtain the transfor-
mation

Wip Wip
A

Wmyp Wmp
It follows that for fixed €,,41,- -+ , ey the symmetric matrix H, = (H};) transforms according
H, — A'H,A. (1.2.6)
This transformation property justifies regarding the second fundamental form as a quadratic
differential on M. Similarly, if we fix ey, - - - , e,,, and subject €,,,11, - - - , en to a transformation

A € O(N —m), then the matrices H, transform according as

Hy — ) AgH,. (1.2.7)

q

While the matrix (Hf;) depends on the choice of the orthonormal basis for 7, M, the
symmetric functions of its characteristic values depend only on the direction e, and not on
the choice of basis for 7, M. For example, the mean curvature in the direction e, defined by
H, = %trace(H%) = Y. H expresses a geometric property of the manifold M C R which
we will discuss later especially in the codimension one case for surfaces. For a hypersurface
M c R™" there is only one normal direction and we define the Gauss-Kronecker curvature
at x € M as K(z) = (—1)™"!det(H;;) (in case m = 2 one simply refers to K as curvature).
The eigenvalues of H are called the principal curvatures and are often denoted as k; =
Ril, R T %. If the eigenvalues of H are distinct, then (locally) we have m orthonormal
vector fields on M diagonalizing the second fundamental form. The directions determined
by these vector fields are called the principal directions, and an integral curve for such a
vector field is called a line of curvature. Note that in the case of hypersurfaces the second

fundamental form can also be written in the form

H=— <dz,depns1 > . (1.2.8)
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Example 1.2.1 Consider the sphere S” C R"™! of radius r > 0. Taking orthonormal frames
. . 1 dij

as prescribed above, we obtain = = re, 1, and consequently win 41 = Jw;, Hyj = —=2w;, and

IT = —1 > w?. Therefore the Gauss-Kronecker curvature of S is K(z) = . #

Example 1.2.2 A simple case of a submanifold of codimension one is that of a surface

M C R3. In this case the Levi-Civita connection is the matrix

W — 0 w12
o —W12 0
The symmetric matrix (H;;) in the definition of second fundamental form is defined by

wiz = Hijwi + Higwa,  wag = Higwi + Haows.

Therefore
dW12 = —wi3 N\ w3y = (H11H22 — H%Q) w1 N\ ws. (129)

Therefore the measure of the deviation of the quantity dw;; + > wir A wy; from vanishing,
which we had alluded to earlier, is the curvature K. It should be emphasized that the second
fundamental form was obtained by restricting w, to M and therefore (1.2.9) is valid as an
equation on M. Note that we have arrived at the curvature K of the surface via two different
routes. The intrinsic approach where it is defined by dwis = Kw; A we (or the deviation of
dwio from vanishing), and the extrinsic approach as the determinant of the matrix H of the
second fundamental form. &

We have emphasized that the 1-form w5 depends on the choice of the frame and therefore
is naturally defined on the bundle of frames PM. By fixing a frame (locally) we can express
wig as a 1-form on M!. We can use this fact to advantage and deduce interesting geometric
information as demonstrated in the following example:

Example 1.2.3 Consider a compact surface M C R?® without boundary and assume that
¢ is nowhere vanishing vector field on M. From & we obtain a unit tangent vector field ey
globally defined on S? and let e; be the unit tangent vector field to M such that ey, e, is
a positively oriented orthonormal frame. Let wys be the Levi-Civita connection expressed
relative to the moving frame e;, e; which is a 1-form on M. Since M = (), Stokes’ theorem

implies
/ dw12 =0.
M

Tn more sophisticated language, the frame e, es is a global section of the bundle of frames PM and w2,
which is naturally defined on it, is pulled back to M by this section.
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On the other hand, dwiy = Kw; A we, and therefore
/ le A Wy = 0. (1210)
M

If we let M = S? be a sphere, then K is a positive constant and therefore (1.2.10) cannot
hold. Therefore S? does not admit of a nowhere vanishing vector field £. On the other hand,
it is easy to see that the torus 72 admits of a nowhere vanishing vector field, and therefore
no matter what embedding of 7% in R* we consider, still relation (1.2.10) remains valid. We
shall return to this issue in the next chapter. &

The intrinsic description of the Gauss-Kronecker curvature K via the formula dwiy =
Kw; A wy reduces the computation of K to straightforward algebra once the metric ds? is
explicitly given. In fact, we have

Exercise 1.2.1 (a) - Let ds* = P?(u,v)du® + Q*(u,v)dv?. Show that the connection and
curvature are given by

1 0P 100 1 .0 ,10P 0 ,10Q
= ——du— —=—d K=—A—(===—)+=—(==—)}

=000 " T Poan ™ ol o) T au P

(b) - Let M C R? be a surface, and L be a line of curvature on M. Show that the surface
formed by the normals to M along L has zero curvature.

In view of the above considerations it is reasonable to define the curvature matriz Q =
(i) of a submanifold M C RY as

m
Qij = dwij + Zwik A\ wkj.
k=1

For hypersurface M C R™"! the curvature matrix € is then related to the second funda-
mental form by the important relation

Qij = —Wim+1 VAN Wm+1j, (1211)

for a M C R3. This formula follows immediately from the structure equations and the
definition of 2;;. The definition of the curvature matrix will be extended and discussed in
the following subsections.
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Related to (1.2.11) is the concept of Gauss mapping which will be used exensively. Let
M C R™! be a hypersurface and consider the mapping G : M — S™ given by G(z) =
em+1(z) called the Gauss mapping. Since de,, 11 = > wim+1€;, We easily obtain

G*(dvgm) = Wimt1 A+ Awmms1 = (—1)™det(H)wy A -+ A wp,. (1.2.12)

In following two examples the concepts of metric, curvature etc. are related to their
classical (and maybe more familiar) form for surfaces:

Example 1.2.4 Assume a surface M C R? is described parametrically by a map f from
the (u,v)-plane to the (z,y, z)-space, i.e., M is given by (z(u,v),y(u,v), z(u,v)), then from
the prescription in calculus texts for the computation of the arc-length it is evident that the
metric is given by the symmetric positive definite matrix

- (FLGE B AR REEE)
D Df = ou Buav ou Ov Oy Ov
(DfYDS <z—52—5+§zzz+aua (895 4 (B 4 ()2

where Df is the derivative of f and superscript ’ denotes the transposed matrix. It is
customary to set

_Ox, Oy, 0z, , Oxdxr Oydy 0z0z Ox Y., 0z,
E_(ﬁu) +(8u) +(8u) ’ F_auav+8u8v+8u8v ¢= (81}) +(6v) +<8v>'

so that the metric becomes ds?> = Edu? + 2Fdudv + Gdv?. The unit normal to the surface
M C R3 is the vector

1 dy 0z 1 8z dz\ 1 dz Oy
€3 = (jdet (% 8z> ,7det <% %) ,jdet (g_g %))
v Ov v v v Ov

where J =  EG — F?. Denoting the components of e3 by £, 7, and ( respectively, we obtain
o0& 0xr  Ondy 0¢ 0z 0 0x  Ondy 0COz 0£0xr Ondy 0COz

[ =_222 279 25 E S/ - A Tt |\ AP St A A o

oudu Oudu Oudu’  Qudv Oudv Oudv Ovwdv Owdv Ovdv’
where the expression Ldu? + 2Mdudv + Ndv? is the second fundamental form. &

Exercise 1.2.2 Show that if a surface is given as z = z(x,y), then the coefficients of the
first and second fundamental form are

E—l—l—p27 F =pq, G=1+¢

L=—" M=—%2—_ N=——_
/1+p2+q2 /1+p2+q2 /1+p2+q2
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where p = %, q= g—;, r= g—jj, § = 82:2531, and t = giyj. The Gauss-Kronecker curvature K
and the mean curvature H are
o rt—s° (4@ —2pgs+ (1+p*)t
(1+p?+4¢2)* 2(1+p* + ¢?)3/2

Deduce that the paraboloid z = x* — y? and the hyperboloid x* +y? — 22 = 1 have everywhere
negative curvature, however, the curvature tends to zero as one moves to infinity. (This is
typical in the sense that there are no complete surfaces in R? with curvature bounded above
by a negative constant.)

Example 1.2.5 Let I" be a curve in the first quadrant of (x, z)-plane described by (x(t), z(t))
where t is the arc length. Rotating I" around the z-axis generates a surface of revolution
M C R3. The Riemannian metric on M is dt? + x(t)2d6? relative to the (¢,0) coordinates
where 6 is the angle of rotation. Therefore we set w; = dt and ws = xdfl. The Levi-Civita
connection and Gaussian curvature of M are easily computed to obtain (see exercise 1.2.1):

2
d—xde, Ko _tde
dt

Wiy = — —.
12 x dt?

Thus the curvature of M depends only on the variable ¢ which reflects its invariance under
rotations around the z-axis. Now if we specify any function of one variable K(t), we can
1 d%z

solve the ordinary differential equation %7 = —K locally. To make sure that this is the

Gaussian curvature of a surface of revolution we have to demonstrate the existence of a

function z(t) such that
d—x2+ dz\"_ | (1.2.13)
dt ) 7 o

so that ¢ becomes arc length along the curve (x(t), z(t)). Locally we can always accomplish
this by making sure that |fl—f| < 1, so that in a neighborhood of the initial point we can

set ‘fi—j =4/1— (%)2 and solve for z(t) to obtain the desired curve. Thus for an arbitrarily

function of one variable we can construct a surface of revolution with the given function
as the Gaussian curvature. In particular, if we set K equal to a positive constant then we
obtain spheres as surfaces of revolution of constant Gaussian curvature K. For K a negative
constant, we can still obtain a local solution in terms of hyperbolic functions. But this
solution cannot be continued to exist for all ¢ since the relation (1.2.13) will be violated.
This is no accident and will be elaborated on later. #

Example 1.2.6 Roughly speaking, any differentiable function of one variable is the mean
curvature function of a surface of revolution locally. To make this statement more precise, let
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" be the graph of a function y = f(x) of one variable and assume I" lies in the first quadrant
of the (z,y)-plane. The the portion of the surface M, lying the half plane z > 0, obtained by
rotating I' around the z-axis is the graph of the function z = \/f(z)? — y2. Exercise 1.2.2
provides us with a formula for the mean curvature of M. The formula involves computing
second partial derivatives of the function z with respect to z and y. Since the the surface
M is invariant under rotations in the (y, z)-plane, we can set y = 0 in the expression for the
mean curvature of a surface given in exercise 1.2.2. In fact, we obtain after a straightforward

calculation ,
1 12 2
" +ff _9H (1 + f’2> , (1.2.14)

where the mean curvature H is a function of z (and the sign of H depends of the direction
of the unit normal e3) only. In principle, this differential equation can be solved for any
differentiable function H to obtain a surface of revolution with prescribed mean curvature
function H(z). &

Example 1.2.7 Let M C R? be a surface. A point x € M is called an umbilical point if the
principal curvatures x; and k9 are equal at x. Clearly, every point of the sphere S? C R3?
is an umbilical point. In this example, we show that there are no umbilical points on the
(standard) torus. Let 0 < r < 1 and consider the circle

I': z=1+rcosf, y=rsind,

in the zy-plane. Rotating I' around the y-axis, we obtain the torus M given parametrically
as

(0,0) — ((1 + rcosf)cosp,rsinb, (1 +rcosf)sing).
The unit tangent vectors
e; = (—sinfcos ¢, cos, —sinfsinp), es = (—sin g, 0, cos @),

give a trivialization of the tangent bundle 7 M of M. The corresponding basis of 1-forms
are

wy =rdl;, wy=(1+rcosh)de

The unit normal is e3 = (cosfcos ¢, sinf, cosfsin @), and so des = (df)e; + (cosOde)es.
Consequently,

1 cos
Wiz = —Ww1 Woz = ————Ws.
r 14 rcosf
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Therefore the second fundamental form is diagonalized and the principal curvatures are
1 cos 6
K1 = -, Ry = ——.
L > 1+rcosb

Clearly k1 = kg is not possible and there are no umbilical points on the torus. In chapter 6,
we will show that, for topological reasons, the only compact surfaces in R?* with no umbilical
points are tori.

Example 1.2.8 Let M C R? be a surface all whose points are umbilics. This means on M
we have

W31 = awi, Ws2 = awWs,
for a function a on M. It follows that
dwis = da N\ wy — awia A ws.
Comparing with dwiz = —wi2 A wog3 = —awis A wy, we obtain
daNwi =0, daNwy=0,

where the second identity is obtained by a similar argument. Therefore a is a constant, and
M is a subset of a sphere. To prove the latter assertion, note that from des = wize; + wozen
it follows that

des = —a(wie; + waer) = —adp = d(—ap)

where p denotes a generic point on M. Therefore d(es + ap) = 0 and after a translation we
can assume ez = —ap. Thus if M is defined by an equation F'(xy,zy, x3) = 0, then we have

OF OF OF
— = 00X — = 00X — = 0OX
31‘1 P, 81'2 pPT2, 8.733 pT3,

for some function p. Computing 6_26}; - from the above equations we obtain the system of
J

ox;
linear equations

xﬁp xap—()xap xf}’p_ox@p xap—O
18%2 28{1]1 S 28373 38372 7 38:61 181’3 e
Therefore % = (0 and p is a constant. We easily integrate to obtain

2 2 2
F(zy,x9,23) = 2] + a5+ 25 — ¢

proving that M is a subset of a sphere. In particular, a compact surface M C R? all whose
points are umbilics is necessarily a sphere. @
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Remark 1.2.1 Let M C R3. We want to derive (a little heuristically) the analogue of the
Euler-Lagrange equations for the critical points of the variation of the element of area for M
in the language of moving frames. Taking exterior derivative of the element of area w; A wy
we obtain

d(wl A w2> = (w13 A\ W2 — W23 A wl) A w3 = (—(AH + AQQ)Wl A u)g) N ws,

where A = (A;;) is the matrix of the second fundamental form. In order for the variation of
the element of area to be critical, the variation in the normal direction es, or the coefficient
of w3, should vanish. Therefore vanishing of the mean curvature %(HH + Hgo) is the Euler-
Lagrange equations for the element of area. For this reason, surfaces with vanishing mean
curvature are called minimal surfaces. More generally, surfaces in R for which the mean
curvature H, vanishes for every normal direction e,, are also called minimal surfaces and by
a similar argument the terminology can be justified.

Exercise 1.2.3 With the hypothesis and notation of exercise 1.2.2 show that the element of
area for the surface z = z(x,y) is given by

V14 p?+ ¢*dx A dy.

Applying the Euler-Lagrange equation from the Calculus of Variations, deduce that the critical
points for the area of surfaces of a given boundary satisfy (1 + ¢*)r — 2pgs + (1 + p)t = 0,
i.e., mean curvature should vanish. (Compare with the preceding remark.)

The following exercise shows that one can obtain a solution to the minimal surface equa-
tion in R? by separation of variables.

Exercise 1.2.4 Substituting = = f(x) + h(y) in the minimal surface equation (1 + ¢*)r —
2pgs + (1 + p?)t = 0, show that it reduces to two ordinary differential equations

f// h//
1+ f7 :a:—1+h/2,

where a is a constant and superscript’ denotes differentiation. For a # 0 derive the solution
1
z =d+ —[logcos(ax +b) — logcos(ay + )],
a

where a # 0,b,c and d are arbirary constants, and the domains of x and y are appropriately
restricted. (This surface is called Scherk surface. Surfaces representable as z(u,v) = fi(u) +
Hi(v), y(u,v) = fa(u) + Ha(v), 2(u,v) = f3(u) + Hs(v), are called surfaces of translation.)
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Exercise 1.2.5 Consider a surface M C R®, and let eq, eq,e3 be a moving frame with e
is normal to the surface M. Writing a generic point of the tube 7.(M) of radius r > 0 (r
small) as ¢ = p + teg with p € M and |t| < r, show that the volume element on 7,.(M) is

dUTr(M) = (wl + twlg) A (LUQ + twgg) N dt

Deduce that for r > 0 small

2
vol(7,.(M)) = 2rvol(M) + 57"3/ Kuwy A ws.
M

1.2.2 Levi-Civita Connection

The Levi-Civita connection (w;;) for a submanifold M C R" is an anti-symmetric matrix
with the property dw; + > w;j Aw; =0 (1.2.1). In general, for 1-forms 6y,--- ,6,, spanning
the cotangent spaces to M, we can only assert the existence of a matrix of 1-forms (6;;) such
that df; + > 6;; A0; = 0. A remarkable consequence of an inner product on RY was that if
we set 0; = w; then the matrix (;;) can be replaced by the anti-symmetric matrix (w;;), i.e.,
a matrix of 1-forms taking values in the Lie algebra of SO(m). The following proposition
shows that the existence of a Riemanniann metric on M (and not an embedding) is all
that is needed to ensure the existence and uniqueness of the matrix (w;;) with the required
properties?:

Proposition 1.2.1 Let wq, -+ ,w,, be a basis of one forms reducing the Riemannian metric
to the identity matriz, i.e., ds* = Y., w?. Then there is a unique skew-symmetric matriz
w = (wjj) (called the Levi-Civita connection for the given Riemannian metric) such that

de—Zwij/\wj = 0.

J

Proof - We have

dwi = E QW5 A Wi,

j?k
where the coefficients a;;;, satisfy the anti-symmetry condition

aijk + aikj = 0.

2The remarkable property of the Levi-Civita connection becomes more evident when one studies geometric
structures corresponding subgroups other than the orthogonal groups.
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Since ajg; + ag;i is symmetric in the indices (7, k), we have
ij A (ajki + aka-)wk = 0,
gk

and consequently

dwi == Z wj N (aijk + Clj]ﬂ' + ak,ji)wk.
7.k

Now set

Wij = g (aijr + ajri + arji)wr,
k

which satisfies the requirements of the proposition. To prove uniqueness, let (ng) be another
such matrix, and set 0;; = w;; — w;;. Applying Cartan’s lemma to ) w; A 0;; = 0, we obtain

0ij = Z brijwk, — brij = iy
k

On the other hand by anti-symmetry of 6;;, we have by;; = —bgj;. It follows easily that
biji = 0 thus completing the proof of the proposition. &

Exercise 1.2.6 For the metric ds* in the diagonal form ds* =Y, gudx?, show that the
Levi-Civita connection is given by

1 8log\/ﬁwﬁ_ 1 8log1/gjjw

W;: = ,
Y G O ' Gii O !
where w; = /gi;dx;.
The connection w enables us to differentiate vector fields. More precisely, let ey, -+ e,

be an orthonormal frame on the Riemannian manifold M, and (w;;) be the Levi-Civita
connection for the Riemannian metric g. Define

Vei = ijiej, (1215)
J

and we extend V to a vector field { = ), bie; by

Vv Z bi€7; = Z wj,-biej + Z dble, (1216)



1.2. RIEMANNIAN GEOMETRY 227

The quantity V¢ is called the covariant derivative of the vector field €. For a vector field n
Vo€ =Y wi(mbie; + > _ dbi(n)es,
ij i

is the covariant derivative of £ in the direction 1. It is not difficult to verify that V,¢§ and
V¢ are independent of the choice of orthonormal frame ey, --- | e,,.
Another very useful operation on tensor is contraction. For every pair (i,7), with 1 <
1 <mand 1 < j <n the contraction operator
Cij V@ - @VeV'® -V -V - aVeV'® -V

-~ -~ -~ ~~
m times n times m—1 times n—1 times

is defined by
Cij<vl®"'®vm®§l®"'®§n>:gj(vi)vl(g)"'@@i@"'®Um®§1®"'®éj®"'®§n7

where 0; means v; is omitted.
We now can extend covariant differentiation to a derivation on the space of tensors by
the requirements

1. Vf =df for a smooth function f;
2. V commutes with contractions.

An immediate consequence is
0 =dg(e;,e;) = V(g)(ei ej) + g(V(ei), e5) + glei, Viey)) = V(g)(ei, e5) +wji +wiz = V(g)(ei, €;).

Therefore

Vg =0, orequivalently dg(,¢)(n) = g(V,&,¢) + g(§, V(). (1.2.17)

This equation expresses a fundamental property of the Levi-Civita connection.

Remark 1.2.2 We have followed the mathematical tradition of only considering Rieman-
nian rather than indefinite metrics by which we mean the condition of positive definiteness
of the symmetric matrix g = (g;;) is replaced by that of nondegeneracy. We shall see in
subsections on spaces of constant curvature and homogeneous spaces that indefinite metrics,
besides being of intrinsic interest in physics, are useful in understanding the behavior of Rie-
mannian metrics. For an indefinite metric ds? with 7 positive and m — r negative eigenvalues
we consider frames (also call them orthonormal) with the property

dSZ(ei, ej) = :*:51']',
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where + or — sign is chosen according as ¢ < r or r + 1 < ¢ < m. The definition of
Levi-Civita connection w;; is the same except that instead of skew symmetry we require
(wij)J + J(wij) = 0 where J is the diagonal matrix whose first r diagonal entries are 1, and
the remaining diagonal entries are —1. In other words (w;;) takes values in the Lie algebra
of the orthogonal group of J. The existence and uniqueness of the Levi-Civita connection is
the same as in the Riemannian case. ¢

1.2.3 Parallel Translation and the Gauss-Bonnet Theorem

The notion of parallel translation plays a fundamental role in differential geometry. Let M be
a Riemannian manifold with the Levi-Civita connection (w;;), v : 1 — M a curve in M and
assume that v is parametrized by its arc-length, so that the tangent vectors +(t) = D~(t)(1)
have length 1. Consider the system of ordinary differential equations

7 (wig)(8)(1) = wi(¥(t)) = 0. (1.2.18)

What this system specifies is how the frame {ej,--- ,e;} should be chosen so that the
connection form (w;;) vanishes along v when evaluated on the tangents to 7. Recall that
by a gauge transformation we can make the Levi-Civita connection vanish at one point.
The differential equations of parallel translation describe a frame along a curve relative to
which the Levi-Civita connection vanishes when evaluated on the tangent field to the curve.
This is really the best one can do in general to simplify the expression for the Levi-Civita
connection. The precise geometric meaning of parallel translation in the context of surfaces
in R? and its relationship to parallel translation in the Euclidean plane is explained in the
subsection Flat Surfaces and Parallel Translation below. This condition is independent of
the parametrization of 7. Once the frame is specified at a point, say x = v(0) € M, then the
ordinary differential equations (1.2.18) completely determine it along the curve 7. Let the
frame {eq,--- , e} be so determined along . Let fi,-- -, f,, be another frame which differs
from ey, -+ e, by a gauge transformation A. From the transformation formula (1.2.2) it
follows that fi,---, f,, is parallel along v if and only if A~'dA(%) vanishes. This means
that the gauge transformation A is constant along 7. A vector field £ = ). {;e; along v is
parallel if the coefficients &; are constants along v where we are assuming that eq,--- ,e,, is
parallel along . This condition is equivalent to V5§ = 0. We say a curve v is a geodesic if
V.¥ = 0. The condition of geodesy implies that g(¥,%) is constant along v which implies
that a geodesic is necessarily parametrized by a multiple of arc-length (with arbitrary initial
point).

For a surface M, we can give a simple geometric interpretation to wia(¥(t)). Let v be a
curve parametrized by its arc length s, and assume the frame ey, e, is such that e; is tangent
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to v. We want to choose a new frame fi, fo such that if w], denotes the connection form
relative to f1, fa, then wiy(%(s)) = 0. Let wio denote the connection form relative to ey, es.
Then along v we can write w1z = a(s)ds, i.e., wia(¥(s)) = a(s). Denote by ¢ the angle
between the tangent to v and the vector fi;. Then from (1.2.2) and the requirement on the
frame f we see that d¢ — a(s)ds = 0. Therefore the rate d¢/ds of the rotation of the angle
¢ is given by wio(¥(s)), and we have

/7 (i) = /7 d6. (1.2.19)

The right hand side of (1.2.19) is simply the total angle through which the tangent vector to
~ rotates through relative to f; as one traverses the curve. This interpretation has significant
implications as will be shown momentarily.

As an application of the concept of parallel translation, we discuss the Gauss-Bonnet
theorem for surfaces®. Let M be a surface with a Riemannian metric ds?, and A C M an
open relatively compact subset with connected boundary consisting of finitely many smooth
curves. We think of A as a polygon but the the boundary curves need not be geodesic
segments. Let vy, -+, 7, be the smooth boundary curves of A ordered according to their
indices so that ~; intersects ;41 at the vertex v; of A and ~, intersects v; at the vertex v,.
Denote the exterior angle between ~; and ;41 by «; (the exterior angle between ~, and 7,
is denoted by «a,,.) Applying Stokes’ theorem and using dwis + Kw; A we = 0 we obtain

/ le /\UJQ == —/ w12 (1220)
A 0A

To correctly understand the meaning of the right hand side of (1.2.20) let us assume that on
OA and in the complement of its vertices e; is tangent to the boundary curve and e, points
to the interior of A (see also remark 1.2.3 below). Then to evaluate the right hand side of
(1.2.20), we recall that f% w19 measures the rotation of the tangent vector to v; relative to
a parallel vector field f; along ~; as one traverses the curve (see 1.2.19). To understand this
better first consider the case where the boundary curves ; are geodesics. Then wqs(%;) = 0,
and the contributions to the integral come from the rotation of the tangent vector to the
terminal point of +; to the tangent vector to the initial point of ~;,1, i.e., ;. Therefore, if
OA consists of (broken) geodesics, (1.2.20) can be written in the form

/ Kuwy Awy = 271 — Za (1.2.21)
A i

3The version of the Gauss-Bonnet theorem for surfaces as we know it today, appears to be substanially
due to Blaschke.
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Notice that in the plane 7;’s are straight line segments and ), a; = 2w, however, for a
general surface ) . o, # 2m. In fact, the deviation 27 — ) o is accurately measured by the
the integral of the Gaussian curvature according to (1.2.21). Clearly if the boundary curves
are not geodesics, then (1.2.21) should be modified as follows:

/Ale Awy =2 — Za - Z /7 wia(3i(1)). (1.2.22)

We can rephrase the derivation of the right hand side of of (1.2.22) by saying that | oA W12
consists of two kinds of contributions, namely, the individual contributions of the smooth
curves 7; and the exterior angles which reflect the discontinuities in the tangent vector field
to the boundary. The quantity wi2(¥(t)) is called the geodesic curvature of v, and 27 —> . «;
the excess of the sum of exterior angles. Formulae (1.2.21) and (1.2.22) are versions of the
Gauss-Bonnet theorem which we summarize as a proposition for future reference:

Proposition 1.2.2 (Gauss-Bonnet) Let A C M be an open relatively compact subset with
connected boundary consisting of finitely many smooth curves and exterior angles «; as de-
scribed above. If the boundary curves are geodesics then (1.2.21) expresses the excess of the
exterior angles of A as an integral of the Gaussian curvature K. If the boundary curves are
not necessarily geodesic segments, then (1.2.21) should be replaced by (1.2.22).

Remark 1.2.3 Note that in the above discussion we intuitively thought of A as a polygonal
region in R? where R? is given a Riemannian metric ds?. It is instructive to examine this
point a little closely. Assume for example that 7 is a small circle of (Euclidean) radius
sina > 0, a small, of the unit sphere S2. Then 7 disconnects S? into two parts A; (the
small part) and Ay (the big part). In the application of (1.2.22) we have an ambiguity as to
A being A; or A,. Equation (1.2.22) gives in the case of A; (with eq, e positively oriented
and ey pointing to the interior of A;)

le /\WQ =27 — /wlg(’y(t))
Aq v
In exercise 1.2.8 below it is shown that
/wlg(*y(t)) = 27 cos a.
¥

Thus as &« — 0 we obtain the obvious relation f Kw; AN wy = 0. On the other hand, the
application of Stokes’theorem to A, gives

Kwi ANwy =27 + 27 cos av.
Ag
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Therefore if & — 0 then we get f Kwi Awy = 47 which is of course valid. We can do a similar
thing on any compact orientable surface M with a Riemannian metric, by taking a small
simple closed curve v disconnecting M into a small part A; and a big part Ay. Applying
(1.2.22) to the small part and shrinking « to a point we obtain the trivial relation 0 = 0. On
the other hand, if we apply it to the big part we obtain a possibly non-zero quantity. The
meaning of this quantity will be discussed in detail in the next chapter after the introduction
of homology. ©

Exercise 1.2.7 Consider the upper half plane H = {z = z + iy € Cly > 0} with the
Riemannian metric

da? + dy?
ds? = Lzy
Y
Prove that the curvature of the hyperbolic plane is -1, and consequently the sum of the angles
of a geodesic triangle is less than . (H with this metric is called the hyperbolic or Poincaré
plane. See also subsection Spaces of Constant Curvature below.)

Exercise 1.2.8 Let C' be a (Euclidean) circle of radius 0 < sina < 1 on the unit sphere S,
and ey, ey be an orthonormal frame at p € C C S%. Parallel translate e1,es along C. Show
that upon first return to the initial point p, the new frame makes an angle of 27 cos a radians
with original frame.

1.2.4 Geodesics

We noted earlier that parallel translation is specified by the system of ordinary differential
equations (1.2.18). To understand this better for geodesics, we work in an open subset of
U C R™ with a fixed Riemannian metric g and denote the Levi-Civita connection by (w;;).

Let ey, -+ , e, be an orthonormal moving frame on U and €y, --- , ¢, be the standard basis
for R™. Then we have

Ej = Zﬂijei.
Let v(t) = (z1(t), -+ ,2m(t)), 0 <t <1 be a curve in U, then

. dx dxm dx;
,Y(t):(_la ) Z JBZ]
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Noting that (f;;) is an invertible matrix, we easily see that the condition for being a geodesic,
i.e. V44 =0, becomes a system of second order nonlinear ordinary differential equations:

2
Cifx; + i(l',%,"' 7dx_m
t dt dt
Here ®; are locally defined functions. Note the variable ¢ does not explicitly appear in
®’s. At the end of this subsection we explicitly exhibit the system of ordinary differential
equations characterising geodesics. From the existence and uniqueness theorem for ordinary
differential equations we immediately obtain

) =0. (1.2.23)

Corollary 1.2.1 Let M be a Riemannian manifold, p € M and &, € T,M. Then there is a
unique geodesic ¥ = Ype, : (—€,€) — M with ¥(0) = p and ¥(0) = &,.

The corollary enables us to define the ezponential map, Exp, : T,M — M as Exp,(§,) =
Yp.e,(1). Of course there is no reason why 7, (1) should even be defined since, for example,
by taking a point out of a manifold many geodesics will terminate after finite time. It is a
simple matter to see that

DExp,(0) = Identity

and therefore Exp, is a diffeomorphism of a neighborhood of 0 € 7,M onto a neighborhood
of pin M. Let By(r) C 7,M be the ball of radius 7 > 0 and B,(r) = Exp,(B,(r)). We set
Sp(r) = 0B,(r) = Exp,(Sp(r)) where Sy(r) = dB,(r). Note that the length of a geodesic
joining p to a point on S,(r) is r.

Example 1.2.9 Let M be a Riemannian manifold and 7 : M — M be an isometry of M,
i.e., 7*(ds*) = ds* or the Riemannian metric is invariant under 7. Assume M™ = {p €
M|7r(p) = p} is a submanifold. Let p € M™ and § € 7,M", then the geodesic in M given by
Exp,(t§) remains in M7, since otherwise using 7 we obtain two geodesics in M with the same
initial point and tangent vector. Applying this observation to the sphere S™ C R™*! and
allowing 7 to be reflections relative to the coordinate hyperplanes, we see that great circles
are geodesics on the sphere. Similarly, the intersections of the ellipsoid or more generally
the locus defined by

vi w3 @
+24+ 3

aq a9 as

=1

with the coordinate hyperplanes are geodesics. In this way we obtain three closed on the
ellipsoid. Obviously similar considerations apply to ellipsoids in higher dimensions. In the
subsection on quadrics, we shall see that there is in fact a continuum of closed geodesics on
the ellipsoid. In the case of the sphere S™, invariance of the metric under SO(m + 1) and
the uniqueness property of corollary 1.2.1 imply that all geodesics are great circles. #
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It is sometimes useful to make use of the notion of partial parallel translation which is
defined as follows: Let ¢ be a function on U C M so that M. : ¥ = c is a hypersurface. Let
v be a curve in U and ey, ey, - , e, a moving frame such that es, - - e, are tangent to the
hypersurfaces M.. Let A be a gauge transformation given by the proper orthogonal matrix

1 0 - 0

0 ax -+ ay

O Am2  * - Amm
relative to the frame ej,es,--- e, where a;;’s are functions on U. Let (w;;) denote the
connection form relative to the moving frame ey, A(es),- -, A(e;,). Then the system of

ordinary differential equations
wii(¥(t)) =0, for 2 <4, j<m

can be solved for A along . This means that we can choose A such that A(es), -, A(en)
remain tangent M, and the coefficients w;;(¥(t)) for 2 <, 7 < m vanish along ~.

Trying to understand the behavior of geodesics on a Riemannian manifold by directly
solving the ordinary differential equations (1.2.23) is generally an exercise in futility. One
should employ more clever ideas in recognizing and investigating geodesics. To this end we
begin with the following observation: Assume that the metric has the form

m
d82 = glldl‘% + Z gwdl'zd{f] (1224)
ij=2
Here g;;’s are functions of 1,22, -+ ,2,,. Then the curves I'y : 2y = 72, -+ , Ty, = Y, are
orthogonal to the hypersurfaces M, : x1 = ¢. Let ey, -, e, be a moving frame such that
ey is the unit tangent vector field to the curves I',. Then w; = \/g1dx1, where wy, -+ Wy,
is the dual coframe. We furthermore assume that along each I'y the frame e;,eq, -+ , €y, is

given by partial parallel translation along I', so that w;;(e;) =0 for 2 < 4,7 < m.

Lemma 1.2.2 With the above notation and hypotheses on the metric (1.2.24) and the
coframe wy, - -+ ,wy,, there is a non-singular matriz (C)i k=2....m of functions such that

. 9dlo
Wik = (Z Cki%)wl + frowo + 0+ femWm,
i=2 ¢

for some functions fj.
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Proof - We have

= 1 avgn
dw; = R dz; N\ wi. 1.2.25
1 ]2:; \/ﬁ 8I'j 7 1 ( )

There is a non-singular (m — 1) x (m — 1) matrix (g;x); k=2, m such that

m
dxj: E Qrj Wk -
k=2

Substituting in (1.2.25) and using the relation dw; + Y wi; A w; = 0, we see that wyy, is of
the required form. &

Proposition 1.2.3 Let M be a Riemannian manifold with metric ds* of the form (1.2.24).
Then the orthogonal trajectories to the hypersurfaces x1 = ¢ are geodesics, after possibly
reparametrizing by arc-length, if and only if g11 s a function of x1 only.

Proof - Since 2 < 4,5 < m, w;;(e;) = 0, it follows from lemma 1.2.2 that the curves I, are
geodesics (after reparametrization by arc-length), i.e., w;j(e;) = 0, if and only if g;; depends
only on x;. &

Exercise 1.2.9 Let T be a curve in the xz-plane described by (z(s), z(s)) where s is the arc
length. Rotating T' around the z-axis gives a surface of revolution S in R®. Show that the
metric on S is given by ds® + x?d0* with respect to the coordinates (s,0) where 0 is the angle
of revolution, and deduce that the curves 8 = ¢ are geodesics for this metric.

Exercise 1.2.10 Consider the upper half space {x = (z1,- - ,2;m) € R™|z,,, > 0} with the
Riemannian metric ds* = g(x,,)(dx3+- - - +dz?)) where g(x,,) > 0. Show that the orthogonal
trajectories to x,, = const., that is, the lines x1 = ¢1,- -+ ,Tm_1 = Cm_1 are geodesics after
parametrization by arc-length.

Exercise 1.2.11 Consider a disc D C R™ centered at the origin with a spherically sym-
metric metric ds®* = g(r)(dxz? + -+ + da?) where r* = 22 + -+ + 22, and g(r) > 0. Let
©1,° s m_1 be polar coordinates on S, = {x € Dl|x? + --- + 22, = r?} for each r > 0.
Show that the straight lines through the origin, i.e., the lines o1 =c¢1,- - , P;m_1 = Cm—_1, are
geodesics up to reparametrization.

To make the above observation more useful we proceed as follows: Let 1 be a smooth
function on U C M where M is a Riemannian manifold. Assume that the subsets defined by
M. : ¢(x) = ¢ are submanifolds of codimension one. We want to investigate the condition
for the local existence of functions s, - - - , 4, such that
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1. The subsets defined by I'y : ¥5 = 75, -+ , 9, = ¥, are the orthogonal trajectories to
the submanifolds M,;

2. I'y’s are geodesics after reparametrization by arc-length;

3. dyy Ndpg N\ -+ Ndip,, #£ 0, ie., Y, g, -+ 1, is a coordinate system.

Let ¥ = <§_i7 e ,gc—’i) where x1,- -, x,, are coordinate functions on U. Let g = (g;;) be
the matrix representation of the metric ds? relative to the coordinates x4, - - - , z,,. We show

Lemma 1.2.3 With the above notation, a necessary and sufficient condition for the exis-
tence of functions g, - -+ Y, satisfying conditions 1, 2 and 3 is

o Ug 10 is expressible as a function of ¥ only*,

where superscript ' denotes transpose.

Proof - First we show the necessity. Let h = (h;;) denote the the transformed metric relative
to the coordinate system 1, 1, - - - | 1,,,. Since the orthogonal trajectories 1)y = vo, -+ 1, =
Ym are geodesics (after reparametrization) the metric h = (h;;) has the property

1. hy; is a function of 9 only;
2. hli == hil - 0

It follows from the transformation property of the metric that the 11-entry of the symmetric
matrix h = A1gA’~! is expressible as function of only ¢ and its 14 entries vanish for i > 1.
Here A denotes the matrix

S O, m
0, 0 o}
b bur . Oim
A= Oxo Oxo Oxo
Oxm  OTm Oxm
Taking inverse of A~1gA’~! we obtain the necessity. To prove sufficiency let 1, --- 4, be

a coordinate system on M, (c fixed). We want to transport this coordinate system to M, for

“In other words, ||gradi|| is constant on each hypersurface ¢ = ¢ in which case I',’s are the trajectories
of the vector field grady. This formulation of the geodesic equations is the Hamilton-Jacobi view point
which was introduced in the subsection on symplectic and contact structures in chapter 1. We prove the
validity of this formulation directly here. A reason for usefulness of the Hamilton-Jacobi formulation is that
the parametrization by arc-length, which is incorporated in the ordinary differential equations describing
geodesics, is removed here.
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all b in a neighborhood of ¢ € R such that conditions 1, 2 and 3 are satisfied. We use the
flow ¢, of grad(¢) (which is orthogonal to the submanifolds M,) to transport the coordinate
functions g, - - - , 1, and show that the condition e ensures that ¢ (¢;(x)) depends only on
t (and ¢) but not on x € M,, i.e. ¢; maps M, to M,. This will prove the required sufficiency.
Recall from chapter 1, example 1.8 that the vector field grad(t)) is expressible as the system
of ordinary differential equations

dl‘i ~ 81/1 .

= i, i=1,---,m,
dt Zg]al'j ! m
where § = g—!. Therefore, by e,

AN~ 0 de, 00 00
dt - Or; dt m 8xjg]k6xk B

Now % = f(1) is a first order ordinary differential equation on the line which implies that
¥ (¢i(x)) depends only on ¢ (and ¢) but not on x € M, as required. &

We can now complete the local picture for geodesics on a surface of revolution which we
only partially discussed in exercise 1.2.9.

Exercise 1.2.12 With notation of exercise 11, let 1¥(s,0) be a function on the surface of

revolution S C R3. Show that orthogonal trajectories to (s,0) = c are geodesics after
reparametrization if and only if

o, 1 oY,

- Y2 F

G+ 5 = Fw),

where F is a function of one variable. Setting F () = ¢? and separating variables by setting
(s, theta) = 11(8)12(0) and F () = ? prove that the condition e becomes

! d log 1/12(‘9))2 = 1.

log 1 (9 + (G

(%

Show that this differential equation can be explicitly integrated by for example setting 1o (0) =
e to obtain geodesics on a surface of revolution.

A particularly important application of the criterion e is

Example 1.2.10 Fix a point p € M and let r(z) be the distance of = from p, i.e. the
length of the shortest geodesic v, joining p to x. Define the function E in a neighborhood
of p as E(z) = r(x)?. We want to verify condition e for the function E. Let ey, , e, be
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a moving frame with e; the tangent vector field to v which we assume is parametrized by
arc-length. Let wy,- -+ ,w,, be the dual coframe as usual. Set dF =) F;w;, then

L) - / i~ [ " B

It follows that F;(x) = r(z) and consequently grad(FE) = r(z)e;. Therefore dE(grad(E)) =
2F and condition e is verified. This implies that there are functions s,--- ,4,, on the
hypersurfaces M, : E(z) = ¢ such that the Riemannian metric on M takes the form

1

ds? =
Y

(dE)? + Z Hijdy;dy;.

i.j=2

Equivalently, one can express F in terms of r to obtain the following which maybe regarded
as the polar coordinate expression for the Riemannian metric:

ds® = dr® + Y Hydiidi),. (1.2.26)

1,j=2

We have shown that every Riemannian metric can be locally put in the form (1.2.24) with
g11 depending only on zq, in fact the constant 1. Both functions F and r are important in
Riemannian geometry. We could have used only the function r in this example in which case
dr = > ruw; and r; = 1, r; = 0 for ¢ > 1 relative to the above choice of (co)frame. This
expression for dr is a version of the First Variation Formula. #

It is now trivial to prove the local length minimizing property of geodesics. In fact, we
may assume the metric is of the form (1.2.24) with g;; depending only on z;. Then if 7 is a
curve along the x; parameter curve joining p = (¢q, ¢, -+ ,¢p) to g = (¢}, co,+ -+ ,¢p) and 6
is any other curve joining p to ¢, then

/mdt:/@\%wz/\/ds2(5,5)dt.

The same argument applies to [ E(%) so that geodesics are also the critical points of the
Energy Functional [ E(%). A consequence of the above considerations is

Exercise 1.2.13 The geodesics emanating from p intersect S,(r) orthogonally for r > 0
small. (This is sometimes called Gauss Lemma).
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Example 1.2.11 Let M be a surface of negative curvature. By example 1.2.10 we may
assume the metric has the form ds? = dr? + G*(r, 0)df? where G(r,6) > 0 in a neighborhood
U of x € M. We want to compare non-Euclidean distances of points in U with with those in
T.M ~ R?. Tt is no loss of generality to assume that the restriction of the Riemannian metric
to T, M is the standard inner product on R2. Furthermore, by continuity, the area of a small
ball of radius r > 0 around x € M tends to 7r? as r — 0. Therefore G(r,0) = r + O(r?) as
r — 0 by Taylor expansion, and

G(r,0 oG
lim (r,9) =lim — = 1.
r—0 r r—0 Or
Now K = —é%ig" < 0 which implies % is increasing along each ray, and consequently

G(r,0) > r. The Euclidean metric on R? in polar coordinates is dr? + r?df? which we can
now compare to ds? = dr® + G?(r,0)df*. Tt follows that if P and @ are points near x € M
with coordinates (rq,6;) and (73, 62), then

d(P,Q) = \/7‘% +13 = 2riry cos(z — 0y). (1.2.27)

This expresses the important geometric fact that on surfaces of negative curvature, geodesics
locally diverge. This divergence property holds in any neighborhood U of x € M where the
representation of the metric as ds®> = dr?+G?(r, 0)d6? is valid and there is a geodesic joining
P to @ in U and realizing d(P, Q). An equivalent way of stating the divergence property
(1.2.27) is the following inequality which replaces the law of cosines in plane geometry:

> a® +b* — 2abcos C, (1.2.28)

where a,b and c are the lengths of the sides of a geodesic triangle with the vertices A, B
and C. #

Example 1.2.12 We discuss a useful variation of example 1.2.11. We may assume the
metric, in a small ball U centered at # € M, has the form ds* = dr? + G*(r,0)d6? where
G(r,0) > 0, and G(r,0) = r + O(r?). Then the rays through the origin (i.e., defined by
0 = constant) are geodesics and let 71,7, be two rays intersecting at an angle 0 < ¢ < 7 at
the origin. Let p; be the point along 7; a distance 6 from the origin. Then comparing the
the metric ds? = dr? + G*(r,0)d0? with the Euclidean metric ds* = dr? + r?df* we deduce
that the length of the (Euclidean) line segment joining p; to ps is

20v/1 — e + O(6?),
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where 0 < € < 1 depends on the angle ¢. It follows that the distance between p;, ps satisfies
the strict inequality
d(pl,p2> < 2(5, (1229)

for 6 > 0 sufficiently small. &
An examination of the argument in example 1.2.11 shows

Exercise 1.2.14 For a surface M of positive curvature, the reverse of the inequality (1.2.28)
is valid, i.e., > < a® + b*> — 2abcos C.

Exercise 1.2.15 Show that the curvature of a surface determines the metric locally. Let M
be a surface with the metric ds®> = (a(t)+b(t)u)?dt* +du? relative to (t,u) coordinates. Show
that M s flat. Describe explicitly (by integrations and other change of variables) how by a
diffeomorphism the metric can be put in the Euclidean form da? + dy?.

Let M be a Riemannian manifold and p,q € M. We define the distance between p and
q as

d(p, q) = inf L(9),

where 0 : [0,1] — M is a piece-wise C'* path with §(0) = p and 6(1) = ¢, and inf is taken
over all such paths. It is easy to show that (M, d) is a metric space. In general, one cannot
assert that inf can be replaced by min since by taking a point out of the plane we see that
there are many pairs of points which cannot be connected by a straight line. To get around
such anomalies, we introduce the notion of a complete Riemannian manifold. We say M
is complete if every geodesic v is defined for all parameter values t € R (¢ arc length). We
have to see how this notion of completeness is related to the completeness of the metric
space (M, d), and whether for complete Riemannian manifolds, the inf can be realized by a
geodesic. The answer to these questions is given by

Proposition 1.2.4 (Hopf-Rinow) For a complete Riemannian manifold M, and p,q € M
there is a geodesic (not necessarily unique) v : [0,1] — M connecting p and q and of length
d(p,q). The Riemannian manifold M is complete if and only if (M,d) is complete as a
metric space.

Proof - Assume every geodesic can be continued indefinitely. Let d(p,q) = r. From the
locally length minimizing property of geodesics it follows that for ¢ > 0 sufficiently small,
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there is € S,(€) (sphere of radius € > 0 centered at p) such that d(x,q) = — €. Let y be
the geodesic starting at p and going through x. Let T' be defined by

T= {t‘d(’y(tLQ) =r—t,0<1t< 7“}

It is trivial that 7' is a non-empty closed subinterval [0,t,] C [0,7]. We want to show
T = [0,7]; so assume t, < r. Consider S,,)(d) where § > 0 is small. Then there is
z € Sy4.,)(6) such that d(z,q) = r —t, — J, and o be the geodesic joining () to z. In
view of the strict inequality (1.2.29) the distance between ~y(t, — §) and z = /(0) is strictly
less than 26 which implies d(p,q) < r contradicting the hypothesis. Therefore z lies on
the continuation of the geodesic v and T" = [0, r] proving that there is a geodesic of length
d(p,q) = r joining p to q. Assuming every geodesic can be continued indefinitely, we show
that M is a complete as a metric space. Let x,, 1,22, -+ be a Cauchy sequence and let
7; be the geodesic joining x, to z;. For fixed € > 0 (small number) the sequence of points
y; = 7;(€) has a convergent subsequence and by passing to a subsequence we can assume
y; — y. Let v be the geodesic joining z, to y, then it easily verified that z; converge to a
point on ~. Conversely, assume M is complete as a metric space. Let v be a geodesic and
assume 7(t) is defined for ¢t < t, but 7(t,) is not defined. Let t; — ¢,. Then the Cauchy
sequence x; = y(t;) will not converge. &

In view of proposition 1.2.4, the the usage of complete for two a prior: different concepts
will not cause any confusion.

Remark 1.2.4 A related property of Riemannian manifolds is that every point p has a
geodesically convex neighborhood U, (in fact of the form S,(¢)). This means that for every
pair of points z,y € U, there is a unique geodesic segment 7 of minimal length joining z
to y and it necessarily lies entirely within U,. This property will be useful, for example, in
connection with de Rham cohomology. The method of proof is not related to the techniques
emphasized in this book and is therefore omitted (see [Wh]). ©

Exercise 1.2.16 Let z1,--- ,z, € C and consider the metric

ds? dzdz

B 1
IRVIEEES

on M = C\ {21, ,2,}. Show that ds* is a metric of negative curvature on M. Is this
metric complete?

To derive the explicit form of the differential equations describing geodesics, it is conve-
nient to work in the framework of symplectic geometry. For a manifold M with a Riemannian



1.2. RIEMANNIAN GEOMETRY 241

metric ds?, the symplectic structure on 7*M can be transported to 7 M by invoking the
isomorphism 7* M = T, M induced by ds®. More precisely, the linear functions 6; are trans-
ported to the tangent space 7,M to obtain ¢; = Zj gij0;. Now set € = Y. ¢;dx;, then the
symplectic form on the tangent bundle is

= —dé = Zd:c@ A dep;. (1.2.30)

The system of ordinary differential equations characterizing geodesics on a Riemannian man-
ifold M can be studied in the framework of symplectic geometry. In the context of chapter
1 83.5(777) we want to show that this system is of the form (??) relative to the symplectic
structure on the tangent bundle of M. This description of geodesics will facilitate their study.
To express the equations of geodesics as a Hamiltonian system on the tangent bundle we
follow the procedure familiar from classical mechanics. Consider the function £ : 7M — R
defined by 2F(&,) = ds*(&;, &), where &, € T,M. Let L = ¢ — Edt, and note that substi-
tuting & = %% in L we obtain L = E for a curve described by v(t) = (z1(t), -, z,(t)).
Therefore geodesics are critical points (i.e., curves v(t)) of the functional [ L. By the stan-

dard procedure of Calculus of Variations, we take exterior derivative of the integrand L to

obtain
dazl d¢; OFE
/dL / yr 8¢2)d¢,~)/\dt—/(§i (; +axi)d:ci)/\dt.

Setting the integrands equal to zero we obtain the differential equations characterizing critical
curves:

= —, — = — . 1.2.31
Denoting the transpose of a matrix by the superscript ' and setting £ = (&1, ,&,), ¢ =

b1, , On), we obtain E = 1£g¢" = Lpg'¢/. Therefore
2 2

r - _
dE = — 5697 (dg)g™'¢' + &dd'.
Substituting in (1.2.31) we obtain
dw; do; 5gjk .
— — =1,---,m. 1.2.32
dt §za dt €k> t ) , ( 3 )

We refer to (1.2.32) or its equivalent form

d d$] 1 0g,i dz; dxy, ,
= - e R B B 1.2.
dt@ 9ig) = 3 Jz;; or, dt at’ ™ (1.2.33)

as the symplectic form of the equations of geodesics.
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Example 1.2.13 Let v : S' — R? be a smooth simple closed curve. Let the coordinates in
R? be (r,z) and we assume

1. Either the image ~ lies in the half plane x > 0;
2. Or image of ~ is invariant under the symmetry (z, z) — (—z, 2).

Rotation of the image of 7 around the z-axis yields in the first case a surface diffeomorphic
to a torus, and in the second case a surface diffeomorphic to the sphere. Denote this surface
by M, and assume - is parametrized by its arclength s. Let us show that the geodesic flow
on 7 M is a completely integrable Hamiltonian system. The metric on M is diagonal with
g1 = 1 and goy = x(s)? (see exercise 1.2.9) and consequently the symplectic form of the
equations of geodesics is

d*s de d do

i SU(S)Q?/(S)(%)Q’ a(iﬂ(s)Q%) =0.
The second equation suggests that the function G = x(s)Q% together with the Riemannian
metric or the function F implement complete integrability. The second equation shows that
G is invariant under the geodesic flow. It then follows from the definition of Poisson bracket
and E and G are involution. The rank condition is also easily verified to hold and we have
established completely integrability of the geodesic flow on a surface of revolution. The tori
N, have also a very simple description in this case. The differential equations for geodesics
(up to reparametrization) are given by the vector field grad, i.e.,

ds a? de ar)

a TR @ R

where 1 is the function constructed in example ??. The second equation shows that ¢ is
a constant times G and therefore each torus N, is simply the orthogonal trajectories to the
level curves 1 = const. (Note that i) depends on a so that, in general, different values of a
give distinct tori.) #

1.2.5 Curvature

We stated earlier that the deviation of the quantity dw;; + > wi, A wg; from vanishing
reflects the curvature of the space, and can be calculated from the metric ds? alone. We set
Qi; = dw;j + Y wik Awgj, and call the matrix Q = (€;;) the curvature form. Our immediate
goal in this subsection is to study €2 and in the next subsection we relate it to the second
fundamental form(s) just as we did in the case of surfaces in R3. Q is a skew symmetric
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matrix and depends on the choice of frame. Therefore it is defined on the bundle F, of
orthonormal frames and its individual entries are not of geometric interest. From (1.2.2) it
follows easily that the dependence of €2 on the choice of frame is given by

Q=A"TA. (1.2.34)

Since the entries of {2 are 2-forms, and 2-forms commute, we can manipulate the matrix 2
as if it were a matrix of scalars. Thus, for example, the various symmetric functions of the
characteristic roots of (2, which are polynomials in €2;;’s, are independent of the choice of the
frame and are defined on the manifold M. This observation plays an important role in the
differential geometry of Riemannian manifolds and understanding the connection between
geometry and topology.

The identity dd = 0 implies certain relations among w;,w;; and ;. Indeed ddw; = 0
implies the first Bianchi identity:

> Qi Aw=0. (1.2.35)
J
Similarly the relation ddw;; = 0 implies the second Bianchi identity:
dfdi; = Zwik A Sy — Z Qig A Wiy (1.2.36)
k k

We set
QQij = Z Rijklwk N wy.

k.l

The scalar R;j;; is called the sectional curvature of the plane determined by the vectors e;, e;.
Rijiy is called the curvature tensor. The curvature tensor satisfies the relations

Riji + Ripgj + Raje = 0, Rijp = —Rjin = Rjur, Rijr = Ry (1.2.37)

The first identity is a consequence of (1.2.35), the second and third equations are trivial and
the last equality follows from the preceding ones by simple manipulations. These properties
of the curvature tensor can be re-stated in the framework of group representations and will
be again discussed in the subsection Representations of Curvature Tensor.

The curvature of a Riemannian manifold may be interpreted as an endomorphism in
more than one way. The endomorphism of 7, M, for each x € M, defined by Si(e;) =
2370, Qij(ex, er)e; has trace Ry (called Ricci tensor)

R = Te(Si) =2 < Qijlex, e)ej e >= Y | Ruw

jl=1 =1
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where <, >, denotes the inner product (Riemannian metric) on 7, M. Thus each component
of the Ricci tensor at x € M is the trace of an endomorphism of 7, M (see also subsections
on Young Diagrams in Chapter 1, and on the Structure of Curvature Tensor below). Clearly
the Ricci tensor is a symmetric matrix. It is a simple exercise to see that under a gauge
transformation A, the Ricci tensor transforms according

(Rix) = AT (R} A, (1.2.38)

where (R},) denotes the Ricci tensor relative to the new orthonormal basis.
It is customary to define the curvature operator R as

R(ei, ej)e, =2 Z Qui(es, e)er.
I=1

It is useful to regard the curvature operator R and the curvature tensor R;j;; as multilinear
functions on 7, M or elements of the tensor algebra on 7, M. For instance, if v = > v;e; and
w =Y w;e;, then

R(v,w) = g viw;R(e;, e;).
.3
Similarly if v' = > vle; and w' = > wie;, then
/ / / /
R(v,w,v",w'") = E VW VW) Rk
i7j7k7l

With this interpretation it is immediate that the sectional curvature can be regarded as the
assignment of a number to each 2-plane in 7,M. If V C 7, M is a 2-plane, and ey, - - , e, is
a basis for 7, M with e, e5 spanning V', then

R(U17 V2, V1, UQ)
gx(vh Ul)g:v<v2a U2> - (gz(vlv UZ))27

R1212 = (1239)

where vy, v9 is any basis for V' and g, denotes the inner product on 7, M (the Riemannian
metric). The curvature tensor may be regarded as an element of S>(A* W) where W = T* M
(symmetric bilinear form on the second exterior power). Since a symmetric bilinear B form
is uniquely determined by its values on the diagonal, i.e.,

2B(u,v) = B(u+v,u +v) — B(u,u) — B(v,v),

the curvature tensor is determined by the sectional curvatures.
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A Riemannian manifold M is called Finstein if its Ricci tensor, when expressed relative
to an orthonormal frame, is a multiple of the identity. This condition is equivalent to the
requirement that relative to a coordinate system the Ricci tensor is multiple of the metric ds?.
In view of the transformation property (1.2.38), the Einstein property is independent of the
choice of orthonormal frame. It expresses an intrinsic geometric property of the Riemannian
manifold which is not as restrictive as being of constant sectional curvature.

Example 1.2.14 In this example we investigate the Einstein condition in the special case
where dim M = 4. We fix an orthonormal frame {ey, - -- ,e4}, and recall that R;; = >, Rixjk-
In particular, for an Einstein manifold we have

> Riir — > Rijgje =0,
k k

for all 4, 7. This is a homogeneous system of three linear equations in six unknowns Rg;. It
is a simple matter to see that the solutions to this system are characterized by

Ri912 = R3aza, Ri313 = Roaoa, Ria14 = Razos.

In other words, sectional curvatures of the planes determined by {ej,es} and {es, es} are
equal, etc. In view of the independence of the Einstein condition from the choice of frame
and the transformation property (1.2.38), this conclusion can be restated as a four dimen-
sional Riemannian manifold is Einstein if and only if its sectional curvatures are identical on
orthogonal planes. &

Exercise 1.2.17 By emulating the argument of example (1.2.14) show that for an Einstein
manifold of dimension 3, sectional curvatures at a point x € M do not depend on the choice
of the planes in T,M, and Ryis13 = 0 etc. Thus €;; = R(x)w; A w; for some function
R: M —R.

The following example shows how part of exercise 1.2.17 generalizes to higher dimensions:

Example 1.2.15 Let M be a Riemannian manifold of dimension > 3 and assume that the
sectional curvatures at € M do not depend on the choice of the plane (spanned by e;, e;).
We show that the symmetries of the curvature tensor imply that M necessarily has constant
curvature. Let ey, --- e, be a moving frame for M, and set

e? = cos fe; + sin feg, eg = —sinfe; + cosfes.
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Then €, es, €}, €4, - - is a moving frame for M, and let w?, wo, w8, wy, - - - be the dual coframe.
We denote the curvature form relative to this frame by (Q7,). Let R,, denote the coefficient
of W A wsy in Qf,. By 4-linearity of the curvature tensor

0 _ 2 o c 2 o : o
Ri515 = cos” OR{y15 + sSin” 0 R5550 + sin 20 R755,.

The hypothesis implies that Ry, = RY3, and is independent of 6, and consequently R{ysy =
0. In other words, Ri;m = Ry, = 0 if exactly three of the indices 4,7, k,[ are distinct.
Similarly by looking at the coefficient of wf A wy in 9?2 and using Ri214 = 0 etc. we obtain

1231 T 3914 = 0, o1
Ri + Ry =0 (1.2.40)

This relation together with the first Bianchi identity Rg5o; + Riy15 + Riog; = 0 imply
Rio3 + 2Rj,45 = 0. (1.2.41)
Equation (1.2.40) and skew symmetry of the curvature tensor in the last two indices imply
Ry132 = —R31a2 = —Rag31 = Ruz3

Substituting in (1.2.41) we obtain Ry3 = 0. It follows that the curvature tensor form
Qi = (27 is of the form

Taking exterior derivative of €);;, using the second Bianchi identity and substituting from

(1.2.42) we obtain

]

ZdR/\wz/\w] :O,
which implies that dR = 0 and M has constant curvature. This example is due to Schur. @®

Example 1.2.16 A consequence of example 1.2.15 is the extension of example ?? to higher
dimensions, i.e., we show that a hypersurface all whose points are umbilics is necessarily part
of a sphere or a hyperplane. Let m > 3 and M C R™*! be a hypersurface. Let e, -, emi1
be a be an orthonormal frame with e,,;; a unit normal vector field to M. Just as in the case
of a surface in R3, the hypothesis that every point is an umbilic implies

Wl a1 = W1, W mil = Wy, (1.2.43)

where a is a function on M. It follows that sectional curvatures of M are the same for all the
planes in 7, M and therefore M has constant sectional curvature. Consequently it is part of
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a sphere, a hyperplane or a space of constant negative curvature®. In the latter case, not all
the principal curvatures can be equal and therefore does not occur. é#

Example 1.2.17 Let U be the group of 3 x 3 upper triangular matrices with 1’s along the
diagonal. A general matrix in U will be denoted by u = (u;;), and a basis for left invariant
1-forms on U is given by the three non-zero entries of the matrix u 'du as explained in
chapter 1. Therefore such a basis of left invariant 1-forms is

wy = duip, wy = dugs, w3 = dujz — ujaduss.

Consequently a left invariant Riemannian metric is ds* = A%w? + B?w3 + C%w? for any
positive numbers A, B, and C. Using the defining property of the Levi-Civita connection,
i.e., wi; +w;i =0 and dw; + > w;j Aw; = 0, one obtains after a simple calculation

0 c?

o 2aBYs —%ALBW2
(wij) = @% 0 2AB%1
JABY? T 3ABYI 0
Thus
CQ 0 —3w1 Nws w1 A w3
Q:m 3&)1/\&)2 0 CdQ/\C{)g
—Ww1 A w3 —W2 A w3 0

is the curvature form of ds?. &

Exercise 1.2.18 Compute the Ricci tensor of U relative to ds® of example 1.2.17, and show
that it has two negative and one positive eigenvalue.

Example 1.2.18 Let M = SU(2) ~ S®. We have seen that M, being a compact simple
analytic group, admits of a unique (up to scalar multiplication) Riemannian metric which is
invariant under left and right translations. This metric is in fact the natural metric induced
on S? from R*. For u a variable point in SU(2), we write the matrix u~'du which is skew-
hermitian and traceless, as

u_ldu _ < iwl Wy + iw::,) '

—Wwy + iw:; —iwl

5The classification of spaces of constant curvature is discussed in the next section and in chapter 4 where
the vailidity of this assertion becomes evident.
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The entries w; are left invariant 1-forms, and the real symmetric 2-tensor » w]? is invariant un-
der the adjoint action of SU(2). Therefore it is the bi-invariant metric on M. The correspond-
ing Levi-Civita connection wj, is computed from the equation d(u™du) = —u"'du A u'du
which yields

0 —Wws w2
(wjk) = W3 0 —w1
—Wo w1 0

The corresponding curvature form is €, = w; A wy. For A, B and C positive numbers
ds* = A%w? + B*ws + C?w}

is a left invariant metric on M which is not right invariant unless A = B = C. In this
example, we investigate the curvature of this metric. Let 6; = Aw, s = Bwy and 63 = Cws.
Using its defining property, it is a simple calculation to derive the following expression for
the Levi-Civita connection (6;1):

0 _A2B2-C?y A2-B*4C?
(9 . ) — A%24B2-C? 0 Ag(] . —Aéfg2+02 0
J ABC 3 ABC 1
A2-B%1(C? —A24B%2+(C?
T ABC 02 ABC 01 0
It is convenient to set
— A%+ B%2 4 (C? A2 — B2 4 (C? A%+ B2 — C?
1 = Ny = — = —m8M8M
! ABC r ABpc ¢ ABC

Then the curvature form ©,; = df;;, + > 0; A Oy is the skew symmetric matrix

0 (—Oélckg + ajag + a2a3)91 N (92 (061042 — o3 + @2&3)91 A 93
—(—041042 + o + a2a3)91 AN 92 0 (061052 + oy — (12@3)92 A 93
—(061042 — (13 + 062063)81 A 63 —(OélOég + 103 — O(QO{g)@Q A\ 93 0

It follows that the Ricci tensor K = (Ky) is diagonal with diagonal entries given by

K11 = agaz, K = aqaz, Kz = ajan.
In particular, the metric is not Einstein unless A= B =C. &

Two Riemannian metrics differing by multiplication by a positive function, are called
conformally equivalent since the measure of angles between tangent vectors is the same rel-
ative to such metrics. Conformally equivalenmt metrics, besides being of obvious geometric
interest are also significant in physics. The following exercise describes the simplest situation
where they naturally occur:
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Exercise 1.2.19 Let M C R® be a surface not passing through the origin, and M be the
surface obtained from M wvia inversion relative to the origin with inversion parameter c. This
means that if x = (1, x9, x3) describes the surface M, then M is given by

02

X=— 75X
x? 4+ 13 4 23
Show that the induced metric on M is related to that of M by

C4

(z3 + 23 + 23)?

ds? = ds?,

Therefore M and M are conformally equivalent. By looking at the second fundamental form
of M show that the lines of curvature of M are mapped to those of M through inversion. Let
p =< X, ez >. Show that the principal curvatures of M are related to those of M by

Caitaital o 2p

i = i

2
and relate the Gaussian and mean curvatures of M and M.

Example 1.2.19 Let us compute the curvature of the metric du® = €*(dz? + - - - + dx?)),
where o is a function of z = (z1,--- ,x,,). Our problem is to compute the curvature of a

conformally flat (or Euclidean) metric. Now 6 = e“dzy, -+ ,0,, = €’dx,, is an orthonormal
coframe for du?, and define o; by

do = ZO‘j@j,

ie. o; =e 722 Therefore
) J (9£Ej

oy = 0; A (o6)),
and the Levi-Civita connection for du? is
91]' = O'jel — 0'19]'

where the addition of the term —o;0; is to make 6;; anti-symmetric. To compute the curvature
we first calculate the second derivative of o relative to the coframe 61, - - - , 0,, as follows: From
dd = 0 we obtain d(}_ oxfx) = 0 and consequently

0= ZdO'k A Gk + ZO’dek = Z(dak — (Zalﬁlk)) N Hk
l

k
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By Cartan’s lemma
dog =Y 0l =Y _ oub,
l

where o), = og. (The expression for oy, in terms of coordinates is given in the exercise
1.2.20 below, but will not be used.) Let ©, = dfj;; + >, 6;; A 6; denote the curvature form.
Substituting and applying exterior derivative, we obtain after some calculation

O = Z(O‘kj — O'jO'k)ek A6+ Z(Ukl — O'kO'l)gj A O + (Z O'z)gj A 6;. (1.2.44)
k k k

In terms of components 20;; = >, , Sijubk A 0, this translates into

Sijkt = —5jk(0u—UzUi)+5jz(0ki—0k0i)+5ki(01j—UzUj)—5iz(<7kj—UkUj)+(5ki51j—5u5jk)(Z Uz)-

(1.2.45)
Finally
L = (m - 2)(01'3' - Uigj) + (m - 2)51‘]‘(2 Uz) + 5@‘(2 Uk:k)- (1.2.46)
k k

is the Ricci tensor L;; = >, Sikjx of the metric du®. &

Exercise 1.2.20 Show that
0%c
(%:lﬁazk .

Ok = —QO'kO'l + 5kl(z 0'3) + 6_20

The significance of this example goes beyond giving explicit formulae for the curvature of
a special metric. It is a simple calculation that if dv? = €??ds? with Levi-Civita connections

¢i; (for dv?) and w;; (for ds?), then
Gy = 0501 — 0165 + Wiy (1.2.47)

Repeating the calculation in the example almost verbatim (here the connection forms appear,
but the terms explicitly involving the connections w;; and ¢;; cancel out®), we obtain the
remarkable fact that the curvature of the metric dv? = €??ds? is the sum of the curvatures

6The fact that the terms involving the connection forms cancel out is not surprising in view of the
different transformation properties of the connection and curvature forms, and the fact that one can make
the connection vanish at one point by a gauge transformation. This phenomenon is sometimes very useful.
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of ds? and du® = €% (dz? + - - - + dz?)) formally. By formally we mean that the expressions
are the sum of the corresponding expressions, however, we should note that the quantities o;
and o;; are calculated relative to the metric dv® and the connection ¢;; and not du?® and 6;;.
We refer to this property as the formal additivity of the curvature tensor under conformal
change of metric. Summarizing

Proposition 1.2.5 Let dv? = €2?ds® be conformally equivalent Riemannian metrics. Then
their Levi-Civita connections ¢;; and w;; are related by (1.2.47), and the corresponding cur-
vatures are

Oy — Q=Y (05— 0506)86 A+ > (0 — 0015 A i+ (D 072)d5 A .
k k k
Writing 2®;; = ijl Fijuior N\ @i, this translates into
Fijii — Riju = —dju(01 — 010:) + 6j1(0ki — 0x0;) + Spi(0; — 010;)
—0u(ow; — ok0;) + (6ri0t; — 0udjn) (32, 07)-
Denoting the Ricci tensor for dv? and ds* by H;; and K;; respectively we obtain

Hyy — Kij = (m = 2)(03; — 00;) + (m = 2)6;5(Y_ 07t) + 05D _ ow).

(We emphasize that the quantities o; and o;; are calculated relative to the metric dv? and
the connection ¢;;.)

The following proposition relates the curvature of the Levi-Civita connection to covariant
differentiation, and it is sometimes used as the definition of curvature. While not essential for
the development of the theory in our framework, it may help the reader relate the material
here to other points of view.

Proposition 1.2.6 For vector fields & and n on the Riemannian manifold M we have
Ven =V —[&n] =0, VyVe = VeV, = Vi g =20(8, 7).

(Notice that the right hand side of the second equation does not involve differentiation and
is a purely algebraic pointwise operation. This equation should be interpreted as the result
of applying the differential operators of the left hand side to the a vector field ( is identical
as that of applying the matrix 2Q(&,n) to ¢.)

Proof - Let {e1,- - ,e,} be an orthonormal moving frame on M and {wy,--- ,w,,} be the
dual coframe. Set £ = > h;e; and n = > gse;. Then the first assertion reduces to showing

Vekei — Veiek — [ek, 6i] =0.
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Now by (1.2.15) we have

Veei = Veer = > (wiler) — win(es))e;.

J

Then from proposition 1.2.1 and the formula for exterior derivative we obtain
w;([es, ex]) = 2dwj(eg, e;) = wj(Ve, € — Ve,ex),

from which the first formula follows. To prove the second formula let ( = > fie;. After a
straightforward computation we see that it suffices to establish

VeVeer = Ve Veer = Vigeger =2 > Qler, e))e;.

J

We have

Ve Veer =Y ex(wile:))e; + > wile)wn;(er)en.

J Jmn
Therefore
Ve Veer = Ve Ve = 3 (er(wule)) — ei(w(ex)))e;
+ 2 i n(wit(e)wnj(ex) — wii(er)wnj(ei))en
= Zj(ek’(wjl(ei)) —e;(wji(ex)))e;
+2 75, wit A wnj(€s; ex)en
= > (ex(wyi(es) — es(wiler)))e; + 237, Qulew, ei)e; — 237, dwji(ex, e;)e
> (willer, eil))e; + 237, Quler, e:)e;
Viere€r + 2 Zj Qe €)e;,
and the required result follows. &

1.2.6 Curvature and Second Fundamental Forms

In this subection we investigate some of the basic relations between curvature and the sec-
ond fundamental forms in higher (co)dimensions. We begin with an interpretation of the
eigenvalues of the second fundamental form of a hypersurface in terms of the curvature of
plane curves.

Example 1.2.20 Let M C R™"™ be a smooth hypersurface and ey,--- ,e,41 a moving
frame near M with e,,.; normal to M. Let P, be a plane containing the vector e,,1(z),
then the intersection P,N M is a curve I' in the plane P,. Let k1 < --- < K, be the principal
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curvatures of M. Therefore if ey, --- ,e,, are along the principal directions then the matrix
of the second fundamental form becomes diagonal with diagonal entries k1, - , K, Now let
fi-+, fme1 = emy1 be a moving frame with f; along tangent to the curve I'. Let W, and
@Wap be 1-forms defined by fi,- -, fir1 defined via dfs = > @pafp etc. Then we have

—W1 m+1 = Hllwl + -+ Hlmwma oy, T Wmom4l = Hmlwl + -+ Hmmwma

where the matrix H = (H;;) is symmetric. The curvature of the plane curve I' is kp =
@1 m+1(f1) = Hi1. Since the matrix of the second fundamental form transforms according
H — A’HA where A is an orthogonal matrix, we obtain

a= A2k + -+ A% K (1.2.48)

Therefore, by orthogonality of A, the curvature of I' is a convex combination of the principal
curvatures of M. &

Let M C R™! be a hypersurface and H = (H;;) denote the matrix of the second fun-
damental form relative to an orthonormal frame ey,--- , e, 1 with e,,,1 normal to M. It
follows from the strucure equations that

Qij = —Wim+1 AN Wm+1j, (1249)

for a hypersurface M C R™"!. Recall that the second fundamental form for a hypersurface
M is the symmetric matrix H = (H;;) where

m
Wm+1i = E Hijwj-
Jj=1

Substituting in (1.2.49) we see that that the sectional curvature —R;j; is given by the
principal minor
L () (1250
ij M)
which is the generalization to hypersurfaces of (1.2.9) for surfaces.

The fact that sectional curvatures are expressible in terms of 2 x 2 minors of the second
fundamental form can be extended to submanifolds of arbitrary codimension. Let M C RY
be a submanifold of codimension N —m, and H, = (H};) denote the matrix of the second
fundamental form in the direction of the normal vector e, (p > m + 1). From the structure
equations we see that the analogue of (1.2.49) for submanifolds is

N
Qij=— Y wipAwy. (1.2.51)

p=m+1
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The symmetric matrix H, = (Hy;) is determined by

m
wpi: E Hz'jw]‘.
=1

Substituting in (1.2.51) we see that that the sectional curvature —R;j;; is given by the

principal minor
N poyp
p=mt1 ij
thus generalizing Theorema Egregium to submanifolds of arbitrary codimension. It follows
that the sum on the right hand side of (1.2.52) is independent of the choice of orthonormal
frame e, 11, ,en.

In example 1.2.20 the principal curvatures of a hypersurface were related to the curvature
of plane curves on a surface. The following example relates the sectional curvature to the
Gaussian curvature of certain embedded surfaces. This example will be derived in a more
elaborate way in example 1.2.25 below, but it is included here since it is an instructive
demonstration of the use of moving frames.

Example 1.2.21 Let M be a Riemannian manifold v : [ = (—1,1) — M a geodesic. Let
e1, - ,en be an orthonormal frame at p = ~(0) with e; tangent to . Parallel translate
the frame ey, --- ,e,, along v. For a small number ¢ > 0 and a unit vector field £ along ~
orthogonal to e;, we let N¢ be the surface

Ne = Ute(—e) Expy ) t&, (5)-

From smoothness of the dependence of solutions of an ordinary differential equation on initial
conditions we deduce that N¢ is a surface. We parallel translate ey, ep relative to N along
the geodesics ¢ — Exp, 2§, (s) and extend it to a moving frame. As { varies we obtain a
moving frame in an open set containing the image of 7. Note that the vector field e; may
not be parallel along t — Exp, ,)t§,(s) relative to M although it is so relative to N¢. For
definiteness let £ = eg, set N = N.,. We relate the the Gaussian curvature of N to the
sectional curvature of the Riemannian manifold M. To do so we use the superscript N for
quantities referring to N. We have

dol +wlh AWl =0, dwl +wi AWl =0.
Comparing with

m m
dwl+W12AWQ+ZW1k/\wk:O, dwl—i-wm/\wl—i-ngk/\wk:O,
k=3 k=3
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and noting that on N
w{v = w1, wév = W2

we obtain
wl =w, on N. (1.2.53)

By the assumption of parallel translation w;;(e;) = 0 along v and consequently
wir ANwie =0 on N along 7. (1.2.54)

The curvature forms are

m
Qﬁ = dwﬁ, Q9 = dwya + Zwu N Wga.

k=3
Since dwl, = dwyp on N, (1.2.54) implies
QO = Qi on N along . (1.2.55)

In other words, the sectional curvatures of M relative to the planes spanned by ey, e; along
are identical with the Gaussian curvature of N along . This does not mean that for z € N,
the sectional curvature of M relative the plane 7, N is equal to the Gaussian curvature of N
at x. We are ensured of equality only for points on 7. The essential property of N that we
used in this example was that it contains the geodesic v and e, was parallel in M along ~.

)

Example 1.2.22 Consider a surface M C R* and let 7,.(M) denote the tube of radius r
around M. We want to calculate vol(7,(M)) for small r > 0. Proceedings as in the case of
curves in R3 we note

T.(M) = {p+tses +lyeq | pE M, 13+12 <7}
Denoting a generic point of 7,.(M) by ¢ = p + tzes + t4e4 we obtain
dq = (wl + t3W13 + t4u}14)61 + (w2 —+ t3(.d23 + t4u)24)€2 + dt3€3 + dt464.

Implicit in this representation is the local parametrization of 7,.(M) as M x B?(r) where
B?(r) denotes the disc of radius r in R%. To obtain a useful expression for the volume
element on 7,.(M), the terms w4p should be expressed in terms of wy,wy by restriction to M.
It follows that the volume element on 7,.(M) can be written as

dv = (w1 + t3w13 + t4w14) A (w2 + tngg + t4w24) A dtg A dt4. (1256)
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To integrate this 4-form we note that any term involving an odd power of t5 or ¢, will vanish
after integration over 7,(M). Therefore

/ dv = / (wl N wy + t§W31 A W32 + tiw41 N Ld42) N dtg N dt4
TT(M) TT(M)

Making the change of variable to polar coordinates

t3 = pcos¢, t4=psing,

and carrying out the integration in (¢3,t4), we obtain

4
/ dv = mr*vol(M) + ™ / (w31 A w3 + war A wya).
(M) 4 Ju
In view of (1.2.52) we obtain

4
/ dv = mr*vol(M) + ﬂ/ Kw; A ws, (1.2.57)
(M) 4 M

for the volume of tube of small radius » > 0 around M. Here K denotes the Gaussian
curvature of the surface M. Note that the volume of tube does not involve the mean curvature
or any quantity which depends on the embedding, and is expressed in terms of the volume
and Gaussian curvature which can be calculated from the knowledge of ds?. This reflects
a general phenomenon about the volume of tubes around submanifolds. The point is that
the integrals of terms involving odd powers of ¢; vanish for reasons of symmetry, and the
coefficients of terms involving only even powers of ¢;’s can be expressed in terms of quantities
intrinsic to M, i.e., w;’s and ;;’s. For an extensive discussion of volumes of tubes see [Gr].

[ )

Example 1.2.23 [t is useful to see how the second derivative or the Hessian of a function
is calculated in the context of moving frames. Let f : M — R be a smooth function on the
Riemannian manifold M. Relative to a coframe wy,--- ,w,, we have

df = Z fiwi.

The f;’s may be regarded as partial derivative relative to the coframe w;. The relation
ddf = 0 implies

Z [df’f - Zfiwik} ANwr =0

k
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By Cartan’s lemma we have
dfy = > fiw =Y faws,  with fi = fij.

The matrix (f;x) is the Hessian of f relative to the coframe wy, -+, wy,. Let M C R™™™ be a
submanifold (embedded) and consider the function f(z) = 3 < z,2 > on M where < .,. > is
the standard inner product on R™™". We compute the Hessian of f relative a moving frame
e1, - ,em Extend e, -+ , e, to an (orthonormal) moving frame ey, - - - , e, 4, for R™". Set
Yy =<xz,e;>i=1,--- mandy, =<z,e, >, a=m+1,--- ,m+ntoobtain df =), yw;
where we emphasize that f is regarded as a function on M. Then ddf = 0 becomes

D dye Awk =D yiwik Awp — > Yiwia Awa = 0.
k ik 2,a

On M we have w, = 0. Therefore substituting de; = Zj wji€j + Y, Wai€qe in the above
equation we obtain

m—+n

Z (Wi + Yaai) A w; = 0.

a=m+1

Since wy; = Y, HY.wy, with HY, = Hf, (second fundamental form), the above equation be-
comes

D [0+ vaHG]wk Aws =0,

and fir = 0 + >, YaH%, gives the Hessian of f. &

Example 1.2.24 The conclusion of the example 1.2.23 for the function f(z) = % <z,x>
for a hypersurface M C R™! can be stated as

< T,empmy1 > (Hm) = (flj) — 1. (1258)

Since R;j;; = HiiHjj— Hfj and 2 x 2 principal minors of a negative definite matrix are positive
definite, the sectional curvatures of a compact hypersurface are positive at some point, viz.,
the maxima of f. (In view of example 7?7 we may assume f is a Morse function so that
the matrix (f;;) is negative definite at a maximum.) Shortly we will see how this argument
can be vastly generalized to obtain non-isometric embedding theorems for negatively curved
Riemannian manifolds. Under certain circumstances one can establish the existence of an
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approximate maximum for the function f(z) = % < x,xr > on a noncompact hypersur-
face. Then one can conclude that there are regions where the sectional curvatures of the
hypersurface are positive. This kind of argument occurs in connection with the proof of the
non-existence of complete minimal surfaces in the interior of certain regions of R? since the
curvature of a minimal surface is everywhere non-positive. The analytical argument estab-

lishing the existence of an approximate maximum is known as Omori’s lemma (See [O]).

[ )

It is reasonable to surmise that the relationship between the second fundamental form and
curvature can be utilized to gain some insight into how curvature affects isometric embedding
of a Riemannian manifold M. To develop this theme we introduce some algebraic definitions.
For x € M let V,, C 7T, M be the linear subspace spanned by unit vectors e; such that €2y
vanishes identically at x. This is equivalent to the statement R;;; =0 for all j = 2,--- ,m.
It is clear that V, is the maximal linear subspace of 7,M such that if e; € V, is a unit
vector, then {2;; or equivalently the sectional curvatures R;;i; vanish identically at x € M.
We set p, = dim V,, and refer to pu, as the index of nullity at x. Now assume M C R™*"
with the Riemannian metric induced from the ambient Euclidean space. We let W, C T, M
be the linear span of all unit vectors e; such that for all normal directions e, € (7,M)*
the linear form H,(e;,.) vanishes identically at z. It is immediate that W, is the maximal
linear subspace of 7, M such that for all unit vectors e; € W, we have H,(e1,.) = 0. We set
v, = dim W, and refer to it as the indez of relative nullity. In view of (1.2.52) we have

Ve < lg. (1.2.59)
Next we introduce a bilinear mapping
m—+n
ap LM x T,M — (M), a(&n) = Y Hy(& ey,
p=m+1
where €,,41, ", €min is an orthonormal basis for (7,M)*. It is immediate from the trans-

formation property (1.2.4) of the second fundamental form that «, is meaningfully defined.
Let S, denote the orthogoanl complement of W, in V,. Then by restriction a, induces a
bilinear map

Ay 0 Sy X Sy — (T,M)™.
We have

Lemma 1.2.4 Let 3: R*¥ x RF — R” be a bilinear pairing. If k > n, then there are vectors
u,v € R¥, not both zero, such that

ﬁ(v,v):ﬁ(u,u), ﬁ(U,U)ZO.
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Proof - Regarding 3 as a bilinear pairing of complex vector spaces, we deduce the existence
of a non-zero vector w = u + v such that f(w,w) = 0 since & > n. Expanding into real and
imaginary parts gives the required result. &

Then the identity (1.2.52) can be stated in terms of « as

Riji; =< ale;, e;), alej, e;) > — < afe;, ), e, e5) > . (1.2.60)
Now we complement inequality (1.2.59) with
Lemma 1.2.5 With the above notation we have
Ve < g S Vg + 1,
where n is the codimension of the embedding of M.

Proof - It remains to prove the second inequality which is equivalent to dim(S,) < n.
Assume dim(S,) > n, then applying lemma 1.2.4 to the bilinear map & we obtain vectors
u,v € T, M such that

a(u,u) = a(v,v), a(u,v) =0.

We may assume both u and v are non-zero and linearly independent. Let ey, eq, -+ be an
orthonorml basis such that ej,e; span the plane spanned by u and v. Then the identity
(1.2.60) and Rj212 = 0 imply &(u,u) = 0 = a(v,v). Since Ryj1; = Rajoj = 0 for e; € T, M,
we obtain from (1.2.60)

66(61, €j) =0= 6((62, €j>.

It follows that eq, e5 and therefore u,v are in V, contrary to the hypothesis. &
In example 77 of chapter 1 we showed that if M C R™*™ is a compact submanifold then
there is z € M such that

1
f:M_>]R7 f<x>:§<x_pax_p>
is a Morse function for almost all p € R™*". Therefore we may assume that the function
f(x) = 3 <,z > is a Morse function on M (after a translation). In view of example 1.2.23
the Hessian of f is given by (ix + >, ¥aH{,). In particular at a point where f is a maximum
the matrix (), y,HY,) is negative definite. This implies

Lemma 1.2.6 Let M C R™™ be a compact submanifold, and f(x) = % < x,x >. Then,
after possibly a translation of M, at a maximum of f we have v, = 0.
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We now use the above observations to relate the codimension of a compact embedded
submanifold and its sectional curvatures.

Proposition 1.2.7 Let M be a compact Riemannian manifold. Assume that for every x €
M there is a subspace V, C T, M of dimension > q > 2 such that the curvature of any
2-plane contained in V,, is non-positive. Then the codimension of an isometric embedding of
M in RN is at least n.

Proof - Let v : M — RY be an isometric embedding. After a possible translation, we may
assume f(z) =1 < z,2 > is a Morse function on M, and v, = 0 at a maximum of f on M
by lemma 1.2.6. Therefore it suffices to show p, > ¢ by lemma 1.2.5. If u, < ¢, then by
lemma 1.2.4 there are vectors u,v € V,, such that &(u,u) = &(v,v) # 0 and &(u,v) = 0. It
follows from (1.2.60) that the curvature of plane spanned by u and v is positive contrary to
hypothesis. &

Corollary 1.2.2 A compact flat Riemannian manifold M of dimension m cannot be iso-
metrically embedded in R*™1.

The flat m-dimensional torus can be isometrically embedded in R?*™ = C™ as
{<€wla T 7ei€m) | 9] < [07 27)}

Therefore the conclusion of proposition 1.2.7 is sharp. The Riemannian metric of an a sub-
manifold ¢ : M — RY is given by the m x m matrix (Dv)'D1. Therefore the existence
problem for isometric immersions/embeddings of Riemannian manifolds hinges on the ex-
istence of solutions to the system of nonlinear partial differential equations (D) Dy = g.
This is a difficult problem in analysis and is inapropriate in the context of this volume.

Exercise 1.2.21 Let M C R™! be a hypersurface. Show that if the rank of the second
fundamental form is > 2, then v, = u,.

While we have emphasized the the geometry of submanifolds of Euclidean space, the
basic concept of second fundamental form can be defined for submanifolds of Riemannian
manifolds. Let eq,--- , e, be a moving frame for the Riemannian manifold N and wq, -+ ,w,
the corresponding dual coframe. Assume the submanifold M is defined by the Pfaffian
system

merl:Oa"' 7wn:O-

Let wap, 1 < A, B < n, denote the Levi-Civita connection for N and Q245 be the corre-
sponding curvature forms. Since w, = dw, = 0 on M, the application of Cartan’s lemma
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to Y ;wai A w; = 0 on M implies the existence of the symmetric matrix (Hg;) (the second
fundamental form in the direction e,) such that

a
Wai = E Hijwj
J

Let superscripts ™ and V signify reference to the manifolds M and N respectively. Then

m n n
Qg:dwiijZwik/\wkj%— Z wm/\waj:Qf-\f%— Z wm/\waj.

k=1 a=m+1 a=m+1
Therefore
Z Z H:HY, le?k]Wk/\wl, (1.2.61)
a=m+1 k=1

which relates the curvature tensors of M and N to the second fundamental form of M C N.
In particular the sectional curvatures are related by

M N aga He
R} = Rl + Z [HEHS, — (HE)?). (1.2.62)
a=m+1
Exercise 1.2.22 Let N be a Riemannian manifold and M a submanifold. Let eq,--- e, be
a moving frame on N with ey, --- , e, tangent to M. Show that

Vé\liei = Vé\;[ei + ale;, er),
where afe;,e;) = > 0 HY(es, e5)eq and H® is regarded as a bilinear form on T, M.

Example 1.2.25 In this example we use (1.2.62) to improve on example 1.2.21. Let M C N
be a surface in a Riemannian manifold N and let 7 be a geodesic (segment) of N contained
entirely in M. Since 7 is a geodesic we can choose a (co)frame in a neighborhood of v in N
with e; = 7/, e5 tangent to M and relative to which the connection form w4p satisfies

wap(e1) =0, for A B #2, (1.2.63)

along ~. The indices A, B range over 1,--- , N and we have excluded only A or B = 2. That
this is possible is just like making partial parallel translation which amounts to the existence
of solution to the system of ordinary differential equations (1.2.63). The vanishing of wy, for
a > 3 implies that H{; = 0 and consequently from (1.2.62) we obtain

n

Kn = Riyp = Riyyp — Z(H?Q)Q- (1.2.64)

a=3
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This proves that the curvature of M along v is bounded above by sectional curvature of N
relative to the plane spanned by ey, e;. It is also clear that if e; were parallel along + then
we can assume the frame is such that wap(e;) = 0 (along v) for all A, B, and consequently
H{, = 0 which once more proves the asertion of example 1.2.21. We can say something more
which will be useful in connection with the discussion of Jacobi’s equation. Assume (for
simplicity) that sectional cuvatures R, along « are positive. If ey is not parallel along
then we have strict inequality Ky, < RY,,. This is clear unless H%, = 0 for all a > 3. But
in this case det(H*) = 0 proving that Ky = 0 < Ri%,.
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1.3 Special Properties of Riemannian Manifolds

1.3.1 Spaces of Constant Curvature

A Riemannian manifold M such that the sectional curvatures R;;;; are independent of the
indices 7,7 and constant on M is called a space of constant curvature. Spaces of constant
curvature are the simplest non-Euclidean spaces and have special properties which warrants
their separate investigation. Spheres, with metric induced from the ambient Eulidean spaces,
are spaces of constant positive curvature R;;;; > 0. We now construct Riemannian manifolds
of constant negative curvature. In this construction we make use of the Lorentz metric which
is of interest in relativity as well. By a Lorentz metric on a manifold M we mean a symmetric
contravariant 2-tensor which is everywhere nondegenrate and has signature (m — 1,1) (i.e.,
m — 1 positive and one negative eigenvalue). The simplest example of a Lorentz metric is
do? = daxi + -+ + da2, — da?, , on R™™. Consider the hypersurface H' (sometimes called
the hypersphere) in R™! defined by

i+l -l +1=0.

‘H' has two connected components corresponding to z,,.1 > 0 and < 0. Let H,, denote
either component, say for definiteness x,,.1 > 0. First we show that da‘QHm is a Riemannian
metric. By a simple application of the implicit function theorem the vectors

T Tm

1a07"'70a 7"'707"'70717—7

( $m+1) ( 5Um+1)
form a basis for the tangent space to H,, at © = (21, -+, ;,11). Therefore writing a general
tangent vector to H,, in the form 7 = (z,,11&1, -+ Tma1&m, 161 + -+ - + &) We obtain

do?(r,7) = zp (G + -+ &) — (@& + -+ Twkn)
> T4+ &) @+ )+ )
which proves positive definiteness of daﬁHm.
In analogy with the Riemannian case we consider moving frames ey, - - - , e,,+1 which are

orthonormal relative to the Lorentz metric, i.e.,
do*(es,ep) =0 if A#B, do*(ese) =1, do*(emyi1,Cmy1) = —1;

where we recall the notational convention 1 < A, B,--- < m+1,and 1 < 4,7,--- < m.
Now assume that the vectors eq,--- e, are tangent to H,,. Then proceeding as in the

Riemannian case we have
dr = E w;e;, deyg = E WBACR.
i B
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The 1-forms w,p satisfy the identities
wij +wji =05 Wi my1 = Wimg1 4, waa = 0;
and since w,,,1 vanishes on H,,, we have the following identities on H,,:

dwi+Zwijij:0, Zwmﬂi/\wi:O.

J

Similarly the curvature of ‘H,, is given by

Qj = dw;; + E Wik N\ Wrj = —Wi my1 N\ W1 i
k

Now it is a simple exercise to prove that the unit normal to H,, at a point x = (1, -, Tpy1),
relative to the Lorentz metric, is the vector x. Therefore the situation is entirely analogous
to that of the ordinary sphere in Euclidean space where e,,,1 = =, w; mi1 = w; and by
(1.2.11)

Qij = —Wi m41 A W1 j = wi Awj.
Therefore H,, has constant negative sectional curvature —1.

Exercise 1.3.1 By considering the stereographic projection of H,, onto the unit disc, or
otherwise, show that the sectional curvatures of the metric

dat + -+ da?,
(1= (af 4+ +23))?

dx%—i—-u—l—da:?n
(I+ K (21+-+a7,))?
are the constant K. Generalize exercise 1.53.6 by showing that the volume of the ball in H.,,

increases exponentially with radius. Describe the geodesics through 0.

are —1. More generally, show that all sectional curvatures of the metric 4

Example 1.3.1 As another application of the Lorentz metric we derive the fundamental
formulae of hyperbolic trigonometry. First we derive a formula for the length of the arc of
the hyperbola H; : 22 — 22 = 1 between two points A and B relative to the Lorentz metric
dxz? — dz? in the plane. Since the hyperbola H; and the Lorentz metric are invariant under
Z?r?lkllz ig;ﬁ:i), we may assume A = (0,1) and B = (sinh /3, cosh 3).
It is a simple calculation that the desired arc length is 3. Denote the Lorentz inner product
on R3 by <, > i.e., for v = (z,y,2), v = (2., 7'), then < v,v' >=z2' +yy — 22/, and

the transformations <
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let SO(2,1) be the group of linear transformations leaving <, > invariant. Now H, and the
Lorentz metric do? = da? + dy* — dz* are also invariant under SO(2,1). Let A, B € H,. We
show that the distance between A and B relative to the Riemannian metric da%2 is given by

d(A, B) = cosh (- < A, B >). (1.3.1)

We may assume A = (0,0,1) and B = (sinh 3,0, cosh §) in view of the invariance of both
sides under SO(2,1). Since geodesics through A are, after proper parametrization, inter-
sections of the planes ax + by = 0 with Hs (use e.g. idea of example 1.2.9), the preceding
calculation for the hyperbola H; is applicable and the required formula for the distance
follows. Now let ABC' be a geodesic triangle (i.e., the sides are geodesics). We may as-
sume A = (0,0,1), B = (sinh,0,cosh) and C' = (cos @ sinh ¢, sin # sinh ¢, cosh ¢) after
transformation by an element of SO(2,1). Set a = d(B, C) then from (1.3.1)

cosh a = cosh ¢ cosh 1) — cos 6 sinh ¢ sinh 1). (1.3.2)

It is trivial to see that cos® = cos A. Since ¢ = d(A,C) and ¥ = d(A, B) by (1.3.1), it is
customary to replace ¢ by b and v by ¢ so that (1.3.2) takes the familiar form (law of cosines
for hyperbolic triangles):

cosha = cosh bcosh ¢ — cos Asinh bsinh c. (1.3.3)
From (1.3.3) it follows that

2 4 1 — cosh® a — cosh? b — cosh? ¢ + 2 cosh a cosh b cosh ¢
sin® A = ,
sinh? bsinh? ¢

whence

sin A sin B sin ('

sinha  sinhb - sinh ¢

which is the law of sines for hyperbolic triangles. &
Similarly, one proves

Exercise 1.3.2 Prove the fundamental formulae of spherical trigonometry, namely,

sinA sinB sinC
sin a sin b sinc

cosa = cosbcosc+ cos Asinbsinc,
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A consequence of the law of sines for hyperbolic triangles is
Corollary 1.3.1 Similar geodesic triangles in the hyperbolic plane are congruent.

Proof - Let ABC and A’'B’C" be similar geodesic triangles in the hyperbolic planes, i.e.,
their angles are equal. From the law of sines it follows that

sinha’ = Asinha, sinh® = Asinhb, sinhc = Asinhe,

where o/, 0’ and ¢ are the lengths of the sides opposite to A, B" and C’ respectively. This
implies that if by an isometry we move the vertex A’ to A such that the sides ¥’ and ¢ are
along the same geodesics as b and ¢ respectively’, then one of the triangles ABC and A’B'C’
will contain the other depending on whether A > 1 or A < 1. By the Gauss-Bonnet theorem

(curvature is constant)
/ dv = / dv
ABC A'BICY

since each side is negative the excess of the sum of the exterior angles of the corresponding
triangle. Therefore A =1 &

Corollary 1.3.1 is in sharp constrast to the case of Euclidean space where there is a
profusion of similar triangles. The same conclusion holds for geodesic triangles on the surface
of a sphere (see exercise 1.3.3 below).

Exercise 1.3.3 Show that similar geodesic triangles on the surface of a sphere are congru-
ent.

Exercise 1.3.4 Generalize the formula (1.3.1) of example 1.5.1 to H,,.

Using example 77 it is not difficult to extend the divergence property of geodesics on
surfaces of negative curvature to general Riemannian manifolds:

Exercise 1.3.5 FEztend the inequality (1.2.28) to general Riemannian manifolds of non-
positive curvature (Riji; <0 for alli,j).

"By a fractional linear transformation we can only ascertain that b’ lies along the same geodesic as b
or ¢ and ¢ along the other. If ¥’ lies along ¢ we compose the isometry with the reflection with respect to
the bisector of the angle at A. If A is the point ¢ in the upper half plane and the bisector of the angle
is the y-axis, then the reflection is given by = + iy — —x + dy. Since a conformal orientation preserving
automorphism of the upper half plane is a fractional linear transformation, the group of isometries of H
contains SL(2,R)/ £ 1 ~ S0O(2,1) as a subgroup of index two.
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Example 1.3.2 Consider the upper half plane H = {z = = + iy € Cly > 0} with the
Poincaré metric

o _ da® +dy?

ds "

This metric is invariant under the action of SL(2,R) through fractional linear transforma-

tions
a b az+b
T — )
c d cz+d

Therefore SL(2,R)/ £ I is a group of isometries of the hyperbolic plane. Note also that the

matrix (\/ﬂ x/\/ﬂ) maps the point i to the point z = = + 1y so that SL(2,R) acts transi-

0 1/vi

tively on H. The isotropy subgroup at i is the rotation group SO(2) = { cos Si

sinf  cosd b
and therefore H = SL(2,R)/SO(2). From exercise 1.2.10 we know that straight lines or-
thogonal to the real axis are geodesics, and more precisely the curves ¢ — c¢ + ie! are are
geodesics. From elementary geometry we know that under fractional linear transformations
straight lines and circle are mapped to each other and (Euclidean) angles are preserved.
Therefore the straight lines ¢ — ¢+ ie’ and semi-circles (after parametrization by a multiple
of arc-length) intersecting the real axis orthogonally are geodesics. Since every tangent vec-
tor at z € H is tangent to a semi-circle through z intersecting the x-axis orthogonally or to
the the straight line ¢t — R(z) + ie’, all geodesics are of this form. This in particular implies
that H is complete. Another consequence of this observation is that the isotropy subgroup at
i, namely SO(2), acts transitively on the set of geodesics through i. Consequently, SL(2,R)
acts transitively on the set of geodesics of H, and the isotropy subgroup at the geodesic
t — ie' is 1. Therefore we can identify SL(2,R)/ 4 I with the set of geodesics of H or
equivalently with the unit tangent bundle of H (the wunit tangent bundle of a Riemannian
manifold M is T1M = {(z,&) € TM|ds*(£,€) = 1}).

From this description of geodesics it is trivial to see directly that every pair of points
z,w € H can be joined by a unique geodesic v,, : [0,1] — H with v,,(0) = z and
V20(1) = w. We denote the length of this geodesic by d(z,w) call it the hyperbolic distance
between z and w. It is trivial to see that d(i,iy) = logy for y > 1. To compute d(z,w) we
first make the observation that the cross ratio
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is invariant under fractional linear transformations. Then it is trivial to see that

d(z,w) = log ;—\/7 ”EEjZ;

The transformation z — 2% maps H onto the unit disc D C C and transforms the Rieman-
nian metric into

dzdz
(1 —[=2)*
One refers to D with this metric as the hyperbolic disc. Clearly the geodesics in the hyperbolic
disc are straight lines through the origin and semi-circles orthogonal to the unit circle (which
is the boundary of D). In terms of the coordinates of the hyperbolic disc, the length of the

geodesic joining 0 to z € D is d(0, z) = log ﬁlzl, and the

ds® = 4

1+t
11—t

d(z,w) = log

where t = 2= &

[1—Zw| "

Exercise 1.3.6 Prove that the area of the disc of radius r > 0 in D is 47 sinh? 5. (This is
a special case of the fact that the volume of a ball in a Riemannian manifold with sectional
curvatures bounded above by a negative constant increases exponentially with radius.)

Exercise 1.3.7 Let z € H. Let S,(r) denote the non-FEuclidean circle of radius r > 0
centered at z. Show that S.(r) is a circle in the sense of Fuclidean geometry and determine
its Fuclidean radius and center.

The following two exercises appear in the work of Lobachevsky and are of some interest
in Gromov’s theory.

Exercise 1.3.8 Let L be a complete geodesic in the hyperbolic plane (i.e., a semi-circle
orthogonal to the x-axis or a straight line parallel to the y-axis), and ri and ro be the end
points of L. Let z & L and Ly and Lo be the unique geodesics through z tending to r1 and
ro Tespectively (i.e., Ly and Lo are the extreme geodesics through z that do not intersect L ).
Let « be the angle of intersection of Ly and Ly at z, and ¢ be the distance of of z to L. Show
that

¢ Q 1
an — = .
2 sinh

(Use fractional linear transformations to put L and z in nice locations.)



1.3. SPECIAL PROPERTIES OF RIEMANNIAN MANIFOLDS 269

Exercise 1.3.9 Let A be a geodesic triangle in the upper half plane with edges o, 3 and ~.
For p € «, let d(p) = inf,d(p,q) where inf is taken on all ¢ € S U~. Show that there is a
number p < oo and independent of A such that

d(p) < p.

Exercise 1.3.10 Let z,w € D and denote the intersections of the geodesic connecting z and
w with the unit circle (i.e., OD) by 2’ and w'. Let us assume that moving from one end of
the geodesic to the other we encounter these points in the order w', z,w, z'. Define

(= = )w - u)

(z—w)(w—2")

D(z,w, 2", w') =
Show that d(z,w) = log D(z,w, 2, w’).

1.3.2 Decomposition of the Curvature Tensor

The curvature tensor admits of certain decompositions which conceptually are easier to
understand in the context of representations GL(m,R), O(m) and SO(m) which we alluded
to in chaper 1. With the usual notation, let V ~ R™, T*(V) denote the k" tensor power
of V, and S¥(V) the k' symmetric power of V. We fix an inner product <,> on V which
we may assume to be the standard one on R™. Clearly S2(A°V) c T4(V), and S2(A\* V) is
invariant under the induced action of GL(m,R). For dimV = 4, the structure of S2(A\*V)
as a GL(4,R), O(4) or SO(4)-module was analyzed in examples 7?7 and ?? of chapter 1. Let
W be the representation space for the irreducible representation py of GL(m,R) determined
by the Young diagram or partition 7" : 4 = 2 + 2. Then dim(W) = % Denote by T”
the partition 4 = 141+ 1+ 1, so that py is the fourth exterior power representation of the

natural representation p; of GL(m,R). We have

Lemma 1.3.1 S%2(A\*V) has the decomposition

2 4
SHAV) =W a AV,
into irreducible G L(m,R)-modules via the representations pr and prr.

Proof - It is not difficult to see that S2(A* V') contains a copy of W (consider e.g., (e1 Aey)®
(e1 Ae3)) which we again denote by W, and A*V since (z Ay) A (z Aw) = (z Aw) A (z Ay).
The required result follows for dimension reasons. &
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The symmetries of the curvature tensor R;ji, i.e., Rijm + Rjim = 0 and Rijr = Riij

suggest that we should arrange the components R;;x as an m(”;_l) X m(”;_l) symmetric matrix
where the rows (or columns) of the matrix are enumerated as (1,2),(1,3),---,(m — 1,m)
corresponding to the basis e; A eg,e1 Aes, -+, em_1 A ey of A2V,

We can use our knowledge of representations of GL(m,R) and S, to give a group theoretic
interpretation to the first Bianchi identity. Let § be the irreducible representation of degree
two of Sy corresponding to the partition 4 = 2 + 2 (see example ?? of chapter 1). Since
deg(B) = 2, the subspace Zr of theorem 7?7 of chapter 1 is

ZrWR W e W,

where W' is a complementary subspace to W in Zr, and W and W’ are necessarily isomorphic
as GL(m,R)-modules. Observe that the eigenvalues of the matrices 3((123)) or 5((132)) are
the third roots of unity ¢ # 1 and (2. It follows that for every vector v € R? we have

v + B((123))v + B((132))v = 0, (1.3.4)

which is also a consequence of Schur’s orthogonality relations. Therefore the first Bianchi
identity is satisfied for every vector w € W @ W’'. On the other hand, since a cyclic permuta-
tion of three letters has sign +1, the first Bianchi identity is not valid for non-zero elements
of /\4 V. Therefore we have the following interpretation of first Bianchi identity:

Lemma 1.3.2 The curvature tensor takes values in the irreducible GL(m,R)-module W .

Since /\4 V' =0 for a vector space V' of dimension three, Bianchi identity for three dimen-
sional Riemannian manifolds is a consequence of the symmetry properties of the curvature
tensor. Of course, this fact is easily verified directly.

To decompose the curvature tensor we look at the action of the orthogonal group. Recall
that for every pair of indices i # j we defined in chapter 1, §5.2, the O(V')-equivariant trace
map Tr;; : T*(V) — TF2(V). In view of the symmetries of the curvature tensor R = (R;jx1)
we have

TI‘lg(W) == TI'34(W) =0 and Tl"lg(R) == TI'24(R) == K,

where K = (Kj;) is the Ricci tensor. We denote the restriction of Triz = Tray to S?(A?V)
and W by the same letter x and call it the Ricct map. The symmetry properties of the
curvature tensor imply that s takes values in the space of symmetric matrices. In view
of the decomposition S?(V) = R @ S2(V), where S?(V) is the space of symmetric trace
zero matrices, the Ricci tensor K admits of the further O(V)-equivariant decomposition
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K = %I + K’ where Tr(K') = 0. We call R = Tr(K) the scalar curvature and K’ the
traceless Ricci tensor.

We want to construct an O(V)-equivariant section A : S?*(V) — W;. (By a section we
mean KA(K) = K for every symmetric tensor (matrix) K.) The reason for constructing
such a section is to gain a better understanding of the curvature tensor under a conformal
change of the metric, as will be shown shortly. We noted in chapter 1, §5.2; that ker(x) is

an O(V)-irreducible module, and we have the decomposition
W, ~ ker(k) DR @ S2(V) (1.3.5)

into inequivalent O(V')-irreducible subspaces. It follows that the desired section \ is unique.
To explicitly construct A it is convenient to write A = A\; & Ay where \; (resp. \g) is defined
on R (resp. S%(V)).

The sections \; are easily constructed by using the notion of Young symmetrizer. Natu-
rally we consider the Young symmetrizer for the partition T : 4 = 2 4+ 2. Now

Cr = (1)—(12) — (34) 4+ (12)(34) + (13)(24) — (1324) — (1423) + (14)(23)+
(13) — (132) — (143) + (1432) + (24) — (124) — (234) + (1234).

To construct the sections \; we take the O(V)-fixed nontrivial 2-tensor I = (J;;), tensor it
with K’ and I, and apply the Young symmetrizer Cr to get it into W. This procedure gives
an O(V)-equivariant linear mapping into W. In other words, we set

)\1([) = cl(:T([ & I), )\Q(K,) == CQCT(I & K/), (136)

where the constants ¢; will be chosen suitably to make \;’s sections. In terms of components,
A;’s are
MDivigigin = 81(0i1ig0izis — 0i1is0inis ),
Mo (K" )iyigisis, = 402(0iyig Ky, + 0igin K

N 4143 d
It is a simple calculation that for

1213

!/ !
Ki1i4 - 57:1i4 Kizig)'

1 1

e Rt (1.3.7)

Ccl =
A1 and Ay are sections. We fix these values for ¢; and c,.
As an application of the above algebraic analysis we discuss the Weyl conformal curvature

tensor. Recall from example 1.2.19 that the curvature of the conformally flat metric du? =
e? (dx? + - - - + dz?)) is given by (1.2.45) and (1.2.46). It is a simple calculation that

A L)ijur = Siju, (1.3.8)

in the notation of (1.2.45) and (1.2.46). This means that the change in curvature due to
conformal change of the metric lies entirely in R & S?(V) in the notation of (1.3.5). From
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formal additivity of the curvature tensor under conformal change of metric and (1.3.8) it
follows that

Cijii = Rijii — MK )ijul (1.3.9)

is invariant under a conformal change of the metric. C' = (Cjj) is called the Weyl conformal
(curvature) tensor and is the conformally invariant part of the curvature tensor. For future
reference we summarize the above analysis as

Lemma 1.3.3 With the above notation, the Weyl conformal tensor is invariant under a
conformal change of the Riemannian metric ds?.

Exercise 1.3.11 Show that for three dimensional Riemannian manifolds, the Weyl confor-
mal tensor vanishes (for dimension reasons).

Example 1.3.3 The analysis of the representation pr for the case dim(V) = 4 given in
the subsection on Young diagrams in chapter 1, §5.2, has geometric implications. The
map k of example 7?7 of chapter 1 is identical with the Ricci map. The decomposition of
ker(k) ~ W] @ W/ into +1 eigenspaces of E implies that the Weyl conformal curvature
tensor C' admits of the decomposition C' = C*T + C~. C* and C~ are called the selfdual
and anti-selfdual components of the Weyl conformal tensor. The change of bases described
in examples 77 and ?? of chapter 1 imply that the same transformation puts the curvature
tensor represented as the 6 x 6 symmetric matrix (R;jz) in the form

I E (Ris) I —E\ (R R
—Ey I GRONE, T ) \Ry, Rs)’
where the 3 x 3 matrix R, is completely determined by the traceless Ricci tensor, and the
symmetric matrices R, and R3 have the properties

R R
Tl"(Rl) = TI‘(Rg), Rl - g[ = 4C+, Rg - E[ =4C".

In view of the expression for B in terms of x;;’s in example ?7 of chapter 1, Einstein condition
for a Riemannian manifold of dimension four is equivalent to the vanishing of the matrix Rs.
While the matrices Ry — %I , Rg — %I and R, are obtained from the Ct, C~ and K’, one
should exercise some caution in identifying them with the Weyl conformal and Ricci tensors
since, normally, a tensor is expressed relative to a frame on the base manifold, but here we
have made a change of bases for A?V. &
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1.3.3 Some Homogeneous Spaces

Let G C GL(n,R) be an analytic group and K C G a closed connected subgroup®. For
certain compact subgroups K C G we would like to investigate the curvature properties of
the coset space M = G/K relative to a suitable Riemannian metric. Just as in the case of
spaces of constant curvature, it is useful to introduce an indefinite metric. We assume there
is an indefinite metric do? on G which is G-bi-invariant, i.e., invariant under left translations
and the adjoint action of G. The metric do? as an inner product on a subspace of G is
denoted by <, >. <, > is required to have the invariance property

< Ad(g)¢, Ad(g)n >=< &,n >, orinfinitesimally < [(,&],n >+ < &, [¢,n] >= 0,

for all g € G and left invariant vector fields &,7,( € G.
We assume that we have orthogonal direct sum decomposition G = K & M relative to
<, >, where M is a subspace with the following properties:

M, M] C K, Ad(K)M = M. (1.3.10)

We furthermore assume that <, > is positive definite on M, however, on K it is either
positive definite or negative definite (K is compact).

Let dimG = N, {ey, - ,en} be an orthonormal basis for M and {e, 1, - ,en} or-
thonormal basis for for K. Let {wa} be the dual basis of left invariant 1-forms. The Levi-
Civita connection for the indefinite metric is defined to be a matrix of 1-forms w = (wap)
which is skew-symmetric relative to the inner product <, > and such that dw + > pwap A
wp = 0. To compute the Levi-Civita connection let y4, be the structure constants of the
Lie algebra G, i.e.,

[easen] = Y Vpec.
C

In terms of {5, Jacobi identity is given by

Z(VEBWgD + 646D + vBovip) = 0. (1.3.11)
D

81n practice, the condition of connectedness is a little too restrictive, but often we may assume finiteness
of the number of connected components. Connectedness allows one to reduce many considerations to the
level of Lie algebras. When K is not connected we may have to impose the additional requirement of
invariance under the finite group K/K° where K° denotes the connected component of K, after reduction
to Lie algebras.
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Since ey4’s are left invariant, 2dw(es,ep) = —w([ea,ep|). From this and the invariance
property of <, > it follows easily that

A
WAB = g YeBWC
C

is the Levi-Civita connection. By (1.2.15) we have

1
Ve, €8 = 5[&4,63], (1.3.12)

and consequently by proposition 1.2.6 and the Jacobi identity we obtain

1

2Q0(eq,eplec = —Z[eo, lea, enl]. (1.3.13)

Equivalently, substituting in Qa5 = dwap + Y wac A wep and using (1.3.11) we obtain

Qs ==Y (O bsrEc)lwp Aws. (1.3.14)
D.E C

In view of the G-invariance of the metric the Ricci curvature is given by

1
Rap =Y <leacecl les ec] > (1.3.15)

4
c
Our calculations were done at the level of the group G or its Lie algebra, rather than on the
homogeneous space M = G /K. The algebraic structure of G enabled us to carry out these
calculations very simply by using the inner product <,> on G. To obtain the curvature of
M simply restrict the indices 1 < A, B,C,--- < N to the range 1 <i,5,[,--- < m. Notice
for example that [e;, ;] € K so that the extension of <,> to G is essential.

Exercise 1.3.12 Show that if the bi-invariant metric do? is positive definite then sectional
curvatures of M are non-negative. Furthermore, if do? is negative definite on KC, the sectional
curvatures of M are non-positive.

Let us apply these considerations to some concrete cases.

Example 1.3.4 Let G = U(n+k) and K = U(k) x U(n) so that M = G/K is the complex
Grassman manifold Gy ,,. Here G is compact, and the indefinite do? on G given by

<&m>= —%Tr(fn),
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where ¢ and 7 are identified with skew hermitian matrices, is already Riemannian. Let Ej;
be the matrix with 1 at the (j, k)'™ spot and zeros elsewhere, then the matrices

Z(E]p+Ep]), E] —Ep for 1§]§k,k‘+1§p§n+k‘,
form a basis for M. For eq = i(E;, + E,;) and ep = £}, — E,; we see
< Qlea,eplea,ep >= —4,

i.e., sectional curvature of the plane spanned by e4 and ep is 4. Similarly, sectional curvatures
of the planes spanned by the vectors {i(Ej, + E,;), Ejq — Egi }, {i(Ejp + Epj), 1(Ejy + Eyj) }
{Ejp— Epj, Ejq— Eq}, {i(Ejp+ Epj), Eip— Ep}, {i(Ejp+ Epj), Ejq— Eqj}, or {Ejp— Epj, Ejg —
E,;}, for p # qand j # lis 1. The sectional curvature of plane spanned by {i(E;,+E,;), Ei,—
E,} for p # q and j # [ is 0. In particular, for the complex projective space (i.e., k = 1)
the sectional curvatures are either 1 or 4. To compute the Ricci tensor we make use of
(1.2.38). G-invariance of the metric implies that the Ricci tensor is fixed by transformations
A € U(k) x Un), ie., p(A™)(Rix)p(A) = (R;) where p denotes the adjoint action of
K = U(k) x U(n) on M. Since p is irreducible (as a complex representation), (R;) is a
multiple of identity. Now it is an easy computation to see that

(Rir) =22+ k +n)l.

In particular M is Einstein with scalar curvature 2(2 + k +n). #

Example 1.3.5 Let Ji, = (_Ik 0> where [y is the k X k identity matrix, G = U(k,n)

0 I,
be the unitary group of J,, i.e., the set of complex invertible matrices U € GL(n + k; C)
such that U'Jy, ,U = Ji,. (Here bar and prime denote complex conjugate and transpose of
the matrix.) This condition is equivalent to the relations

—AA+CC=-1,, —BA+DC=0, —BB+DD-=1,, (1.3.16)
A B : : .
where U = cpl We set K = U(k) xU(n) C G, then M = G/K can be identified with

the generalized disc Dy, of k x n matrices Z such that I,, — Z'Z is positive definite. In fact
for an element Z € Dy, the action of G is given by

Z — (AZ + B)(CZ + D).

The isotropy subgroup of zero matrix 0 € Dy, is K, and transitivity of the action of GG
on Dy, is a simple exercise in linear algebra. However, it remains to show that CZ + D is
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invertible and Dy, is invariant under G. Let W = (AZ+ B)(CZ+ D)™, then using (1.3.16)
it is easily verified that

(Z’C'"+ D) Y1, - 2'2)(CZ+ D)™ = (I, - WW)

which is valid for the open dense set det(C'Z+ D) # 0. Since Dy, is a bounded domain, Z —
det(C'Z+ D)~! is bounded for an open dense subset of Dy ,, and therefore det(C'Z + D) # 0
for all Z € Dy, and G maps Dy, to itself. Proceeding as in the preceding example, we
define the indefinite metric do? on the Lie algebra G of G by

1
<&n>=§ﬂ@m,

G consists of matrices skew hermitian relative to Jy,, i.e., matrices X satisfying X'J;,, +
JenX = 0. Let I be the Lie algebra of K and M be its orthogonal complement. Then

E;,+ Ey, i(E;,—Ey) for 1<j<k, k+1<p<n-+k,

is a basis for M, do? is positive definite on M and negative definite on K. Now computing
as before we see that the sectional curvatures of Dy, are 0, -1 or -4, and its Ricci tensor is
the (Ri) = —2(2+ k +n)l. For k = 1 the sectional curvatures are either -1 or -4. &

Since it is not our purpose to give an account of the theory of symmetric spaces, we
mention the following example in the form of an exercise and refer the reader to [H] or [KN]
for an extensive discussion of differential geometry of symmetric spaces:

Exercise 1.3.13 Let G = SP(n;R) the (symplectic group) be the set of (invertible) 2n x 2n
: (A B P (0 —I,
real matrices U = <C D) such that U'JU = J where J = I 0

symmetric matriz. Consider the action of the G on the Siegel Upper Plane

1s the standard skew

P ={Z = X +iY|Z complex symmetric n X n matrix, Y positive definite},

gwen by Z — (AZ+B)(CZ+D)~'. Show that the isotropy subgroup at Z = il is isomorphic
to the unitary group K = U(n), and the action of G is transitive on P. Prove that the
mapping

7 — (I+iZ)I —iZ)™

maps P onto the set of complex symmetric matrices V such that I — V'V is positive definite.
Imitating the argument of example 1.3.5 show that C'Z + D 1is invertible and P is in fact
invariant under G. Thus P ~ G /K. Obtain the decomposition G = K & M. Define the bi-
invariant indefinite metric on G by < &,n >= Tr(&n), and compute the sectional curvatures
and the Ricci tensor of P.
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Example 1.3.6 Since quadrics are a rich source of examples in geometry, we consider the
curvature properties of the standard complex quadric @ C CP(n) defined by the single
quadratic equation 22 + -+ + z2 = 0. (See also subsection on quadrics above.) Tt is a
straighforward exercise to show that () is a connected complex manifold. The group U(n+1)
acts on S?"*1 C C"*! and the action induces action on CP(n). Now SO(n+1) C U(n+1) and
the quadric @ is invariant under the action of SO(n+1). Let v = (\%, \/L? 0,---,0) € 5%+t
then the image [v] of v in CP(n) lies on @ and isotropy subgroup at [v] is the subgroup K
of matrices of the form

cosf —sinf 0
sinf cosf 0],

0 0 A

where A € SO(n —1). Since SO(n+1)/K is a compact submanifold of @ of real dimension
2n = dimg(Q), @ = SO(n+1)/K. Relative to the positive definite inner product < §,n >=
—3Tr(én) on the Lie algebra U(n + 1), the orthogonal complement of K is the subspace

0 0 =
M = { 0 0 vy },
—x =y 0

where x and y are real row vectors. It is convenient therefore to represent elements of M as
¢ = (x,y). We thus obtain the decomposition U (n + 1) = K & M and the condition (1.3.10)
is satisfied. Therefore we can proceed as before for the computation of the curvature of Q.

Then for § = (z,y), n = (u,v), ¢ € M we obtain 2Q(¢,7)¢ = g[[¢, n]. (] and

zu' — ux' 0 0

[€,m] =2 0 yo' — vy’ 0
0 0 2u+y'v—ur—vy

Furthermore, the Ricci tensor is 4(n — 1)I. &

To understand the structure of geodesics on the homogeneous spaces M = G/K consid-
ered above, it is convenient to make use of the bi-invariant indefinite metric do? introduced
above. First we note that the notion of parallel translation is defined relative to the Levi-
Civita connection, and is therefore identical with the case of a Riemannian metric. Covariant
derivative is also defined by the same formula as in the case of a Riemannian metric. Similarly
a curve v is a geodesic if V45 = 0. However, the notion of distance and length minimizing
property of geodesics do not carry over to the indefinite case. The essential observation is
the following proposition:
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Proposition 1.3.1 With respect to the indefinite metric do?, the I1-parameter subgroups
Ye(t) = exp(t§) are the geodesics through e € G. The geodesic through g € G with tangent
vector at g the left invariant vector field & at g, is g.7¢(t). In particular, geodesics exist for
all values of the parameter t.

Proof - From the fact that t — exp(t{) is a homomorphism it follows that the tangent
vector field to the curve t — gexp(t€) is the left invariant vector field £&. Now relative to the
Levi-Civita connection for the bi-invariant metric do?, V,§ = %[77, ¢] for left invariant vector
fields 0, £. Therefore V¢ = 0 and the proof of the proposition is complete. Q E D

Now assume that there is an involution 6 : G — G whose fixed point set is K (see remark
1.3.1 below) and M is the eigenspace corresponding to eigenvalue -1 for the induced action
of # on G. For instance, in examples 1.3.4 and 1.3.5 above the involution 6 is given by
0(9) = Jr.ngJk.n, and for the symplectic group 6(g) = JgJ~*. We use 0 to embed M = G/K
into G. In fact, consider the mapping j : G — G given by g — ¢gf(g)~!. Clearly G acts
transitively on Im(7) which makes it into a homogeneous space for G. Now e € Im(y) and the
isotropy subgroup at e is the fixed point set of # which is K. Therefore Im(y) ~ M = G/K
and we identify M with Im(y). M is a totally geodesic submanifold of G relative to the
bi-invariant metric do?, i.e., every geodesic emanating from a point in M and initial tangent
vector tangent to M, remains in M. Since geodesics in GG are left translates of 1-parameter
subgroups, to show that M is totally geodesic it suffices to show that for & € M the curve
Ye(t) = exp(t€) lies in M. Since { € M, & = 5—0(5) and 9(%) and % commute. Consequently

£ § -
7e(t) = exp(t5) exp(=t0(7)) = ho(h) g
where h = exp(t%). This shows that M is a totally geodesic submanifold of G. The restriction
of the indefinite metric do? to M is Riemannian, and is precisely the metric considered earlier

in examples 1.3.4 and 1.3.5. &

Remark 1.3.1 The condition that K is the fixed point set of € is in general too restrictive.
Normally one only requires K to lie between the fixed point set of # and its connected
component which has finite index in the former group. This implies that M is a finite
covering of Im(y) in the sense of chapter 4, and the local conclusions about curvature etc.
remain valid. Exercise 1.3.15 below gives an example of a situation in which the fixed point
set of § has actually two connected components. ©

Exercise 1.3.14 Let H be a compact analytic group. Show that H maybe regarded as a
homogeneous space of the form H ~ G/K as described above by setting G = H x H and
K ={(h,h)|h € H}.
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Exercise 1.3.15 Let G}, (R) be the Grassman manifold of oriented k-planes in R*" (see
example of chapter 1). Then Gy ,,(R) ~ SO(k+n)/SO(k) x SO(n) is the realization of this
space as M = G/K as above. Obtain the decomposition G = K & M using the inner product
(positive definite) —3Tr(En). Compute the sectional curvatures and Ricci tensor of G, (R).

Exercise 1.3.16 By realizing the complex projective space CP(n) as U(n+1)/U(1) x U(n)
show that the geodesics in CP(n) relative to the metric —3Tr(&n) are of the form

t — g.[cost,sint,0,--- 0],

in homogeneous coordinates, where g € U(n 4+ 1).

Exercise 1.3.17 Show that a geodesic in the Siegel upper half plane can be put in the form
t — iexp(tD),

where D is a diagonal matriz, by a symplectic transformation g € SP(n,R). Obtain a similar
result for the generalized unit disc Dy, ,,.

Exercise 1.3.18 Let P be the space of n x n symmetric positive definite real matrices of
determinant 1. Show that the mapping A — AA’, where ' denotes transpose, gives the
realization

P ~ SL(n,R)/SO(n),

as a homogeneous space. Show that a bi-invariant indefinite metric for SL(n,R) is Tr(&n).
Obtain the decomposition G = IC & M for this case and show that the relations (1.3.10) are
valid. Deduce that every geodesic in P is of the form

t — gy,

where A is a diagonal matriz with Tr(A) =0, and g € SL(n,R). Show also that the sectional
curvatures of P are mnon-positive. Prove that the Riemannian metric on P has coordinate
expression ds* = Tr((UdU)?) where U runs over symmetric positive definite matrices of
determinant 1. (Essentially the same assertions are valid for the homogeneous space P’ ~
GL(n,R)/O(n) of symmetric positive definite real matrices.)
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1.3.4 The Laplacian

There are various ways of defining the Laplace operator A on a Riemannian manifold M.
First we confine ourselves to real or complex valued forms on M. Let M be an oriented
Riemannian manifold (without boundary) and dv denote the Riemannian volume element.
On the space of real or complex valued compactly supported smooth functions on M we
define the the inner product

< ¢, >= /Md)(@mdv-

The completion of the space of smooth functions under < .,. > is the Hilbert space L*(M, dv).
We want to extend the notion of inner product < .,. > to forms on M. Let wq, - - - ,w,, denote
an orthonormal coframe for M. Then locally a p-form [ is a linear combination of expressions
of the form w;; A --- Aw;,. Define the star operator x (see also chapter 1, §6.2):

*(w,-l A A wip) = €i1"'ipj1"'jm—pwj1 A A ijip

where {ji, -+, jm—p} is the complement of {iy,--- 4y} in {1,2,--- ,m} and €;,..i,j,...j,,_, 18
the sign of the permutation 1 — ¢, -+ ,m — j,,—p. It is readily verified that  is independent
of the choice of orthonormal coframe wy, - -+ ,w,,. Clearly x extends linearly to p-forms, and

we define the inner product of two p-forms « and (3 as

<a,ﬁ>:/ a A .
M

This definition is compatible with the inner product of two functions regarded as 0-forms.
If a is a ¢-form and p # g then we set < a, 8 >= 0.

Exercise 1.3.19 Show that for a function ¢ on a Riemannian manifold M we have
ds*(gradg, gradg)dv = do A xd¢ = ds*(d¢, dp)dv,
where dv denotes the volume element.
Define the operator § mapping a p-form on M to a (p — 1)-form by
§ = (=1)mPtml o d .
Since xx = £Id., 4§ = 0. Furthermore, for compactly supported C* forms o and 3 we have

<da,p >=<a,00 > . (1.3.17)
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In terms of d and ¢ the Laplace operator A on forms is defined as
—A =df+ dd.

The symmetric character of the Laplace operator is evident from its definition. It is easily
verified that the application of Laplace operator to functions on a Riemannian manifold is
given by

Af = div grad(f) (1.3.18)

The fact that A is defined on forms (not just functions) has many geometric applications
some of which we will discuss in connection with cohomology. The operator —A is positive
semi-definite on compactly supported forms since

< —Aa,a >=<da,da > + < da, da >> 0.

Since A is negative semi-definite on compactly supported functions, it is customary to refer
to —A as the positive Laplacian. A p-form (8 such that AZ = 0 is called harmonic.

Exercise 1.3.20 Let M be a surface with Riemannian metric ds* = € (du® + dv?), and f
a real or complex valued function on M. Show that
o?f  O*f
Af =e 27 (=% + ).

f=e (8u2 * (%2)
Exercise 1.3.21 Show that for the usual metric ds®> = dyp? + sin® pd#? on S? the Laplacian
18 given by

o0 f of 1 9%*f

Af = 4ot Ay
f=g52 T ota, T oy e

Exercise 1.3.22 Let (g;;) be the matriz of a Riemannian metric relative to a coordinate
system (x1,-++ ,%y) on a Riemannian manifold. Denote the determinant and inverse of
(9i5) by g and (g") respectively. Show that (1.3.18) becomes

_ 19 ik =90
Af—\/g;axk(;g \/Eaxj).

To study the Laplace operator on the sphere S™1R™"! we consider the moving coframe
on Rm—H

W) =TW1, -, Wn = TWny, Wil = dr
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where ds2 .1 = wi + -+ + w2, and the 1-forms ©; are a moving frame for the unit sphere
S™ and therefore do not depend on 7. For a function f on R™*! we have

af
df = E ire; + —=—dr.
if 2 firw " r
Therefore xdf = >_ f;3; + —gf ™oL A+ - - A, where the m-forms (; contain dr. Consequently,

1
Apmi1f = —xdxdf = [— + ——} + —=Agnf,
r r r
where Agm denotes the Laplacian on the unit sphere. Therefore

2

Agnf =1*Agmir [ — [7“2% + mr%].
An immediate consequence of (1.3.19) is that if f is a homogeneous polynomial of degree n
on R™ such that Af = 0 then f is an eigenfunction of the Laplacian on the unit sphere
with eigenvalue —n(n + m — 1). These polynomials or their restrictions to the unit sphere
are called spherical harmonics. Naturally by the degree of a spherical harmonic we mean
its degree as a polynomial. It is an important theorem in analysis that spherical harmonics
contain an orthonormal basis for L?(S™, dv) where dv denotes the invariant measure on the
sphere. We summarize the basic facts regarding this in the following theorem and refer to

[SW] for the proof and some applications:

(1.3.19)

Theorem 1.3.1 The space Ay of spherical harmonics of degree k has dimension (m]:rk) —

(m;ikf), where the binomial coefficient ({) =0 forb < 0. Ay, and A, are orthogonal for k # |
relative to the standard L? inner product on S™. Finite linear combinations of elements of
U, Ax are dense in L*(S™,dv) and in the space of continuous functions on S™ relative to

the sup norm.

Example 1.3.7 To gain some understanding of spherical harmonics consider the two di-
mensional case. The Laplacian on S'is A = % and its eigenfunctions are 1, cosnf, sin nf.
Writing 1 = cos# and x5 = sin 6, from the standard expansions cosnf and sin nf we obtain

cosnt) = a7y — (Z) ai el + (Z) oty 4, sinnf = (?) oy — (g) R A

Regarding a1, 75 as independent Cartesian coordinates in R?, denoting the above expressions

. . . 2 2
for cosnf and sinnf by P, (z1,x2) and @, (x1,x2) and applying the Laplacian A = aa_xf + aa_xg
we obtain

AP, =0, AQ, =0.
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Now assume F(z1,75) = Y., cx@} "2k is a homogeneous polynomial of degree n with AF =

0. The latter relation implies the recursion

(n—k)(n—Fk—1)
(k+1)(k+2)

Ck42 = — Ck

The initial conditions ¢, = 1,¢; = 0 and ¢, = 0,¢; = 1 lead to the polynomials P, and @,.
Consequently polynomial solutions of A in the plane are linear combinations of P,’s and
@,’s. Since classically harmonics refer to the trigonometric functions cosné and sin nf, this
example should motivate the use of the terminology “spherical harmonic”. #

There are a number of applications of spherical harmonics and in particular of Fourier
series to geometry. Perhaps Hurwitz’ proof of the isoperimetric inequality is first deep
application of Fourier series to a geometric problem. Since we have already given two proofs
of this fundamental result, we delegate this proof to the following exercise:

Exercise 1.3.23 Let v : [0,27] — R? be a simple closed curve of length L. Assume the
parameter t € [0,2x] is a multiple of arc-length and ~ is oriented counterclockwise. Denote
the image of v by I' and let C be the region enclosed by I'. Let A denote the area of C.

1. Using Stokes’ theorem show that

2
[ —4nA = 27r/ [(Ey2 (B2 g, B g

2T 2T
= 27r/ (dwl +:132)2dt+27r/ [(%)Q—Ig]dt,

where y(t) = (z1(t), 22(t)).

2. Let f be a periodic function of period 2w whose zeroth Fourier coefficient vanishes.
Show that

2w 2
/ (%)th > f(t)%dt.

o

(This inequality is often called Poincaré inequality.)

3. Since L? — 4w A is invariant under translations we may assume fo% xo(t)dt = 0. Ap-
plying (2) to f = x5 and using (1) deduce the isoperimetric inequality L? — 47w A > 0.

4. Deduce that the circle is the only curve for which L* — 4w A = 0.
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Exercise 1.3.24 Consider the two dimensional torus T? = R? /L where L C R? is the lattice
with basis («,0), (5,7). Show that the functions

2 2
1, sin me, cos me, sin2wm(£—@), cos27rm(£—@).

ot gt o ay a oy

are eigenfunctions for A, and they form a basis for L*(T? dxdy). Find all eigenvalues for
A.

Exercise 1.3.25 Let M = S™ or T™, the m-dimensional flat torus. Let N(X) denote the
number of eigenvalues of —A which are < . Verify the validity of Weyl’s asymptotic formula

¥y

in these cases. Here v, denotes the Euclidean volume of the m-dimensional ball.

A basic problem about the Laplace operator on a Riemannian manifold is the determi-
nation of its spectrum which depends strongly on the Riemannian structure. Of course the
exact determination of the spectrum, except in very special cases, is not within the range of
the present knowledge. Typical issues on which progress has been made are

1. For the positive Laplacian —A acting functions on a compact orientable Riemannian
manifold, the smallest eigenvlaue is A, = 0 which occurs with mutiplicity 1. Can
we give upper and lower bounds for the next eigenvalue in terms of the Riemannian
structure?

2. Let M be a compact orientable Riemannian manifold. For a positive real number A,
let N(A) denote the number of eigenvalues of —A less than A. While an exact and
practical formula for N(A) may not be feasible, much is known about its asymptotic
behavior.

3. Does the spectrum of —A determine the Riemannian metric? The answer is negative
and we will say something about this in chapter 4.

4. Let M C R? be a bounded doamin with smooth boundary. The eigenvalues of —A on
the space functions vanishing on the boundary determine the frequencies of the sound
generated by a drum in the shape of M? Therefore problem 3 in this case becomes
“Can we hear the shape of a drum?”
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5. A generalization of problem 4 is to what extent an unknown entity (e.g. a Riemannian
metric, an obstacle, a potential etc.) is determined by the observables, i.e., the spec-
trum. This is a fundamental problem of physics which may be classified as the Inverse
Spectral or the Inverse Scattering theory.

The literature on this subject is very extensive, and our goal here is to explain some simple
ideas which have proven fruitful in gaining some insight into these issues. Naturally, all
methods rely heavily on techniques from analysis which are not appropriate for this text. We
limit ourselves to cases where the analysis is of a rather elementary nature, can be described
without invoking advanced analytical techniques, and has finite dimensional analogues which
are easy to explain.

For a symmetric linear operator on a finite dimensional real Hilbert space V', the eigen-
values are real and denote them by A, < A\; < Ay < ---. The smallest eigenvalue A, is

A= inf | < v, Av > |

(1.3.20)
0#£veV < v,V >

where < .,. > denotes the inner product. Let V, denote the eigenspace corresponding to
eigenvalue \; and VjL denote its orthogonal complement. The second smallest eigenvalue A\;
is then given by
<wv,Av >
M= i lSvAv>]

(1.3.21)
0£veVss < U,V >

Similarly by replacing V;* with the orthogonal complement of V, & --- @ V;_; in (1.3.21) we
obtain a formula for A;. This description of the eigenvalues of a symmetric linear operator
(in finite or infinite dimensions) is known as the variational characterization of eigenvalues.

The variational characterization of eigenvalues of a symmetric operator in the finite di-
mensional case generalizes to the infinite dimensional case. We note the following plausible
facts about the unbounded operator A:

Proposition 1.3.2 The positive Laplacian —A acting on C? functions on the compact Rie-
mannian manifold M has the following properties:

1. The eigenvalues of A form a discrete set 0 = Ao < Ay < Ag < --- C R,
2. llmj_m /\j = OQ.
3. The eigenspace V; corresponding to eigenvalue \; is finite dimensional.

4. Vs is one dimensional and consists of constants.
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5. There is an orthonormal basis for L*(M, dv) consisting of eigenfunctions of A (Com-
pleteness property).

6. The characterizations of of eigenvalues of symmetric operator given by (1.3.20) and
(1.3.21) (and similar formulae for all \;’s) remain valid for A. (Orthogonal comple-
ments are relative to the inner product on L*(M).)

Except for the facts that A\, may be > 0 and dim V/, is not necessarily 1, all the properties
enunciated in proposition 1.3.2 are valid for the Laplacian acting on forms. The interpre-
tation of V; for forms is mentioned in connection with cohomology in another volume. A
detailed proof of this proposition involves some standard analysis of elliptic operators. Since
the method of proof depends on techniques different from those emphasized in this volume,
we simply accept the validity of proposition 1.3.2 and proceed from there. We also note the
important fact from analysis that the eigenfunctions of —A are necessarily smooth (even
analytic). Such results are often called regularity theorems in partial differential equations.

The variational characterization of eigenvalues of —A can be utilized to obtain the first
term in the asymptotic expansion of N(A) for a bounded domain in R™. The asymptotic
formula given in exercise 77 for torii and spheres, although valid for general compact Rie-
mannian manifolds is considerably deeper. To formulate the problem for a bounded domain
U C R™, with piecewise C? boundary, requires introducing boundary conditions:

1. (Dirichlet Boundary Condition) - We look for eigenvalues A, —A¢ = A\, where ¢ is a
function on U, continuous up to the boundary, and vanishing on OU.

2. (Neumann Boundary Condition) - We look for eigenvalues A\, —A¢ = A\, where ¢

is a function on U, continuously differentiable up to the boundary, with % = 0 on

OU where % denotes the derivative in the direction normal to the boundary. The

boundary requirement is only on the open dense portion of QU which is C?.

Exercise 1.3.26 Consider the rectangle R C R™ with sides of lengths ly, ..., l,. Show that
the eigenfunctions of —A acting on functions on R with Dirichlet boundary condition are
products of the form

. 7T/€1£L’1 . Wk?ml’l
Sin ...S1n s
ll lm

where kq, ..., ky, are positive integers, and the corresponding eigenvalues are WQ[’;—qu. . —|—%]
Similarly, for the Neumann boundary condition the eigenfunctions are of the same form with
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sines replaced by cosines and ky, . .., k,, non-negative integers. The corresponding eigenvalues

k3 k2 : .
are 7r2[l71 + ...+ 3*]. Deduce the same asymptotic expansions
1 m

vmvol(U)
(2m)™

v vol(U)
(2m)™

m
2

no‘§

NP(X) ~ A2 NV ~ A

in both cases.

The key idea in the application of the variational characterization of eigenvalues to the
computation of N()) is via the domain monotonicity property which is described in lemmas
1.3.4 and 1.3.5 below. We let \; < Xy < ... denote the eigenvalues of —A acting on L?
functions on U with Dirichlet boundary condition. The sign < means that the eigenvalues
are arranged in increasing order and each is repeated as many times as its multiplicity.
Whenever necessary to emphasize the distinction between Dirichlet and Neumann boundary
conditions we use the superscripts D with N

Lemma 1.3.4 Let Uy,...,U, be mutually disjoint open subsets of U with piecewise smooth
boundaries. Let §; < 6y < ... be the eigenvalues of —A acting on L? functions on U;U. ..UU,
vanishing on QU U ... U9OU,. Then A\ < ;.

Lemma 1.3.5 Let Uy, ..., U, be mutually disjoint open subsets of U with piecewise smooth
boundaries and assume U = UyU...UU,,. Let n; < ny < ... be the eigenvalues of —A acting
on L? functions on Uy U...UU, with vanishing normal derivatives on QU U...UdU,. Then
e < Ak

Before giving the proof of the lemmas let us see how they imply

Proposition 1.3.3 For a bounded domain U C R™ with piecewise C? boundary, NP (\),
the number of eigenvalues < X for the Dirichlet boundary condition, satisfies

vmvol(U)
(2m)™

I3

NP()) ~ A2,

where v, 1s the volume of the unit ball in R™.
Proof - Partition the space with equi-spaced hyperplanes orthogonal to the coordinate axes,

and let Uy,...,U, be the open cubes of the partition that lie entirely in U and N ()) be
the number of eigenvalues < A for the Dirichlet boundary value problem on U;. If the length
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of a side of the cube U, is a then the corresponding eigenfunctions are given as products of
sine functions and the eigenvalues are

B2+ ...+ k2
7T2 1+ +m

9
042

where ki, ..., k, range over positive integers (see exercise 1.3.26 above.) The validity of the
assertion of the proposition for /V jD (\) follows by an elementary counting argument. Lemma
1.3.4 implies

NP(A) = > NP(N).

This inequality together with the validity of the desired estimate for U;’s imply

NP()) < vmvol(U) '

ll)I\IiloIgf 2 2 2nm (1.3.22)
To prove the converse inequality, let Uy, ..., Uy be the cubes of the partition such that

U;NU # 0 sothat U C int(U; U...UUy). Let V = int(U; U... U Uy). Then by lemma
1.3.4 NF(\) < NP()\) and By lemma 1.3.5 NP (\) < 2;11 N]N()\). Therefore

NP <> NN (1.3.23)

The eigenvalues and eigenfunctions for the Neumann boundary condition on Uj’s are given
as products of cosine functions and the eigenvalues are

2+ ... 2
7_‘,2 1+ +km7
o

where ky, ..., k, range over the non-negative integers. It follows easily that the estimate of
the proposition is valid for NJN as well. Substituting in (1.3.23) we obtain

(1.3.24)

(1.3.22) and (1.3.24) imply the required result. &

It remains to proves the lemmas.
Proof of Lemma 1.3.4 - Let ¢; be the eigenfunction corresponding to , on a subset Uj,, and
extend 1; by 0 outside Uj,. Then for every k£ we may assume 4, . ..,y are an orthonormal
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sequence in L*(U). Let ¢1,...,dx_1 be eigenfunctions for the —A with Dirichlet boundary
values on U corresponding to eigenval;ues Ay < ... < A\y_;. Then the orthogonal projections
P(t1), ..., P(¥y) on the span of ¢1q,...,¢xk — 1 are linearly dependent and consequently
there are scalars (31, ..., Ok, not all zero, such that

k
> B <tbj,>=0, for I=1,... k-1
j=1

Set f = > B;1;. Then f is orthogonal to the span ¢i,...,¢,_1 and by the variational
characterization of eigenvalues

MIFIP < <didf >
- —/(fAf)d:z:
U

k
= ) 50
J=1
=l fI1%

proving the lemma. &

Proof of Lemma 1.3.5 - Let v; be the eigenfunction (Neumann boundary condition) for
eigenvalue n; on a subset U;, and as before extend it by 0 to outside of Uj,. If f is orthogonal
to the span of 1, ..., 91 in L*(U), then by the variational characterization of eigenvalues

<df,df > = —Z/U(fAf)dx
j=1"Yj

= 2
= ;nk/Uj|f|
= mllfI%.

Let f = 2521 7v;¢; be any non-zero element orthogonal to ¢y, ..., 1¢,_1 (which clearly exists).
Then

V

< df,df >< || f]%

which implies Ay < 75. &
The asymptotic formula of proposition 1.3.3 is also valid for Neumann boundary condition
and can be proven by more or less similar arguments. It is possible to extend the asymptotic
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formula for N () to a compact Riemannian manifold M (with or without boundary) but the
above method based on the variational characterization does not seem to generalize. For the

remainder R(}) = N(A) — 25000 % we have

That this estimate for the remainder is sharp can be established by elementary arguments
using the explicit knowledge of eigenvalues on the sphere, however the proof . It is remarkable
that the remainder is related to the existence of periodic geodesics on M. In fact on manifolds
where the geodesic flow is not periodic the estimate can be improved. For a discussion of the
remainder the reader is referred to [Ho] and [DG]. For manifolds with boundary the standard
conjecture for the asymptotic distribution of eigenvalues was

vmvol(M)/\% B cmvol(c?M)/\mTa N 0()\m;1’

(2m)m (2m)mt

N =

where ¢, is a constant depending only on m. That this formula is not valid was established
by R. Melrose et al. For an account of N()) for Riemannian manifolds with boundary see
[Iv], [Pet] and references thereof.

Note that the analysis in the finite dimensional case is basic linear algebra. To make a
story in the finite dimensional case, we replace the compact manifold M with a finite graph.
Let V be the set of vertices and & the set of edges of a finite graph I' (with no loops, i.e., an
edge joining a vertex to itself; and no multiple edges). If two vertices u,v are connected an
edge, we write u <> v. For v € V let §, denote the number of vertices u such that v < wu.
Let £ denote the set of real or complex valued functions on V which is a finite dimensional
vector space. One may define the Laplacian on L as

Ap(u) = —p(u) + —— S”j&_)

With this definition (or some generalizations of it) on may transport a portion of the theory
of the Laplacian in differential geometry or analysis to the context of graphs and Markov
chains. For a discussion of this aspect of the subject see [Chul].

Example 1.3.8 While the eigenvalue Ay > 0, exercise 1.3.24 shows that it can be arbitrarily
small by taking v large. We now give a class of examples of compact surfaces for which A\; > 0
is arbitrarily small and sheds some light on how to obtain a lower bound for A\; which depends
on geometric data. Let M;, i = 1,2, be a compact surfaces with Riemannian metrics ds?.
Assume there are small discs D; C M; where ds? is flat. Join the surfaces by a cylinder of P
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length [ and radius r which intersects M; inside D; as shown in Figure XXXX, and smooth
it out to obtain a surface M. By a slight modification of the metrics around D;’s we extend
it to a metric on M which is the standard flat metric on P. Let ¢ be a function which is
equal to ¢ > 0 on M;\D;, —c on My\Dy, and decreases linearly on P from ¢ to —¢, where
c is to be determined later. It is clear from the construction that after a small perturbation
of ¢ we may assume | 1 @dv = 0. We have the approximations

0 ODM1UM2,

ds? . (d ,d ~ 2
sy (do, do) {4%2 on the cylinderP.

It follows that

< —N¢, ¢ > 8mcir
/\1§ ~ .
< 9,0 > [ <¢,9>

Let us assume vol(M;) = vol(Ms). Now let » = €%, | = % and determine ¢ > 0 so that
< ¢, >=1. ¢ > 0 depends on € > 0, however, since area of the cylinder P tends to 0 with
€ — 0, ¢ remains bounded as ¢ — 0. It follows that Ay — 0ase — 0. &

Example 1.3.8 suggests that if S C M is a hypersurface decomposing M into two pieces
My and Ms, then the ratio fgf(a}&s)) may play a role in how small \; can be. To make this
precise we define

, Area(S)
h = inf — ,
S min(vol(M), vol(Ms))
where the infimum is taken over all hypersurfaces S which decompose M into two disjoint
submanifolds M) and M,. Naturally Area(S) refers to the (m — 1)-dimensional volume of
S relative to the volume element of S obtained from the Riemannian metric on M. The
quantity h, called Cheeger’s constant, can be defined for non-compact Riemannian manifolds
by a slight modification of (1.3.25). In fact we let the infimum be over all relatively compact
open subsets U C M with smooth boundary OU = S and replace the denominator by vol(U).
The quantity A is clearly geometric in character and the fact that it gives a lower bound for A,
is confirmed by the proposition 1.3.4 below. First we need an observation about the volume
element. For hypersurfaces S, defined by ¢ = r let wy,--- ,w,, be such that wy, -+ ,w,_1
form orthonormal coframes for S,’s. Then w,, = 0 defines the family of hypersurfaces .S,.
Since w,, has unit length

(1.3.25)

dp = Ywm, with v =+/ds?*(d¢,dp). (1.3.26)
Therefore the volume element on M can be written as

1
dv=—wi A+ wp_1 Ado. (1.3.27)
Y
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This formula enables one to relate integration on M to that relative to r € R. In fact, if
A(r) denotes the volume of S, (relative to wy A -+ Awy,_1) and U2(M) denotes the portion
of M defined by the inequalities a < ¢(z) < b, then

/Ub(M) V ds?(de, dp)dv = /b A(r)dr. (1.3.28)

It is customary to refer to (1.3.27) or its integrated form (1.3.28) as the co-area formula.
Proposition 1.3.4 Let M be a compact Riemannian manifold, then A\ > }LhQ.

Proof - For a C? function ¢ on M let Uy(r) = {x € M | ¢(z) > r} and U_(r) = {z €
M | ¢(z) < r}. If ris aregular value then S, = U, (r)NU_(r) is a hypersurface decomposing
M into two pieces. Let ¢ be an eigenfunction for eigenvalue A;, then

v Sdodo > [y |0@)|y/ds*(d(), do(a))dv]?
L <69> T < 6,0 >? ’
where > follows from the Cauchy-Schwartz inequality. Since d¢? = 2¢d¢ we obtain

A > U VA2(de?, dg?)dv] (1.3.29)

1
=4 <o, >2

Assume 0 is a regular value for ¢, A(r) be the area of the submanifold of U, (0) defined by
¢* = r and V(r) denote the volume of the portion of Uy (r). Then

/ Vds?(de?, dg?) = /OOA(T)dr
U+(0) )

(by definition of h) > h/ V(r)dr

(integration by parts) = —h/ rV'(r)dr
(—V':wl/\---/\wm_l) = h/ ¢2w1A---Awm
U+(0)
= h<o¢,0>.

We obtain a similar inequality by looking at U_(0). The assumption that 0 is a regular value
is inessential, since by looking at Uy (¢€) the same inequalities can be proven. &
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Upper bounds for A; involving the Cheeger constant are more subtle and will not be
discussed here. Cheeger’s constant is reminiscent of the isoperimetric inequality, however,
there is one essentail difference, namely, the numerator and denominator in Cheeger’s con-
stant have different dimensions while in the isoperimetric inequality % > 47, they have the
same dimension. This suggests that one should attempt to obtain lower bounds for A; in
terms of .

> (Area(S))m-T1

'S min(vol(My), vol(My))
This leads to the concepts of the isoperimetric and Sobolev constants which we shall not
pursue any further here since it involves more analysis than we would like to invoke at this
stage.

The Laplace operator A admits of a nonlinear extension to mappings of Riemannian
manifolds f : M — N which has proven to be geometrically significant. We use moving
frames to describe this generalization. Let f : M — N be a smooth mapping of Riemannian
manifolds, and let wy, -+ ,w,,, and 6y,--- 60, be orthonormal coframes reducing the Rie-
mannian metrics on M and N to the identity. Let 1 <4,5,--- <mand 1 < a,b,--- < n be
the range of the indices in this subsection. We let (w;;) and (6,,) denote the corresponding
Levi-Civita connections. Set

(1.3.30)

F(02) = flw;. (1.3.31)
Taking exterior derivatives of (1.3.31) and making use of the structure equations we obtain:
SO+ frwii+ > FF (Ow)) Aw; =0 (1.3.32)

j i b

J

Therefore by Cartan’s lemma
A+ 3w+ S0 S 0) = 3 Fn, (1.3.33)
i b k
where f5 = fi.. The Laplacian of f is by definition the collection

Af =) fitamtoe e (1.3.34)

A map f: M — N is harmonic if Zj & =0 for all a. While the entries of the matrix
(ff) depend on the choice of the frames, the vanishing of the traces }_, for all a, is
independent of these choices. We omit the verification of this fact.

Harmonic maps of Riemannian manifolds have interesting features, however, investigating
their properties often requires the introduction of analytical techniques which are postponed
to another volume. Here we only discuss some elementary aspects of harmonic maps and
give some examples.

a
)
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Exercise 1.3.27 Show that for an RF-valued function f on a Riemannian manifold the two
definitions of Af given above are identical. (R¥ is endowed with the standard flat Euclidean
metric.)

Exercise 1.3.28 Assume M has dimension 1, so that M is either an open interval in R or
the circle. Show that f : M — N s harmonic if and only if f is a geodesic.

Example 1.3.9 Let 3 : M — RY be an isometric immersion so that M maybe locally
regarded as a submanifold of RY. We want to see when the mapping j is harmonic. We
choose moving frames on RY such that e, - - - , e,, are tangent to (M) and also use ey, - - - , €,
as a moving frame on M. Denoting the coframes forms on M and RY by w; and 04, and the
connection forms by w;; and 045, we obtain

]*(92) = Wi, ]*(Qp) = 07 ]*(97,]) = Wiy - (1335)

It follows that j¥ = 6% and ¥ = 0. (Recall the index convention 1 <, j,--- < m, m+ 1 <
p,q,--- < N.) Therefore (1.3.32) becomes

Zf(epj) Awj =0,
J

which, by means of Cartan’s lemma, determines jli)j. Comparing with the definition of second
fundamental form it follows that the symmetric matrix (5%;) is the matrix of the second
fundamental form of j(M) in the normal direction e,, and

Zﬁj = mH,, (1.3.36)

where H), is mean curvature in the direction e,. The same calculation carried out for a
tangential direction as well. In fact going through the calculation of the Laplacian ];-k we see
that, for each ¢ < m, the matrix (];k) is determined by Cartan’s lemma and the equation

> (Wit — 77 (0)) Awy, = 0.

k

In other words,

wir = 7" (Ox) = Y _ Jhawr-
=1
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By (1.3.35) the left hand side vanishes and therefore j;, = 0. The above calculations can be
summarized as

N
Aj=m > Hye,. (1.3.37)

p=m+1

Thus j is harmonic if and only if the mean curvature H,, vanishes for every normal direction

ep. W

Example 1.3.10 Continuing with the notation and hypotheses of example 1.3.9, we assume
N =m+1andset 3(z) = (51(x),- -+, Jms1(x)) relative to the standard coordinates on R™.
Then p*(z) = Y, 7A(z) =< j(x), y(z) > is a real valued function on M. We want to calculate
its Laplacian®. We have

df =2<dy,)>= ) ()w).
j=1

Since 7? is real valued we have omitted dependence on the index a which refers to a frame
on R. Applying — x dx we obtain

—xdxd)? = 22 <Ay, 7>
k

+ 2% (Z(—l)k < ek,Zelwl > /\(Z)k)
l

k

+ 2% (Z(—l)k < ep,)> d&)k),

k

where dv,s is the volume element on M and
W = w1+ AWg—1 A Wgp1 A== A Wy
In view of example 1.3.9 we have

2Z<Aj,j>de:2mH<em+1,j >,
k

9This calculation was carried out in example 1.2.23 since the calculation of Aj? is the same as computing
the trace of the Hessian of the function 7> on M. We will do this calculation one more time using the
definition of A as — x d x d and notice that the answers are identicall



296 CHAPTER 1. DIFFERENTIAL GEOMETRY ...

and it is clear that

Q(Z(—l)k < e, Zelwl > /\J)k> = 2mduvyy,.

k l

Expanding < ey, > dwy we obtain a sum of terms each of which contains the connection
form w;;. However the quantities —*dxdj* and the first and second sums in the expansion of
—xdxdy?* are defined on M independently of the choice of frame. Since by appropriate choice
of frame we can make all w;;’s vanish at any given point, the third sum Y, (—1)* < e, 7 > dwy,
vanishes identically on M. Therefore we have

AP =2m(l+H < epy1,7>). (1.3.38)

We will give some applications of this formula. &

As an application of (1.3.38) we derive some integral formulae for compact hypersurfaces.
Let 7 : M — R™*! be an isometric immersion so that M may be locally regarded as a
hypersurface. In developing local expressions for various geometric quantities, we omit any
reference to the immersion 7 and work on M directly. Let ey, --- ,e,+1 be a moving frame
with e, 411 a unit normal vector field to M. For t a small fixed real number, consider the
hypersurfaces

M, : x—tey,y1, where x € M.

Let y' = x — te,,41, then

dy' = Z(wz — tW; m+1)6i-

i=1

This relation implies that e, ; is normal to M; and the 1-forms w; — tw; ;41 form an
orthonormal coframe for M;. The second fundamental form H? of M, is calculated from

m
t
—Wim+t1l = Z Hij(wj — tWj mi1)-
7j=1

Since —w; m41 = Y Hijw; we obtain after a simple calculation

HY = H[I +tH] ",
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where H = H° denotes the second fundamental form of M. Therefore the principal curvatures
of M, are related to those of M by!®

Ht— i
L 14ty

(1.3.39)

The normalized £** elementary symmetric function of the principal curvatures will be denoted
by H (k) 1

) 2
01,00k

where the summation is over distinct indices iy, --- ,7;. Therefore the volume element for
M, can be written as

dvy, = (W1 — twy 1) A+ A (Wi — twm ma1) (H (14 tk, )de. (1.3.40)
j=1

Set P(t) = [[;(1+tr;). Then the mean curvature of M, is given by

H' = lTrHt = P)
m

P’ (1.3.41)

where ' denotes differentiation relative to t. We can now prove

Proposition 1.3.5 (Minkowski) Let M be a compact orientable Riemannian manifold and
9: M — R™ an isometric immersion. Then for k < m — 1 we have

/ (H(k) + H(k+1) < €em+1,] > )dUM = 0.
M

Proof - With the notation of the paragraph preceding the proposition, we let 3(x) =
J(x) — teyi1. Then for ¢ small, j; is also an immersion. It follows from (1.3.38) and Stokes’
theorem that

/ (1+ H' < €epar, ¢ > )dony, = 0. (1.3.42)

10Recall that the signs of the principal curvatures depend on the direction of the unit normal e,, ;. In
order for the principal curvatures of the sphere to be positive, one should use the inward pointing unit normal
vector field. This explains the + sign in the denominator of (1.3.39).
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From (1.3.40) and (1.3.41) and a straightforward calculation, (1.3.42) simplifies to
/ (mP(t) — tP(t) + P'(t) < epsr,y > )duns = 0.
M

The left hand side is a polynomial in ¢ and the conclusion follows from the vanishing of the
coefficient of t*. &
We conclude this subsection with another example of harmonic maps.

Example 1.3.11 Let MiR™"! be a hypersurface and G : M — S™R™*! the corresponding
Gauss map. Thus if ey, - -+, e,,41 is a moving frame with e,,1; a unit normal vector field to
M, then G(z) = ep11. Let wy, -+ w1 be the dual coframe. We may regard ey, -+ , €41
as a moving frame in a neighborhood of S™ with e, ; the unit normal to S™. Denote
the corresponding coframe for S™ by 6y, , 0, Opi1, then 62 + -+ + 62 is the standard
Riemannian metric on S™1R™*!. Since 0; =< de,,11,€; > we obtain

G*(0;) = Wi my1 = Z H,jw;. (1.3.43)

Thus with the notation of this subsection (see formula (1.3.31)) we have G} = mH;;. From
the structure equations we have

m

dG*(6;) + Y G*(6:;) A G*(6;) =0,

Jj=1

where (6;;) is the Levi-Civita connection for S™. Taking exterior derivative of G*(6;), using
the structure equations, (1.3.43) and proceeding to compute the Laplacian of G we obtain

dHix — Z Hl]w]k + Z HJkG* ” Z H;riwr, (1.3.44)

where H;; in symmetric in the indices i, k,l. The Laplacian of G is the set of m func-
tions (>~ Hjkx) where j = 1,--- ,m. Now assume M has constant mean curvature, then
> ;dH;; = 0. Setting £ = i and summing over ¢, (1.3.44) yields

Z Hijwij + Z Hi; G™(0;5) = Z Hiawr. (1.3.45)
¥ i, il
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Let ey,--- ,e, be along principal directions so that the matrix (H;;) is diagonal. Then
Zi,j H@-jwij and Zi,j HlJG*(QU) vanish and (1345) simpliﬁes to

> Higw = 0. (1.3.46)
il

In view of the symmetry of H,; it follows that for every [ we have ). H;; = 0 or equivalently
the Gauss map of a hypersurface of constant mean curvature is harmonic. For minimal
surfaces in R3 we shall prove in example ?? that the map Gauss map is anti-holomorphic
in a sense that will be clarified later. One can obtain generalizations for submanifolds of
codimension k£ > 1 by looking at the (generalized) Gauss map which takes values in the
Grassmann manifold of oriented k-planes in R™**. &

1.3.5 Congruences of Geodesics and Jacobi’s Equation

Let I be a congruence of geodesics on the Riemannian manifold M of dimension m. This
means that there is an m — 1 dimensional submanifold D C M such that through every
point of D there passes (and in a transverse manner) exactly one v € I'. Since this definition
is purely local we assume D is a disc and work in one coordinate neighborhood. We want
to investigate the conditions under which there is a function v such that I' is precisely the
orthogonal trajectories (after parametrization by arc-length) of the hypersurfaces ¢ (x) = c.
(Compare with the subsection on Geodesics especially condition e.) Let U C M be an open
set such that every point x € U lies on exactly one geodesic in I', and o : U — 7 M be the
section defined by o(x) = (x,",) where 4, is the tangent vector at = to the unique geodesic
in I' passing through x. Recall that € and @ = —d¢ are the pull-back, by the Riemannian
metric, of the canonical 1-form and symplectic 2-form on 7*M to 7M. Set er = 0*(€) and
wr = —d€F = O'*(J)).

Lemma 1.3.6 With the above notation and hypotheses, a necessary and sufficient condition
for the existence v with the required properties is wr = 0.

Proof - To prove necessity, assume I" is the gradient flow of some function ). We have the

expression

er = () giy)dxs. (1.3.47)
i J

Here 4 = (41, -+ ,%¥m) is the coordinate expression of the tangent vector field to the geodesic

~ which by assumption is the gradient vector field of ). The gradient vector field has

coordinate representation ¢g~!WU’ which when substituted in the expression for e yields ep =

dvp. Consequently, wr = —der = 0 as claimed.
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To prove sufficiency assume wr = 0 and it is no loss of generality to require the geodesics
in I' to be parametrized by arc length. Then der = 0 which implies epr = diy for some
function ¢ on U. To apply condition e of the subsection on geodesics, we compute

Vg™’ = Zgz‘j%%‘ =L
'hj

Therefore condition e is applicable and the orthogonal trajectories to the hypersurfaces ¢ = ¢
are geodesics. In view of (1.3.47) and di) = er, the gradient flow of 1 is represented by

gil(g(f‘ylv U 7;}/771),) = (;}/17 T ’,-')/m)’7

where superscript ' denotes the transpose. This expression is precisely the tangent vector
field to the geodesics in I' thus proving sufficiency. &

Lemma 1.3.6, originated from ([C1],84). By an orthogonal congruence of geodesics we
mean we mean a function ¢ on M such that the orthogonal trajectopries to the hypersur-
faces 1 = const. form a congruence of geodesics. Lemma 1.3.6 can be rephrased as local
Lagrangian sections 7 of M into its tangent bundle are equivalent to considering orthogonal
congruences of geodesics. More generally, consider Lagrangian submanifolds L C 7 M such
that the differential of the restriction of the projection @ : 7TM — M to L is generically of
maximal rank m. The points where the differential of the projection m when restricted to
L fails to have maximal rank are referred to as singularities of (L, ) or simply of L. These
singularities (called caustics in physics terminology) are the same as “focusing” of congru-
ences of geodesics. The focusing phenomenon is related to the notion of Jacobi field which
we will introduce shortly.

First we examine the two dimensional case. Let M be a surface with a Riemannian
metric ds? and v a function (defined on an open subset of M) such that the orthogonal
trajectories to ¢ = const. are geodesics. As noted in the subsection on Geodesics, we can
assume ds®(gradi, grady)) = 1 so that 1 is arc length along the geodesics v € T' (up to a
constant specifying the initial point). The curve defined by ¢ = ¢ will be denoted by M.. We
denote the family of geodesics orthogonal to the curves M. by I'. Now assume completeness
of the surface M so that geodesics orthogonal to M, can be continued indefinitely. The
family of geodesics I' defines the Lagrangian submanifold Ly C 7 M as

Lp = {(76(t), 76 (t)) }- (1.3.48)

Therefore completeness suggests that L can be extended by using the defining relation
(1.3.48). However, there is no guarantee that Ly thus defined is a submanifold and if so the
differntial of the projection 7 restricted to Lr has maximal rank. We will now show how the
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singularities of (Ly, ) can be explicitly described in terms of the metric ds®. After a change
of variable we can assume the metric and the curvature are

1 9°G

d2:d2 2d2 K=_-_--
8t = A + G, Goue

(1.3.49)
where 1 defines the orthogonal congruence of geodesics I'. Assume G(0, ¢) # 0, for ¢ in some
open interval (—e¢, €) which we identify with M., and let v = 7, be the geodesic orthogonal
to the curve M, and passing through the point ¢. Let « be a fixed geodesic orthogonal to
the loci » = const, and the coordinate ¢ on each locus M, : ) = ¢ be such that (¢, @) is
the point of intersection of 7, with M.. From (1.3.49) it follows that G satisfies an ordinary
differential equation along each geodesic v = v,, namely,

d*G

72 + KG=0. (1.3.50)
Here t is the arc length along the geodesics in I'. In this form the quantity'* G is meaningfully
defined along each v, and we can more easily understand its geometric significance. Initially
the function ¢ is defined only on an open set U C M. We can extend i by continuing it
along geodesics. This means that we want to define the value of ¢ at the point v4(¢) to be
t. Since a geodesic may re-enter the set U, this (at best) gives us a multi-valued function'?.
The quantity G may vanish at some points, but this vanishing is only apparent since ds?
is positive definite, and therefore the expression (1.3.49) for the metric is not valid when
G = 0. Nevertheless the points where GG vanishes have an important geometric significance.
In fact, the proof of lemma 1.3.7 shows that points where G vanishes are precisely the
points where the differential of m ;. fails to have maximal rank. The quantity G, defined
by the differential equation (1.3.50), is no longer dependent on the coordinate system and is
meaningfully defined on «. In view of the uniqueness of solutions and smooth dependence
on initial conditions of second order ordinary differential equations, Ly is locally a surface
with coordinates (t,¢), however, globally Lr is an immersed surface and may have self
intersections given by isolated closed geodesics. The following lemma clarifies the issue of
singularities of (Lr,m):

Lemma 1.3.7 Lr is a submanifold of T M and the differential of the restriction of w to Ly
has mazimal rank at all points where G # 0, i.e., (t,¢) fails to give on M precisely at points
where G vanishes.

1@ is a tensor component, and so we refer to it as a quantity rather than a function along ~.

12The function % is more naturally regarded as a function on L. This is reminiscent of the construction
of a Riemann surface from a polynomial in two variables. However the nature of singularities in this case is
quite different from that of functions of one complex variable.
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Proof - We have already proven the first assertion. The 1-forms w; = dy and wy = Gd¢ are
unit cotangent vectors to geodesics 74 € I' and the curves M, respectively. Taking (¢, ¢) as
coordinates on Lr, then the basic relation

dr = wi€1 + waka,

where z is a generic point of M expressed relative to the (t,¢) coordinates on Ly, implies
that at points where G' does not vanish the differential of the projection 7|z, has maximal
rank. &

Exercise 1.3.29 Let M C R? be a sphere with the induced metric from R®. Let p € S? and
¥(q) be the distance of p to q. Show that G vanishes precisely at the point p' anti-podal to p.
Prove that 7' (p') N Ly is a circle.

There is an inequality associated with congruences of geodesics which leads to an impor-
tant insight in Riemannian geometry. To motivate and describe this inequality intuitively
for surfaces, we look at a variation of a geodesic v € I'; i.e., we consider a 1-parameter family
of curves s such that 7, = v and the curves s are defined on a short interval [a,b]. Let J(4)
denote the length of the arc of the curve 75 on [a, b]. If the variation is such that 75 € T', then
we expect J”(0) = 0 where the second derivative of J is computed relative to the variation
parameter 0. On the other hand, if the variation ~s is no longer a geodesic, then we expect
J"(0) > 0. We now work out this inequality rigorously and then discuss an application of it.

It is convenient to introduce a new coordinate system which is better adopted to our
problem. Let v curves (i.e., curves t = const.) be the geodesics orthogonal to v with v
measuring (signed) arc length from 5. The orthogonal trajectories to the v curves are the
t-curves. The curve v = 0 is a geodesic but the curves v = ¢ # 0 may not be geodesics. We
have

Lemma 1.3.8 Relative to the (t,v) coordinates the metric takes the form
ds* = H(t,v)*dt* + dv?,
with H satisfying

oH
H(t,0)=1, —(t,0)=0.
L0)=1, 5 (1.0)
Proof - The fact the metric has the required form and H(¢,0) = 1 are immediate. If
91 (t,,0) # 0, then we may assume v — H(t,v)? is an increasing function of v € (—¢,€) for
t in a neighborhood of ¢,. Then it is a simple matter to construct a curve joining two pints



1.3. SPECIAL PROPERTIES OF RIEMANNIAN MANIFOLDS 303

v(t1) and 7(t2) near v(¢,) and of length < |ty — ;| contradicting the local length minimizing
property of geodesics.

Let v = v(t,§) be a 1-parameter variation of the t-curve v = 0 for § € (—¢, €) subject to
v(t,0) = ~(t). Let J(0) denote the length of the curve t — v(t,9) between 0 and a. Then
using lemma 1.3.8 we make the substitutions

2
v(t, ) = v(t,0) + 5%@ 0) +0(6%), H(t,v)=1+ %él(t,o) + O(6°),
in
b v\ 2
— 2 _
= / H? + ( at) dt
to obtain
62 9¢ 2 2 3
J(6) —a+ < i {(at) — K¢ ]dt+0(5 ),
where the Gaussian curvature K = —% along ~, and & = 5(t, 0). Therefore
1 o aé
J'(0) = 5 / [(815) - K¢ } (1.3.51)
Integrating by parts we obtain
2
J"(0) = ——/ 5(2; +K§)dt—i—£a§1 (1.3.52)

Notice that the integrand in (1.3.52) is £ times the differential equation (1.3.50) with &
replacing GG. The form of the extremal property useful for our application is the following
lemma:

Lemma 1.3.9 Assume & satisfies the differential equation (1.3.50) on an interval [a, b] with
£(b) = 0 and &(t) # 0 fort € [a,b). Then for any other quantity n with n(a) = &(a) and

n(b) = 0 we have
/a {(fﬁ) _ K¢ ]dtg /ab {(%)2—}(772] dt.
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Proof - Since ¢ does not vanish on [a,b), we write n = f¢&. Substituting and using the
equation & dt2 + K¢ = 0 we obtain

/ab [(%)Q—Kﬂdt:/a {(f §+df£) +f£ccz;§]

Integrating the term fab 3¢ %dt by parts and simplifying we obtain

b1 .d b d e’
[ |G- we|a= [ Greas peg] (1.3.53)
Substituting f =1 in (1.3.53) we obtain
T .d de1’
”/ ka%f‘—Kf}dt E&ﬂ (1.3.54)

Comparing (1.3.53) and (1.3.54) and using the boundary conditions we obtain the desired
result. &

Logically, the statement and proof of lemma 1.3.9 are independent of the computation
of the second derivative J”(0), however, the computation of the latter (formula 1.3.51)
motivates the lemma and will be used in its application. Let p € M and ¢ be the distance
function from p which implies that the metric has the required form given in (1.3.50). The
function 1 defines an orthogonal congruence of geodesics I' starting at p. Since M is assumed
to be complete, every ¢ € M lies on at least one geodesic v € I'. We say ¢ is conjugate to p
(along a geodesic 7 joining p to q) if there is a non-trivial solution to the differential equation

d2§
dt?

vanishing at p and ¢q. Here ¢ denotes the arc length along the geodesic v. In other words,
if G vanishes at ¢ then ¢ is conjugate to p, or ¢ is a point where (Lp, ) is singular. Notice
that G is now regarded as a solution to the differential equation 4 dt2 + KG = 0 extending
the metric coefficient G in ds? = di¢? + G?d¢? which is initially defined in a punctured
neighborhood U\p of p. The notion of conjugate point is related to the question of how far
along a geodesic v we can go while minimizing the distance between p and ~(t). This is a
rather difficult question and the following proposition gives a partial answer:

+KE=0 (1.3.55)

Proposition 1.3.6 Let M be a complete surface, p € M and v a geodesic with v(0) = p.
Then after passing through a point conjugate to p along v, the geodesic v no longer minimizes
the distance between p and ~y(t).



1.3. SPECIAL PROPERTIES OF RIEMANNIAN MANIFOLDS 305

Proof - Let v be a geodesic and assume a singularity of (Lr, 7) occurs at ¢ with ¢ = 7(§) =
v(b). We assume q is the first conjugate to p. Let a < b be sufficiently close to b so that all
points in the disc D of radius 2|b — a| centered at (b) can be joined by a unique, necessarily
length minimizing, geodesic lying entirely inside the disc. Let b < ¢ < 2b — a so that the
point y(c) lies beyond the conjugate point ¢ = v(b). Let & be a non-trivial solution to the
differential equation (1.3.55) vanishing at p and ¢, and ¢ be the solution to (1.3.55) defined
on [a,2b — a] with boundary conditions

¢((a) =&(a), ¢(2b—a) =0.

By taking |b — a| sufficiently small, we are ensured of the existence and uniqueness of ¢ from
elementary theory of linear second order ordinary differential equations. Define

fe ifo<t<a,
“Q_ﬂ-mem%—@

Consider the variation of the geodesic v defined by n as discussed above. Since the variation
depends on 7 (in (¢,v) coordinates n is 2%(¢,0)) and the end-points of the interval under
consideration we write J(0;7, [a, b]) rather than J(d) in order to specify all the data. Since
J"(0;&,10,b]) = 0 (see formula (1.3.52)) we have

J”(O; n, [07 2b — (l]) = JH(O; n, [07 20 — a]) - J”(O; 57 [07 b])7

which gives

J"(0;71,[0,2b —a)) = J"(0;¢, [b — a,20 — a]) — J"(0;&, [b — a,b]). (1.3.56)
Let £ be defined by
£ ¢ on[b—a,b,
10 on[b,2b—al.

Then from lemma 1.3.9 it folows that
J”<O; Cu [b - a, 2b — CL]) S J”<Oa 57 [b —a, b]) = J”(Oa 57 [b - a, b])7
and consequently
J"(0;7,[0,2b — a)) < 0. (1.3.57)

Hence 7 does not minimize the distance between p and v(2b — a). &

We need the following basic proposition, which is a special case of the Sturm Comparison
theorem, from the theory of second order ordinary differential equations to infer an important
geometric corollary from proposition 1.3.6:



306 CHAPTER 1. DIFFERENTIAL GEOMETRY ...

Proposition 1.3.7 Consider two differential equations
&5
qae?

on the same interval [a,b]. Assume 0 < Ky(t) < Ky(t) for t € [a,b] and a (non-trivial)

solution & with consecutive zeros at t1 <ty € (a,b). If the solution & vanishes at ty then it
also vanishes at t3 with t1 < t3 < ts.

+ K;(t)¢ =0, j=1,2,

Proof - Multiplying the equation for & by &, and the equation for & by &;, subtracting
and integrating we get

to 9
/t (Kz—Kl)ﬁlfzdt-i-/t {&Ciitf; &Oiltil} =0.

Now &; ddff &2 ddél = i( d& —& d&). Therefore using the boundary conditions at ¢; we

obtain

/tz(K2 — K1)&&dt — & (t2)6a(t2) = 0. (1.3.58)

t1

We may assume & > 0 on (1, 12), & > 0 near t; and £ (t2) < 0 since t; and ¢, are consecutive
zeros. Therefore &»(t2) > 0 which contradicts (1.3.58). &

Now we discuss some applications of propositlon 1.3.7. For the sphere of constant cur-
vature K the solutions of the differential equation ddf; + K& =0 vanlshmg at 0 are scalar
multiples of sin \/_ Kt, and therefore conjugate points are a distance = \F apart. It is convenient

to define the diameter of a Riemannian manifold M as

diam(M) = sup d(p,q),

p,gEM

where d is the distance function on M induced from the Riemanian metric. If a complete
surface M has curvature K,; bounded below by K > 0 then Sturm’s Comparison theorem
implies that conjugate points are at most a distance \F apart. Therefore

Corollary 1.3.2 (Bonnet) Let M be a complete surface with curvature Ky > K for some
constant K > 0. Then the diameter of M is bounded above by \/LE and M 1s compact.

Proof - We have already shown the bound for the diameter and compactness is by a standard
elementary argument. &
Using the Sturm Comparison Theorem twice we obtain the following corollary:
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Corollary 1.3.3 Consider the differential equation

d*¢

— +K@t)¢=0
on the interval [a,b]. Assume 0 < ky < K(t) < ko. If a solution £ has consecutive zeros at
ty <ty € (a,b), then

Ty <
Ve T T VR

Proof - Let Ky = ky in proposition 1.3.7 and solve the equation for 7 = 2 to obtain one
inequality. Proceed similarly for the second inquality. &
As a consequence of corollary 1.3.3 we obtain

Corollary 1.3.4 Let M be a surface with curvature K satisfying the bounds
0< ki <K <k

Let v be a geodesic on M parametrized by arc length with (t1) and y(ts), t1 < ta, consecutive
conjugate points along v. Then

U
Ve T T VR

An examination of the proof of proposition 1.3.7 shows that we have in fact proven more.
What is important for our applications is to remove the requirement that K; > 0 since we
want to understand conjugate points along geodesics on surfaces of non-positive curvature.
This case is much simpler since if —K > 0 then it is elementary that a solution of % =—-K¢

with initial conditions £(a) = 0, %(a) > 0, satisfies the inequality

&(t) >0, on (a,bl.
Therefore we have shown

Corollary 1.3.5 There are no conjugate points on a surface of non-positive curvature.

It should be emphasized that corollary 1.3.5 does not mean that a geodesic vy on a surface
of non-positive curvature is distance minimizing between all points «(a) and ~(b). The flat
torus provides such an example.

So far our analysis in this subsection was limited to the two dimensional case and was
based on the differential equation satisfied by the metric coefficient G (1.3.50). Next we
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derive the higher dimensional analogue of (1.3.50). For this purpose let, as before, 1 be a
function on M defining an orthogonal congruence of geodesics I'. We may assume gradiy
has norm 1 so that ¢ =t is also arc length along the geodesics v € I'. Let ey, -+ ,e,, be a
moving with e,, the unit tangent vector field to the geodesics in I' and the remaining e;’s are
obtaining by specifying them on a fixed hypersurface ¢» = 0 and parallel translation along
v € I'. The corresponding coframe is denoted as usual by wy, - ,Wm_1,wWn = dip. The
1-forms w1, - -+ ,w,;m—1 depend on ¥ but do not contain the differential di). The submatrix
(wij), 4,5 = 1,--+- ,m — 1, is the Levi-Civita connection of the Riemannian submanifolds
defined by v = ¢. They may depend on ¥, but do not contain the differential dvy> since
wjj(em) = 0 by the construction of the moving frame. Regarding w;, j =1,---,m — 1, as
1-forms depending a parameter 1, we obtain from dw; + Y wjr Awy =0,

dwj

From the defining equation of curvature
dLUjm + Z Wik AN Wekm = Qjm = — Z ijklwk AN wy.
k<l

and the fact that the differential di) does not appear in wj; for j, k # m, it follows that

dwjm
= ST R 1.3.60
dd] zl: Jml wi ( )

Comparing (1.3.59) and (1.3.60) we obtain

2
dwj

2

+ Z ijkmwk =0.
k

This is the analogue of (1.3.50) and is named after Jacobi who studied the two dimensional
case. We know from experience that it is convenient to look at this linear ordinary differential

equation more abstractly by regarding the quantities w;, j = 1,--- ,m — 1, as the unknows
which is justified since wy, -+ ,w;,_1 span an (m — 1)-dimensional vector space. Therefore
we write Jacobi’s equation in the form
d?¢; .
—5 + > Rjmim&e =0, j=1-+ m—1L (1.3.61)
k
In deriving equation (1.3.61) we made an arbitrary choice of orthonormal frame wy, -« - , Wy, 1

for the hypersurfaces M.. A change of frame by a gauge transformation A € O(m—1) (along
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7v) will replace (w1, - -+ ,wWm—1)" by A(wy, -+ ,wm—1)" where’ denotes the transpose of the row
vector. The symmetric matrix (Rmjm )i j=1,- m—1 is transformed into

Since (Rim;m) Is a symmetric matrix, by appropriate choice of gauge transformation we may
assume (Rjnjm) s a diagonal matrix. Consequently the coframe wy, - - - ,wy,—1 can be chosen
such that the system of equations (1.3.61) is decoupled into (m — 1) second order ordinary
differential equations:

P |
F‘Fijjmgj :07 J = 17 7m_1' (1362)

Note that relative to this (co)frame the components Rjjm, ¢ # j, of the curvature tensor
vanish. To extend the preceding theory to m-dimensional case we make use of the following
complement to the Sturm Comparison theorem, proposition 1.3.7:

Lemma 1.3.10 Consider two differential equations

% + K;(t)g =0, j=12
on the same interval [a,b]. Assume
1. 0 < Ky (t) < Ks(t) are continuous functions.
2. For some to, Ki(to) < Ks(t,).

3. & 1s a non-trivial solution solution of the second equation with consecutive zeros at
t1,to and a < t; < t, <ty <b.

Then a non-trivial solution & of the fist equation with & (t1) = 0 does not vanish in the
interval (ty,ts].

Proof - Proceeding as in the proof of proposition 1.3.7, we obtain

to
/ (K — K0)1adt + & (t2)E)(t2) = 0. (1.3.63)
t1

If & (t2) = 0 then (1.3.63) implies that &; changes sign on the interval (¢1,t5), and therefore
& vanishes at some point in (t1, ). Proposition 1.3.7 is applicable to show that ¢; < t5 are
not consecutive zeros of & contrary to hypothesis. &
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Analogues of corollaries 1.3.2 and 1.3.5 in arbitrary dimensions can now be obtained by
reduction to the two dimensional case and making use of example ?? and lemma 1.3.10. Let
M be a Riemannian manifold and v a geodesic with v(0) = p € M. Let e,, be the unit
tangent vector field to v, and e1(p),- - , e, (p) an orthonormal basis for 7,M. Let ¢ = v(b)
be the first conjugate point to p along v. Extend ei(p),--- ,e,(p) to a moving frame in a
neighborhood of v(t), 0 <t < b. Let wy,--- ,wy, be the dual coframe (on (0,b)). Without
loss of generality we may assume that §; = w;, j = 1,--- ,m—1, satisfy the decoupled Jacobi
equation (1.3.62) on [0,b] and with & vanishing at 0 and b. By example 1.2.25 the curvature
K of the surface

N = Exp,(se1), —e<s<e

along v is bounded above by the sectional curvature Ry,,1,, of M along v with equality if
and only if the vector field es is parallel along v in M. If e; were not parallel along v in M
then Ky < Rim1m at some point of . Then lemma 1.3.10 will apply to show that & cannot
vanish at y(b). Therefore

KN = lelm on . (1364)
With this observation the analysis of the two dimensional case becomes applicable to the

general case and it is straightforward to deduce the validity of the following corollaries:

Corollary 1.3.6 Let M be a complete Riemannian manifold with sectional curvatures bounded
below by a constant K > 0. Then diam(M) < = and M is compact.

The case of Riemannian manifolds of non-positive curvature is simpler, and one easily
shows that

Corollary 1.3.7 Let M be a Riemannian manifold of non-positive sectional curvature.
Then there are no conjugate on M.

Corollary 1.3.8 Let M be a Riemannian manifolds with sectional curvatures K satisfying
the bounds

0<k <K <k,.

Let v be a geodesic on M parametrized by arc length with v(t1) and y(t3), t1 < ta, consecutive
conjugate points along v. Then

— <t

™
-t £ —.
Ve~ T VR

We will return to the discussion of conjugate points in chapter 3.



1.4. GEOMETRY OF SURFACES 311

1.4 Geometry of Surfaces

1.4.1 Flat Surfaces and Parallel Translation

In this example we study flat surfaces M C R3 (flat means all sectional curvatures are zero
which in the case of surfaces is vanishing of curvature). Cylinders and cones are simple
examples of flat surfaces, and exercise 1.2.1(b) provides a non-obvious class of such surfaces.
There is a general procedure for (locally) constructing all generic flat surfaces. Let v be
a curve (parametrized by arc length) in R® which we assume is generic in the sense that
even locally it does not lie in any affine plane. Let ey, es,e3 be a Frenet frame for v as
explained in example 1.1.3. Consider the family of osculating planes to v, i.e., affine planes
with origin moved to the point (¢) and spanned by the vectors e;(t), e2(t). Thus we have a
one parameter family of planes defined by the equations

(x —(t)).es(t) = 0. (1.4.1)

The enveloping surface M., of this family of planes is obtained eliminating ¢ from (1.4.1) and
its t-derivative, namely

(x — (t)).ea(t) = 0. (1.4.2)

The surface M, is parametrically given by
x = x(t,u) = y(t) + uey(t). (1.4.3)

To compute the curvature of M, we note that the Riemannian metric on M, relative to the
2

parametrization (1.4.3) is given by (1 +17_2 }) where % is the torsion of the curve v (see

example 1.1.3) and depends only on ¢. By a linear change of coordinates t =t', u=1u' —t/,

the metric takes the form
(ul—t/)2
G
0 1

Applying exercise 1.2.1 we see that the curvature of M, is identically zero. Conversely,
consider a surface M C R3 with vanishing curvature. Let {e1, e, e3} be an orthonormal
frame for M diagonalizing the second fundamental form, and let e; be along the line of
curvature corresponding to principal curvature zero. Let v be a line curvature with tangent
vector field e;. From the structure equations we have des = wize; + wozes. Since the second
fundamental form is already diagonal relative to this basis, we have w3 = 0. It follows that

d€1 = Wy1€2
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Now under some genericity assumption, we may assume wo;(€e1) # 0 relative to this frame.
It then follows that the osculating planes are in fact tangent to the surface M so that M
is the enveloping surface of the osculating planes to . There are two degenerate cases to
consider, namely, (a) wo; = 0, and (b) wa; # 0 but we(e1) = 0. In the first case we have
de; = 0 and dey = wsse3. Therefore the integral curves of the vector field e; are straight
lines. Furthermore the plane spanned by ey, es3 is independent of the point z € M (x is
translated to the origin) and the integral curves for the vector field ey lie in this plane. This
makes M into a cylinder. By a similar argument one shows that in the second degenerate
M 1is a cone.

It is clear the developable surface M, contains the one parameter family of lines u —
v(t) + uei(t). A surface generated by the motion of a straight line (such as M,) is called
a ruled surface. It should be pointed out that, in general, a ruled surface is not flat. The
following example explains why a ruled surface may not be flat (see also exercise 1.4.1 in the
subsection on quadrics below):

Example 1.4.1 Let M C R? be a ruled surface given by
(s,0) — d(s) + v&(s),

where § is a curve in R and £(s) is a vector in R? with initial point d(s). Then the tangent
space to M at the point with coordinates (s,v) is the image of the linear map from R? to
R? given by the matrix

(0 +u€, &)

where § etc. denotes derivative of § etc. with respect to the variable s. Let L(s) denote
the line 6(s) + v€(s) as v varies and s remains fixed (called a ruling of the ruled surface).
If, for fixed s, the vectors 8, & and ¢ are linearly dependent, then the tangent spaces to M
along L(s) have the same normal. Consequently, the second fundamental form is a singular
matrix with the unit vector along L(s) an eigenvector for eigenvalue zero. This is the case
for a developable surface. However, for a general ruled surface, the vectors ) , 5 and & are
linearly independent. Then the normals to the surface along L(s) depend on v, the second
fundamental form will be a nonsingular matrix and M will have non-zero Gaussian curvature.

The notion of a developable surface and the above example can be used to give a precise
geometric interpretation to the concept of parallel translation along a curve on a surface
M C R3. Let § be a curve on the surface M C R? and consider the family of tangent planes
T5(yM to M along §. Denoting an orthonormal moving frame by fi, f2, f3 with f3 normal
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to M, the envelope of the tangent plane to M along ¢ is given by eliminating s from the
equations

(x—0(s).f5=0, (x— 5(5))-(W13(5)f1 + w23(5)f2) = 0.
Therefore it has the parametric representation
(s,v) — 6(s) + v&(s),

where £(s) = —w23(5)f1 + w13(5)f2. From dfs = > wpafp it follows that the coefficient of
f3 in f vanishes and consequently the vectors 5, ¢ and 5 are linearly dependent. Hence the
envelope is a developable surface by example 1.4.1!3. In view of the general construction of
flat surfaces, there is a curve 7 such that the envelope is of the form M, as described earlier.
The flat surface M, is tangent to M along the curve 6. On M, let (x,y) be coordinates
so that the metric takes the Euclidean form ds* = dz? + dy® (see exercise 1.2.15). Then
the connection form wy, for M, vanishes identically relative to the frame e;, e, parallel to
the coordinate axes in the (z,y)-plane. Clearly this frame extends to an orthonormal frame
e1, ez, e3, with eg normal to M,. The restriction of e;, ez, e3 to the curve § extends to an
orthonormal frame e/, €, €} for M. Let 045 be defined by the relation de/; = > 0pa€’s, then
612 is the connection form for M. Since M and M, are tangent along the curve § we have

012(5) = W12(5) = 0.

This means that parallel translation of the frame e, e along the curve § on M is the same
as Euclidean parallel translation in the (x,y)-coordinates which reduce the metric on the
developable surface M., (which is the envelope of the tangent planes to M along §) to the
Euclidean form dx? + dy?.

1.4.2 Quadrics

Quadric surfaces provide interesting examples of surfaces in R®. Understanding their geome-
try is a good demonstration of how a judicious choice of coordinates or frames is essential in
unravelling a geometric structure. We consider the quadric surface defined by the equation

2 2 2

X T X

1 2 3
Q: L4243

=1 1.4.4
b (1.4.4)

where we assume a; > as > az;ajasaz # 0 and a; > 0. If ag > 0 then @ is an ellipsoid; Q)
is a hyperboloid of one sheet if as > 0 > ag, and a hyperboloid of two sheets if a; > 0 > as.

13More generally, the envelope of a one parameter family of planes is a developable by a similar argument.
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One can parametrize () by using trigonometric and hyperbolic functions similar to the use of
polar coordinates on the sphere, however, relative to such parametrizations the metric will
be in non-diagonal form and computations appear to be intractable or extremely laborious.
There is a remarkable way of parametrizing ) which greatly simplifies the computation of
many quantities of interest which we now describe. Consider in addition to @) the family of
quadrics

L R B
ay + A as + A as + A

Q) : 1, (1.4.5)

where A is a parameter. In analytic geometry one refers to Q(M)’s as a family of confocal
quadrics. For each (x1, x9, z3) we define

o
=

€

q(\) = (a1 +AN)(ag+ M) (a3 + ) — 23 (ag+ ) (az+ ) — 25 (az +N)(ag +A) — 23 (a1 + N (az + ).
(1.4.6)
This is a cubic equation in A and for x = (z1, 29, x3) € @ one of its roots is A = 0. Note
the geometric meaning of ¢(A) = 0, namely, for fixed y = (y7,v5,y3) € @, substituting the
solutions A = u, v of ¢(A) = 0 (with y;’s replacing z,’s) in (1.4.5) we obtain equations of two
other quadrics, confocal with (1.4.4), and passing through the point y € Q). Therefore

q(A) = XA —u)(A —v), (1.4.7)

where u and v depend on x € ). We use (u,v) as coordinates on (). Expressing z1, g, x3 in
terms of (u,v) is a simple matter. In fact, substituting A = —a; in (1.4.6) and using (1.4.7),
we obtain

o ar(ay +u)(ay +v) o az(az +u)(ag +v) o as(asz +u)(as +v)

e (a1 — az)(ar — a3)’ 2o (a2 — ar)(az — as)’ e (a3 — a1)(as — a)

(1.4.8)

This parametrization is valid in every connected open subset of the region xyxoxs # 0. After
a simple calculation we see that the metric on () relative to this parametrization is given the
2 X 2 matrix

u(u—v)
ds? - (4(a1+u)(a20+u)(a3+u) U(vo_u) > . (1.4.9)
4(a14v)(az+v)(az+v)

Not only the metric is in diagonal form relative to this parametrization, the second funda-
mental form is also diagonal if we take frames along the curves v = const. and u = const.
Since this reflects a more general phenomenon we first make the following observation:

The quadric surfaces defined by (1.4.4) maybe regarded as part of the family (1.4.5).
Any two surfaces belonging to (1.4.5) intersect orthogonally in the sense that their normal
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vectors are orthogonal. This is proven by using (1.4.8) and the fact that the tangent plane
to the quadric Q(A) at the point (¢, ¢o, ¢3) is given by

1T, CoX2 C3T3
=1. 1.4.10
ap+X ax+A az+ A ( )

Since three quadrics (necessarily orthogonal) of the family (1.4.5) pass through every point
of the open subset of R? defined by x 2525 # 0, we say we have a triply orthogonal family of
surfaces. Let ey, e9, and es be a moving frame with e;’s normals to the three quadrics. Then
we have dz = Z?Zl wie;, and de; = 23:1 wjje;. Now set

wa3 = biwi + biows + bizws, wszy = bajwy + bagws + bagws, Wiz = bz1wi + bzaws + byzws

where b;;’s are functions on R®. Now consider the surface with normal e3, i.e. defined
by the equation w3 = 0. Then recall that the second fundamental form of this surface
is obtained by looking at 0 = dws = w3 A Wi + we3z A wy valid on the surface, and using
Cartan’s lemma to conclude from the structure equations that w3 = Ajjw; + Ajaws, and
woz = Agiwi + Agaws with Ajp = Agy. It follows that by; = —byy. Similarly by looking at
the surfaces with normals e; and ey we conclude that byy = —bs3 and by = —bss. Therefore
b1y = byy = b3z = 0. Substituting in the matrix of the second fundamental form we see that
Ay = 0. Therefore we have shown

Lemma 1.4.1 The moving frame e, es, e3 consisting of normals to a triply orthogonal family
simultaneously diagonalizes the second fundamental forms of the surfaces.

Since the the quadrics (1.4.5) define a triply orthogonal family, we conclude from lemma
1.4.1 that by taking e; and e; be along the v = const. and u = const. curves we diagonalize the
second fundamental form. Having made this general observation we proceed to compute the
second fundamental form and the principal curvatures of a quadric surface. It is convenient
to introduce the quantity [ which is the length of the perpendicular from the origin to the
tangent plane to @ at (¢, c2,¢3) € Q. From (1.4.10) and (1.4.8) it follows easily that

1 & & uv

l_2 N aq (05} as alagag'

ley leg leg

a1’ a2’ as
. _ u(u—ov) _ v(v—u)

that relative to the coframe w; = \/4(a1+u)(a2+u)(a3+u) du and wy = \/4(a1+v)(a2+v)(a3+v) dv, the

matrix of the second fundamental form is

1 a1asas3 0
(u\/ouv ; “lfji‘”)' (1.4.11)

Therefore the unit normal ez to @ is e3 = ( ). It is a straightforward calculation
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It follows that the mean and the Gaussian curvatures of the quadric surface are

1 1 4
H= (-4 ), 8%% o 0% _ (1.4.12)
u v uv u2v? ai1a2as

Exercise 1.4.1 Let Q. be the quadric % + x3 — x5 = 1. Show that for every point P € Q.
with coordinates (a,b,c), ¢ # 0, there is point P' € Q. with coordinates (cos 3,sin 3,0) such
that the line joining P to P’ lies entirely on QQ,. Therefore Qo is a ruled surface of non-zero
curvature. Show that the same is true for all hyperboloids of one sheet.

2
3

Exercise 1.4.2 Consider the paraboloid defined by the equation Q) : % + 4x3 where

as > ay and as > 0, and the family of quadric surfaces defined by

a2

71 75

ap — A + a9 — A
For fized (1, x9,x3) € Q(N), the equation

Q) :

g\ E 22(as — A) + 22(a1 — A) — 4(zs — N(ar — N)(az — A) =0

has three roots, one of which is 0. Denote the other two roots by u and v. Show that (u,v)
can be used to parametrize Q) as

day(ay — - dag(ay — .
22 = ai(a; —u)(ay v)7 22 = as(as — u)(az v), f—ut v a
Qs — A a1 — a2

Show that the matriz of ds? relative to this parametrization is given by

u(u—v)
((al—U)(@—U) (O_ | )
0 (a1—v)(az—v)

Prove that relative to the coframe w; = ,/%du, Wy = 1/%% the matriz

. . . . L a1as L aiaz
of the second fundamental form is diagonal with eigenvalues 5-/*%2 and 5-./“** whence

calculate the mean and Gaussian curvatures of Q. Show also that the family Q(X\) is a triply
orthogonal family of surfaces in R3.

Geodesics on a quadric surface, especially an ellipsoid, have particularly interesting features.
To understand their behavior, it is convenient to introduce the notion of Liouville-Stackel
metric. Let ¢;; be functions on R™ (with coordinates uy, - -+ ,u,,) and the properties

¢i; is a function of w; only, det(¢;;) = @ # 0.
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Let ®;; denote the (i, j) cofactor of the matrix ¢ = (¢;;) so that ® = . ¢;;®;;. A Rieman-
nian metric of the form

1
2 _ 2
ds* = EZ (I)“dui (1.4.13)

is called a Liouville-Stickel metric. (We have changed notation from (u, v) to (uq, - , uy) to
emphasize the greater generality of Liouville-Stéckel metric.) The case of immediate interest
to us is

Exercise 1.4.3 Show that the metric on a quadric surface is a Liouville-Stdckel metric by
writing it in the form
o1 P; o1 Ox

ds® = gy1du? + goodu’® = 2 IEYdu? + = IVl
it 7 922ty le2(@512 ¢22) ! ¢22<¢12 ¢22> 2

Exercise 1.4.4 Let M be a surface with a Riemannian metric g, and assume that M admits
of a nontrivial one parameter group of isometries. Show that one can choose coordinates such
that the metric becomes of the Liouville-Stdckel type.

The importance of this metric is exemplified by the following exercise:

Exercise 1.4.5 For a surface with a Liouville-Stdckel metric, show that the function

¢21 du, 2 ¢11 dus 2
L=gn——(— — (=
911¢22( ds) +g22¢12( ds)

is invariant under the geodesic flow, where s denotes arc length along a geodesic (u1(s), us(s)).
(Calculate % using the symplectic form of the equations of geodesics.

Exercise 1.4.6 The Poincaré metric on the upper half plane is of Liouville-Stdckel type.
Identifying the unit tangent bundle of the upper half plane with SO(1,2) = SL(2,R)/+I
(see example 1.3.2), show that

L‘((Z Z)):c%ﬂ, for (‘CL 2) € SL(2,R).

Prove also that if a geodesic v on the upper half plane intersects the real axis at A and B,
then L(v) = (A—B)~2. (While the geodesic flow on the entire upper half plane is completely
integrable, on compact or finite volume quotients I' \ Hs, it is not integrable. This fact is
reflected in the high degree of non-invariance of the function £ under any sufficiently large
discrete subgroup of SL(2,R).)
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While the preceding exercise shows that the function £ is invariant under the geodesic
flow, there is a conceptual way of understanding this invariance property which sheds light
on the structure of the geodesic flow for a Liouville-Stéackel metric. For simplicity of notation
set

U= =P =gy, by = 6
P12 P22
Then the metric (1.4.13), in the case of a surface, takes the form
d82 = (Ul - UQ)(hldU% + hzdug),

where U;, h; is a function of u; only. To understand the structure of geodesics for this metric
we use condition e of the subsection “Geodesics”. It follows from this condition that the
orthogonal trajectories to the curves 1) = ¢ for a function v satisfying the differential equation

1 1 00, 1,00,
- —(— =1
Ul—UQ h1<8u1) +h2 (9u2 ’

(1.4.14)

are geodesics. The differential equation for 1) can be written in the more convenient form

L0 L W,
Ui = (G = Ut j(5o)” (1.4.15)

This equation can be integrated since its left (resp. right) hand side is a function of u; (resp.
ug) only. Therefore for every fixed number L the equations

1 o

2
— (V= = (T
Ul ( ) U2+h2(6u2

)2, (1.4.16)

define a function ¢ = ¥ = ¥i(u;) + Po(ug) such that the integral curves for its gradient
vector field are geodesics. Explicitly we can write

1/)(U1,U2) = / \/hl(ul)(Ul(ul) - L)dul + / \/hQ(UQ)(L - UQ(UQ))d'UQ, (1417)

where the integral sign means an indefinite integral. Clearly the constant L is invariant
under the geodesic flow. To better understand the meaning of L, we first prove the following
simple lemma:

Lemma 1.4.2 The geodesics of the metric ds?, orthogonal to the curves 1y, = c, are given
by the differential equation

\ hQ(Ul - L)dUQ -\ hl(L - UQ)dlLl =0.
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Proof - We write the metric in the form

d82 = (\/ hl(Ul - L)du1 + hQ(L - Ug)dU2>2 + (\/ hg(Ul - L)dUQ -\ hl(L - UQ)dU1)2.

The first square is di)?, and naturally we seek functions G and ¢ such that ds? = diy)* +Gdp?.
It is easily seen that we can set

h Vha
G(uy,ug) = (Uy(uq) — L)(L — Us(ug)), dp = ———=du; — ——
(1,1) = (Us o) = L)(L = V(). dp = Aty — 2
to obtain the required form for the metric (note that dy is closed so that ¢ exists). The
orthogonal trajectories to 1) = ¢ being geodesics (see proposition 1.2.3), we obtain VGdp =0
as the differential equations of geodesics which is the desired result.

du27

Now let 6 be the angle between a geodesic (with arc-length s) and the curve us = c.
Clearly

du ) du
cosb = hl(Ul —Ug)d—sl, sinf = hQ(Ul —Ug)d—; (1418)
Combining lemma 1.4.2 and (1.4.18) we obtain
cos B sinff 0
VOL-L VL-U,
which implies
L =U,sin®0+ Uycos’6 = L. (1.4.19)

This gives the important interpretation of the function £ and that its invariance under the
geodesic flow is immediate since it is equal to L. We can now give an explicit description of
the the tori N, of proposition ?7. In fact, for every regular value L of £, the integral curves
of gradiyp, lie on the torus Ny, and the torus Ny, consists of the orthogonal trajectories to the
curve(s) ¢, = c. It remains to determine the regular values or critical points of the function
L.

It makes more sense to determine the critical points of £ in a global setting when the
manifold or surface M is given rather than when only local information about the metric is
available. Thus we restrict ourselves to the case of the ellipsoid @) (1.4.4). The coordinates
(u,v) are valid in each connected open subset of z1z523 # 0, and in each such open set we
have U; = u and Uy = v. Therefore

dL = sin? Odu + cos® Odv + (u — v) sin 20d0,
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and dL # 0 in the region xjzox3 # 0. To understand the behavior of the function £ in a

neigborhood of x3 = 0, we note that A = —ag is a root of the equation ¢(\) = 0 when z3 = 0.
In view of (1.4.8) we make the substitution v = —as + y* which yields the expression
L = usin®f + (—az + y*) cos? 0. (1.4.20)

It follows that dL = 0 for y = 0 and # = 0. This means that for z3 = 0 # x1x4, the arc of

the ellipse % % = 1 together with the unit tangent vector field to it, is a curve in the unit
tangent bundle which is critical for the function £. Similar considerations apply to the arcs
x9 = 0 # x123 and x1 = 0 # xox3. There still remain six points which are the intersections
of the ellipsoid with the coordinate axis. We make make the substitution u = —ay + 22 and

v = —az + y? in a neighborhood of the point z; = £,/a; to obtain
dL = 2zsin® 0dz + 2y cos® Ody + (as — ag — y* + 2*) sin 20d6.

Therefore the critical points of £ in the fibres of the unit tangent bundle over the six points
are the directions § = 0,47, 7. Thus the critical points (or manifolds) of £ is exactly six
disjoint circles in the unit tangent the ellipsoid. This completes the description of complete
integrability of the geodesic flow on the unit tangent bundle of the general ellipsoid ) with
ay > as > asg > 0.

Complete integrability of the geodesic flow is related to the question of the existence of
closed geodesics. To demonstrate this relationship, we consider the ellipsoid () for which
we have a reasonably clear picture. The geodesic flow leaves each torus N, of proposition
?? invariant and is linear. Therefore if for some N, the geodesic flow on N, has a periodic
orbit, all the orbits on N, are closed and we have a continuum of closed geodesics with
the same period. The three distinguished closed geodesics which are the intersections of
the hyperplanes x; = 0 with @), all lie on degenerate tori N, since L is critical on these
geodesics. Therefore we cannot yet conclude the existence of closed geodesics, other than
the three distinguished ones, from the above analysis. The conclusion that there are in fact
continuums of closed geodesics on an ellipsoid requires further analysis to ensure that the
geodesic flow is “rational” relative to the period matrix of the given torus. This is achieved by
showing that if the period matrix of the tori N, are normalized so that N, becomes isometric
to the standard torus represented by the unit square, then the angle that the geodesic flow
makes with the x-axis changes continuously with ¢ and is not constant, and in particular
there are many ¢’s for which the flow is rational.

The geodesic flow is in general not completely integrable and the existence of closed
geodesics on Riemannian manifolds is best treated by other techniques.

Remark 1.4.1 The Liouville-Stackel metric can be used to establish complete integrability
of the geodesic flow on an ellipsoid in R™*!. The metric on a quadric in R™*! can be
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put in the form (1.4.13) by using m + 1-tuples of orthogonal quadrics. One then exhibits
m — 1 functions which together with £ (which is the Riemannian metric) give complete
integrability. These functions are

=1

The detailed verification of complete integrability and the structure of the critical manifolds
will not be discussed here. The ingenious ideas in unravelling the geometry of quadric
surfaces are substantially due to Jacobi.

q)U (dul )2
(@) dt "~

for =2,---,m.

1.4.3 Isothermal Coordinates

We show that any Riemannian metric on a surface is (locally) conformally flat, which means
that it has local expression of the form

ds? = eV (du? + dv?), (1.4.21)

where o(u,v) is a real-valued function. Coordinate systems where the Riemannian metric
has expression of the form (1.4.21) are called isothermal coordinates. To prove the existence
of isothermal coordinates, we start with the metric in the form ds? = w? + w? where wy,wy
is an orthonormal coframe. Set ¢ = w; + iwy. We have

Lemma 1.4.3 There is locally a complex valued function a(u,v) of two real variables u,v
such that ¢ = adw where w = u + 1v. Consequently,

ds* = op = |a*(du® + dv?)
exhibiting the metric in isothermal coordinates.

Proof of Lemma 1.4.3 - By elementary theory of ordinary differential equations in the
plane, there is an integrating factor p # 0 such that p(w; + iws) is an exact differential dw.
Since

dw A dw = (—24)|p|*w1 A wo,

the change of variables to (u,v) coordinates, where w = u + v, has nonvanishing Jacobian
and is permissible. The second assertion follows from the first. &

Exercise 1.4.7 Compute isothermal coordinates for S* C R3 by stereographic projection
and implementing the proof of lemma 1.4.3.
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Remark 1.4.2 The above proof of the existence of isothermal coordinates (or the inte-
grating factor) requires the metric to be of class C?. While the assumption of C? can be
weakened, the proof becomes considerably more elaborate, and the result is false if we assume
mere continuity of the metric (see [Chl]). ©

One important implication of the existence of isothermal coordinates is that a Riemannian
metric on an orientable surface M gives M the structure of a complex manifold of dimension
1. In fact, we set w = u + v where u,v are isothermal positively oriented coordinates on
M. Any positively oriented change of coordinates which preserves the conformally flat form
of the expression of the metric (i.e., positively oriented isothermal change of coordinates)
is a conformal orientation preserving map of a domain in R?> = C into C and is therefore
complex analytic by elementary complex function theory. This gives M the structure of
a complex manifold of dimension 1. It is useful to express the complex structure on an
orientable surface defined by a Riemannian metric in terms of a moving (co)frames.

Lemma 1.4.4 Let ds*> = w? + w3. Then a function f defined on an open set U C M is
holomorphic relative to the complex structure defined by ds* if and only if df = g(w; + iws)
for some function g on U, i.e., the -component of df vanishes. Similarly df = g(w; — iws)
for some function g on U if and only if f is antiholomorphic.

Proof - Since the lemma is obviously valid for the coframe w; = e’du,w; = e’dv where
ds? = ¥ (du® + dv®) (isothermal coordinates), it suffices to to establish its invariance under
positively oriented orthonormal change of frames. For the coframe

01 = cos B wy —sin B wq, By =sin wy + cos [ wa,

we have 0 + 10y = e (w; + iwy) which is the required invariance. Q E D

In particular, consider the sphere S? C R3, then the complex structure on S? from the
induced metric is defined by the 1-form wi3 + iws3 in the notation of example 1.2.1. An
important but simple consequence of this observation is the following:

Corollary 1.4.1 The Gauss map g : M — S?, where g(x) = e, of a minimal surface is
antiholomorphic.

Proof - To obtain the coefficients of the second fundamental form we may write w;3 instead
of g*(w;3). Then, by (1.2.5) and the minimality condition A;; + Ay = 0, we have

w13 + iWQg = (All + iAlg)wl + i(Agg — iAlg)LUQ = (All + iA12)(w1 — iwg),

which proves the antiholomorphy of the Gauss map.
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Example 1.4.2 One should note that in general it is not true that dz = w; + iwy where 2
denotes a coordinate function on the surface M. In fact, for M = S?, we have w; = dy and
wy = sin pdf. Now if dz = wy + iws then ddz # 0 which shows that dz # w; + iwy for any
coordinate function z. &

Exercise 1.4.8 Show that the antipodal map of S? is anti-holomorphic.

Exercise 1.4.9 Show that the standard cylindrical coordinates are isothermal for the surface
of revolution f(z3) = +/x3 + 2% Compute the metric in isothermal coordinates for the
catenoid defined by cosh xz = /2?2 + 23. Find isothermal coordinates for the helicoid defined
by the equation zytanxs = x1, and compare it to the metric for the catenoid. (One such
parametrization is x; = sinhusinv, xy = sinhwucosv, z3 =v.)

Exercise 1.4.10 Let M C R3 be the graph of a function z = z(x,y). With the notation of
exercise 1.2.2, define

1 2 1 2
n:idx#—Ldy, <:—pq d:r+—+q
V1+p?+¢? V1+p?+¢? V1+p?+¢? V1+p2+¢?

Show that dn = qH, and d¢ = —pH where H is the mean curvature of M (see ezercise
1.2.2). Therefore n and ¢ are closed if M is a minimal surface. Now assume that M is a
minimal surface and let f and h be functions such that n = df and ¢ = dh. Show that

dy.

w=x+ f(x,y), v=y+h(z,y)

are isothermal coordinates for M, and with respect to the (u,v) coordinates, and the metric
takes the form

B 1+p* + ¢
24P+ @+ 2/1+p* 4+ ¢?

and the Jacobian of change of variables is

ds* (du® + dv®),

A(z,y) Vit @

Just as harmonic functions of two real variables are closely connected to complex analytic
functions, harmonic maps of surfaces are related to holomorphic maps. To understand this
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connection, we let f : M — N be a mapping of surfaces with Riemannian metrics in
isothermal coordinates given by

ds3; = 2@V (dx? + dy?),  ds3 = 2 (du® + dv?). (1.4.22)

Then as noted earlier z = z + iy and w = u+ v are complex analytic coordinates on M and
N respectively.

Exercise 1.4.11 Let the metrics on M and N be given by (1.4.22). Set w = wy + iwy =
e” @V dr+ie” @Y dy and a similar expression for 6. Show that dw+iwy Aw = 0 and a similar
equation for d. Define f, and fz by f*(0) = fow + faw. Proceeding as in the definition of

the coefficients i define fow, oo, fow and fzz, and show that f,o = fo.. Prove that f is
harmonic if and only if f.o = 0. (This maybe regarded as the analogue for the expression
2

”?_ _ 9 9
48z82 T Ox? + 8y2')

We set w = wy + iwq, 0 = 01 + 10y and define f,,, f5 etc. as in exercise 1.4.11. Consider
the quadratic differential o
U = f,fw’ (1.4.23)

It is a simple matter to see that W is invariant under gauge transformations A : N — U(1)
and p : M — U(1). Therefore ¥ does not depend on the choice of frames on M and N.
Taking exterior derivative of f*(f) and using Cartan’s lemma in the familiar fashion we
obtain

dfw+ifww12_ifwf*(012) = fwww+fwoiwa df@ +'L.fLZJW12_Z.fLZJf*(012) - fwww‘l'fww@’ (1424)

with fz, = fus. As shown in exercise 1.4.11 harmonicity is equivalent to f,; = 0. We can
choose gauge transformations such that wq, and 65 vanish at given points in M and N. It
then follows that vanishing of f, . at x € M is equivalent

df, = foww, and dfy = fozw at x € M.

In view of the independence of ¥ from the choice of frame (gauge transformation), this
means

Proposition 1.4.1 V is holomorphic if and only if f is harmonic.

Remark 1.4.3 Exercise 1.4.12 below gives the coordinate version of the calculation leading
to proposition 1.4.1. The reason for including it is to demonstrate the greater simplicity and
transparency that one often achieves by using moving frames rather than coordinates. ©
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Exercise 1.4.12 Show that harmonicity of f can be expressed by the equation
2
o°f 5 dp of of 0

9205  “Owdz 07
1/ 0 0

where z = x4+ iy, w =u+iv, £ = (2 + i%) and £ = (2 — ig,) relative to isothermal

coordinates given by (1.4.22). Show that for a harmonic mapping the quadratic differential

of af
_ 20(f(z) 2 FI 4.2
U=c " Zdz

18 holomorphic.

Since we have not developed the basic facts regarding complex manifolds even in di-
mension one, we cannot yet exploit the implications of holomorphy of W. For example,
anticipating the elementary fact that that there are no holomorphic quadratic differentials
on CP(1) ~ S? (which will be discussed in volume 2) we see that for every harmonic map
f: 5% — 52 we have ¥ = (. Consequently f is either holomorphic or antiholomorphic.
This maybe regarded as an analogue of the fact that harmonic functions in the plane are
representable as a sum of a holomorphic and an antiholomorphic function.

Example 1.4.3 The existence of isothermal coordinates allows us to extend the isoperimet-
ric inequality to negatively curved surfaces (at least locally). We assume the metric is in the
form ds* = e7?(dz? + dy*) and note that the curvature of the surface is given by e*’Ap < 0
by assumption. Let I' be a simple closed curve on M enclosing a relatively compact open set
D. Since our considerations are local at this point we may assume D C C with piece-wise
smooth boundary I'. The area of D and length of v are given by

S :/ e~ 2PV dx Ndy, L= /e_p\/de + dy?. (1.4.25)
D

Let 1 be the harmonic function on D with boundary values given by rho. Let ¢, be the
conjugate harmonic function so that ¢(z) = ¢1(2) + i¢a(z) is holomorphic. Consider the
mapping F' : D — C defined by

where z, € D is any fixed point. Then F’ is nowhere vanishing and we obtain a diffeomor-
phism of D onto a region D’ bounded by a curve I". The area of D" and length of I are

given by
S = / e 2@V g ANdy, L= [ e ' \/da? + dy?. (1.4.26)
D
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Since ¢y is harmonic with boundary values p, we have
o1—p=0 onT, A(p—¢1) <0 in D,
which implies p > ¢y in D. It therefore follows from (1.4.25) and (1.4.26) that
S<S, L'=L.

Thus isoperimetric inequality for the Euclidean plane implies the analogous result for nega-
tively curve surface, viz.,

L
S<—.
~Ar
Of course our considerations were purely local. The same inequality is valid in general if we
require the surface to be simply connected. This notion is introduced in chapter 4. There

are many generaliztions of the isoperimetric inequality to Riemannian manifolds (see e.g.
[Cha] and references thereof). #

1.4.4 Mean Curvature

In example 1.2.6 we showed how one can construct surfaces of revolution with prescribed
mean curvature. The construction was local in nature. In the constant curvature case,
the differential equation has an remarkable geometric interpretation which was discovered
by Delaunay. We present below Delaunay’s ingenius geometric construction of a complete
surface of constant mean curvature other than the sphere.

Let I' be a simple closed convex curve in the plane. We fix a point () in the interior of
I' and let L be a line tangent to I' at some point P € I'. Since I' is convex we can imagine
the rolling motion of I on the line L. Let s denote the arc length along I" measured from P
and P, € I' denote the point whose distance from P along I'; moving in the counterclockwise
direction, is s. We assume the rolling motion of I' on L is such that the point of contact of
I' with L moves counterclockwise on I'. The curve I'y differs from I' by a proper Euclidean
motion g € SE(2) and we can assume g, depends smoothly on s with g, = id. Then
s — ¢s(Q) describes a curve I' in the plane which we refer to as the roulette of I' (relative
to Q). We want to study the mean curvature of the surface obtained by the rotation of IT”
around the line L. It is convenient to introduce a new Cartesian coordinate system with
the positive z-axis being the line L pointing in the direction of the rolling motion of I', and
choose y accordingly. Let I' be described by a parameter ¢ and s(¢) denote the distance
along I" of the point corresponding to parameter ¢ to P. We let (z(¢),y(¢)) denote the
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coordinates of gy (Q) in the (x,y) system. Denoting the point on I' by p(¢), we obtain

2(6) = 5(6) — p(@ &p; \/ Ip(é (p;E;W (1.4.27)

where - denotes the standard inner product on R?* with gy4)(Q) as the origin (see figure
(XXXX)). Notice the appearance of the term s(¢) in the expression for z(¢) reflects the
rolling motion of I', and the validity the expression for x(¢) is immediate. To prove the
formula for y(¢), let e1(¢), e2(¢) be a moving frame with e;(¢) tangent to I'ys). Then the
expression for y(¢) follows easily from

p(9) - p(0) = (p(9) - €1(9))* + (p(9) - e2())*. (1.4.28)

I's4). We now calculate the differential equation satisfied by the roulette I". In fact differ-
entiating (1.4.27) we obtain

d d
= —rp(9) - ea(0). o =

where x denotes the curvature of the curve I". Therefore

= kp(¢) - e1(9), (1.4.29)

dy p-e
— = . 1.4.
dx D ey (1.4.30)
From (1.4.28) and (1.4.30) we obtain
21 () =y (1.4.31)
dz

In cases when one can obtain a reasonable expression for p-p, this differential equation gives
decisive information about I'" and the surface obtained by rotating it around the z-axis. This
point is demonstrated by the following example and exercise 1.4.13 below:

Example 1.4.4 Now specialize to the case where I' is the ellipse

p(¢) = (—c+ acosp,bsing),

that is, I' is the ellipse with major and minor axes 2a and 2b and foci 2¢ apart where
c? = a® — b%. This parametrization refers to the Cartesian coordinates with the origin at one
of the foci and we let @) be the other focus. We can easily calculate y in terms of ¢ from
(1.4.27) and obtain

b2 .2
cos ¢ = H. (1.4.32)
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Substituting in p - p = (a — ccos ¢)? to eliminate ¢, (1.4.31) yields

@)2 2ay

1+(dx =B

(1.4.33)

as the differential equation for the roulette. We would like to compare this differential
equation with (1.2.14), however, the latter is a second order equation. When H is constant
(1.2.14) can be simplified. In fact, multiplying both sides of (1.2.14) by f" we obtain

_1 _3
2 2
2Hffl:f/(1+f/2) _fflfl/<1+f/2> )

The right hand side is the derivative of f(1 + f2)~2, and therefore we can carry out an

integration to obtain
df\? 2f
1 — ) = —— 1.4.34
* (dx) 2H f2 + ( )

where 7 is a constant of integration. Comparing (1.4.33) with (1.4.34) we conclude that Mrp
has constant mean curvature. The solution obtained in example 1.2.6 was local, however,
since we can roll the ellipse in either direction indefinitely, Delaunay’s construction, in the
constant mean curvature case, gives a complete surface. #

Exercise 1.4.13 By adopting the argument of example 1.4.4, show that when " is a parabola,
and Q) is its focus, then I is the catenary

x
y = ccosh —,
c

and the surface obtained by rotating I around the x-axis is a minimal surface.

To discuss some integral inequalities involving the mean curvature we begin with the
following lemma:

Lemma 1.4.5 Let U C R? be an open relatively compact subset with smooth boundary
OU = M, and G : M — S? the Gauss map assigning to each point of M the unit outward
normal. Let M, denote the subset of M with non-negative Gaussian curvature. Then the
restriction of G to points with Gaussian curvature k > 0 is onto S?.

Proof - We give an intuitive proof. It is no loss of generality to assume that the origin lies in
U. Let e € ™, and P, denote the hyperplane with normal e and distance r from the origin.



1.4. GEOMETRY OF SURFACES 329

For R sufficiently large PR N U = (). Let r, be the infimum of all » such that P, N U = 0.
Then P, is a tangent space to M, and M lies on one side of P, so that s is non-negative
on P,, N M. In fact if P,, N U = () then for r in a small neighborhood of 7, we would have
P.NU = (. The infimum requirement on 7, implies that M lies on one side of P, and
P..NU C P,, so that P, is a tangent space. Therefore the restriction of G to M, is onto.
)

Let M C R? be a compact (embedded) surface so that it bounds an open relatively
compact subset U, and x; = max(0, k) where x denotes the Gaussian curvature of M. Since
G*(dvs2) = Kkw; A wy, and by lemma 1.4.5 the restriction of G to M, is onto S? we obtain

/ Kyduoy > 4. (1.4.35)
M

We can now prove

Corollary 1.4.2 (Willmore) For a compact embedded surface M C R3 we have

/ H2d’UM 2 47T7
M
where H denotes the mean curvature of M.

Proof - We have

K1+ Ko)? K1 — Kog)?
H2:(142) =/€1/€2+(142)

Therefore H? > k and the required result follows from (1.4.35). &
Related to corollary 1.4.2 is the Willmore conjecture that for an embedded torus M C R?
we have

/ H%dvy, > 272, (1.4.36)
M

Many special cases of this conjecture have been verified.

There are inequalities analogous to the isoperimetric inequality but involving the mean
curvature of a surface or hypersurface. A particularly useful one is due to Ros which we
now describe. Since the proofs of these facts for hypersurfaces are almost identical to those
for surfaces we work in the more general framework of hypersurfaces. Let M C R™*! be
a compact connected hypersurface bounding a region U (0U = M). For a point x € U let
dy(x) denote the distance of x to M, i.e.,

dy(z) = inf d(z,y),
where d(x,y) denotes the Euclidean distance between z and y. The following geometric
lemma is an important observation:
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Lemma 1.4.6 Let U C R™" be an open relatively compact subset with smooth boundary
oU = M. There is a compact set C C U of measure zero such that for every x in the
complement of C in U, dy(x) is realized by a unique point y(z) € M.

We shall not give a proof of this intuitive lemma. It is clear that if dy(x) is realized by
more than point y € M, then for every z # = on the ray joining = to any such y, dy(z) is
uniquely realized by y. This observation may be used to give a formal proof of lemma 1.4.6,
but the details are not relevant to our context and will not be discussed here. The structure
of the set C' can be quite complex and reflects the topology of M, but this is not the issue
at this point.

We denote a general point of M by p and let e; --- ,e,,11 be a moving frame with e,, 4
the unit normal to M pointing to the interior U. The open set V' = U\C has parametric
representation

x = p+tes(p),

where the domain of ¢ is an interval (0, ¢,) which depends on p. This parametrization means
that for every x € V we let p € M be the unique point realizing dy(x). Taking exterior
derivative we obtain

dr = wiey + -+ wWmem + tdey, 1 + dteg, .

Writing dei1 = w1 me1€1 + -+ Wi ma16m and expressing w;,+1 in terms of the second
fundamental form of the hypersurface M, we obtain the following expression for the volume
element on V:

m

dv=(1—-mtHpn) + (2

)t2H(2)+--~)w1/\---/\wm/\dt,

where Hy = H (mean curvature), Hy),--- are the normalized elementary symmetric func-
tions of principal curvatures of the hypersurface M. Therefore setting

A_/ (1—mtH + <Tg>t2H(2)+...)dt,

we obtain
VOl(U):/ Advyy. (1.4.37)
M

We have the factorization

1 —mtH + (Z”)#H(z) o= (1= kt) - (1 — Kpt),
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and in view examples 1.1.1 and 1.2.20 we have

1 1

.. ’_]/-gm|

). (1.4.38)

It follows that each term (1 — k;t) in the integral defining A is positive. By the arith-
metic/geometric mean inequality we have

(1 —ket) - (1 = Kpt) < (1 — H)™.
It also follows from (1.4.38) that ¢, < %, and consequently

1

H 1
A</ 1—tH)"dt = ————.
— . ( ) (m _'_ 1)[_]’(1)
Therefore (1.4.37) implies
ol(U) < L / ! ARERW (1.4.39)
v Srily 7! Win.- 4.

We can strengthen the above conclusion as

Proposition 1.4.2 Let M C R™" be a compact surface bounding a region U. Then (1.4.39)
holds with equality if and only if M is a sphere.

Proof - It only remains to prove the assertion about equality. Clearly equality holds for a
sphere. In view of the application of the arithmetic/geometric mean inequality in the proof
of (1.4.39), for = to hold it is necessary for every point of M to be umbilical which implies
that M is a sphere (see example 1.2.16). &.

Corollary 1.4.3 (Alexandrov) - A compact hypersurface M of constant mean curvature
embedded in R™ ! is necessarily a sphere.

Proof - A compact hypersurface embedded in R™*! necessarily bounds an open relatively
compact set'* U so that U = M. We make use of the identity (see corollary ?7)

vol(M) = —/ H<epi,r>w Awpy, (1.4.40)
M

14The fact that a compact embedded hypersurface decomposes R™*! into two components, namely the
interior and exterior of M requires proof, but is geometrically so plausible that we will assume it without a
formal argument. This issue will be discussed in a more general framework in the context of cohomology in
the next volume. One may call a point ¢ M an exterior point (resp. interior point) of M if generically
any ray emanating from z intersects M in an even (resp. odd) number of points.
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where x represents a general point of M C R™*! ¢,,.; is interior normal to the hypersurface
etc. For Hy constant, from (1.4.40) and Stokes’ theorem (see example 7?7 and in particular
formula (?7?) of chapter 1) we obtain

vol(M) = —H/ < elmi1, X > Wi A Awpy,
M

= (m+1)H/w1/\---/\wm+1
U
= (m+1)Hvol(U).

Therefore equality holds in (1.4.39) and M is a sphere. &

The situation regrding immerions of surfaces of constant mean curvature is quite different.
In fact it is possible to immerse a torus in R3 such that it has constant mean curvature, and
glue constant mean curvature tori together in such a way that the resulting surface will have
the same property. The reader is referred to [GB| and referencs thereof for for this matter.
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1.5 Convexity

1.5.1 Support Function

In order to investigate the geometric notion of convexity we introduce the analytical concepts
of sublinear and convex functions. A function f : R™*! — R is called sublinear if

flx+y) < fl@)+ fly), flax)=af(z) for a>0, z,ycR™
A sublinear function is a convex function in the sense that
flanwy + - +ogay) < oy f(or) + -+ ap f (),

for x; € R™ and «; € [0, 1] with Y a; = 1. Implicit in the definition of a convex function
is that its domain is a convex subset of R™*!, If for a sublinear function f, 0 # x € R™*!
is such that f(—x) = —f(x) then we call z a linearity direction for f.

Exercise 1.5.1 Let Q : R™"t — R, be a convex function, and g : R, — R a monotone
increasing convex function. Show that g(Q(x)) is a convex function.

Exercise 1.5.2 For a sublinear function f, the set of linearity directions together with 0 s
a linear subspace Ly on which f is linear. Every subspace of R™ on which f is linear is
contained in Ly.

Exercise 1.5.3 Let U C R be an interval and f : U — R a differentiable function. Then f
is convez if and only if f' is an increasing function.

The basic analytical properties of convex functions are given in the proposition 1.5.1
below. Their relevance to geometry will become clear later in this subsection.

Proposition 1.5.1 Let U be an open convex subset of R™* and f : U — R be a conver
function.

1. f is continuous.
2. f 1s Lipschitz continuous on any compact subset K of U.
3. If the partial derivatives D;f exist at a point x € U, then f is differentiable at x.

4. Form =0, (i.e., U CR and f : U — R) the right and left derivatives of f exist at
every point in the interior in U.
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5. For U C R an open interval, and f : U — R a convex function, the right and left
derivatives of f satisfy the inequality f] < fI. Ify > x then f/(y) > fl(x), and
consequently, f fails to be differentiable at most at a countable set of points.

To maintain the continuity of the presentation, the proof of the above proposition, which
belongs to real variable theory, is postponed to the end of this subsection.

The most important tool in the study of convex bodies is the support function. Let K
be a convex region in R™*! (i.e., closure of a convex open set) with smooth boundary. Then
the support function of K is the real valued function hyx on S™ defined by

hi(e) =< G (e), e >,

where G denotes, as usual the Gauss mapping of the boundary 0K. Several issues should
be clarified regarding this definition. The function hg, if defined, measures the distance of
the origin 0 to the tangent plane to 0K at the point whose normal is e. If we assume 0K is
smooth and has positive Gauss-Kronecker curvature everywhere, then G is a diffeomorphism
and therefore hg is defined. However, a general convex body need not have smooth boundary
and even in the smooth case, G™! may be many-valued. Although primarily our concern here
is with bodies with smooth boundary, it is useful for our study of convexity to allow a greater
generality on the convex bodies. To this end we modify the definition of hx by setting

hi(e) =sup < z,e > . (1.5.1)
zeK

If the boundary of the convex body K is smooth, and y € 0K is such that G(y) = e, then
from the fact that K lies in a half space with boundary 7, 0K, it follows that the supremum
in (1.5.1) is achieved at y = x. Therefore the two definitions are compatible. Note that this
definition is applicable to compact sets contained in lower dimensional subspaces as well. It
is convenient to extend the definition of hx to a general non-zero vector u € R™*!. In this
case we set

hig(u) =sup < z,u > .
zeK

Example 1.5.1 For simple convex sets, the calculation of the the support function is rou-
tine. For instance, if K = v is a single point then hy is the linear function

hg(u) =< u,v > . (1.5.2)
If K = Bg“ is the closed ball of radius R > 0 centered at the origin in R™*!, then

hie(u) = |[ul|R. (1.5.3)
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If the convex set K is presented as the convex closure of set of its extreme points £(K), then
it is immediate that
hg(u) = sup <z,u>. (1.5.4)
ze€(K)
In particular, for the cube or more generally for any convex polytope'® hy is obtained by
taking “sup” over a finite set of points. For any convex set K C R™*! and N > m + 1, we
may regard K as a convex subset of RY. Then the support function h%v) of K regarded as

a subset of RY is related to hx = hy(nﬂ) by
WY (w) = by (P(u)). (1.5.5)

where P denotes the operator of orthogonal projection from RY onto R™*!. If K and K’
are compact convex subsets of R™*! then it is clear that

hgirx = hg + hi. (156)
Formulae (1.5.5) and (1.5.6) are useful in computing support functions. For example, they
immedately imply that the support function of the cube K with vertices at (£1,---,+1) C
R™+ s
hic(un, - tmegr) = [un] + -+ [ |-

Note that this function is differentiable outside the hyperplanes u; = 0. (See also exercise
1.5.5.) &

Exercise 1.5.4 Let 0 denote the parameter on the circle S* = {e®}, and h be a real valued
C? function of 0 satisfying the differential inequality

2

W+h>0.

Show that there is a convex set K in R? with support function hx (e®) = h(0). (h is extended
to R? via the homogeneity condition hg(pe?) = phx(e?), p > 0, satisfied by hg. Consider
the curve p(#) = h/(0)(—sin 6, cos ) + h(#)(cos b, sinh).)

The half space H(, ), 0 # u € R™* s defined as

Ho, =1z € R™! | < z,u ><~}

15 A convex polytope is the convex closure of a finite set of points in R™ 1.
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Let K € R™! be a closed convex body and 0 # u € R™*!. We define the support hyperplane
and support half space as

Hi(u) = {zr € R™"| < z,u >= hg(u)}, Hx(u) = {r € R <2 ,u>< hg(u)},
and set Fi(u) = K N Hk (u).

Exercise 1.5.5 Let K be a cube centered at the origin. Describe geometrically the hyper-
planes Hy (u) and the sets Fi(u).

There is a useful notion of duality in convex geometry. For a convex function f : R™*! —
R, we define the conjugate function f* as

(@)= sup (<az,y>-f(y).

yeRMF1

Exercise 1.5.6 Let f be lower semi-continuous'® conver function on R™Y with values in

RUoo. Show that f* is a lower semi-continuous convex function with values in R U oo and

=

Example 1.5.2 Let K be a compact convex set and hyg be its support function. The
conjugate function hj has a simple description. Since K is compact

hx(u) =sup < z,u >< 00
zeK

and hg is in fact a sublinear function when extended by 0 to the origin. Now

hy(v) = sup | <z,v>—sup<uz,y>
rzeRm+1 yeK

Setting x = 0 we deduce that hj > 0. Since K is compact, sup,cx < ,y > is achieved at
some z(x) € K. Therefore for v € K we have

=0

hy(v) = sup [ <z,v>— <z z(x)>
rER™

6 A function f is lower semi-continuous at z if for every ¢ > 0 there is a neighborhood U, such that
fly) > f(z)—eforally € U,. If f is lower semi-continuous at all z, then it is called a lower semi-continuous
function. If K is the closure of open set and f : K — R is a continuous function, then extending f by oo
outside of K gives a lower semi-continuous function.
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On the other hand, if v ¢ K then clearly

hi(v) = sup [< T, >—<xzz(zr)> | = 0.
zeRM+1
Therefore
0 ifvekK,
B (v) = e (1.5.7)
oo otherwise.

We refer to a function of the form (1.5.7) as the associated function of the compact set K.

)

What we accomplished in the above example is more than the calculation of the conjugate
of the support function of a compact set. In fact, if f is a sublinear function, not identically
zero, then for every A > 0,

ffv)y= sup | <Azx,v>—f(Ax)| = Af*(v)

rzeRm+1

which implies that f* takes only values 0 and co. If we set K = {v | f*(v) = 0}, it follows
easily that K is compact and f** = f is its support function. Therefore we have already
shown most of:

Proposition 1.5.2 There is a one to one correspondence between non-trivial R-valued sub-
linear functions on R™ and compact convex subsets of R™*L. The correspondence is given
by assigning to each K its support function, and the inversion is achieved by the zero set of
the conjugate of a sublinear function. Under the correspondence linear functions correspond
to points, and for compact convex sets K, K’

K cK <+ hg <hg.

Proof - The fact that linear functions correspond to points was noted in example 1.5.2 and
is almost immediate. From the definition of hg it follows that K’ C K implies hg < hgr.
The reverse implication follows from the description of the correspondence and the definition
of conjugate function. &

Remark 1.5.1 Let K = {0}, then hg is the zero function, and hj; = co. With the conven-
tion 0.00 = 0, the zero set of hj; becomes the origin which is compatible with proposition
1.5.2. ©
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If we define directional derivative as a one-sided derivative, namely,

o) -t L) = 1)

10 t

)

then proposition 1.5.1 and sublinearity of hx imply that directional derivatives of hy exist
everywhere, and I (u; v) is a sublinear function of v. For this reason by directional derivative
we mean it in the one-sided sense. The following lemma plays a key role in relating the
support function to differential geometric techniques:

Lemma 1.5.1 For a compact convez subset K C R™", the directional derivative of hy at
u 18 gien by

W (U;0) = hpyeu) (v).

Proof - Let K’ be the convex compact subset of of R™*! corresponding to Iy (u;.) (for fixed
u) under the correspondence of proposition 1.5.2. It follows from sublinearity of hx that

Ry (u;v) < hye(v).
Consequently K’ C K by proposition 1.5.2. Let y € K’, then
<y,u>< hg(u). (1.5.8)
On the other hand,
hr((1 —t)u) — hg(u)

/ ca) — T _
Ry (u; —u) ltlfél . hi(u).
Therefore
<y,—u>< hg(—u) = Wy (u, —u) = —hg(u). (1.5.9)

Comparing (1.5.8) and (1.5.9) we obtain < y,u >= hp, (u) and consequently K’ C Fg(u).
Conversely, assume y € F, then for 0 # v € R™"! we have < y, v >< hg(v). Let v = u+tx,
then

- <Y, v>—<y,u> < hi(u+tx) — hg(u)
t t
which implies
<y,x >< hiy(u;x). (1.5.10)
From the description of the correspondence between sublinear function and compact convex
sets, the definition of conjugate function and (1.5.10) it follows that y € K’ or Fx(u) C K'.
Therefore K/ = F(u). &
An important consequence of lemma 1.5.1 is



1.5. CONVEXITY 339

Corollary 1.5.1 Let K C R™ be a compact convex set. Then hy is differentiable at u # 0
if and only if Fi(u) consists of a single point. In such a case,

gradhg (u) = Fk(u).

Proof - Differentiability of hx at u is equivalent to linearity of A/ (u;.) which is equivalent
to K’ consisting of a single point by proposition 1.5.2. &

Note that at points where hy fails to be differentiable, lemma 1.5.1 still gives an elegant
description of the failure of differentiability. As a simple application of the concept of support
function we prove

Corollary 1.5.2 A compact conver set K C R™ is uniquely determined by its projec-
tions on the lines through the origin, and consequently by its projection on two (or higher)
dimensional linear spaces containing a fixed line.

Proof - It follows from the definition of support function hx that it is determined by the one
dimensional projections of K. The required result follows from example 1.5.2 or proposition

1.5.2. &

Example 1.5.3 In this example we compute the Laplacian of the support function Ay when
the boundary 0K is a smooth hypersurface of strictly positive Gauss-Kronecker curvature.
The Gauss map in this case is a diffeomorphism. The function v — Fx(u) is the inverse of
the Gauss mapping and consequently

u

gradhy (u) = G_l(m),

(1.5.11)
for a non-zero vector u € R™1\0. Therefore Ahg, where A denotes the Euclidean Laplacian,
is the trace of the derivative of the map e — G(e). Since the derivative of G is the second

fundamental form, Ah is the sum of the eigenvalues of the inverse of the second fundamental
form, i.e.,

Ahg = — 4+ —, (1.5.12)

where k;’s are the principal curvatures of M = 0K. Equation (1.5.12) plays an important
in the existence part of Christoffel’s problem. However, since this aspect of Christoffel’s
problem involves a considerable amount of analysis, we will not discuss it in this volume. #

Finally we give the proof of proposition 1.5.1:
Proof of proposition 1.5.1 - The proofs of the five parts of the proposition are given
separately:



340 CHAPTER 1. DIFFERENTIAL GEOMETRY ...

1 - Since replacing f(x) by f(x + y) does not affect the assertion of the lemma, we may
assume = 0 is the origin. We have, for 0 < o < 1, a; > 0 with Y a; = 1 — a and
0,91,y €U

F(a0+) i) < af(0)+ > aif(ui). (1.5.13)

Now let y; be such that 0 lies in the interior of the convex closure of y;’s and let a — 1 to
obtain

lim f(y) < f(0). (1.5.14)

y—0
Let v € R™* with |u| > 0 small so that 0 & v lies in U. Then

f(O+u)+ =f(0—u). (1.5.15)

Comparing (1.5.14) and (1.5.15) we obtain the desired continuity. &
(2) - It suffices to show that for some § > 0, ¢ > 0, and all z,y € K with |z —y| < § we have

|f(x) = f)] < clz -yl

Let zq, - - , xn be the vertices of a small tetrahedron 7" containing z, y in its interior. Assume
fly) > f(z). We have

y=a$+zaixi, o, o 2 0, Zaizl—a.

We can furthermore assume a; = 0 for some 7 so that y lies in the convex closure of  and one
face of the tetrahedron 7. By appropriate choice of 7 we can furthermore assume o > %
By convexity of f we have

0< f(y) — flz) < (1—a)f(z) + Za:c =(1—a)f(z)+ ﬁZa;xi,

where 3 = max{q;} and o} = % < 1. Clearly 1—a = ¢;|z—y| and since a > L, 3 < co|z—y|.

ﬁi
Therefore

0< f(y) — f(x) < {cllf(ar)l folYa f(m@ -yl (1.5.16)

By continuity of f (item 1), there is a uniform bound

[F@L @)L ()] < es,

which together with (1.5.16) implies the required result. &
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(3) - Let €1, ,em,q1 be the standard basis for R™™!. Differentiability of f means for
h =" hie; € R™! we have
m—+1
e+ h) = f@) = 3 Def@hl = ol[Bll) s [JA]] — 0. (15.17)
i=1

Denote the quantity inside the absolute value sign |.| on the left hand side of (1.5.17) by
g(h). Convexity of f implies that ¢g is a convex function. Let ¢, = £1, h; > 0 and set
[h] = > h; > 0. Then
1 m+1 B
h| < —— —g(hieie;). 1.5.18

900 < g 3 pathiee) (15.15)
Existence of partial derivatives D; f(z) implies g(h;€;e;) = o(h;), which together with (1.5.18)
implies g(h) = o(||h]|) as required. &
(4) - Let u; and v; be strictly decreasing sequences converging to 0 with z+u;, z+v;, x € U.
Let

fatuw) = f@) o fete) - f@)

Jj—o0 V;

lim
J—00 u]

= B.

Existence of right derivative follows once we show A = B. The above limits can be written
as
fx +uj) = f(z) + Auj + o(uj), f(z+wv;) = f(x)+ Bv; + o(vy), (1.5.19)

as j — oo (or u;,v; | 0). After passing to a subsequence we may assume u;’s and v;’s
intertwine, i.e.,

Up >V > > Uj >V > Ujpl > VUjpr > 000
Now if B > A, then (1.5.19) implies that for j sufficiently large and any « € [0, 1]
f(g) > af(u;) + (1 — @) f(ujs)

contradicting convexity of f. Therefore A = B. &
(5) - Let w > 0, then from convexity of f it follows that

2f(z) < flx+u) + flz —u), (1.5.20)

which implies f] < f. Setting y = x + v and z =  — u, (1.5.20) also implies f/(2) < f/(y)
from which remaining assertions follow. &
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1.5.2 Problems of Christoffel, Minkowski and Weyl

In this subsection we investigate some uniqueness results in differential geometry generally
known as rigidity with special reference to convex surfaces. An important observation in the
application of the method of moving frames to deduce rigidity in this and other frameworks
is the following simple lemma:

Lemma 1.5.2 Let f,h: M — G be smooth maps of a manifold M into the analytic (linear)
group G. Then there is k € G such that f(x) = kh(z) for all x € M if and only if
f*(w) = h*(w) where w = g~ dg.

Proof - There is a function k : M — G be such that f(z) = k(z)h(z), and the question is
when we can make k£ a constant. We have

£ = £ (dR)R + B dh.
Since f*(w) = f~'df and h*(w) = h~'dh, we obtain

fHdR)h = f*(w) = I (w).
Therefore dk = 0 or k is a constant if and only if f*(w) = h*(w). &

Corollary 1.5.3 Let f,h : M — R™! be two embeddings of an m-dimensional manifold
in R™TL. Denote the induced metrics on M by the embeddings by dsfc and dsi respectively,
and let Hy and Hy, be the corresponding second fundamental forms. Then f and h differ by
a Fulidean motion if and only if

ds? =ds}, and H;=H,,.

Proof - We regard the embeddings f and h as mappings into the group SE(m + 1) by
choosing moving frames with e,,,; orthogonal to the images of f and h. We write the
induced Riemannian metrics in the form ds} = Y w?; and ds; = > w?,. Their equality
implies that we can assume

Wi f = Wi h (1521)

and therefore we omit the subscripts referring to f or h. Clearly
S (Wmir) = 0= B (Wm1).

Therefore

dwi + Zwi A\ f*(wji) = O = dwz + Zu)i A h*(wji),
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and

> (fHwig) = b (wig)) Aw; = 0.

J

By Cartan’s lemma
f*(wij) — h*(wij) = Z bijkwk, with bijk = bzk]
k

On the other hand, b;jz = —bj;;, which implies (see proof of proposition ??) that b;;, = 0.
Therefore
[ (wij) = W (wij) (1.5.22)

Finally the equality of second fundamental forms implies

[ (Wim+1) = [ (Wimt1) (1.5.23)

Equations (1.5.21), (1.5.22), (1.5.23) and lemma 1.5.2 imply the desired result. &
Let M C R? be a compact convex submanifold of dimension 2, and G : M — S? be the
Gauss map. The first observation is

Lemma 1.5.3 For a compact convex surface M, the Gaussian curvature Ky = K is non-
negative.

Proof - The convexity condition at x € M means that the surface lies entirely on one side
of the tangent plane 7,M C R3. Therefore after a rotation and a translation of the surface
(or coordinates) we may assume 7, M is the plane of (z1,x9) of coordinates, z is the origin
0 and near 0, M is the graph of a non-negative function of two variables xy, z5. Therefore
the Hessian of f at 0 is positive semi-definite and in view of example 7?7 Gaussian curvature
of M is non-negative. &

The convex surface M is called strictly convex if its Gaussian curvature is everywhere
positive. We have

Lemma 1.5.4 Let M C R?® be a compact strictly convex surface. Then the Gauss map
G: M — S? is a diffeomorphism.

Proof - In view of the expression (?7) for Gauss-Kronecker curvature K of a hypersurface
M c R™ positivity of K implies that the Gauss map G : M — S™ is a local diffeomor-
phism. The fact that this implies G is a diffeomorphism follows from the basic theory of



344 CHAPTER 1. DIFFERENTIAL GEOMETRY ...

covering spaces which is discussed in chapter 4, and therefore we assume its validity for now.
s

Let F' = Fy : S?> — M be the inverse to the Gauss map Gy, for the strictly convex
compact surface M. Then S? defines a parametrization of M which allows us to regard the
Gaussian curvature K, as a function on S? by composing it with Fy;. We set K v = KyoFyy.
The question arises whether every positive function H on S? is of the form K, for some
compact strictly convex surface M. Our immediate goal is to show K, satisfies an identity
which in particular proves that the answer to the question is negative.

Recall that given differential forms n and 6 with values in vector spaces V; and V5, then
their wedge product n A @ is defined and is a (p+ g)-form with values in a vector space W (n
is a p-form and 6 a ¢-form) provided we have a bilinear pairing B : V; x Vo — W. In fact, if
n= fdx; N---Ndwx;, and 0 = hdx;, A --- A dzj,, then

n A0 = B(f h)dr, A---Ndx;, Ndz; N--- Ndj,.

Bilinearity allows us to extend this definition to general p and ¢ forms. It is straightforward
to see that this definition makes sense on manifolds and has the correct transformation
properties, but we shall not dwell on straightforward foundations.

To derive a necessary condition for a function on S? to be the curvature of a compact
strictly convex surface, we consider R? with vector product x as a bilinear pairing. Then
n = x x dz is a vector valued 1-form on S? where x = F)/(z) represents a point on M.
We choose positively oriented frame ey, e5, e3 with e3 normal to the surface M. Then, using
dx = wieq + woey, we obtain

dn = dx X dr = 2(wy Awy)(er X e3) = 2(wy A wy)es. (1.5.24)
Now 1
w1 A\ Wy = ——W13 N Wa3, (1525)
Ky
and w3 A wog = G}/ (dvgz). Since by Stokes’ theorem [ dn = 0 we obtain the equation
1
~—63d’052 =0 (1526)
s2 Ky

which is therefore a necessary condition for a positive function on S? to be the curvature of
compact strictly convex surface. The analogue of this condition for polyhedra is discussed
in §5.4.

Let M, N C R3 be compact strictly convex surfaces, i.e., Gaussian curvatures are positive
everywhere. We use super(sub)scripts M and N to denote various geometric quantities
associated with M and N. Perhaps the best known examples of rigidity problems in the
theory of (strictly) convex surfaces are
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1. (Christoffel) - Assume

L1 1

A AR
at all points of M and N where the outer unit normals e}’ and e’ coincide. Then M
and N differ by a translation.

2. (Minkowski) - Assume the Gaussian curvatures <" and £ coincide at points where

the outer unit normals e}’ and el coincide. Then M and N differ by a translation.

3. (Weyl) - Assume there is a diffeomorphism ¢ : M — N such that ¢*(ds%) = ds3,.
Then M and N differ by a Euclidean motion.

The solutions to these problems rely on vector valued differential forms and certain
integral identities. We make use of the fact that surfaces with identitical first and second
fundamental forms differ by a Euclidean motion. The first two problems can be treated in
a unified framework since the hypotheses are based on a common diffeomorphism with S2.
Weyl’s problem is of a somewhat different nature since the diffeomorphism ¢ is not specified
in terms of the Gauss map. Nevertheless, the proof is to a large extent of the same spirit
as those of Christoffel and Minkowski. Since M and N have positive Gaussian curvatures
everywhere, their Gauss maps give diffeomorphisms onto the unit sphere S2. Generic points
of M and N are denoted by ™ and zV respectively. Implicit in this notation is that the
parameter space is the unit sphere and the parametrization is effected by the inverse of the
Gauss map. Thus for the unit normals ej it is redundant to use the superscript M or N and
consequently eq, es may denote a moving frame for both M and N. We introduce a number
of differential forms some of which will be used in the solutions to the problems of Christoffel
and Minkowski.

AM —< M es x deg >, AM =< M eg x da™ >, AM =< 2™ ey x d2™ >
AN =< :EN ces x deg >, AN =<V 63 x da™ >, AN =< oV 63 x de™ >
BY =< 2™ oV xdes >, BY =< aM 2" xds" >, BY =< ™ 2V x d2™

Similarly,

CM =< oM des x des >, CM =< 2™ deg x da™ >, CYM =< 2™ da™ x da™ >,
CM =< 2™ des x dz™ >, CM =< 2™ da™ x dz™ >, CM =< 2™ dx™ x da™

Replacing only the first 2 by 2% in the defintition of C we obtain C¥. Similarly replacing
the first 2 in the definition of CM by ez we obtain a differential form which we denote by
D,,. There is no need for the superscripts M or N in the definition of D,,. Denoting by h™
etc. the support function for the region bounded by M etc. we obtain
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Lemma 1.5.5 With the above notation and 0 < r + s <1 we have
dAM = CM — D,y , = hMDyy = Dyyy s, dAY =CN =D,y s =h¥Dyy — Dy o,
and
dBps =CM . —CN. ,=h"D, o1 — "D,y &

The proof of lemma 1.5.5 is by straightforward calculations. We want to relate these quan-
tities to the second fundamental forms and curvature functions of M and N. The matrix of
the second fundamental are denoted by

aM pM aVv N
Har = (bM CM)’ Hy = <bN CN)

The inverse to the second fundamental forms will be denoted by
i b an b
H-! — apm Om H-l— (4N ON
M (bM Y N by Cn

M M M
c [;M:—b _ a

&M:_ Cypp —
KM’ KM’ KM’

Clearly

where kM denotes the Gaussian curvature of M. For S% we have
d€3 = 0161 + 9262,

and the 1-forms wM and wl) are the pull-backs, via the Gauss map of M, of #; and 6,
respectively. For indeterminates £ and 7 we set

— — 2 T, S
det<1+§HM1+nHNl): > r!s!(2—r—s)'§77p”’

o<r+4s<2 ’

where P, is a polynomial of degrees r and s in the entries Hy} and Hy' respectively. It is
straightforward to verify that
2P0, N0y = D,, (1.5.27)

so that det (I + SHX/} + nH]_Vl)Ql A 0y is like a generating function for D, ’s. Since 61 A 0 is
the volume element dvg: of S?, (1.5.27) and lemma 1.5.5 imply
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Lemma 1.5.6 With above notation we have, for 0 <r+s <1,
/ (hMPTS — Pr—l—l S)d1)52 = O, / (hNPrS - Pr 5+1)d1)52 = O, / (hMPr s+1 — hNPr_i_l 5>d’052 = 0.

With these preliminaries out of the way, we proceed with the solutions to the problems
of Christoffel, Minkowski and Weyl.
Christoffel’s Problem - 1t is an elementary calculation that

det (H&I - H]T/[l) = Py, + Poy — 2Py (1528)
It follows from lemma 1.5.6 that
/hM(PO1 — Pio)dvg: = / (P11 — Pao)dvge, /hN(PO1 — Po)dvg: = / (Poz — Pi1)dvge.
(1.5.29)

According to the hypotheses of Christoffel’s problem P,; = Pj,. Therefore (1.5.28) and
(1.5.29) imply

/ Advgs = 0, (1.5.30)
where A denotes the left hand side of (1.5.28). Expanding A we obtain
—A = (an — an)? + (Ear — &n)2 + 2(bas — by)?.
Thus (1.5.30) implies
Gy = an, by =Dby, Gy =én.

In particular, M and N have the same Gaussian curvatures at points with common normals.
Since the metric form is determined by curvature, both first and second fundamental forms
are equal at points with common normals. Therefore the surfaces differ by a Euclidean
motion which is necessarily a translation. &

Minkowski’s Problem - From lemma 1.5.6 we obtain

Q/hM (Poz — Pr1)dvg: = / {hN(PH — Py) — KM (P11 — Po) | duse. (1.5.31)

Let P denote the element of degree two of the symmetric algebra on R? such that
P(Har, Har) = Poo

We need the following simple lemma whose proof is given below:
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Lemma 1.5.7 With above notation

P(H]T/jla H]_\/‘l) Z V P20P027
with equality if and only if Hy} = pHY' for some scalar p > 0.

The equality of Gaussian curvatures as required by the hypotheses of Minkowski’s prob-
lem imply P,y = P5,. Lemma 1.5.7 implies

Py = P(H;! HYY) > Py = P (1.5.32)

Therefore the left hand side of (1.5.31) is non-positive. On the other hand, the right hand
side of (1.5.31) is anti-symmetric in M and N. Therefore both sides vanish identically and
by lemma 1.5.7

Hy = pHy'

for some p > 0. The hypothesis k), = k implies p = 1 and therefore the second fundamental
forms of M and N are identical. Therefore as in the case of Christoffel’s problem, the surfaces
differ by a Euclidean motion which is necessarily a translation. &
Proof of lemma 1.5.7 - We write a,a’ etc. instead of ajs,ay etc., and note that the
quantities ac — b? and a'c — b'? are positive. Squaring and expanding, the inequality in
contention becomes

[ac’ + d'c — 20012 > 4(ac — b*)(d'c — V). (1.5.33)

The inequality is invariant under the action of SO(2) on the matrices H,; and Hy'. Therefore
we can assume b = 0 and (1.5.33) becomes

a’c? + a*c* > 2ad'cd — ach”?,

from which the required result follows. &
Weyl’s Problem - As suggested by figure XXXX the assumption of convexity is necessary
for a positive solution to the problem. Naturally the affirmative solution presented below
is based on the establishment of equality of the second fundamental forms of M and N at
corresponding points (the first fundamental forms are identical by the hypotheses) and then
invoking proposition ?7. In other words, we have equality of wq,ws and wiy and we want to
eatablish equality of w;3 for M and N.

We let e el e} be a positively oriented moving frame with e}’ normal to M. Consider
the vector valued differential forms

N M N M M M
Y =wgie] Fwgpey', Y =a" (65 x ),
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where 2 denotes a generic point on M!7. It is more accurate to write ¢*(wé\§) instead of
wé\;-, but to avoid cumbersome notation we suppress ¢. This should cause no confusion.

Lemma 1.5.8 With the above notation and the hypothesis that ¢ is an isometry, we have
dip = da™ . (e x ) + 2™ (ded! x 7).

Proof - It is a simple calculation that

dy = (wp Awper’ + (wi Awgi)ey' + (wis Awsy)es” +

M A N\ M N A Ny M M oA N\ M
(wyy Awsp)ey” — (W Awig)ey” + (wys Awsy)es”
Since ¢ is an isometry, wis = w,. Substituting we obtain
M A N M Ny M

In particular, e} x dy = 0. Computing the exterior derivative of 1 and using e} x dy = 0,
we obtain the desired expression.
Since || 1 A =0, it follows from lemma 1.5.8 that

/M[dxM (e x )+ M (ded! x )] = 0.

Substituting de}! = wMeM + wMel daM = wMeM + wied | and recalling the notation
M = zM e} we obtain after a simple calculation

/ (WM AW, —w ANwd) = / M (WA W — wid Awi)). (1.5.35)
M M
The same equation (1.5.35) remains valid if we replace the superscripts N by M. That is,
/ (wy/\w%—wy/\w%):/ M (W A Wil — Wi A wi). (1.5.36)
M M

Since wi? = wl, by the isometry assumption, we have

M M _ N N
Wiz A\ Wgy = Wiz A\ Way.

1"The differential form v is similar to —A2, however, since we are not using the Gauss map to identify
M and N with S? it would be incorrect to write —AY instead of 1. The calculations that follow are in the
same spirit as those for the Christoffel and Minkowski problems. For example, lemma 1.5.8 is the analogue
of dAM —CM _ D, ..
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Substituting in (1.5.36) and comparing with (1.5.35) we obtain

/ (WM A (WS — wii) + W A (W —wi)] = / PM (Wi — W) A (Wit —wd).  (1.5.37)
M M
The following simple algebraic observation plays an important role:

Lemma 1.5.9 Let S; and Sy be 2 x 2 positive definite symmetric matrices with det S; =
det Sy. Then det(S; — Sg) < 0 with equality if and only if S; = Ss.

Proof - Replacing S; by AS;A~! for some A € SO(2) we may assume S; is diagonal. The
required result follows easily by an elementary calculation. &
Lemma 1.5.9 implies

Lemma 1.5.10 With the above notation

(wsi — wit) A (wiz — wn) = fwi’ Awy',

where f is non-positive function and is zero if and only if wé‘f = wég.

Proof - In terms of the second fundamental forms H,; and Hy, we have
(Wi — W) A (why — wih) = det(Hy — Hy)wi? A wd?.

Now the isometry condition implies that the second fundamental forms of M and N have
the same determinant (Gaussian curvature). Therefore by lemma 1.5.9, f = det(Hy — Hy)
is non-positive and is zero only if Hy; = Hy. &

Now we can complete the solution to Weyl’s problem with an argument similar to that
given for Minkowski’s problem. We can assume h™ > 0 and A" > 0, after possibly trans-
forming them by Euclidean motions so that the origin lies in the interior of both M and N.
In view of lemma 1.5.10, the right hand side of (1.5.37) remains unchanged if we interchange
the roles of M and N. In view of the isometry hypothesis we have wj” = w]N after possibly
replacing N by ¢g(N) for any orthogonal matrix ¢ with det(g) = —1. Therefore the left hand
side of (1.5.37) is multiplied by (—1) if we interchange the roles of M and N. It follows that
both sides of (1.5.37) vanish and by lemma 1.5.10 the integrand on right hand side vanishes.
The same lemma implies Hy; = Hy and the required result follows. &

The uniqueness or rigidity results proven in this subsection can be generalized to hyper-
surfaces. The first difficulty one encounters is the definition of analogues of the differential
forms AM etc. This is achieved by replacing < a;, a;xaz > with det(ay, - -+ ,a,,). One should
be cognizant of the fact that since a;’s are forms, it is necessary to verify well-definedness
of the determinant. Relations similar to dAM = CM — D, ., , are easily verified by exterior
differentiation. On the other hand, the relevant analogue of the inequality in lemma 1.5.7 is
more subtle. For an account of these issues see [Ch4].
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1.5.3 Mixed Volumes

In order to understand the concepts of mixed volumes and related measures it is useful to
examine a very simple special case first.

Example 1.5.4 Let K C R3 be a rectangular cube and B be the unit ball in R®*. Then
K+ pB, p > 0, is shown in figure XXXX. Its volume can be decomposed into a sum of four
terms:

Ug(K + IOB) = U111 + ?ﬂ)llgp + 31)122p2 + Ugggpg. (1538)

Here v11; is the volume of K, v99 is the volume of the unit ball, v115 is one third the area of
OK and vy is {5 the sum of the lengths of the edges of K. It is this kind of formula which
one would like to generalize to sums of compact convex sets. @

For a subset X C R™"! we let v,(X) denote its volume as an n-dimensional object. One
way of generalizing example 1.5.4 is to prove a formula such as

m+1

a8 ) = 3 (")), (15.39)

where K C R™*! is a compact convex set, Bt C R™*! is the unit ball, and geometrically
interpret the quantities W;(K). Still a more general version is to express the volume of a
sum m + 1 compact convex subsets K, -+, K1 C R as

Umr (K 4 @ Kona) = ) e @ Ot (K- K ), (1.5.40)

11 lm41
where the indices iy, - , 4,41 run over all possible choices (possibly with repetitions) from
{1,---,m+1}, a; > 0, and give a geometric interpretation to the quantity vy,1 (K, -+, K., )-

Formula (1.5.39) is a special case of (1.5.40). In fact, for 0 < j < m+1 and compact convex
sets K; and K, define

V(K1 K2 j) = v (Ko, oo Ko Koy oo ).

S

h g
Now setting K1 = K,Ky = B™ oy = 1,as = p, a;j = 0 for j > 2 and W;(K) =
V (K1, Ky;7) we obtain (1.5.39) from (1.5.40) thereby defining projection or cross-section
measure, or quermafintegral W;(K) as a mixed volume. Formula (1.5.39) is often called
Steiner’s formula.
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The validity of (1.5.40) determines the the quantities vy, 41 (K, -, K, ,,). To see this
note that by setting o; = 0 for some j’s, we obtain the formulae

U1 (1 Ky + -+ + ap Ky) = Z iy Qg Umt (K KL ),s (1.5.41)

where the summation is over all indices iy, - ,ip41 from {1,---  k}. The following lemma

shows that these equations can be inverted algebraically:

Lemma 1.5.11 With the above notation, the equation (1.5.40) (or (1.5.41)) is inverted as

1 m—+1
Um-l—l(Kl? T aKm—i-l) = —1, Z(_l)mHH Z Um-l—l(Kh + Kiz +-+ Kiz)'
(m + ) =1 i1 <l < <1;

(This equation is often called the polarization formula.)

Proof - To prove the assertion replace K; by «o;K;, a; > 0, in the formula in question. It
follows from the (1.5.41) that the right hand side of the second equation is homogeneous
of degree m + 1 in g, -+, 1. Now observe that if we set a3 = 0 and o; = 1 for
j # 1, the right hand side of the equation vanishes identically. Since the index 1 can be
replaced with any other, the only term on the right hand side will be the coefficient of
Qq -+ Quyp. Substituting from (1.5.41) we see that the right hand side is the mixed volume
Um+1(K1, T >Km+1)- s
In view of lemma 1.5.11 we define the (Minkowski) mized volume as

m+1
U1 (K1, King) = ﬁ Z(—l)mHH Z U1 (K, + Ky + -+ Kyy).
=1 1 <tg<--<iy
(1.5.42)
While (1.5.42) defines mixed volumes, it is difficult to to deduce the basic properties of
mixed volumes (e.g., the homogeneity property (1.5.40) directly and immediately from this
expression. In fact, the expression in (1.5.42) was a purely formal derivation but does not
extend to non-convex sets'®. Therefore the validity of (1.5.40) and other basic properties of
mixed volumes given below, which are limited to convex sets, depend on some remarkable
and non-trivial cancellations in (1.5.42). Complete proofs of (1.5.40) and its ramifications
require a detailed study of the structure of polytopes and the approximation, relative to the
Hausdorf metric, of compact convex sets by polytopes. Since this would be quite lengthy we

18 A modification of the theory of mixed volumes where sets are replaced by support functions admits of
extensions to non-convex sets, but this is not the issue here.
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concentrate on explaining the geometric content and ideas underlying the theory, without a
formal development of the theory of convex polytopes, and refer the reader to, e.g., [Sch],
for such a treatment and extensive references to the literature.

Let P be a convex polytope in R™*! with non-empty interior. Then

OP = F,U---U Fy,

where each F} is a convex polytope of dimension m. We refer to F}’s as facets of P.

Lemma 1.5.12 Let P be a polytope in R™ and assume that the origin O lies in the interior
of P. Let ej denote the unit outward normal to the facet F;. Then

va(Fj)ej =0, vpa(K = Z hi(€) v (F

J

Proof - Both sides of the first identity are invariant under translations. Therefore we
can assume that the origin O is in the exterior of P. Let f € S™ be a vector such that
PN (Rf)t = 0. Then the orthogonal projection P’ of P to (Rf)* is a polytope whose set of
extreme points is the projection of a subset £ of the extreme points E(P) of P. It follows
that

(P = > <figg>unF) == Y <fie;>uvn(F) (1.5.43)

§:<frej>>0 J:<fe;><0

Since f is arbitrary from an open set of vectors in S™, the first identity follows from (1.5.43).
After possibly a subdivision of the faces of P we may assume each facet F} is a tetrahedron
of dimension m. Then the (m + 1)-dimensional volume of the convex closure of F; and 0 is

1
m—+1

hr;(ej)om(F}),
from which the second identity follows. &

Remark 1.5.2 The assumption that 0 lies in the interior of the polytope P in unnecessary.
In fact, if O lies in the exterior of the tetrahedron K then the quantities hpg,(e;) will have
both positive and negative signs and the #thj(ej)vm(ﬁ’j)’s add up correctly to v,,.1(K).
We have already made use of a special case of this phenomenon in connection with signed
areas and example 1.1.2. ©
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The key concept in understanding the geometry of polytopes and the necessary approx-
imation theory is that of the normal cone which we now introduce. For a convex set K and
xr € K we set

NK(fL’) = {U, € Rm+1 | x € HK(U)} U {0}

Nx(z) is called the normal cone of K at x € K. Two polytopes P and P’ are called similar
if the sets

{Np(z) |z € £(P)} and {Np/(x)]|xz e &(P)}

are identical. It is clear that similarity is an equivalence relation, and P, aP and v+ P, where
a > 0 and v € R™*! are similar. We will see shortly that the class of similar polytopes is
sufficiently large to allow certain approximations to compact convex sets.

Exercise 1.5.7 Determine when two compact convex n-gons in the plane are similar.

Exercise 1.5.8 Consider the rectangular cube P with vertices at (£1,+1,£1). Show that
the normal cones Np(x) as x runs over the eight extreme point of the cube are precisely the
coordinate octants.

Exercise 1.5.8 reflects a general geometric phenomenon which is described in the following
exercise (see also lemma 1.5.13-(4) below):

Exercise 1.5.9 Forx € P let Sp(z) denote the intersection of all half spaces H..,) contain-
ing P and such that v € OH, ,. If x € E(P) then Sp(x) is the smallest cone with its vertex
at x and containing P, and Np(x) is dual to Sp(z) in the sense

Np(z) = {u € R™ | <wu,y>>0forall y€x—Sp(x)}.
More generally for a face F' of the polytope P we define the normal cone on F' as
Np(F) ={u e R™ | F C Hp(u)}.
The cone closure of a set of vectors ey, -+ , ey is
Cone(ey, - ,e,) = {are; + -+ ayen | a; > 0}

The following elementary observations are the essential technical tools:
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Lemma 1.5.13 Let P and P’ be compact convex polytopes. Denote the facets of P by
Fy, - Fy and outward normal to F; by e;. Then

1. For x € £(P), the normal cone Np(x) has non-empty interior.
If v & E(P), then Np(x) has empty interior.

For distinct vertices x,x' of P, the intersection Np(x) N Np(y) has empty interior.

If P has non-empty interior and F is a face of P then
Np(F) = Cone(e;,, - - €;,),
where F;,,--- | F; are the facets of P containing F.

5. Forxz € K, y € P we have
Npip (2 +y) = Np(z) TNp(y).
The proof of the lemma is straightforward and is omitted. An immediate consequence is

Corollary 1.5.4 Let P and P’ be similar polytopes. Then P + P’ is similar to P and P’.

Proof - Since E(P + P') C E£(P) + E(P’) the required result follows from lemma 1.5.13. &

For a polytope P there is a connection between the subsets Fp(u) and the normal cones
Np(z). It is clear that every non-zero vector u lies in a normal cone Np(x) for some vertex x
of P. Generically u lies in the interior of a cone Np(z) and consequently Hp(u) N P = {z}.
If u lies on the boundary of Np(x) for a vertex z, then there is a unique face F' of Np(z)

such that u in the (relative) interior of F'. Let xq,--- ,x, be all the vertices of P such that
u € Np(z;). Tt follows that xy,--- , z, are the vertices of Fp(u) of P and
dim Fp(u) =m + 1 —dim F. (1.5.44)

The above geometric picture allows us to establish a correspondence between the subsets
Fp(u) and Fpr(u) of similar convex polytopes P and P’. For a non-zero vector u let zy,- -+ |z,
be as above, and let 2, € £(P') be such that Np(x;) = Npi(z}). Then z,--- ,z, are the
vertices of Fpr(u) and in view of (1.5.44)

dim Fp(u) = dim Fpr(u). (1.5.45)

We also have
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Lemma 1.5.14 The faces Fp(u) and Fp/(u) of similar polytopes P and P' are similar.

Proof - The proof is a simple application of the above ideas. &

Now we are in a position to derive another expression for Minkowski mixed volumes for
similar polytopes. For each i let Fj;, run over the (m — 1) faces of the polytope F;. Let Sm—t
denote the unit sphere in the hyperplane orthogonal to e; and for fixed 4, let e;; € Sz?"fl,
run over the normals to the (m — 1)-dimensional faces of F;. We also set h; = hp(e;) and
hij = hp,(e;;). The number h;, h;j,--- is called the support numbers of P. The (m — 1)
dimensional polytope Fj; is also the intersection of F; with another facet of P which we
naturally denote by F}; so that F;; = F; N F;. Denoting the angle between the vectors
e;,e; € S™ by 0;;, we deduce that the unit vector parallel to the facet F; and orthogonal to
-Fz'j is

+1

€ = ————|(cosb;;)e; — e;].
1= g, )l
Since
sup < e, x >=<e;,y >, forall ye F;
zeF;
we obtain

+1

\/ 1+ cos? 01‘]‘

Therefore by substituting from (1.5.46) in lemma 1.5.12 for the volume of F}, we obtain an
expression of the form

vn(F) =Y al'n (1.5.47)
J

where the coefficients ay) depend only on the angles ¢;; and the summation may be limited
to only those j such that dim(F; N Fj) = m — 1. The fact that the coefficients ag»i) depend
only on the angles ;; implies that they depend only on the similarity class of the polytope

P. This fact plays an important role in the development of theory of mixed volumes. We
can now prove

Lemma 1.5.15 Let P C R™*! be a polytope with facets Fy,--- , Fx and support numbers
h17 cee ,]’LN. Then

Vns1(P) = E iy o iy My P

U1, yime1

where the coefficients a;, ... depend only on the similarity class of P.

vim+1
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Proof - The proof is by induction on m. For m = 1 this is a simple exercise. Using lemma
1.5.12 and (1.5.47), the induction is easily completed. &
Now assume P;,--- P, are similar polytopes. Denote the support numbers of the

polytope P; by hgj), h;j), <. We set
1 m—+1
U;n—kl(Pl) to 7Pm+1) = Z aily"',im+1hl('1) T hfm_:_l ) (1548)
11, im41

With this definition we have:

Lemma 1.5.16 Let P, --- , P,41 be similar polytopes. Then for a; > 0 we have

Um+1(alpl +o am+1Pm+1) = Zail e O‘im+1U;n+1(Piu ce =Pim+1)7
where the indices i1, - -+ ,imy1 Tange over 1,--- m+ 1 independently.

Proof - Since hi g = hx + hgs the required result follows from lemma 1.5.15 and the
definition of v],_ ;. &
Another implication of the definition of v}, ; and the additivity of g is

Lemma 1.5.17 Let Py, -, Py, Q be similar polytopes. Then v, (Py,- -+, Pny1) is sym-
metric in the arguments Py,--- |, P,11 and

U;n+1(Q + P17P27 T 7Pm+1> - U;nJrl(PlJ U 7Pm+1) +U;n+1(Q7P27 e 7Pm+1)'
Since the inversion in lemma 1.5.11 was a purely formal derivation, lemma 1.5.16 implies

Lemma 1.5.18 With the above notation, for similar polytopes Pi,--- , Py11, we have
Ual’nJrl(Plu T 7Pm+1> = Uerl(Pl, ce ,Pm+1>.

Lemmas 1.5.16, 1.5.17 and 1.5.18 imply the the mixed volume v,,.; has the desired
properties of homogeneity, additivity and symmetry on similar polytopes. To deduce the
same for all compact convex subsets of R™" we make use of an approximation lemma
(1.5.19 below). The approximations are relative to the Hausdorf distance of compact subsets
of R™*! which is defined as

A(K, K') = max(sup inf ||z — yll, sup inf [l — )
zeK yEK' yek' zEK
A useful property of Hausdorf metric is that if Kgr denotes the family of compact convex

subsets of R™*! contained in the ball of radius R > 0, then Ky is compact. This fact is
known as Blaschke’s Selection lemma and its proof is straightforward real analysis.
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Remark 1.5.3 Let P, and P, be similar polytopes. It follows from lemma 1.5.18 and the
definition of v, (P, -+, Pn, P») that

U1 (Pry oo P Py) = Z hp,(e;)a;, (1.5.49)

where the summation is over all outward unit normals e; to the faces of P; (or P, since they
are similar) and a; is the area (volume) of the facet of P; with outward unit normal e;. One
can give similar interpretations to the quantities vy, 1(Py,---, P, Py, -+, P5), where the
areas (volumes) a; are replaced by those of lower dimensional faces and hp,(e;) by products
of support numbers. ¢

Since the set of extreme points of a compact convex set K is contained in 0K, we
can approximate K with polytopes arbitrarily closely. The following lemma is the key
approximation tool:

Lemma 1.5.19 Compact convex sets Ki,--- , Kxy C R™ can be arbitrarily closely approa-
imated by similar polytopes.

Proof - Let (); be a polytope approximating K; by §, P = Q1+---+Qy. Then P; = Q;+aP,
for a > 0 sufficiently small is an € approximation to K;. The normal cones of the vertices of
P and therefore those of aP are contained in those of @); for all 7 in view of lemma 1.5.13-(5).
Another application of the same lemma shows that the normal cones of P; are identical with
those of P and consequently the polytopes P; are similar. o

The proof of lemma 1.5.19 shows that it is quite easy to construct similar polytopes.
The following exercise, which is independent of the above lemma, provides a method for
generating similar polytopes through appropriate perturbations:

Exercise 1.5.10 Let P be a polytope with non-empty interior and facets Fy,--- , Fy and
corresponding outward unit normals ey, - - - ,ex. Show that for |e1|, -+, |en| sufficiently small
the polytope

N

617 ,€ | | e“hp (ei)+es)

=1

1s similar to P.

A very special case of lemma 1.5.19 is the following exercise which can be done more or
less explicitly without any reference to the lemma:
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Exercise 1.5.11 Consider the convex sets in the plane defined as

2 2 2 2
K:x—Q—i—y—QSl; K':x—Q—l—y—le.
aj bi az by

Show that K and K' can be approximated arbitrarily closely by similar convex polytopes P
and P’.

Lemma 1.5.19 and the continuity of volumes relative to the Hausdorf distance shows that
the basic properties of mixed volumes, which were established for similar polytopes, remain
valid for arbitrary compact convex subsets of R™*!. We summarize the above conclusions
and other properties of mixed volumes in the form of a proposition for easy reference:

Proposition 1.5.3 Let K, K,--- ,K,,;1 C R™ be compact convex sets, and define the
mized volume vy, 1(Ky, -+, Kpi1) as in lemma 1.5.11. Then vy, 1 has the following prop-
erties:

1. vy 18 continuous relative to the Hausdorf distance and symmetric in the arguments.
2. Fora; >0, ,apmi1 > 0 formula (1.5.40) is valid.

3. U1 18 additive in each argument, i.e.,

Um+1<K+K17K2" : 7Km+1> = Um+1(Kl7“ : 7Km+l> +'Um+1(K, KQ?' o 7Km+1)‘

4 Um+1(K7 K- >K) - Um—l—l(K)-
5. Uma1 1S argument wise tnvariant under translations T' in the sense that

U1 (T(K1), Koy -+, Kipg1) = U1 (K1, Koy - Kogr).

6. Uy 18 invariant under GL(m + 1,R) acting diagonally, i.e., for A € GL(m + 1,R)
we have

U1 (A(K), A(K2), -+, A(Ky1)) = | det(A)[vp 1 (K1, Ko, -+ Kg).

7. Um+1(K17' i 7Km+l) Z 0.
8. If K C Ky then

Um-i-l(K’ KQ?' o 7Km+1) S Um-i-l(KluKQa e 7Km+1)‘
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Proof - We have already proven most of these statements and will only comment on the
remaining ones. Item (4) follows from lemma 1.5.15 and the definition of v/, | = vy,41. Items
(5) and (6) follow from lemma 1.5.11. After applying translations we may assume the origin
lies in the interior of Ky N --- N K,,41. Then an examination of the construction of v), .,
shows that we can assume the support numbers h; > 0 and the coefficients a;, ... ;,, ., > 0.
This implies (7). The additional observation that hx < hg, implies (8). &

There are a number of inequalities involving mixed volumes some of which are quite
subtle. Here we use the Brunn-Minkowski inequality (see Chapter 1, proposition ?7?) to
derive a simple inequality and use it for the existence result in proposition 1.5.5 and rigidity
in corollary 1.5.5.

Proposition 1.5.4 (Minkowski Inequality) - Let K, K C R™™! be compact convex sets
with non-empty interior. Then

U1 (K1, -+ Ky Ko) ™ > 00000 (K1) " 0 (K).
Equality holds if and only if Ko = v+ 8Ky, i.e., K; differ by a homothety and a translation.

Proof - Let K, = (1 — a)K; + aK, and set

1

A() = V1 (Ko) T — (1 = )01 (K1) — g (Kp) 71,

Clearly ¢(0) = ¢(1) = 0. The homogeneity property of mixed volumes yields

m+1
m—+1 ml—i i .
V1 (Ka) = ) ( ; >(1 — )" oI, (K, K ). (1.5.50)
j=0

Substituting from (1.5.50), differentiating ¢(«) and setting o = 0 we obtain

_m

$(0) = vy () 7751 [vm+1<f<1, Ko, 1) = Ut (K0) 75 01 (K) 758 (1.5.51)

On the other hand, the Brunn-Minkowski inequality implies concavity of the function ¢(«)
and consequently

d(a) > 0. (1.5.52)

(1.5.51) and (1.5.52) imply the required inequality. In view of concavity of ¢ equality holds
only if ¢ is identically 0. Proposition 7?7 of chapter 1 implies the second assertion. ¢
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Exercise 1.5.12 Let K, K, C R™ be compact convex subsets with non-empty interior.
Show that

U1 (K1, K3 1)% > 0 g1 (K1) 0 g1 (K, K2;12).
(Differentiate the function ¢ in the proof of proposition 1.5.4 twice at 0.)

A concept related to mixed volumes is that of mixed area measures which are Borel
measures on the sphere S™. If the compact set K has smooth boundary 0K with the
standard volume element dvgx induced from the Euclidean metric of R+, then we set

ds,(K,.) = G (dvsk),

where G is the Gausss map of the boundary 0K. This means that for a Borel measurable
function ¢ : S™ — R we define its integral as

. O(u)ds, (K, u) = . d(G(x))dvgk ().

In particular, for a subset U C S™ its ds,, (K, .) measure is the volume, relative to dvgg, of the
set G™1(U). Since OK is generally not a manifold, in order to extend this definition to general
compact convex sets we make use use of approximation by convex polytopes. The natural
extension of the definition of ds,,(K,.) to polytopes is as follows: Let 0P = FyU---UFy be
the decomposition of the boundary of the polytope P into facets and e; be the unit outward
normal to F;. Then ds,,(P,.) is the atomic measure, supported on U;{e;}, which assigns
vm(F}) to ej. It is clear that if the sequence of polytopes P; converges to K relative to
the Hausdorf distance, and K has smooth boundary, then ds,,(P;,.) converges weakly'to
dsm(K,.) as defined earlier. Therefore for a general compact convex set we define ds,, (K, .)
as the weak limit of the measures ds,, (P}, .) for any sequence of polytopes converging to K
in the Hausdorf metric. The proof that this is well-defined is straightforward and is omitted.
Having defined the area measures ds,,(K,.) we proceed to define mixed area measures
much in the same the same way as mixed volumes are related to volumes. The analogue of the
polarization formula (lemma 1.5.11) may be used as the definition of mized area measures:

m

1
dsm (K1, K, ) = — D (1) sy, (K + - + K, ), (1.5.53)
" k=1

19A sequence of (Borel) measures p; converges weakly to a (Borel) measure y if for every (Borel) meaurable
function [ ¢du; converges to [ ¢dpu.
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which can be derived formally from the inversion of the homogeneity requirement
dsm(a1 K1+ -+ ap Ky, ) = ZO% sy, dsp (K, L KG L L), (1.5.54)

where the summation is over all indices iy, -+ , 4,41 from {1,---  k}. Just as in the case of
mixed volumes it is more useful to first define mixed area measures for similar polytopes and
then extend it to all compact convex sets via the approximation lemma 1.5.19. More precisely
let Py,--- , Py, be similar polytopes in R™"!. To define the area measure ds,,(Py, - , Py, u)
it is necessary to give values to

/dsm(Pla'” 7Pm7u)7
C

for Borel sets C' C S™. For a given direction u € S™ let F{) be the face (if exists) of P;
whose outward unit normal is u. Since the polytopes P; are similar the faces EE] ) either exist
for all j or for none. In the former case they are all parallel, and by a translation we regard

FY as m dimensional polytopes in R™. Then we set

/dsm(Pl, o Pu) =Y 0 (B, M), (1.5.55)
C

ueC

The sum on the right hand side is finite since for only finitely many directions F9% are
non-empty. Starting with this definition of mixed area measure one can develop the theory
as in the case mixed volumes by making use of the approximation lemma 1.5.19. We will not
go through a formal verification of the fact that we obtain a Borel meassure in this fashion.
For similar polytopes it is immediate that

1

Um+1<P1, tee 7Pm,P) = m——|—1/ hp(U)dSm(Pl," . ,Pm,U), (1556)
Sm

where the integral reduces to a finite sum. Taking limit of P; — K; and P — K through
similar polytopes we obtain the following result:

Lemma 1.5.20 With the above notation we have

1

Um+1(K17"' 7Km7K) = m—+1/s hK(u)dSm(Kla"' 7Km7u)'

for compact convex sets, K, Ky,--- , K,, C R™L
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As an application of the concept of mixed volumes and the Minkowski inequality (propo-
sition 1.5.4) one establish the following rigidity result based on the area measures ds,, (K, .):

Corollary 1.5.5 Let Ky, Ky be compact convex sets with non-empty interior and assume
dsm(Ky,.) = dsy,(Ks,.). Then Ky and Ky are translates of each other.

Proof - It follows from the hypothesis that the area measures ds,,(K;, -+, K;,.), i = 1,2,
are identical and consequently

U1 (K1, Koy ) Ka) = U y1 (K7).
Applying Minkowski inequality (proposition 1.5.4) we obtain
U1 (K1) = 1 (Ko, Koy - Ko) ™ 2 00 (K v 1 (K2)™.
Therefore vy, 11(K1) > vpma1(Ks). Similarly, vp,11(K1) > ve1(Ks). It follows that
U1 (K1, Koy Ko) ™ > 00 (K )01 (K2)™

By proposition 1.5.4 K; and K5, by a homothety and a translation and therefore differ by a
translation since they have the same volume. &
A special case of corollary 1.5.5 is

Corollary 1.5.6 If two polytopes have the same set of outward unit normals (to facets) and
corresponding facets have the same volume (area), then they differ by a translation.

1.5.4 Existence Theorems

In lemma 1.5.12 we showed that for a polytope with facets F; and corresponding outward
normals e;, we have . vy, (Fj)e; = 0. The question is whether given finite set of distinct
vectors {e1, -+ ,ex} C S™, which contains a basis for R™*!, and positive numbers a; such
that

N
> aje; =0, (1.5.57)
j=1
there is a polytope P with non-empty interior, facets F; with outward unit normals e; and
Um(Fj) = aj. The case of m =1 is particularly simple:

Lemma 1.5.21 With the above notation, let m = 1. Then the necessary condition (1.5.57)
18 also sufficient.
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Proof - Let €} be the unit vector orthogonal to e; such that e;, e; is a positively oriented
basis for R%. Then (1.5.57) is equivalent to

N
> ael =0. (1.5.58)

Jj=1

We may assume that the vectors ey, e, - -+ , en are ordered in the counterclockwise direction.
Now consider the polygon with side F} parallel to and directed as the vector €}. From the
end point of F draw the face F; parallel to and directed as the vector e. Continuing the
process we see that Fy, Fy, -+, Fyy close up to form a polygon if (1.5.57) is fulfilled. &

As an application of the ideas of the preceding subsection we show that the answer is in
the affirmative. The first observation is

Lemma 1.5.22 Let RY be the subset of RN consisting of vectors Z = (z1,-+- ,zn) with
zj > 0. Then the set
N
Py = ﬂ e,
j=1

is a compact convex set, and has non-empty interior if all z; > 0.

Proof - Convexity of P, and non-emptiness of the interior of Py are clear. If P were not
compact, there would exist non-zero f such that R, f C P;. The hypotheses > a;e; = 0 and
> Re; = R™ imply < f,e; >> 0 for some j and therefore af € Py for a > 0 sufficiently
large. &

The desired polytope can be obtained by a finite dimensional variational argument. Let

U={ZeRY | vyy1(Pg) > 1}.

The boundary OU is defined by the requirement v,,,1(Pz) = 1. Let us note that if m > 1
and the vectors ey, - -+ , ey are in general position in the sense that every subset e; ,--- ,¢;, .,
of distinct vectors is a basis for R™*!, then OU is C' manifold and tangent spaces to points
of OU are well-defined. In fact, it is clear that if Z, = (27, -, 2%/) is such that each subset
Pz, N OH_ is

(ej ,Zjo_)

1. Either of positive measure, v,,,(Pz, NOH_ ) > 0,

(6]' ’Z;)

2. Or is empty, Pz, N 8H(ej o) = 0,
]
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then a neighborhood of Z, in dU is the image of a diffeomorphism of an open subset of
RY™. Now assume Z, = (2f,- -+ ,2}) is such that Pz, NOH . ., # 0 but has measure 0.
)
Then for 27 — e < 2z; < 2§ and € > 0 small, v, (Pz, N QH(_EJ_ Zg)) > 0 and the general position
73
assumption implies that v,,(Pz, N 8H(_ej Zg)) goes to zero as €™ as € — 0. For m > 1 this will
7
suffice to give OU the structure of a C'* manifold.
Consider the function

N

1
Y:U—R, Y(Z)= m—szlaij-

Since the coefficients a; > 0, the function ¢ attains a minimum on U. Assume this minimum
is attained at the point b = (by,--- ,by) and ¥(b) = u™, i.e.,

N
1 § m
=1

Since the function 1 attains a minimum at Z = b
Uma1(Po) = 1. (1.5.60)
We will show that the polytope uF, is the solution to our problem.
Replacing P, by a translate of it we may assume 0 is an interior point and consequently
b; > 0 for all j. Set
@ = vn(Fiy (¢5)).

By lemma 1.5.12 vp11(P) = =5 > hp, (e;)a} and since hp, (e;) = b; if a} # 0, we have by
(1.5.60)

—— > ajh = 1. (1.5.61)

Define the affine hyperplanes L; as

N N
1 " 1 x
ﬁlZ{Z!—erl;am:M 1, 522{2\—m+1;%2j=1}

The key point in understanding the structure of B, is
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Lemma 1.5.23 Assume eq,--- ,en are in general position. Then with the above notation,
we have L1 = L.

First we show how lemma 1.5.23 implies the desired existence result:

Proposition 1.5.5 Let e; € S™, j = 1,---,N, be a set of distinct vectors containing a
basis for R™ a; > 0 real numbers such that (1.5.57) is satisfied. Then there is a unique,
up to translation, polytope with outward unit normals e; and corresponding areas (volumes)
of facets a;.

Proof - Uniqueness follows from corollary 1.5.5. In view of lemma 1.5.21 we may assume
m > 1 Under the additional hypothesis that the vectors e, --- ,exn are in general position,
lemma 1.5.23 implies

a; = p"a; = vm(Fup,(€:)),

that is, the volume (area) of the facet with normal e; is a; as desired, proving the proposition.
The general case follows by approximating the set of vectors {e1,--- ,ex} by one in general
position. To be more precise, let {e1(r), -+ ,en(r)}, 0 <7 < 1 be a smooth one parameter
family of unit vectors which for r > 0 are in general position and e;(0) = e;. Let a;(r) > 0
be smooth functions with a;(0) = a; and

N
> as(r)e;(r) =0.
j=1

Let P,, r > 0, be the corresponding polytope. The volumes v,,(0F,) are uniformly bounded
and by the isoperimetric inequality v,,1(P,) is also uniformly bounded. Since the quantities
a;(r), r € [0,1] are bounded away from zero it follows from second formula of lemma 1.5.12
that the quantities hp, (e;(r)) are uniformly bounded. Therefore the polytopes P, remain in
a bounded subset of R™™!. By the Blaschke Selection lemma we can choose a convergent
sequence of polytopes ... It is clear that the limiting convex set is still a polytope with
outward unit normals e; and the area (volume) of the corresponding facet equal to a;. &

Lemma 1.5.24 With the above notation for Z in a neighborhood V' of b in RY we have

N
1
Um1(Poy -+ Po, Pz) = 1 Zth(ej)ag*'~
j=1
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Proof - For V sufficiently small the polytopes B, and P are similar if either all aj > 0
or if a; = 0 then F, N 8H(’ej,bj) = () in which case the validity of the assertion follows from
remark 1.5.3. If af = 0 but £, N 8H@j7bj) # (), then for z; > b; the polytopes B, and Py are
similar, but for z; < b; they are no longer similar since the set of normals to P and P, will
be different. However for € > b; — z; > 0 we can approximate [, arbitrarily closely with
polytopes Py similar to P by taking b; > 0} > z;. Then the assertion remains valid for P
replacing P4, and by taking b’ — b; the required result follows. &

Proof of lemma 1.5.23 - Let Z be in the neighborhood V' of b given in lemma 1.5.24.

Substituting hp,(e;) = z; in formula in lemma 1.5.24 we obtain

N
1 *
Unt1 (Po, o+ Po, Pr) = ml >z
j=1

By proposition 1.5.4
Uni1(Pz) < Vi1 (Po, -+, Po, Pr)™H,

which implies that the only point of intersection of U and L, is the point b. The affine
space £, NV passes through b but does not contain any point from the interior of U since
that would contradict minimality of ¢/(b) = u™. By the general position assumption of the
vectors eq, - - - , ey, the boundary OU is a manifold and consequently the affine subspaces are
the tangent spaces to OU at b and are identical. &

It is possible to use proposition 1.5.5 and an approximation argument to prove an ex-
istence result for the Minkowski problem discussed in the preceding subsection, yet such
an approach is not satisfactory since it does not appear that one can prove smoothness of
the resulting manifold in this manner. A satisfactory approach is based on the study of
the Monge-Ampere equation which involves analytical techniques which are postponed to
another volume (see [CY]). However, we can prove the following existence result for area
measures via approximation:

Proposition 1.5.6 Let f > 0 be a non-negative continuous function®* on S™. If

/m ef(e)dv = 0,

29The same result is valid for a general finite Borel measure dyu provided it is not concentrated on a great
circle. In fact proposition 1.5.5 is the case of a finitely supported measure and the necessary conditions of
not being supported on a great circle and [ edu(e) = 0 imply that the support set of the measure contains
a basis for R™+1. Tt is for the purpose of avoiding some minor measure theoretic technicalities that we are
assuming that the measure is given by a continuous density f.
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where dv is the standard volume element on S™, then there is a compact convexr set K with
dsm(K,.) = fdv.

Proof - We decompose R into finitely many convex cones C1, - - - , Cy bounded by hyper-
planes and with common vertex 0. We assume that the cones have pairwise disjoint interiors
and each set D; = C; N .S™ of small volume (area) as may be necessary. Let Dy,---,D; be
those among D;’s with positive measure relative to du = fdv, and set for j =1,--- [,

1

J

where p(D;) is the measure of D;. Each ¢; is a vector of the form

€ = %>

where e¢; € S™ and ~; > 0 by taking the decomposition of R™*! to be sufficiently fine.
Now let a; = v;p;, then the set of vectors {ey,--- ,e;} and positive numbers a; satisfy the
hypothesis of proposition 1.5.5 and therefore we get a polytope P which depends on the
decomposition of R™*! into convex cones with 0 as their common vertex. It is clear from
the construction that the quantities ) a; remain uniformly bounded (in fact, bounded by
[ fdv) and by isoperimetric inequality the volumes of the polytopes P, as we refine the
decomposition of R™! also remain bounded. Let b > v,,,1(P) for all such P, and y € P.
Set y = ne with e € S™ and 1 > 0 and C, be the convex closure of 0 and y. Then

he(u) > he,(u) =0 < u.e >,
where z; means maximum of 0 and z. Therefore

n
m—+1

b> vy (P) > / <wu,e >, f(e)dv>cn

for some positive constant ¢ bounded away from 0. Therefore 7 is bounded and the polytopes
P remain in a bounded subset of R™*!. Blaschke’s Selection lemma is now applicable to
give the desired compact convex set. o
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1.6 Minimal Surface

1.6.1 Weierstrass Representation
THIS SECTION IS NOT INCLUDED



370 CHAPTER 1. DIFFERENTIAL GEOMETRY ...



Bibliography

Arnold, V. L. - Singularities of Caustics and Wave Fronts, Kluwer Academic Press,
Norwell, Ma., 1990.

Cartan, E. - Le Principe de Dualité et Certaines Integrales Multiples de I'Espace
Reglé; Bull. Soc. Math. France, vol. 24, (1896), pp.140-177; Ouvres Complétes,
Partie II, Centre National de la Recherche Scientifique, Paris, 1984, pp.265-302.

Cartan, E. - Lecons sur la Géométrie des Espaces de Riemann, Gauthier-Villars,
Paris 1963.

Chern, S. S. - An elementary proof of the existence of isothermal parameters on a
surface; Proc. Am. Math. Soc., 6, (1955), pp. 771-782; Selected Papers, volume 2,
Springer-Verlag, Berlin-Heidelberg-New York, 1978.

Gray, A. - Tubes, Addison-Wesley, Reading, Ma., 1990.

GroBe-Braukmann, K. - Gyroids of Constant Mean Curvature; Exzperimental Math-
ematics, vol. 6, no.1, (1997), pp. 33-50.

Helgason, S. - Differential Geometry, Lie Groups and Symmetric Spaces, Academic
Press, New York, 1978.

Kobayashi, S. and K. Nomizu - Foundations of Differential Geometry, Two Vol-
umes, Wiley (Interscience), New York, 1963, 1969.

Nitsche, J. C. C. - Lectures on Minimal Surfaces, Volume 1, Cambridge University
Press, New York, 1989. (English translation of the first five chapter of the original
German text.)

Santalé, L. A. - Integral Geometry and Geometric Probability, Addison Wesley
Publishing Co., Reading, Ma., 1976.

371



372 BIBLIOGRAPHY

[SW] Stein, E. and G. Weiss - Introduction to Fourier Analysis on Fuclidean Spaces,
Princeton University Press, 1975.
(W] Weyl, H. - Classical Groups, Princeton University Press 1966.

[Wh] Whitehead, J. H. C. - Convex Regions in the Geometry of Paths; Quarterly Journal
of Mathematics (Oxford), vol. 3, (1932), pp.33-42.



