
Chapter 4

COVERING PROJECTIONS AND
FUNDAMENTAL GROUP

4.1 Basic Theory and Examples

4.1.1 The Fundamental Group

By a path in a topological space X we mean a continuous map γ : I = [0, 1] → X. To avoid
pathologies, all topological spaces are assumed to be locally path connected and Hausdorf,
and all maps between topological spaces are continuous. Given paths γ and δ with terminal
point γ(1) of γ equal to the initial point δ(0) of δ, it makes sense to consider the product
δγ as the path γ followed by the path δ. We scale the parameter so that we can still
regard δγ as a mapping of I into X. A path whose initial point and terminal points are
identical is called a loop. We fix a point x ∈ X and call it the base point. The set of loops
with initial point x will be denoted by Ω(X, x). For a loop γ ∈ Ω(X, x) we define γ−1 by
γ−1(t) = γ(1− t). On Ω(X, x) we define the equivalence relation ∼ by the requirement γ ∼ δ
if γ and δ are homotopic relative to ∂I, i.e., there is a continuous map G : I × I → X with
G(t, 0) = γ(t), G(t, 1) = δ(t), G(0, s) = γ(0) = δ(0) = γ(1) = δ(1) = G(1, s). The quotient
Ω(X, x)/ ∼ has a group structure with multiplication defined by the product of paths as
defined above. The inverse of the equivalence class [γ], represented by the loop γ, is [γ−1].
It is easy to verify that the loop γ−1γ is homotopic, relative to ∂I , to the constant loop
x : t→ x which is the identity of the group. The homotopy is given by

G(t, s) =
{
γ(st) if 0 ≤ t ≤ 1/2;
γ(s(1− t)) if 1/2 ≤ t ≤ 1.

(4.1.1)
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We often simply write γ for the equivalence class [γ]. We omit the simple verification of
the fact that the product [γ][δ] = [γδ] is well-defined, i.e., is independent of the choice of
representatives for homotopy classes of loops. This group is denoted by π1(X, x) and is called
the fundamental group, first homotopy group, or the Poincaré group of X (with base point
x). A space whose first homotopy group is trivial is called simply-connected.

The groups π1(X, x) and π1(X, y) with x 6= y are isomorphic, but not canonically. In
fact, since X is path-connected, there is λ : I → X with λ(0) = x and λ(1) = y. Then
the mapping γ → λ−1γλ induces an isomorphism π1(X, y) ' π1(X, x) which depends on λ
and is therefore not canonical. At any rate, it makes sense to talk about the fundamental
group of a space. Also note that a mapping f : (X, x) → (Y, y) induces a homomorphism
f] : π1(X, x) → π1(Y, y) by composition.

It is trivial that if a space is contractible, then its fundamental group is trivial. Fur-
thermore, if f : (X, x) → (Y, y) is a homotopy equivalence, then f] is an isomorphism. The
spheres Sn are simply connected for n > 1 since every loop is homotopic relative to the ∂I
to the constant loop through the obvious deformation (see Chapter 3, Example 1.7). In the
next section we show that π1(S

1, x) ' Z. Intuitively, we assign to each loop in S1 the number
of times it winds around the circle, with the sign being positive or negative according as it
is counterclockwise or clockwise.

The algebraic notion of free product of groups plays an important role in the computation
of fundamental groups. We denote the elements of (abstract) groups G and H by gj and hk

respectively. The free product G ? H is the set of expressions of the forms (l any integer)

g1h1g2h2 · · · glhl, h1g1h2 · · ·hlgl, g1h1g2h2 · · ·hl−1gl, h1g1h2 · · · gl−1hl

with multiplication defined in the obvious manner, for example,

(gi1 · · ·hil)(hj1gj1 · · ·) = gi1 · · · (hilhj1)gj1 · · · , etc.

It is straightforward to verify that G?H is a group. G?H is an infinite group unless both G
and H are finite groups and one of them is the trivial group of one element. Given a group
A and homomorphisms ρ1 : A → G and ρ2 : A → H we define G ?A H to be the quotient
of G ? H by its normal subgroup generated by elements of the form ρ1(a)ρ2(a

−1) (and their
conjugates). Clearly G ?A H depends on the homomorphisms ρi.

Exercise 4.1.1 Show that Z ? · · · ? Z︸ ︷︷ ︸
n copies

is the free group on n generators.

Exercise 4.1.2 Let ρ2 : A→ H be an isomorphism. Show that G ?A H ' G.
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Exercise 4.1.3 Let x ∈ Z/4 and y ∈ Z/3 be generators. Show that

x −→
(

0 1
−1 0

)
, y −→

(−1 1
−1 0

)
gives a surjective homomorphism of Z/4?Z/3 onto SL(2,Z). (It is in fact an isomorphism.)

The following simple proposition is useful in the computation of fundamental groups:

Proposition 4.1.1 Let X and Y be simplicial or cell complexes. Then

1. π1(X × Y, (x, y)) ' π1(X, x)× π1(Y, y), (also true for infinite products);

2. Let X ∨ Y be the space obtained by joining X and Y at the points x ∈ X and y ∈ Y .
Then π1(X∨Y, x = y) is isomorphic to the free product of π1(X, x) and π1(Y, y). (Some
mild assumptions on X and Y are necessary for the validity of this result. See [Gri]
and remark 4.2.1 below. This result is a special case of van Kampen’s theorem given
below.)

The proof of (1) is a straightforward application of the definition to the projections
X×Y → X and X×Y → Y . (2) is intuitively reasonable since there is no relation between
loops in X and Y . It is also a special case of theorem 4.2.1 below.

Assuming knowledge of π1(S
1, x) ' Z, the proposition implies that the fundamental

group of the n-torus is isomorphic to Zn. Similarly,

Exercise 4.1.4 Show that fundamental group of n circles joined at a point (bouquet of n
circles), is the free group Fn on n generators.

Exercise 4.1.5 Let L1, · · · , Lm be m lines passing through the origin in R3, and ∆ = ∪Lj.
Show that the sphere S2 with 2m points removed is a deformation retract of R3 \ ∆. The
former space has the homotopy type of the bouquet of 2m − 1 circles, and consequently
π1(R

3 \∆) ' F2m−1.

More will be said about the computation of π1 in the following sections.

Example 4.1.1 Consider the half-space H̄3 = {(x, y, z)| z ≥ 0}. Let C1, ..., Cn be half-
circles or u-shaped curves with end points on the plane z = 0 and lying in planes orthogonal
to this plane. It will be clear that the analysis in this example is applicable to much more
general curves than Ci’s, but this simple case demonstrates the idea clearly. Assume Ci’s
are disjoint, and let C = ∪Ci. Let v = (v1, v2, v3) ∈ H̄3 with v3 large. It is a simple
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matter to see that π1(H̄3 \ C; v) is isomorphic to the free group Fn on n generators. A set
of generators χ1, ..., χn for the fundamental group are the loops given in Figure 1.1 with
given orientations. We also assign orientations to the curves Ci as shown in Figure 1.1. Let
P be a plane perpendicular to z = 0 such that the orthogonal projection of each curve Ci

into P is one-to-one. It is no loss of generality to assign orientations to Ci’s and χi’s in
such a way whenever the curve χi goes behind Ci the the direction of χi followed by the
direction of Ci is a positively oriented basis for the plane P . Note that since we have fixed
the plane P it makes sense to say whether χi goes behind or in front Ci at a point where
their orthogonal projections on P intersect. Now consider an oriented loop γ with base-point
v. For example, let γ be the dotted curve in Figure 1.1. We want to express the homotopy
class of [γ] in terms of the generators χ1, ..., χn. We look at the projection of γ on the plane
P , and determine whether at each intersection of the projection of γ with those of the χi’s
whether γ is behind χi or not. We only consider the points where γ goes behind one of the
Ci’s. Following along γ at the first such point γ goes behind C2. The ordered pair consisting
of the positively oriented tangents to γ and C2 form a positively oriented basis for R2. We
assign to this point χ2. At the next relevant point γ goes behind C1 but the ordered pair
of tangents will be negatively oriented. We multiply χ2 by χ−1

1 to obtain χ−1
1 χ2. Following

along the curve γ we finally obtain χ1χ2χ3χ
−1
1 χ2. This is the expression for [γ] in terms of

the generators {χi} of π1(H̄3 \ C; v). ♠

4.1.2 Covering Spaces

A triple (E, p,B) is called a covering projection (or a covering space) if p : E → B, and for
every x ∈ B there is a neighborhood U of x such that p−1(U) is a disjoint union ∪Vi with
restriction of p to each Vi a homeomorphism onto U . The fibre over b is the set p−1(b) which
is a discrete set. It is a simple matter to show that if p−1(b) is finite for some b, then it is
finite for all b (B is path-wise connected), and all the fibres have the same cardinality. If the
cardinality of p−1(b) is n, then we say that E is an n-sheeted covering of B. The simplest
example of a covering space is

E = R, B = S1 ⊂ C, and p(t) = eit.

By a lift(ing) of a mapping f : X → B we mean a mapping f ′ : X → E such that pf ′ = f .
Similarly, if f : (X, x) → (B, b) and e ∈ p−1(b), then by a lift of f to f ′ : (X, x) → (E, e) we
mean a lift of f : X → B to E with the additional requirement f ′(x) = e. The theory of
covering spaces depends on two important properties which are described by the following
definitions:



4.1. BASIC THEORY AND EXAMPLES 461

1. (Homotopy Lifting Property) - A triple (E, p,B) with p : E → B (not necessarily a
covering projection) has the homotopy lifting property with respect to a space X, if
given a homotopy F : X × I → B, (I = [0, 1]), and f(x) = F (x, 0) admitting of
a lifting f ′ : X → E, then the homotopy F admits of a lifting F ′. If the homotopy
lifting property holds for all X, we say that (E, p,B) has the homotopy lifting property.
Triples (E, p,B) having the homotopy lifting property are called fibrations.

2. (Unique Path Lifting Property) - A triple (E, p,B) with p : E → B has the unique
path lifting property if given γ : I → B, and e ∈ p−1(γ(0)), then there is a unique lift
γ′ : I → E of γ with γ′(0) = e.

The theorems below, whose proofs are postponed to the end of this section, describe the
basic properties of covering spaces.

Theorem 4.1.1 Covering projections are fibrations with unique path lifting. Furthermore,
if γ, γ′ : I × I → B, relative to ∂I, then for any lifting G′ : I × I → E, G′(0, s) and G′(1, s)
are independent of s (i.e., homotopy relative to ∂I lifts to homotopy relative ∂I), and we can
choose G′(0, s) to be any point in the fibre over γ(0).

Theorem 4.1.2 Every locally simply connected topological space B admits of a unique (up
to equivalence) covering space (E, p,B) with E simply connected.

A covering projection (E, p,B) with E simply connected is called the universal covering
space of B.

While the definition of a fibration E → B requires the homotopy lifting property for
every space X, in practice it is adequate to establish this property for only a class of simple
spaces. This point will be clear from the applications of the homotopy lifting property and
there is no need for further elaboration at this point.

Example 4.1.2 In this example we show that fibre bundles are fibrations, i.e., satisfy the
homotopy lifting property. Let π : E → M be a fibre bundle, with typical fibre F and base
a manifold M . Let X be a finite simplicial complex and F : X × I → M a continuous
mapping such that F◦ = F (., 0) = f : X → M admits of a lifting to F ′

◦ : X → E. We want
to establish the existence of F ′ : X × I → E such that

π · F ′(x, t) = F (x, t), and F ′(x, 0) = F ′
◦(x).
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After a sufficiently fine subdivision of X and a partition 0 = t◦ < t1 < · · · < tr < tr+1 = 1
we may assume for every simplex c of X and every j, F (c× [tj, tj+1]) lies in a neighborhood
U(c,j) ⊂M which trivializes the bundle π : E →M . To fix notation we let the maps

ψU : U × F
'−→ π−1(U)

give the desired local trivializations and π2 : U×F → F denote the projection on the second
coordinate. Let Xs denote the s-skeleton of X. We inductively construct the desired exten-
sion of F . The induction is by assuming that the required extension has been constructed
for for (Xn−1× [0, 1])∪(Xn× [0, tj]) and extending it to (Xn−1× [0, 1])∪(Xn× [0, tj+1]). The
initial step of the induction is clearly valid. Let c be an n-simplex of X so that an extension
of F , by induction hypotheses, has been constructed for (c× [0, tj]) ∪ (∂c× [0, tj+1]). Since
the inclusion

 : (c× [tj]) ∪ (∂c× [tj, tj+1]) −→ c× [tj, tj+1]

is a retract, there is a map ρ : c× [tj, tj+1] → (c× [tj]) ∪ (∂c× [tj, tj+1]) such that ρ ·  = id.
Now, for x ∈ c and t ∈ [tj, tj+1] define the extension

F ′(x, t) = ψU(c,j)
(F (x, t), π2 · ψ−1

U(c,j)
· F ′(ρ(x, t))).

Note that ρ(x, t) ∈ (c × [tj]) ∪ (∂c × [tj, tj+1]) so that F ′(ρ(x, t)) is defined. This extension
fulfills the requirements. ♠

4.1.3 Structure of Covering Spaces

In this subsection we relate the fundamental group to covering spaces and in essence develop
a methodology for understanding the structure of covering spaces. This will be accomplished
in a series of corollaries to theorem 4.1.1 and the uniqueness part of theorem 4.1.2 will also be
proven. For a covering projection (E, p,B) there is the induced map of fundamental groups
p] : π1(E, e) → π1(B, b) where p(e) = b, defined by p]([γ]) = [pγ]. We have

Corollary 4.1.1 p] is one-to-one.

Proof - Let [γ] ∈ π1(E, e) and assume that p]([γ]) = e ∈ π1(B, b), then p]([γ]) is homotopic
to the constant map b : I → b. Lifting the homotopy to E (which is possible since γ is a lift
of pγ to E), and noting that the constant map necessarily lifts to a constant map in view of
discreteness of the fibre, we the desired homotopy between γ and a constant map. ♣
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The unique path lifting property ensures that any loop γ : I → B, with γ(0) = b, has a
unique lift γ′ : I → E with γ′(0) = e, however, the lift γ′ may not be a loop. Even if a lift γ′

is a loop, another lift γ′′ : I → E with γ′′(0) = e′ ∈ p−1(b) may not be a loop (see example
2.4 below). A covering projection with the property that for any given loop, either all its
lifts are loops or none is a loop is called regular.

Corollary 4.1.2 p](π1(E, e)) consists precisely of homotopy classes of loops γ : (I, ∂I) →
(B, b) whose lifts to (E, e) are loops. p](π1(E, e)) is a normal subgroup of π1(B, b) if and only
if (E, p,B) is a regular covering space. Hence for regular coverings π1(B, b)/p](π1(E, e)) is
a group.

Proof - The first assertion is trivial. Let δ : I → B with [δ] ∈ π1(B, b), and γ : I → E
with [γ] ∈ π1(E, e). We may lift δ to a map δ′ : I → E with δ′(0) = e. Now lift pγ to
(pγ)′ : I → E with (pγ)′(0) = δ′(1). By the regularity assumption, (pγ)′ is a loop. Then
the composition δ′−1(pγ)′δ′ defines an element of π1(E, e), and p]([δ

′−1(pγ)′δ′]) = [δ]−1[γ][δ]
proving the normality of p](π1(E, e)) for regular covering spaces. Conversely, note that if δ :
I → E with δ(0) = e and δ(1) = e′, (e′ ∈ p−1(b)), then p](π1(E, e

′)) = [pδ]p](π1(E, e))[pδ]
−1.

Therefore if p](π1(E, e)) is normal, then the set of homotopy classes of loops whose lifts to
(E, e′) are loops coincides with p](π1(E, e)), and the regularity of (E, p,B) follows. ♣

A group Γ acts properly discontinuously1 (on left) on a space X if for every x ∈ X there
is a neighborhood U of x such that for all e 6= γ ∈ Γ, U ∩ γ(U) = ∅. Notice that if Γ acts
properly discontinuously, then X → Γ \ X is a covering projection. We now show that all
regular covering projections are of this form. For the regular covering projection (E, p,B),
let Γ = π1(B, b)/p](π1(E, e)). Let γ ∈ Γ and γ′ : I → B be a loop with γ′(0) = γ′(1) = b
representing γ. For x ∈ E, let λ : I → E be any path with λ(0) = e and λ(1) = x. Let γ′′

be a lift of γ′ with γ′′(0) = e, and L(x, γ′) : I → E be the lift of pλ with L(x, γ′)(0) = γ′′(1).
Define γ(x) = L(x, γ′)(1). We have to check that this definition is meaningful, i.e., the choice
of the representative for γ in π1(B, b) and the subsequent choice of the loop γ′ representing
the element of the fundamental group, and the choice of the path λ : I → E will not affect
the value of γ(x). These assertions all follow easily from theorem 4.1.1. For example, if
we replace λ by another path λ′, then λ′−1λ defines an element of π1(E, e) and so the lift
of pλ′−1λ with initial point γ′′(1), is a loop by the regularity assumption on (E, p,B). In
particular, the lifts L(x, γ′) and δ of pλ and pλ′ with L(x, γ′)(0) = δ(0) = γ′′(1) have the
same end-points δ(1) = δ′(1). Similarly, one shows independence from the choice of loop

1Our definition of properly discontinuous is more restrictive than the conventional one where one allows
U ∩ γ(U) 6= ∅ for finitely many γ’s. We refer to the action as discontinuous when one allows finitely many
γ’s for which U ∩ γ(U) 6= ∅.
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representing γ ∈ Γ. The action of Γ is properly discontinuous since if e 6= γ ∈ Γ then
γ(x) ∈ p−1(p(x)) and is distinct from x.

Corollary 4.1.3 All regular covering spaces are of the form E → Γ \ E where the group Γ
acts properly discontinuously on E. Conversely, if the group Γ acts properly discontinuously
on E, then p : E → Γ \ E = B is a regular covering space, and π1(B, b)/p](π1(E, e)) is
isomorphic to Γ. Here e ∈ p−1(b) is any point.

Proof - It only remains to prove the isomorphism π1(B, b)/p](π1(E, e)) ' Γ in the converse
statement. Consider the mapping Q : π1(B, b) → Γ defined by Q([δ]) = γ−1 where δ′(1) =
γ(e), and δ′ is the lift of δ with δ′(0) = e. Clearly Q is well-defined and surjective. We
show that Q is a homomorphism. Assume Q([λ]) = γ′−1. The lift of the loop λδ with
(λδ)′(0) = e, is the path γ(λ′)δ′, where λ′ is the lift of λ with λ′(0) = e, and so we have
Q([λδ]) = (γγ′)−1 = γ′−1γ−1 = Q([λ])Q([δ]). Since the kernel of Q is p](π1(E, e)) (corollary
4.1.2), the proof is complete. ♣

Example 4.1.3 Since Zn acts properly discontinuously on Rn, the fundamental group of
the n-torus T n = Rn/Zn is Zn. Furthermore, the images in T n of the straight line segments
joining the origin to the points (1, 0, · · · , 0), · · · , (0, · · · , 0, 1), form a basis for its fundamental
group. ♠

Example 4.1.4 As another application of group actions we construct, for every finitely
generated abelian group G, a compact manifold M with π1(M) ' G. For every integer

q the cyclic group of order q can be written as Z/q ' {e
2πij

q |j = 0, 1, · · · , q − 1}. Now
S3 = {(z1, z2)||z1|2 + |z2|2 = 1} is simply connected. Therefore to construct a compact
manifold whose fundamental group is isomorphic to Z/q, it suffices to define a properly
discontinuous action of Z/q on S3. Such an action is given by

e
2πij

q : (z1, z2) −→ (e
2πij

q z1, e
2πijk

q z2),

where k 6≡ 0 mod q is any integer. This action has no fixed point from which it easily follows
that it is properly discontinuous. We denote the quotient space of S3 under this action
of Z/q by L(q; k) and we have shown π1(L(q; k)) ' Z/q. For a general finitely generated
abelian group G we have the decomposition

G ' Zk × Z/q1 × Z/q2 × · · · × Z/qn
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into a product of cyclic groups. It follows that

π1(S
1 × · · · × S1︸ ︷︷ ︸

k copies

×L(q1)× · · · × L(qn)) ' G.

L(q; k) is called a Lens space. ♠

Corollary 4.1.4 Let (E, p,B) be a covering projection and f : (X, x) → (B, b). Then f
can be lifted to a map ϕ : (X, x) → (E, e), (p(e) = b) such that pϕ = f if and only if
f](π1(X, x)) ⊆ p](π1(E, e)). The lift is unique once the base point e ∈ E is specified.

Proof - The necessity follows from p]ϕ] = f]. Let y ∈ X and γ : I → X be any path with
γ(0) = x and γ(1) = y. Define ϕ(y) = (fγ)′(1) where (fγ)′ is the unique lift of fγ to a path
in E with (fγ)′(0) = e. We have to show that ϕ is well-defined. If δ is any other path joining
x to y, then δ−1γ = τ defines an element of π1(X, x) and since f](π1(X, x)) ⊆ p](π1(E, e)),
the lift of fτ with initial point e is a loop. Hence (fγ)′(1) = (fδ)′(1) as desired. Uniqueness
follows uniqueness of path lifting. ♣

Example 4.1.5 To appreciate the significance of corollary 4.1.4 we prove the fact stated
in chapter 1, section (XXX) that the winding number of a simple closed curve in the plane
is ±1. Suppose we have a mapping ψ : T 2 → S1, where T 2 is the two dimensional torus.
Corollary 4.1.4 implies that ψ lifts to a mapping ψ̃ : R2 → R of their universal covering
spaces. Now consider a C1 closed curve γ : [0, L] → R2 which we assume is parametrized by
arc length and L is the length of the curve. Regarding γ as a mapping of a circle of radius
L
2π

into C = R2 we define ψ : T 2 → S1, for s1 6= s2, by

ψ(s1, s2) = eiArg(γ(s2)−γ(s1)) =
γ(s2)− γ(s1)

|γ(s2)− γ(s1)|
.

For the limiting value s1 → s2 we obtain the unit tangent vector field to γ:

ψ(s, s) = γ′(s).

Notice that ψ is defined except at the points of self intersection of the curve γ and it takes
values in S1. Thus for γ a simple closed curve, ψ is defined everywhere on T 2. The lift ψ̃ of
ψ is a real valued function on R2. Let us try to understand the behavior of the function ψ̃.
We assume, with no loss of generality, that γ(0) is the origin in R2, γ′(0) = (1, 0) and the
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entire curve lies in the upper half plane. It is clear from the definition of winding number
that

1

2π
(ψ̃(L,L)− ψ̃(0, 0)) = ±W (γ)

is the winding number of γ. To compute this number we move along the s2-axis from (0, 0)
to (0, L), then we move from (0, L) to (L,L) by moving parallel to the s1-axis. It follows
easily that (draw a picture and use the hypotheses on how the curve is situated in R2)

ψ̃(0, 0) = 0, ψ̃(0, L) = −π, ψ̃(L,L)− ψ̃(0, L) = −π.

The required result that W (γ) = ±1 follows immediately. Note that the essential point in
the argument was that we can lift the circle valued function ψ to a (single-valued) function
on R2 with values in R, and we were able to compute ψ̃(L,L) by moving along the s2-axis
and then parallel to the s1 axis, rather than along the diagonal. ♠

Notice that in corollary 4.1.4 we required ϕ(x) = e. Let us instead assume that (X, f,B)
is a covering projection and ask whether there is a lift ϕ : X → E such that pϕ = f , but
do not require ϕ(x) = e. It is clear that if ϕ exists then ϕ(x) = p−1(b). The subgroups
p](π1(E, e

′)), e′ ∈ p−1(b), are all conjugates of p](π1(E, e)) in π1(B, b). In fact, if λ is a path
joining e to e′, then pλ is a loop, and

p](π1(E, e)) = [pλ]−1p](π1(E, e
′))[pλ].

Furthermore, by lifting a loop representing an element of π1(B, b) to E with γ(0) = e we see
that all conjugates are of this form. Therefore we have shown

Corollary 4.1.5 Let (E, p,B) and (X, f,B) be covering projections. Then there is a map
ϕ : X → E such that pϕ = f if and only if f](π1(X, x)) is contained in a conjugate of
p](π1(E, e)) in π1(B, b). Every conjugate of p](π1(E, e)) is of the form p](π1(E, e

′)) for some
e′ ∈ p−1(b).

We say that two covering projections (E, p,B) and (E ′, p′, B′) are equivalent if there is
a homeomorphism f : E → E ′ such that pf = p′. With the aid of corollary 4.1.5 we easily
obtain the following:

Corollary 4.1.6 Two covering spaces (E, p,B) and (E ′, p′, B′) are equivalent if and only if
p](π1(E, e)) and p′](π1(E

′, e′)) are conjugate in π1(B, b), where e ∈ p−1(b) and e′ ∈ p′−1(b).
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Proof - The necessity follows easily from corollary 2.5. We prove the sufficiency. By corollary
2.5 we have covering projections ϕ : E → E ′ and ϕ′ : E ′ → E such that p′ϕ = ϕ′ and pϕ′ = ϕ.
Since the map ϕ is a local homeomorphism, it suffices to show that it is injective. In view of
corollary 2.4 and the hypothesis, p](π1(E, e)) = p′](π1(E

′, e′)) for e′ = ϕ(e). Then by another
application of corollary 2.4, we have ϕ′ϕ(e) = e. If ϕ were not injective, then there would
exist x ∈ ϕ−1(e′) distinct from e. Let λ be a path joining e to x, then λ and ϕ′ϕλ are lifts
of pλ with initial point e, which contradicts the uniqueness of path lifting unless x = e. ♣

Corollary 4.1.6 may be regarded as a uniqueness theorem for covering spaces and proves
uniqueness part of theorem 4.1.2, however, it says nothing about the existence of such cov-
erings.

Since π1(B, b) acts properly discontinuously on the universal cover E (corollary 4.1.3)
the existence of the universal cover (theorem 4.1.2) implies the existence and uniqueness
of a covering space for every conjugacy class of subgroups of π1(B, b). In fact, for every
subgroup Γ of π1(B, b) the natural projection Γ \ E → B is the desired covering space and
the uniqueness follows from corollary 4.1.6. Summarizing:

Corollary 4.1.7 Covering spaces of B are in one to one correspondence with conjugacy
classes of subgroups of π1(B, b).

Example 4.1.6 The universal cover of figure 8 is given in Figure 2.1. The fundamental
group of figure 8 is the free group F2 on two generators. Its universal cover is the infinite
homogeneous tree four edges meeting at each vertex. (By definition a tree is a graph X with
no loops, or equivalently a contractible graph.) Note the images of the point ◦ under the
action of the elements x, y, xy, and yx of F2 (x and y are generators). ♠

Exercise 4.1.6 Assuming x · ◦ and y · ◦ are as given in Figure 2.1, and using the procedure
described above for the action of Γ on E show that xy · ◦ and yx · ◦ are as given. Similarly,
the universal covering space of a bouquet of k circles is the infinite homogeneous tree with
2k vertices meeting at each vertex, and its fundamental group is the free group Fk on k
generators.

Example 4.1.7 We use example 4.1.6 to construct a non-regular covering space. In Figure
2.2 we have a three-sheeted covering of figure 8. Let γ denote the loop which is the circle on
the left in the counterclockwise direction and γ(0) = b. Then the lift of γ with initial point
e or e′ is not closed, while its lift with initial point e′′ is closed. One can similarly construct
n-fold coverings of a surface Mg of genus g. In Figure 2.3 and 2.4 we have exhibited how
copies of a surface of genus 2 could be cut and pasted to obtain 2-fold and 3-fold coverings.
It is clear that the procedure generalizes. However, Mg admits of many n-fold coverings (see
corollary 4.1.8 exercise 4.1.12 below). ♠
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Example 4.1.8 (Compare with the proof of theorem 4.1.2 below) We show that all simply
connected manifolds are orientable. Recall that by an orientation at x ∈ M we mean the
choice of a generator mx ∈ Hm(M,M \ x) ' Z. We have the coherence condition that every
x ∈M has a (compact) neighborhood K and a generator mK ∈ Hm(M,M \K) ' Z whose
image in Hm(M,M \ x) is the generator mx ∈ Hm(M,M \ x) for all x ∈ K. Let U = {Ui}
be a covering of M by open relatively compact open sets such that Hm(M,M \ Ui) ' Z.
For every i let mi ∈ Hm(M,M \ Ui) be a generator. Let M ′ be the manifold with covering
{U ′i} ∪ {U ′′i } with U ′i = {(x,mi)|x ∈ Ui} and U ′′i = {(x,−mi)|x ∈ Ui} and the points (x,mi)
and (y,mj) (resp. (y,−mj) are identified if x = y ∈ Ui ∩ Uj and the images of mi and mj

(resp. −mj) are identical in Hm(M,M \ x). We define p : M ′ → M by defining p on Ui

and U ′i by p(x,±mi) = x which is clearly meaningful. We show that if M is not orientable
then M ′ is path-connected, and so M admits of a double covering and this will prove the
assertion. If M is not orientable then for every x ∈M we can choose a sequence K1, · · · , Kk

of compact sets with x ∈ K̆1 ∩ K̆k, K̆i ∩ ˘Ki+1 6= ∅ and generators mi ∈ Hm(M,M \Ki) such
that the images of mi and mi+1 are identical in Hm(M,M \ (Ki ∩Ki+1) for 1 ≤ i ≤ i − 1
and mk = −m1. This clearly proves path-connectedness of M ′ and we are done. ♠

Exercise 4.1.7 Show that the argument of example 2.4 actually proves more, viz., if M is
not orientable then π1(M,x) contains a (normal) subgroup of index 2.

Exercise 4.1.8 Show that every vector bundle over a simply connected manifold is ori-
entable. (The argument in example 4.1.8 can be used with the definition of orientation in
terms of choice of bases in which case it adopts to vector bundles.)

Exercise 4.1.9 Let E →M be a non-orientable vector bundle. Show that there is a double
covering (M ′, p,M) such that p?(E) →M ′ is orientable.

Example 4.1.9 We can now prove the statement in chapter 2, example (XXX) that every
compact surface M ⊂ R3 of genus 6= 1 has at least one umbilical point. Assume the surface
M has no umbilical points, then there are two smooth functions κi, i = 1, 2, defined on M
which give the principal curvatures of M , and we may assume κ1(x) > κ2(x) for all x ∈M .
Let Li →M be the real line bundle on M whose fibre at x ∈M is the eigenspace (in TxM)
for eigenvalue κi of the second fundamental form. If M has genus zero, then it is simply
connected and Li →M are trivial bundles and therefore we obtain nowhere vanishing vector
fields on the sphere which is not possible. If M has genus > 1, then consider the double
covering (M ′, p,M) such that p?(L1) →M ′ is orientable and therefore trivial (exercise 4.1.9).
Since p?(TM) is the tangent bundle of M ′, p?(L1) →M ′ is a trivial sub-bundle of its tangent
bundle and consequently M ′ has a nowhere vanishing vector field which is not possible since
genus of M ′ is 6= 1. ♠
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While corollary 4.1.7 gives a complete classification of covering spaces of B, it does
not immediately give a practical method for the enumeration and the construction of finite
sheeted coverings of B. There is a fairly practical method for the enumeration of finite covers
of a space which we now describe. Given a covering projection (E, p,B), b ∈ B, we label
p−1(b) = {e1, · · · , en}. Clearly π1(B, b) acts as a group of permutations of {e1, · · · , en}. In
fact, for every loop γ : I → B with γ(0) = b, let γ′i be the lift of γ with γ′i(0) = ei, and
define γ(ei) = γ′(1). (Notice that this action is defined only on the fibre p−1(b) and does not
extend to an action on E unless (E, p,B) is a regular covering; see the argument preceding
corollary 2.3.) The action of π1(B, b) on p−1(b) = {e1, · · · , en} is transitive,- it has only one
orbit. Hence we have a homomorphism ρ : π1(B, b) → Sn (=the permutation group on n
letters) and Im(ρ) is a transitive group of permutations of n letters. Relabeling p−1(b) by a
permutation σ ∈ Sn replaces ρ by σ−1ρσ. We say two homomorphisms ρ, ρ′ : π1(B, b) → Sn

are equivalent if ρ′ = σ−1ρσ for some σ ∈ Sn.

Corollary 4.1.8 n-sheeted coverings of B are in 1-1 correspondence with equivalence classes
of homomorphisms ρ : π1(B, b) → Sn such that Im(ρ) is a transitive group of permutation of
n letters.

Proof - We have already shown that an n-sheeted cover of B determines an equivalence
class of homomorphisms ρ : π1(B, b) → Sn satisfying the transitivity condition. Conversely,
given a homomorphism ρ : π1(B, b) → Sn satisfying the transitivity condition, let Γ =
{γ ∈ π1(B, b)|ρ(γ)(1) = 1} and Eρ = Γ \ E where E is the universal cover of B. In
view of the transitivity condition, Γ has index n in π1(B, b) and Eρ → B is an n-sheeted
covering space. All coverings of B equivalent to Eρ → B are obtained by replacing Γ
with a conjugate subgroup. Let Γ′ = τΓτ−1, and p′ : E ′ = Γ′ \ E → B be the natural
projection. The equivalence Eρ → E ′ is given by x → τ(x) which is well-defined since
γ(x) → τγ(x) = (τγτ−1)(τ(x)). Therefore p′−1(b) = {τ(e1), · · · , τ(en)}, and

γ(τ(ej)) = eρ(γ)ρ(τ)(j) = τ(eρ(τ ′)(j))

where τ ′ = τ−1γτ . Hence π1(B, b) acts on p′−1(b) via the homomorphism

ρ′(γ) = ρ(τ−1)ρ(γ)ρ(τ),

which completes the proof of the corollary. ♣
As an application of corollary 4.1.8 we have

Exercise 4.1.10 (a) Show that there are three double coverings of figure 8 and realize them
geometrically. (b) Show that there are seven 3-sheeted coverings of figure 8 and realize them
geometrically.
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Exercise 4.1.11 Which homomorphism ρ : F2 → S3 does the 3-sheeted cover of Figure 2.2
correspond to? Describe explicitly the subgroups p](π1(E, e)) and p](π1(E, e

′′)) of π1(B, b)
for this covering space.

Exercise 4.1.12 Use corollary 2.8 to show that there are 22g − 1 double coverings of Mg.

The homomorphism ρ : π1(B, b) → Sn described above is called the monodromy repre-
sentation. It is to be distinguished from the group of covering transformations of (E, p,B)
which is the group of those homeomorphismsof E which map every fibre onto itself. The
following exercises clarify the relationship between these concepts:

Exercise 4.1.13 Show that there is at most one covering transformation of (E, p,B) map-
ping ei to ej, where p−1(b) = {e1, · · · , en}. (If the covering transformation τ fixes ei and
maps ej to ek, then consider a path γ joining ei to ej and contradict the uniqueness of the
lift of the path pγ. It is not necessary to assume n is finite.)

Exercise 4.1.14 Show that the group of covering transformations acts transitively on a fibre
(therefore all fibres) if and only if (E, p,B) is a regular covering space. Therefore the group
of covering transformations coincides with π1(B, b)/p](π1(E, e)) if and only if (E, p,B) is a
regular covering.

Exercise 4.1.15 Let ∆i = {γ ∈ π1(B, b)|ρ(γ)(ei) = ei}, and ∆ = ∩∆i. Show that ∆ is a
normal subgroup and Im(ρ) ' π1(B, b)/∆. Furthermore, Im(ρ) is a group of order n if and
only if (E, p,B) is a regular covering (i.e., ∆ = ∆i for all i).

4.1.4 Some Proofs

Now we discuss the proofs of theorems 4.1.1 and 4.1.2.
Proof of theorem 4.1.1 - Let U = {Ui} be a covering of B such that p−1(Ui) is a disjoint
union ∪kVik with p a homeomorphism of each Vik onto Ui for all i. We fix e ∈ p−1(b),
and may assume that b ∈ U1 and e ∈ V11. We partition the square into sufficiently small
subsquares such that G(sn) lies entirely within one Ui, i = i(n). Starting from s1 =(the
square with subsquare containing the origin), we may assume G(s1) is contained in U1, and
since p : V11 → U1 is a homeomorphism, the restriction of G to s1 can be uniquely lifted
to a mapping into E with G((0, 0)) = e. Ordering the subsquares in a way that each is
adjacent to the next, we can repeat the process until we have exhausted the square. This
argument proves that covering spaces are fibrations with unique path-lifting and notice that
G′(0, s) can be chosen to be any point in p−1(γ(0)). To prove the second assertion assume
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sn∩(∂I×I) 6= ∅. Since p−1(Ui(n)) consists of disjoint open sets, G′ is constant on sn∩(∂I×I),
and G′ is locally constant on ∂I × I which is precisely the assertion to be proven. ♣
Proof of theorem 4.1.2 - We prove this theorem for the special case where B is a manifold
of dimesion b. A technical refinement of the idea of the proof makes it work for general
case. Fix a triangulation of B, and assume that the triangulation is sufficiently fine so that
for each vertex v, St(v) = {b− simplices containing v} (called star of v has a neighborhood
U(v) with p−1(U(v)) = ∪Vi (disjoint union), and the restriction of p to Vi a homeomorphism
onto U(v). Let {si} be an enumeration of the b-simplices of B, and fix a point xi ∈ Int(si).
Draw a line lji joining xi to xj if si and sj have a face in common, and in this case assume
that lji lies entirely in Int(si ∪ sj). Let x◦ be the base-point. Obviously the paths lji and lkj

can be composed to obtain a path lkjlji = lkji joining xi to xk. Every path with initial point
x◦ and terminal point xn is homotopic to one of the form lni(k)···i(1)◦. Let Y be the space
{(si, l)|I path of the above form joining x◦ to xi}. On Y define equivalence relation ∼ by the
rule (si, l) ∼ (sj, l

′) if i = j and l and l′ are homotopic. Let E = Y/ ∼ be the quotient space.
To endow E with the structure of a simplicial complex, we choose representatives for each
equivalence class. We say (si, l) and (sj, l

′) have a face in common if si and sj have a face
in common and the loop l′−1ljil is homotopic to the constant loop. One checks easily that
this condition is independent of the choice of the representatives for the equivalence classes
in Y . With this provision we can put together the (si, l)’s to make a simplicial complex out
of E. Notice that if (si, l) and (sj, l

′) have a face in common then they are joined together in
the same manner as si and sj are joined. Points of E have representatives of the form (x, l)
where l is a path of the above form joining x◦ to xi and x ∈ si. Furthermore, the projection
(x, l) → x gives us the covering projection (E, p,B), and clearly E is a manifold since B is
one. To see that E is simply connected let γ′ be a loop in E with initial point x′◦ lying above
x◦, and let γ = pγ′. Clearly γ′ is the lift of γ with initial point x′◦. If γ 6= e ∈ π1(B, x◦), then
from the construction of E, (s◦, e) ∩ (s◦, γ) = ∅. Since (x◦, γ) is the terminal point of γ′, we
have contradicted the assumption that γ′ is a loop. Hence E is simply connected. As noted
earlier, uniqueness follows from corollary 4.1.6. ♣
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4.2 Computing Fundamental Groups

4.2.1 Simple Examples

Example 4.2.1 In example 3.5.1 of chapter 1 we used the algebra H of quaternions to
indentify S3 with the group of unit quaternions. We now use that example to construct
the universal cover of SO(3). Let H′ be the subspace of H spanned by i, j and k called
the subspace of pure quaternions. For v ∈ H′ and 0 6= q ∈ H, qvq−1 ∈ H′ which yields
a representation ρ : SU(2) → GL(3,R). (This representation is equivalent to the adjoint
representation of SU(2).) Since ||v|| = ||qvq−1|| the representation ρ takes values in SO(3).
Clearly, Kerρ = ±I and for dimension reasons the mapping is onto SO(3). It follows that
ρ : SU(2) → SO(3) is a covering projection and since SU(2) ' S3 is simply connected,
π1(SO(3), e) ' Z/2. ♠

Exercise 4.2.1 Show that the fundamental group of the projectivized tangent bundle P (RP(2))
of RP(2) i.e., the set of tangent lines to RP(2) is the quaternion group Q = {±1,±i,±j,±k}
of order 8. (Consider the above action of SU(2) on pure quaternions to obtain RP(2) as a
homogeneous space for SU(2).)

Example 4.2.2 We show by induction that CP(n) is simply connected. For n = 1 this
is just simple connectedness of CP(1) = S2. Recall that CP(n) ⊃ CP(n − 1), and it is
obtained from CP(n− 1) by attaching the unit disc D2n, with ∂D2n = S2n−1 being mapped
to CP(n− 1). Let x ∈ CP(1) and γ : I → CP(n) with γ(0) = γ(1) = x. By the simplicial
approximation theorem, we may assume γ is a simplicial map and therefore misses a point
z lying in the cell D2n. By joining z to the points on Im(γ) that lie in D2n and continuing,
we can deform γ so that the entire image of γ lies in CP(n − 1) (see Figure 3.1), i.e., γ
is homotopic relative ∂I to a loop γ′ lying entirely in CP(n − 1). Applying the induction
hypothesis to γ′ we see that γ is homotopic to the constant loop and so CP(n) is simply
connected. ♠

Example 4.2.3 In this example we show that the fundamental group of an analytic group
is abelian. The group operation of an analytic group G allows us to define another operation
on the space of paths in G, viz., if γ, τ : I → G then we define the path (γ ◦ τ)(t) = γ(t)τ(t).
(to avoid confusion with the product γτ of two loops γ and τ in the fundamental group, we
use the notation γ ◦ τ .) Assuming that γ and τ are loops with base point e, then the loops
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γ ◦ τ and γτ are homotopic. In fact, the homotopy is explicitly constructed as follows:

F (t, s) =


γ( 2t

1+s
) for 0 ≤ t ≤ 1−s

2
,

γ(2t−1+s
1+s

)τ( 2t
1+s

) for 1−s
2
≤ t ≤ 1+s

2
,

τ(2t−1+s
1+s

) for 1+s
2
≤ t ≤ 1.

This homotopy can be described as follows: At s = 0, F (t, 0) = γτ . For 0 < s < 1 γ and τ
are rescaled so that going around the entire loop takes (1 + s)/2, with γ starting at t = 0
and τ starting at t = (1 − s)/2. Furthermore, in the interval [(1 − s)/2, (1 + s)/2], F (t, s)
is the product γ ◦ τ . At s = 1, F (t, 1) = γ ◦ τ(t). Notice that we may as well define F (t, s)
to be the product τ ◦ γ in the interval [(1 − s)/2, (1 + s)/2], so that γτ is also homotopic
τ ◦ γ. In particular, γτ and τγ are homotopic and π1(G, e) is abelian. Here we made very
little use of the group structure on G. All that we needed was the possibility of multiplying
two quantities and the existence of identity. ♠

Example 4.2.4 Let G be an analytic group and p : G̃ → G be its universal covering
space. In this example we show that G̃ has a natural group stucture and p is a continuous
(and therefore analytic) homomorphism of groups. Let µ : G × G → G denote the map
µ(g, h) = gh−1. Consider the diagram

G̃× G̃
µ̃−→ G̃

↓ ↓
G×G

µ−→ G

where the vertical arrows are p× p and p. We fix base point ẽ for G̃ such that p(ẽ) = e ∈ G
and use (ẽ, ẽ) as base point for G̃ × G̃. The map µ̃ exists and is unique by corollary 4.1.4
and the requirement µ̃(ẽ, ẽ) = ẽ. It is straightforward to show that µ̃ endows G̃ with the
structure of an analytic group and p is a continuous homomorphism.

Exercise 4.2.2 Let G be an analytic group and p : G′ → G a covering projection. Show
that G′ has the structure of an analytic group with p a continuous (and therefore analytic)
homomorphism.

Example 4.2.5 Let n ≥ 2 and F : In → S1 be a continuous map such that F (∂In) = x
where x ∈ S1 is any fixed point on the circle which we take it to be the point 1 ∈ S1 ⊂ C.
Now F (y) = eiθ(y) for some real valued function θ on In. Since ∂In is connected for n ≥ 2,
θ is constant on In and therefore θ(∂In) = 0. Now consider the homotopy

G : I × In −→ S1, G(t, y) = ei(1−t)θ(y).
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Therefore for n ≥ 2, any mapping F : In → S1,constant on the boundary ∂In, is homotopic
to a constant map relative to the boundary. ♠

Fibrations play a very important role in homotopy theory. In the examples that follow
we examine some applications of fibrations to the fundamental group. Their significance will
become more evident after the introduction of higher homotopy groups and the long exact
sequence for homotopy.

Example 4.2.6 The realization of the sphere Sn as the homogeneous space Sn = SO(n +
1)/SO(n) implies that we have a fibration p : SO(n + 1) → Sn with fibre SO(n). Assume
n ≥ 3. We show by induction on n that π1(SO(n + 1), e) is either Z/2 or is the trivial
group. We have already shown that π1(SO(3), e) ' Z/2. Let γ : I → SO(n + 1) be a
loop with γ(0) = γ(1) = e. Then pγ is a loop in Sn which is simply connected. Therefore
pγ is homotopic to the constant map I → p(e). Lifting the homotopy to SO(n + 1) we
see that γ is homotopic to a loop in SO(n). It then follows from the induction hypothesis
that π1(SO(n + 1), e) is either Z/2 or is the trivial group. In exercises 4.2.3 and 4.2.4 it
is shown that π1(SO(n), e) ' Z/2 for n ≥ 3. In the subsection on Clifford algebras we
construct a double covering of SO(n) which also shows that π1(SO(n + 1), e) ' Z/2 for
n ≥ 3. Similarly by looking at the fibration SU(n + 1) → S2n+1 with fibre SU(n), and
recalling that SU(2) ' S3 one shows inductively that SU(n) is simply connected for n ≥ 2.
♠

Let π : E →M be a fibre bundle with fibres homeomorphic to a manifold Q of dimension
q. We assume M and E are path-connected. Let x ∈ E, then Q ' π−1(π(x)) (fibre over
π(x)), and we have induced homomorphisms

π1(Q, x)
ı]−→ π1(E, x)

π]−→ π1(M,π(x)). (4.2.1)

The generalization and properties of these homomorphisms are studied in the context of
higher homotopy groups and long exact sequence for homotopy. For the time being, we
make some observations about (4.2.1) which will become useful later in this chapter.

Lemma 4.2.1 With the above notation and hypotheses, the sequence (4.2.1) is exact, i.e.,
Im(ı]) = Ker(π]).

Proof - It is clear that Im(ı]) ⊂ Ker(π]). Let γ : I → E be such that πγ represents
the identity in π1(M,π(x)), then there is a homotopy F : I × I → M between πγ and
the constant map. By the homotopy lifting property, the homotopy lifts to F̃ which is a
homotopy between γ and a mapping F̃ (1, .) : I → Q which shows that [γ] lies in the image
of ı] proving the required exactness. ♣
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Example 4.2.7 Assume that that in the fibration π : E → M , M = S1 and the fibre Q is
also path-connected. The the conclusion of lemma 4.2.1 can be strengthened to the exactness
of the sequence

1 −→ π1(Q, x)
ı]−→ π1(E, x)

π]−→ Z −→ 0.

First we prove that ı] is injective. Let γ : I → Q and F : I × I → E be a homotopy between
γ and the constant map to E, i.e., F (0, t) = γ(t), F (s, ∂I) = x and F (1, t) = x. Then
πF : I2 → S1 with πF the constant map to π(x). Example 4.2.5 is applicable to show that
πF is homotopic to the constant map. This means we have a mapping G : I × I2 → S1 such
that

1. G(0, (t1, t2)) = πF (t1, t2);

2. G(s, ∂I2) = π(x);

3. G(1, (t1, t2)) = π(x).

Let G̃ be the lift of this homotopy to E with G̃(0, (t1, t2)) = F (t1, t2). Then the mapping
(s, t) → G̃(s, (0, t)) takes values in Q and gives the desired homotopy between γ and the
constant map to x ∈ Q. The surjectivity of π] only requires path-connectedness of Q. (Of
course Z should be replaced with π1(M,π(x)) if M 6= S1.) Let γ : I → M and γ̃ be a lift
of γ to γ̃ : I → E. Since Q is path-connected, there is δ : I → Q = π−1(π(x)) such that
δ(0) = γ̃(1) and δ(1) = γ̃(0). The composition of δ and γ define an element of π1(E, x) which
maps to γ by π]. This completes the proof of the claimed exactness. For M = S1, we have
π1(M,π(x)) ' Z, and since Z is free, we have a splitting homomorphism ρ : Z → π1(E, x),
i.e., π]ρ = id. Therefore we have the semi-direct product decomposition

π1(E) ' π1(Q, x).Z.

We will use this decomposition in connection with knots. ♠

Exercise 4.2.3 Let F : I2 → SO(3) be a continuous mapping such that F (∂I2) = e. Show
that F lifts to a mapping F̃ : I2 → SU(2). Deduce that F̃ and therefore F is homotopic to
the constant map to e. Using the fibration SO(n+ 1) → Sn with fibre SO(n), show that for
n ≥ 3, every continuous map F : I2 → SO(3) such that F (∂I2) = e is homotopic to the
constant map g → e.
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Exercise 4.2.4 By emulating the argument of example 4.2.7 show that the inclusion ı :
SO(n) → SO(n + 1), n ≥ 3, (where SO(n) acts on the last n coordinates), induces an
injection

ı] : π1(SO(n), e) → π1(SO(n+ 1), e).

Deduce that π1(SO(n), e) ' Z/2 for n ≥ 3.

4.2.2 Theorem of Van Kampen

The most important tool in computing fundamental groups is the theorem of van Kampen
which may be regarded as the analogue of the Mayer-Vietoris sequence for the fundamental
group.

Theorem 4.2.1 (van Kampen) Let Z = X ∪ Y (union of connected simplicial complexes),
A = X ∩ Y , x ∈ A, and assume A is a path connected simplicial complex. Set Γ = π1(X, x),
Γ′ = π1(Y, x) and ∆ = π1(A, x). Let iX] : ∆ → Γ and iY ] : ∆ → Γ′ be the homomorphisms
induced by the inclusions iX : A→ X and iY : A→ Y . Then

π1(Z, x) ' Γ ?∆ Γ′.

Remark 4.2.1 This description of π1(Z, x) which is intuitively and geometrically reason-
able, and we omit its formal proof. It generalizes the second assertion of proposition 4.1.1
above. The assumption that X, Y , Z and A are simplicial complexes is not necessary, al-
though some mild restrictions on these spaces are necessary. A set of sufficient conditions is
as follows:

1. X and Y are separable, regular topological spaces;

2. X \ A and Y \ A are open in in Z;

3. X, Y and A are locally contractible;

4. A is path-wise connected.

Necessary and sufficient conditions are given in [Ol]. ♥

Exercise 4.2.5 Let L1, · · · , Lm be lines in general position in R3, Λ = ∪Lj, and N = R3\Λ.
Show that the fundamental group of N is isomorphic to the free group on m generators.
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Exercise 4.2.6 Give an alternative proof of exercise 4.1.5 on the basis of van Kampen’s
theorem.

Example 4.2.8 Let M be a manifold of dimension m ≥ 4 and γ : S1 →M be an embedding
of a circle inM . Denote byNγ a small (closed) tubular neighborhood of Im(γ) and its interior

by N̆γ. Let M ′ = N \ N̆γ. In this example we show that the fundamental group of M ′ is
isomorphic to that of M . Let Dn denote the disc of dimension n, then Nγ ' S1 × Dm−1

and ∂Nγ ' S1 × Sm−2. Consequently, for x ∈ ∂Nγ, the inclusion ∂Nγ → Nγ induces an
isomorphism of fundamental groups for m ≥ 4:

π1(∂Nγ, x)
'−→ π1(Nγ, x) ' Z. (4.2.2)

Since M ′ ∩Nγ = ∂Nγ, van Kampen’s theorem and (4.2.2) imply

π1(M,x) ' π1(M
′, x) ?Z Z ' π1(M

′, x),

which is the desired result. ♠

A modification of the argument proving simple connectedness of CP(n) (example 4.2.2)
has interesting consequences for the fundamental group of simplicial or regular cell complexes.
Let X be a simplicial complex or a regular cell complex, Xn = ∪j≤n(j−cells) the n-skeleton
of X and x ∈ X1. Then the inclusion Xk ⊂ Xn, k < n, induces a homomorphism

λkn : π1(X
k, x) −→ π1(X

n, x). (4.2.3)

Let γ : I → X2. For every 2-simplex or 2-cell D of X2 we may assume Imγ misses at least
one point of D and by the argument in example 4.2.2, γ is homotopic, relative to ∂I to a
map γ′ : I → X1. This implies that the map λ12 is surjective. We can actually say more. In
fact we have

Proposition 4.2.1 With the above notation and hypotheses, the homomorphisms λ1n, n >
1, are surjective, and the homomorphisms λ2n, n > 2, are isomorphisms.

Proof - Since we have already shown that λ12 is surjective, it suffices to prove the second
assertion. Let D is an n-simplex or an n-cell, n ≥ 3, Y ⊂ Z simplicial or regular cell
complexes with Z = Y ∪D where ∂D ⊂ Y . Let x ∈ ∂D. By van Kampen’s theorem

π1(Z, x) = π1(Y, x) ?π1(∂D,x) π1(D, x).

Since π1(D, x) = π1(∂D, x) = 0 the required result follows. ♣
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Example 4.2.9 In this example we use van Kampen’s theorem to show that for every n ≥ 1
andm ≥ 3 there is a compact orientable manifoldM of dimensionm with fundamental group
isomorphic Fn. Let M1 = S1 × Sm−1. The fundamental group of of M1 is isomorphic to Z
since m ≥ 3. Let Mj 'M1 for j = 2, · · · , n. We apply the ] construction to obtain M1]M2.
In order to apply van Kampen’s theorem we write

M1]M2 = M ′
1 ∪M ′

2, with M ′
1 ∩M ′

2 ' (0, 1)× Sm−1.

Since M ′
j is obtained from Mj by removing a (small) disc with boundary diffeomorphic to

Sm−1,

π1(M
′
j, x) ' Z.

Now π1(M
′
1 ∩M ′

2, x) = 0 in view of M ′
1 ∩M ′

2 ' (0, 1) × Sm−1, and consequently by van
Kampen’s theorem π1(M1]M2, x) ' F2. Similarly, the fundamental group of M1] · · · ]Mn is
isomorphic to the free group Fn on n generators. spadesuit

Example 4.2.10 In example 4.2.9 we exhibited, for every m ≥ 3, a compact orientable
manifolds of dimension m whose fundamental group is the free group on n generators. In
this example we refine that result by showing that for m ≥ 4 and for every finitely presented
group Γ there is a compact orientable manifold of dimension m whose fundamental group is
Γ. We have an exact sequence

{1} −→ R −→ Fn −→ Γ −→ {1},

with R the normal subgroup generated by the finitely many relations R1, · · · , Rl ∈ Fn and
their conjugates. Let M◦ = S1 × Sm−1 and M = M◦] · · · ]M◦ be the manifold constructed
in example 4.2.9 with fundamental group isomorphic to Fn. Let x ∈ M and γ : S1 → M
be an embedding of the circle with γ(1) = x and γ representing the relation R1 ∈ π1(M,x).
That this is possible follows from the transversality theorem and m ≥ 3. Let Nγ be a small
closed tubular neighborhood of Im(γ) as in example 4.2.8, and M ′ = M \ Nγ. Now note
the key point that the distinct manifolds with boundary D2 × Sm−2 and S1 × Dm−1 have
diffeomorphic boundaries:

∂Nγ ' ∂(S1 ×Dm−1) ' S1 × Sm−2 ' ∂(D2 × Sm−2). (4.2.4)

By the theorem of Cerf (see chapter 1) we obtain a manifold M1 by attaching D2×Sm−2 to
M ′ via the diffeomorphism of the boundaries of Nγ and of D2 × Sm−2 as given by (4.2.4).
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Since π1(M
′, x) = π1(M,x) (example 4.2.8), and D2 × Sm−2 is simply connected for m ≥ 4,

van Kampen’s theorem implies

π1(M1, x) ' Fn/(R1).

Repeating the construction for the remaining relations we obtain the desired manifold. ♠

Example 4.2.11 In chapter 3 we computed the homology of a finite connected graph, and
showed that its first homology group is the free abelian on (1-number of vertices+number
of edges) number of edges) generators. In the example below we show that its fundamental
group is the free group on the same number of generators. Although this result is more
elementary than van Kampen’s theorem, we shall use the latter result in our computation to
demonstrate the power of this theorem. The proof is by induction on the number of edges
of the graph Z. If Z has only one edge then the conclusion is valid. If we can decompose Z
into two disjoint connected graphs X and Y , and each having at least on edge, and joined at
one vertex x, then from theorem 4.2.1 and the induction hypothesis we see that π1(Z, x) is
the free group on 2−χ(X)−χ(Y ) generators. Since the number of the edges of Z is the sum
of those of X and Y , and the number of vertices of Z is the sum of those of X and Y minus
1, the claim follows in this case. Now assume that by disconnecting the edge λ at the vertex
y ∈ λ, the graph does not become disconnected. Let X be the graph obtained by removing
the edge λ. The the vertices of X and Z are identical, but X has one less edge, namely λ.
Let x and y be the vertices of the edge λ. Since removing λ does not disconnect the graph
Z, there is a path in X connecting x to y. Let A be a connected contractible subgraph of
X joining x to y. Notice that the shortest path (i.e., the fewest number of edges) joining x
to y is necessarily contractible since by eliminating loops we shorten the length of a path.
Let Y be the graph obtained from A by the addition of the single edge λ joining x to y. |Y |
is clearly homeomorphic to the circle. We now have the decomposition Z = X ∪ Y with
X ∩ Y = A. Applying the induction hypothesis and invoking van Kampen’s theorem we get
the required result. ♠

Example 4.2.12 We apply van Kampen’s theorem to compute the fundamental group of a
surface of genus g. We know that for g = 1, π1(M1, x) = Z2. We can decompose M2 = X∪Y
in such a way X and Y are homeomorphic to a torus with a small disc removed, and
A = X ∩ Y is a circle. We claim that π1(X, x) ' π1(Y, x) ' F2, the free group on two
generators. In fact, we can represent X as a square with a disc in the middle removed and
with the obvious identification of the edges as described in the computation of homology
of surfaces. Then expanding the disc to the entire interior of the square, we see that the
boundary of the square, with the identification of the edges, which is figure 8, is a deformation
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retract of X. This proves the claim. Let {a1, b1} (resp. {a2, b2}) be the generators of
π1(X, x) (resp. π1(Y, x)) corresponding to the loops of figure 8. Then the generator of
π1(A, x) as an element of π1(X, x) (resp. π1(Y, x)) is a1b1a

−1
1 b−1

1 (resp. a2b2a
−1
2 b−1

2 , after
possibly renaming the generators). Therefore π1(M2, x) is the quotient of F4, with generators
{a1, b1, a2, b2} and the single relation

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 = e.

In Figure 3.2 planar representations of surfaces of genus 2 and 3 are given. The boundary
of the region consists of g connected components and it is immediate that the resulting
surface is Mg after proper identification of sides. If we remove a small disc from Mg then
the resulting surface M ′

g has the homotopy type of a bouquet of 2g circles which we denote
by B2g. This is easily seen by expanding the small discs so that their complement becomes a
one dimensional figure. The fundamental group of B2g is F2g (exercise 4.1.4.) Furthermore,
from the representation of M ′

g we see that if A denotes the boundary of M ′
g, then the image

of a generator of π1(A, x), (x ∈ A) in π1(M
′
g) induced by the inclusion of A in M ′

g, is

a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g .

We this observation we can easily continue the process of computing the fundamental group
of Mg, and show that π1(Mg, x) is isomorphic to the quotient of the free group F2g, with
generators {a1, b1, · · · , ag, bg} by the single relation

a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g = e. (4.2.5)

This completes the computation of the fundamental group of Mg. ♠

Exercise 4.2.7 Determine the conjugacy classes of the subgroups of π1(M2, x) corresponding
to the non-regular coverings of example 4.1.7.

Exercise 4.2.8 Let Ng be the compact nonorientable surface defined in chapter 3. Show
that the fundamental group of N1 = RP(2) is Z/2. By mimmicking the argument of given
for the π1(M2, x), show that the fundamental group of π1(N2, x) is the quotient of the free
group on two generators, c1 and c2, by the single relation

c21c
2
2 = e.

The extension of the computation in exercise 4.2.8 to π1(Ng, x) requires knowledge of
π1(N

′
g, x), where N ′

g is obtained from Ng by removing a small disc. In Figure 3.3 we have
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represented Ng and N ′
g as planar domains for g = 2 and 3. We have chosen these represen-

tations since their validity is immediate from the definition of Ng. By expanding the disc
D we see that N ′

g has the homotopy type of a bouquet of g circles. Consequently, π1(N
′
g, x)

is isomorphic to the free group on g generators. With this observation it is not difficult to
compute π1(Ng, x). In fact,

Exercise 4.2.9 Show that π1(Ng, x) is the quotient on g generators, {c1, · · · , cg}, by the
single relation

c21 · · · c2g = e.

Exercise 4.2.10 Show that the fundamental group of the surface obtained by removing n > 0
distinct points from Mg (resp. Ng) is the free group on 2g+n−1 (resp. g+n−1) generators.

Exercise 4.2.11 Show that there are 2g double covers of Ng, and realize them geometrically
for g = 1 and 2.

Exercise 4.2.12 Which double cover(s) of Ng are orientable, and identify the surface.

Example 4.2.11, proposition 4.2.1 and theorem 4.2.1, in principle, allow us to compute
the fundamental group of any simplicial or regular cell complex. In fact, given any simplicial
or cell complex, the fundamental group of its 1-skeleton is computable by example 4.2.11.
Proposition 4.2.1 implies that the fundamental group of a finite simplicial or regular cell
complex X is a quotient of that of its 1-skeleton. Adding 2-simplices creates relations which
are obtained by invoking theorem 4.2.1. Furthermore, proposition 4.2.1 also implies that
attaching simplices of dimension greater than two to the 2-skeleton of X does not affect the
fundamental group.

4.2.3 Knots and Links

By a knot we mean a smooth embedding of the circle S1 in R3 or S3. For practical purposes,
it is often more convenient to look at the knot as a compact piece-wise linear one dimensional
manifold necessarily homeomorphic to the circle. Often it is the image of the embedding
which is of geometric interest rather than the mapping itself. Therefore we use the word
knot to mean both the embedding of the circle and its image. This will cause no confusion.
One should note that if we only assume continuity of the embedding, then it is possible to
construct wild knots with infinitely many crossings as shown in Figure 3.4. We would like to
avoid such pathologies. To distinguish between different knots, one looks at the complement
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of a knot in the ambient space. Recall, however, from chapter 3 exercise (ZZZ) that the
homology groups of the complement of a knot do not distinguish between the different
embeddings. The fundamental group of the complement of a knot, on the other hand, is
good invariant. We conveniently refer to the fundamental group of the complement of a knot
K as the group of the knot K or a knot group. Let Ln be the disjoint union of n circles which
is a one dimensional manifold with n connected components. A C∞ or piece-wise linear
embedding of Ln in R3 or S3 is called a link. It is the image of the embedding and/or its
complement which are of interest. Referring to the image as a link will not cause confusion
and will be denoted by Ln again. The fundamental group of the complement of a link Ln

is called the group of the link Ln or a link group. The ordinary embedding of the circle in
R3 or S3, or any embedding that differs from it by a homeomorphism of the ambient space,
is called the trivial knot or an unknotted circle. It is a simple matter to draw knots and links
which look very non-trivial, at least intuitively. Extensive tables with pictures can be found
in [Rol].

Exercise 4.2.13 Consider the ordinary embedding S1 = {eiθ} ⊂ R2 ⊂ R3. Show that
π1(R

3 \ S1;x) ' Z.

Exercise 4.2.14 Identify S3 with the one point compactification of R3 (e.g., via the stere-
ographic projection), and let K ⊂ R3. Show that π1(S

3 \K) ' π1(R
3 \K).

Let Ln,1 = {eiθ} ⊂ R2 ⊂ R3 be the standard embedding of the circle. Let D1 =
{(x1, x2, 0)|x2

1 + x2
2 ≤ 1}, then ∂D1 = Ln,1. Let T2, · · · , Tn be diffeomorphisms of R3 and set

Ln,j = Tj(Ln,1), Dj = Tj(D1).

Exercise 4.2.15 With the above notation let Tj’s be such that for every i 6= j, Dj∩Ln,i = ∅.
Show that the link group of Ln is isomorphic to the free group on n generators. (Geomet-
rically, the hypothesis Dj ∩ Ln,i = ∅ means that the circles Ln,j are unlinked. This is the
simplest case of a link which is not a knot.)

We want to introduce a class of knots, known as torus knots, which are of interest in
algebraic geometry as well. It is convenient to begin with describing a decomposition of S3

which plays an important role in the study of 3-manifolds.

Example 4.2.13 Consider S3 with its standard embedding:

S3 = {x = (x1, x2, x3, x4)|
∑

x2
i = 1}.
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Define the subsets U and V of S3 by

U = {x ∈ S3|x2
1 + x2

2 ≥ 1/2}; V = {x ∈ S3|x2
1 + x2

2 ≤ 1/2}.

Identify R4 with C2 with co-ordinates z1 and z2 given by z1 = x1 + ix2 and z2 = x3 + ix4.
U and V are solid tori. To see this, note that U is the circle bundle with base the disc
D = {z2 | |z2|2 ≤ 1/2} and fibre (over the point z2) the circle {z1 | |z1|2 = 1−|z2|2}. Therefore
U = S1 ×D which is a solid torus. Furthermore, U ∩ V = {(z1, z2) | |z1|2 = 1/2 = |z2|2} is
a torus. Therefore S3 is the union of two solid tori with intersection a torus. ♠

Example 4.2.14 Let m > 1 and n > 1 be relatively prime integers, and consider the knot,
called the torus knot with parameters (m,n) and denoted by Km,n, given by the embedding

S1 = {eiθ} −→ (
eimθ

√
2
,
einθ

√
2

) ⊂ U ∩ V ⊂ S3. (4.2.6)

To see what a torus knot looks like, it is convenient to start with the representation of
the torus as a square, then identify two sides to get a cylinder, and finally identify the top
and bottom of the cylinder to get a torus. Figure 3.5 shows how this is done for K2,3.
This knot is also called the trefoil knot. To see the relationship of torus knots to algebraic
geometry in a special case, consider the complex locus Γm,n ⊂ C2 defined by the equation

f(z1, z2)
def
= zn

1 − zm
2 = 0, where m and n are relatively prime positive integers. For m,n > 1,

Γm,n is singular at the origin. Let Sε be the sphere of radius ε > 0 centered at the origin
in R4 ' C2. For a nonsingular curve Γ, the intersection Sε ∩ Γ is an unknotted circle in
S3. However, Sε ∩ Γm,n is easily seen to be the torus knot Km,n (here we can take ε = 1).
Therefore one expects the structure of the knot to shed some light on the nature of the
singularity of the curve at the origin. We shall return to the relationship between geometry
and torus knots later, and the reader is referred to [EN] and [Mi3] for this area and its
generalizations. ♠

Exercise 4.2.16 Show that if m or n is unity, then the torus knot Km,n is an unknotted
circle. What can you say about the locus f = 0 and the map in (4.2.6) if m and n are not
relatively prime?

Example 4.2.15 In this example we show that the group of the torus knot Km,n is isomor-
phic to the quotient of the free group on two generators ξ1 and ξ2 by the relation ξm

1 = ξn
2 .

The proof is based on van Kampen’s theorem and example 4.2.13. With the notation of
example 4.2.13, let U ′ = U \Km,n, V ′ = V \Km,n, and x ∈ U ′ ∩ V ′. It is a simple matter to
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see that A = U ′ ∩ V ′ has the homotopy type of a circle, and therefore π1(A;x) ' Z. Also
U ′ and V ′ are solid tori with the knot Km,n, which lies on their common boundary, removed.
Thus they have the homotopy type of the circle. Let η, ξ1, and ξ2 be generators for the
fundamental groups of A,U ′ and V ′, all with base-point x respectively. Denote by ι1 and ι2
the inclusions of A into U ′ and V ′ respectively. Then, after possibly replacing one or more
of the generators by their inverses, we obtain

ι1](η) = ξm
1 ; ι2](η) = ξn

2 . (4.2.7)

To see this note that A winds around U ′ (resp. V ′) m (resp. n) times. The required result
now follows from van Kampen’s theorem. ♠

There are algorithmic ways of computing the fundamental group of a knot. These meth-
ods give presentations of the fundamental group in terms of generators and relations once
the knot is given explicitly pictorially, i.e. as a planar diagram. One such method is the
Wirtinger presentation of the fundamental group of a knot or a link. Example 4.1.1 plays a
key role in the Wirtinger presentation. The algorithm is most easily explained by looking at
an example, and it will become clear how to apply to other cases.

Example 4.2.16 Consider the trefoil knot for example, drawn as a piece-wise linear curve
(see Figure 3.6). We assume that, except for the underpasses, the knot lies in the plane z = 0.
At the underpasses the curve has the form t with the bottom of the cup lying on the plane
z = −1. Note that K2,3 ∩ {z = −1} consists of three disjoint small line segments which we
denote by A1, A2, and A3. We give an orientation to the curve, and label the portions of the
curves lying between consecutive underpasses. Thus the trefoil knot is labelled x1, x2, and x3.
We may assume the segment xi passes over Ai. To compute the group of the knot K2,3 we
decompose R3 \K2,3 into the union

R3 \K2,3 = X ∪ Y1 ∪ Y2 ∪ Y3 ∪ Z,

and apply van Kampen’s theorem repeatedly. More precisely, let X = {(x, y, z)|z ≥ −1} \
K2,3, and v = (v1, v2, v3) ∈ X with v3 large. It is clear that that we are in the situation
described in example 4.1.1 and

π1(X; v) ' F3.

Let Y ′
i ’s be disjoint small solid cubical boxes in the half plane z ≤ −1 attached to X such

that Y ′
i ∩X is a rectangle in the plane z = −1 containing Ai in its interior. Let Li be a line
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segment joining v to Yi ∩ X. We assume that Li ∩ Lj = {v} for i 6= j. Set Yi = Y ′
i ∪ Li.

π1(Yi, v) = {e} and π1(Yi ∩X, v) ' Z. Applying van Kampen’s theorem to the space X ∪Y1

and computing the representations for the loops as described in example 4.1.1, we obtain
the relation

ξ1ξ2ξ
−1
1 ξ−1

3 = e.

Proceeding along the curve and attaching Y2 and Y3 we obtain the following two relations:

ξ3ξ1ξ
−1
3 ξ−1

2 = e, ξ2ξ3ξ
−1
2 ξ−1

1 = e. (4.2.8)

The three relations are not independent, and, in fact, any two of them imply the third.
Finally, let Z ′ = {(x, y, z)|z ≤ −1} \ (Y1 ∪ Y2 ∪ Y3), and M be a string, lying in X, and
connecting v to Z ′. Set Z = Z ′ ∪M . Clearly, π1(Z, v) = e = π1(Z ∩ (X ∪ Y1 ∪ Y2 ∪ Y3), v).
Therefore we can conclude that the fundamental group of the trefoil knot K2,3 is the quotient
of the free group on three generators by the relations (4.2.8). ♠
Remark 4.2.2 Note that the procedure described in example 4.2.16 can be applied to any
knot or link in a mechanical way to obtain a presentation of the fundamental group of the
complement of the knot or link in terms of generators and relations. In fact we draw a planar
diagram of the knot or link as a piecewise linear manifold specifying the the underpasses.
We orient the knot or the link and assign symbols x1, x2, · · · to each segment between two
consecutive underpasses. To the u-shaped curve xj we assign a generator ξj of the funda-
mental group. Around each underpass we draw an oriented rectangle. As one traverses a
rectangle one encounters various oriented segments xj. For every intersection of the sides of
the rectangle and the line segments xj we write (in cyclic order) ξj or ξ−1

j according as the
side of the rectangle and xj form a positively or negatively oriented pair of vectors. These
give the relations. ♥

The Wirtinger presentation exhibits the fundamental group by n generators ξi and n
relations Ri. The following observation about the Wirtinger presentation shows that there
is a little redundancy in the presentation:

Lemma 4.2.2 Any one of the relations Ri can be deleted from the set of relations of a
Wirtinger presentation without affecting the the group of the knot or link.

Proof - To prove the redundancy of one relation, say Rn, we work with S3 rather than R3

by adjoining the point at infinity. The plane z = −1 is actually a copy of S2. Attaching Yn

does not create a new relation since

Yn ∩ (X ∪ Y1 ∪ · · · ∪ Yn−1)

is homeomorphic to the space obtained by deleting an arc from S2. ♣
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Exercise 4.2.17 Prove algebraically that groups obtained as the fundamental group of the
trefoil knot in examples 4.2.15 (m = 2, n = 3) and 4.2.16 are isomorphic.

Exercise 4.2.18 Show that the fundamental group of the complement of figure 8 knot shown
in Figure 3.7 is the quotient of the free group on four generators ξj, j = 1, 2, 3, 4 by the
relations

ξ3ξ2 = ξ1ξ3, ξ4ξ2 = ξ3ξ4, ξ3ξ1 = ξ1ξ4.

Understanding or extracting information from a group defined by generators and relations
is often a non-trivial matter. A useful general idea is to construct homomorphisms from the
given group into other groups the structure of which is better understood. This idea will
utilized in examples 4.2.20 and 4.5.3 later.

Exercise 4.2.19 Consider the trefoil knot K with generators ξ1, ξ2, ξ3 of π1(SK , x) and sub-
ject to the relations (4.2.8). Show the following mappings define two homomorphisms of
π1(SK , x) into the alternating group A5 ⊂ S5:

1. ρ1 : ξ1 → (12345), ξ3 → (12345).

2. ρ2 : ξ1 → (12345), ξ3 → (13542).

Prove furthermore that, up to an inner automorphism of S5, ρ1 and ρ2 are the only nontrivial
homomorphisms of π1(SK , x) into S5 mapping ξ1 to a 5-cycle.

Example 4.2.17 In this example we study torus knots K2,2n+1 for small n in some detail.
It is not difficult to convince oneself that Figure 3.8 represents the torus knot K2,9. Using
Figure 3.8, it is straightforward to show that the Wirtinger presentation of the fundamental
group of the complement of K2,2n+1 is the group on 2n + 1 generators ξ1, · · · , ξ2n+1 subject
to the relations

ξ1ξn+1 = ξn+2ξ1, ξn+2ξ1 = ξ2ξn+2, ξ2ξn+2 = ξn+3ξ2, · · · (4.2.9)

The trefoil knot is the case n = 1. Notice that the left hand side of the kth relation is the
right hand side of the preceding one, and the right hand side of the kth relation is obtained
from the left hand side of the preceding one by augmenting the indices by 1. Addition of
indices is mod 2n+1 in the complete residue system {1, 2, · · · , 2n+1}. Denote the group on
generators ξ1, · · · , ξ2n+1 subject to relations (4.2.9) by Γ1. We know that the fundamental
group π1(SKp,q , x) is isomorphic to the group Γ2 on two generators ξ and η subject to the
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relation ξp = ηq. To understand the relationship of the two presentations of the fundamental
group, let us fix n = 4 to simplify the argument. The indices (i, j) of ξiξj appearing in (4.2.9)
are (for n = 4)

(1, 5), (6, 1), (2, 6), (7, 2), (3, 7), (8, 3), (4, 8), (9, 4), (5, 9).

Thus every integer k ∈ {1, 2, · · · , 9} appears exactly once as the first coordinate and exactly
once as the second coordinate of of the pairs (i, j). Now set

η = ξ2ξ6, ξ = ξ2ξ6ξ2ξ6ξ2ξ6ξ2ξ6ξ2.

Expanding η9 we see that to prove η9 = ξ2 we have to show

ξ2ξ6ξ2ξ6ξ2ξ6ξ2ξ6ξ2 = ξ6ξ2ξ6ξ2ξ6ξ2ξ6ξ2ξ6. (4.2.10)

Using the relations (4.2.9) we rewrite the left hand side of (4.2.10) as
ξ2ξ6ξ2ξ6ξ2ξ6ξ2ξ6ξ2 = ξ6ξ1ξ2ξ6ξ2ξ6ξ2ξ6ξ2 = ξ6ξ1ξ5ξ9ξ2ξ6ξ2ξ6ξ2

= ξ6ξ2ξ6ξ9ξ2ξ6ξ2ξ6ξ2 = ξ6ξ2ξ6ξ9ξ4ξ8ξ2ξ6ξ2
= ξ6ξ2ξ6ξ2ξ6ξ8ξ2ξ6ξ2 = ξ6ξ2ξ6ξ2ξ6ξ8ξ3ξ7ξ2
= ξ6ξ2ξ6ξ2ξ6ξ2ξ6ξ7ξ2 = ξ6ξ2ξ6ξ2ξ6ξ2ξ6ξ2ξ6

which proves (4.2.10). The idea of this derivation was to use the fact every index k appears
once as first coordinate to successively convert the the left hand side to the right hand side.
Therefore η → ξ2ξ6, ξ → (ξ2ξ6)

4ξ2 gives a homomorphism ψ : Γ2 → Γ1. Now η−4ξ = ξ2 ∈ Γ2

and it follows easily from (4.2.9) that ξk ∈ Γ2 for all k. Therefore ψ is surjective, and we in
fact obtain explicit expressions for ξk’s in terms of ξ and η. For example,

ξ2 = η−4ξ, ξ6 = ξη−4, ξ7 = η−4ξ2η−4ξ−1η4, etc.

These expressions imply that homomorphism ψ has an inverse and therefore Γ1 ' Γ2. Of
course, we knew this fact for geometric reasons and the point in this calculation was to show
that the algebraic proof of the isomorphism of two groups given by generators and relations
is often non-trivial and sometimes extremely difficult to prove. While our discussion was
limited to the case n = 4, it can be extended to arbitrary n and the pattern of the argument
is clear from the above analysis. The details of this extension are formal and therefore
omitted. ♠

Exercise 4.2.20 Prove algebraically the isomorphism between the group on two generators
ξ and η subject to the relation ξ2 = η2n+1 and the Wirtinger presentation of π1(SK2,2n+1 , x),
for n = 1, 2, 3. Generalize to arbitrary n.



488 CHAPTER 4. COVERING PROJECTIONS...

Exercise 4.2.21 The intersection of S3 ⊂ R4 with the hyperplane x4 = 0 is S2 ⊂ R3 and
separates S3 into two closed hemispheres S3

± corresponding to x4 ≥ 0 and x4 ≤ 0. Let
γ : [0, 1] → S3

+ be an embedding such that

Im(γ) ∩ S2 = {γ(0), γ(1)}, and γ(0) 6= γ(1).

Let K be the knot in S3 obtained by joining γ(0) to γ(1) by a straight line segment, and
x ∈ S3

+ \K. Prove that

π1(S
3 \K, x) ' π1(S

3
+ \ Im(γ), x),

by showing that the Wirtinger presentations for the two groups is the same set of generators
and relations.

Example 4.2.18 Consider the link L2 shown in Figure 3.9 Applying the algorithm of the
Wirtinger presentation we see the group of this link is the quotient of the free group on two
generators by the relation

ξ1ξ2ξ
−1
1 ξ−1

2 = e.

In other words, the group of the link L2 is the free abelian group on two generators. This
could have been proven using example 4.2.13. In fact, by looking at a tubular neighbor-
hood of a connected component of L2 we see that removing one of the circles from S3 is
(homotopically) the same as removing a solid torus from S3 leaving us with another solid
torus. Removing a tubular neighborhood of the other circle is, up to homotopy, removing the
interior of the remaining solid torus. Therefore we end up with a torus whose fundamental
group is Z2. ♠

Exercise 4.2.22 Compute the fundamental group of the complements of the Borromean and
Whitehead links given in Figures 3.10 and 3.11.

Let K1 and K2 be knots in S3 (or R3) and Pk be a point on Kk. Cut Kk at Pk to obtain
non-closed knots K ′

1 and K ′
2. Denote the end points of K ′

k by Ak and Bk. Now we can join
K ′

1 to K ′
2 in two different ways to obtain a new knot, namely,

1. Join A1 to A2 and B1 to B2.

2. Join A1 to B2 and B1 to A2.



4.2. COMPUTING FUNDAMENTAL GROUPS 489

However, it is really immaterial how we join K1 and K2 and we denote them by the same
symbol K1]K2 in analogy with the construction M1]M2. Figure 3.12 shows the granny knot
and the square knot. The latter knot is obtained by joining a copy of the trefoil knot to its
mirror image, while the former is constructed from two copies of the trefoil knot. It is clear
that if K2 is the trivial knot then K1]K2 and K1 are the same knot since we can map one
to the other by a diffeomorphism of S3 or R3. In view of this construction it is reasonable
to call a knot K prime if for every decomposition K = K1]K2 one of K1 or K2 is the trivial
knot. An important implication of the concept of prime knot is

Proposition 4.2.2 The complement of a prime knot K is determined by π1(SK , x) (up to
homeomorphism).

The proof of proposition 4.2.2 requires techniques from the topology of manifolds of
dimension three which we have not introduced. The interested reader is referred to [Whitt].

Example 4.2.19 One would like to obtain a description of π1(SK1]K2 , x) in terms of Γ1 =
π1(SK1 , x) and Γ2 = π1(SK2 , x). To obtain such a description we assume K1 and K2 lie in the
half-spaces U± defined by z > 0 and z < 0 respectively, and “cutting” the knots produces
two “knots” whose end points lie in the plane z = 0. Denote the “cut knots” by K ′

1 and K ′
2,

and let

U ′1 = U+ \K ′
1, U ′2 = U− \K ′

2.

Adding the point at infinity ∞ to work in S3 rather than R3, we obtain

SK1]K2 = U1 ∪ U2, U1 ∩ U2 = S2 \ {two points}, (4.2.11)

where U1 = U ′1 ∪∞, and U2 = U ′2 ∪∞. Let the Wirtinger presentation of the fundamental
groups Γ1 = π1(SK1 , x) and Γ2 = π1(SK2 , x) be

Γk : Generators : ξk
1 , · · · , ξk

nk
, Relations : Rk

1 , · · · , Rk
nk−1. (4.2.12)

Applying van Kampen’s theorem and exercise 4.2.21 to the decomposition (4.2.11), we obtain

π1(SK1]K2 , x) = Γ1]ZΓ2, (4.2.13)

where the homomorphisms ρk : Z = π1(U1 ∩ U2, x) → Γk are given by mapping a generator
of π1(U1 ∩ U2, x) to generators ξ1

i and ξ2
j . It is no loss of generality to assume that the
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generators in the Wirtinger presentation are numbered so that i = 1 and j = 1. In this way
we obtain the following presentation for π1(SK1]K2 , x):

Gen. : ξ1
1 , · · · , ξ1

n1
, ξ2

2 , · · · , ξ2
n2
, Rel. : R1

1, · · · , R1
n1−1, S

2
1 , · · · , S2

n2−1, (4.2.14)

where the relation S2
j is obtained from R2

j by substituting ξ1
1 for ξ2

1 . An immediate conse-
quence of this description of the fundamental group of the complement of K1]K2 is that the
groups of the granny knot and the square knot isomorphic. The fact that their complements
are not homeomorphic requires the introduction of peripheral systems given below. Thus
the hypothesis of primeness of the knot is necessary for the validity of proposition 4.2.2. ♠

Let K be a knot, TK be an open (small) tubular neighborhood of K and SK = S3 \ TK .
A closed curve on ∂TK = ∂SK which bounds a disc in TK but represents a generator of
H1(SK ;Z) is called a meridian (see Figure 3.13 for K = K2,3 the trefoil knot). A curve rep-
resenting 0 ∈ H1(SK ;Z) and a generator of H1(TK ;Z) is called a longitude. For instance, in
the case of the trefoil knot, example 4.1.1 implies that the curve L in Figure 3.13 represents
the element ξ3ξ2ξ1 in π1(SK2,3 , x) where the base point x is represented as a • in the Figure
3.13. Therefore a closed curve in the homotopy class of ξ3ξ2ξ1ξ

−3
2 represents 0 ∈ H1(SK2,3 ;Z)

and a generator of H1(TK2,3 ;Z). It is convenient to assume x ∈ ∂TK . Meridians and longi-
tudes are not uniquely defined, however, the subgroup of π1(SK , x) generated by a meridian
and a longitude is the image ı](π1(TK , x)) ⊂ π1(SK , x) and therefore is unambiguously de-
fined. Here ı is the inclusion of ∂TK in SK . We denote ı](π1(TK , x)) by ΠK and refer to the
pair (π1(TK , x),ΠK) as a peripheral system.

Let µ = µK and λ = λK denote the homotopy classes of a (fixed) meridian and a (fixed)
longitude in π1(SK , x). It is clear that a homeomorphism of SK onto SK′ will necessarily
map a peripheral system to a peripheral system and a meridian µK (respectively, a longitude
λK) to a meridian µK′ (respectively λK′). The notion of peripheral system can be used
to distinguish between knot complements with isomorphic fundamental groups2, and has
applications to the topology of manifolds of dimension three.

Example 4.2.20 Let K and K ′ denote the granny knot and the square knot respectively.
We noted in example 4.2.19 that Γ = π1(SK , x) and Γ′ = π1(SK′ , x) are isomorphic. We want
to use example 4.2.19 and exercise 4.2.19 to distinguish between SK and SK′ . Accordingly
we denote the generators of Γ by ξ1

1 , ξ
1
2 , ξ

1
3 , ξ

2
2 , ξ

2
3 and those of Γ′ by η1

1, η
1
2, η

1
3, η

2
2, η

2
3. Using

exercise 4.2.19 and example 4.2.19, it is not difficult to show that, up to an inner automor-
phism of S5, there are only eight non-trivial homomorphisms of Γ into A5 mapping ξ1

1 to a
5-cycle, namely,

2The issue of homeomorphisms of knot or link complements should not be confused with the stronger
condition of a homeomorphism of S3 mapping one knot/link to another. See for example [Whitt] and [Whi3]
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1. ρ1 : ξ1
1 → (12345), ξ1

3 → (12345), ξ2
3 → (12345).

2. ρ2 : ξ1
1 → (12345), ξ1

3 → (12345), ξ2
3 → (13542).

3. ρ3 : ξ1
1 → (12345), ξ1

3 → (13542), ξ2
3 → (12345).

4. ρ4 : ξ1
1 → (12345), ξ1

3 → (13542), ξ2
3 → (13542).

5. ρ5 : ξ1
1 → (12345), ξ1

3 → (13542), ξ2
3 → (15324).

6. ρ6 : ξ1
1 → (12345), ξ1

3 → (13542), ξ2
3 → (14352).

7. ρ7 : ξ1
1 → (12345), ξ1

3 → (13542), ξ2
3 → (13254).

8. ρ8 : ξ1
1 → (12345), ξ1

3 → (13542), ξ2
3 → (15243).

Similarly, one shows that Γ′ has eight non-trivial homomorphisms into A5 mapping η1
1 to a

5-cycle. These homomorphisms are denoted by ρ′j, j = 1, · · · , 8 in accordance with the above
description for ρj. To understand the peripheral systems associated to the granny and the
square knots it is necessary to exhibit a longitude for each knot (a meridian is given by the
generator ξ1

1 for the granny knot and η1
1 for the square knot). We have

1. Granny Knot: λ = (ξ1
2ξ

1
1ξ

1
3)(ξ

1
1)
−3(ξ2

2ξ
1
1ξ

2
3)(ξ

1
1)
−3.

2. Square Knot: λ′ = (η1
2η

1
1η

1
3)(η

2
2η

1
1η

2
3)
−1.

It is a simple calculation that under the homomorphisms ρ′j, j = 2, · · · , 8, the peripheral
subgroup for the square knot is mapped onto a subgroup isomorphic to Z/5 and ρj(Γ

′) is
non-abelian. On the other hand, computing the images of a peripheral subgroup for the
granny knot under ρj we see that none of them has this property. Therefore there is no
isomorphism Γ → Γ′ preserving the peripheral systems and the knot complements SK and
SK′ are not homeomorphic. ♠

4.2.4 Some Peculiar Observations

In this subsection we discuss certain phenomena some of which are plausible and some very
implausible. Let Γ be a simple close curve in R2, i.e., the image of a continuous injective
mapping of S1 to R2. Then Γ decomposes the plane into two connected components which
we naturally call the interior (denoted by Γi) and exterior (denoted by Γe) of Γ, where Γi

is relatively compact. While this assertion is certainly very plausible, a formal proof is not
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trivial. Under the additional hypothesis that ϕ is smooth with nowhere vanishing derivative,
the proof simplifies considerably. The same assertions are valid for the image of Sm in Rm+1

and the smooth case is discussed in chapter 6. The fact that a homeomorphic image of Sm

separates Rm+1 into an exterior and an interior is discussed in [Sp]. We begin with the
following plausible proposition:

Proposition 4.2.3 (Schönflies) Let Γ1 and Γ2 be be simple closed curves in R2. Then any
homeomorphism ϕ : Γ1 → Γ2 extends to a homeomorphism Γi

1 → Γi
2. In particular, every

simple closed curve in R2 bounds a disc.

The proof of this proposition requires techniques of geometric topology which are different
from those discussed in this text. For a proof see [Mo]. Under the stronger hypothesis
that ϕ is a diffeomorphism, or the homeomorphism is piece-wise linear, it is not difficult to
construct a proof. With the additional hypothesis of piece-wise linearity (or diffeomorphism)
the proposition generalizes:

Proposition 4.2.4 Let ∆3 denote the convex closure of the the standard basis and the origin
in R3, and S ⊂ R3 be a polyhedron homeomorphic to S2 (or a set obtained from S be a
homeomorphism of R3). Then there is an open convex set U containing S, and a piece-wise
linear homeomorphism of R3 which is identity in R3\U mapping S onto the boundary of the
3-simplex ∆3.

For a proof of this proposition see [Mo]. The surprising fact is that, contrary to dimension
2, this proposition is false without the assumption that S is polyhedral in the sense that it is
homeomorphic to a polyhedron under a homeomorphism of R3 (see example 4.2.22 below).
Even more elementary is the following counter intuitive phenomenon: The complement of a
finite of discrete set of points in R3 is simply connected. However, it is possible to construct
a compact totally disconnected set (generally called a Cantor set) in R3 whose complement
is not simply connected. Anotoine’s necklace is such a set and is described in the example
below.

Example 4.2.21 Let U1 ⊂ R3 be a standard (closed) solid torus. Inside U1 consider k
disjoint (closed) solid tori linked together as shown in Figure (XXXX). Denote the this set of
k closed solid tori by U2. Similarly inside each component of U2 consider k (closed) solid tori
linked together in the same way. Denote this set of k2 (closed) solid tori by U3. Continuing
in the obvious manner we obtain sets Uj with Uj the disjoint union of kj−1 (closed) solid
tori, and Uj ⊂ Uj−1. Let U∞ = ∩Uj. Then U∞ is a compact non-empty set which is totally
disconnected since for every x ∈ U∞, the connected subset of U∞ containing x is contained
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in a ball of radius ε for every ε > 0. U∞ is often referenced as Antoine’s necklace. Let
x ∈ R3\U1. It is geometrically clear that for every j ≥ 1 the inclusion R3\Uj → R3\Uj+1

induces an injective homomorphism

ρj : π1(R
3\Uj,x) → π1(R

3\Uj+1,x).

Consequently, The induced map ρ1j : π1(R
3\U1,x) → π1(R

3\Uj,x) is injective for all j ≥ 1.
This implies that the induced map

ρ∞ : π1(R
3\U1,x) → π1(R

3\U∞,x)

is also injective. In fact, let γ represent an element of π1(R
3\U1,x) and F : I × I → R3\U∞

a homotopy between γ and the constant map. If Fn = Im(F ) ∩ Un =6= ∅ for every n, then
Fn ⊃ Fn+1 implies ∅ 6= ∩Fn ⊂ U∞ contrary to hypothesis. Therefore Im(F ) is disjoint from
Un for n sufficiently large which implies that ρ1n(γ) = e from which injectivity of ρ∞ follows.
Thus Anotine’s necklace U∞ ⊂ R3 is a compact totally disconnected set whose complement
is not simply connected. ♠

Example 4.2.22 The construction of Antoine’s necklace in example 4.2.21 also yields a
counter example to proposition 4.2.4 when the assumption that S is a polyhedron is removed.
Let V ⊃ U∞ be an open set, then there is n such that Un ⊂ V . We now construct a set
Y ⊂ V , homeomorphic to S2, which is the desired counter example. Let p ∈ V \Un. For
every connected component Cn,k of Un, let Ln,k be a broken line segment joining p to Cn,k.
We assume that Cn,k ∩ Cn,l = {p} for all k, l and Ln,k ∩ Un ∈ ∂Cn,k. Denote this point
by pn,k. Let Nn be a thin closed neighborhood of ∪kLn,k such that Nn is homeomorphic to
the disc D3 and the intersection of Nn with Un is exactly the union (over k) of small discs
D2

n,k ⊂ ∂Cn,k and pn,k ∈ D2
n,k. Now we can repeat the process with each Dn,k (in place

of p), thus extending Nn to Nn+1 ⊃ Nn. Nn+1 is still homeomorphic to the ball D3, and
for each connected component Cn,k,l of Un+1, the intersection Nn+1 ∩ Cn,k,l is a small disc
D2

n,k,l ⊂ ∂Cn,k,l as shown in Figure (XXX). Clearly the process can be continued indefinitely
and we set

N ′ =
∞⋃

j=n

Nn, N = N ′ ∪ U∞.

The boundary ∂N (i.e., the set of points q such that every neighborhood of q intersects
both N and its complement) is homeomorphic to S2. It follows from example 4.2.21 that
π1(R

3\N,x) is non-trivial. Consequently ∂N is the required counter example since the
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fundamental group of the complement of the disc D3 in R3 is trivial. This example may be
regarded as an extention of the idea of a wild knot (see Figure (XXXX)). One can avoid such
pathologies by requiring smoothness, and it is possible that even Hölder continuity would
eliminate them. ♠
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4.3 SL(2,Z) and the Mapping Class Group

4.3.1 Free Groups and Subgroups of SL(2,Z)

In this subsection we use our knowledge of the fundamental group to establish some ele-
mentary facts about free groups and certain subgroups of SL(2,Z). One generally refers to
SL(2,Z) as the modular group and we denote it by Γ in this subsection. We begin with the
following proposition:

Proposition 4.3.1 A subgroup H of the free group Fn on n generators is free (n can be
infinite). Furthermore, if H has index m, then H ' Fmn−m+1.

Proof - Recall that Fn is the fundamental group of n circles joined at one point, S1∨ ...∨S1.
The universal cover of S1 ∨ ... ∨ S1 is the infinite tree T2n with 2n edges meeting at each
vertex, and Fn acts freely on T2n. H is isomorphic to the fundamental group of the graph
H\T2n. The first assertion follows from the fact that the fundamental group of a graph is
free. We have the covering projection

πm : H\T2n −→ S1 ∨ ... ∨ S1.

Since H has index m, this is an m-fold covering, and the Euler characterics are related by

χ(H\T2n) = ](vertices)− ](edges) = m.χ(S1 ∨ ... ∨ S1) = m−mn.

Therefore H ' Fmn−m+1 as desired. ♣
Next we investigate the structure of certain subgroups of the modular group Γ. Γ acts

on the hyperbolic plane H by fractional linear transformations. Let Γ′ be a subgroup of Γ.
Then

πΓ′ : H →MΓ′ = Γ′\H

is a covering projection if Γ′ acts freely (or without fixed points), i.e., γ(z) = z for some
γ ∈ Γ′ and z ∈ H implies γ = id. Γ does not act freely on H. We briefly indicate the

structure of Γ\H. The matrix τn =
(

1 n
0 1

)
∈ Γ acts by translation parallel to the x-axis.

Therefore there is an element z in every orbit of Γ with |<(z)| ≤ 1/2. Furthermore, for
every z = x + iy ∈ H, Γ(z)

⋂
FΓ 6= ∅, where FΓ = {z ∈ H|x2 + y2 ≥ 1 and |x| ≤ 1/2}.

This is proven (geometrically) by repeated application of the inversion transformation, i.e.,

w =
(

0 −1
1 0

)
∈ Γ, and τn. We show that FΓ is a fundamental domain for the action of Γ

on H which means that
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1. Every orbit of Γ intersects FΓ;

2. Two points of FΓ are not in the same Γ orbit unless they are both on the boundary of
FΓ.

This is proven by observing that for γ =
(
a b
c d

)
and z ∈ H, =(γ(z)) = =(z)/|cz + d|2,

and Γ(z)∩ FΓ is the point(s) in the orbit of z under Γ with maximal imaginary part(s). The
equivalence of the boundary points of FΓ under the action of Γ is easy to understand. In
fact, the points −1/2 + iy and 1/2 + iy are in the same orbit of Γ. Two points z and z′ on
the arc {z = x + iy ∈ H||x|2 + |y|2 = 1 and |x| ≤ 1/2} ⊂ ∂FΓ are in the same orbit of Γ
if and only if z′ = w(z). The points i and (±1 + i

√
3)/2 are fixed by the matrices w and

ρ± =
(±1 ∓1

1 0

)
, and these are the only fixed points of Γ in FΓ. It follows that Γ\H is

the sphere with the point at infinity removed. The projection H → Γ\H is a covering map
outside the (ramification) points Γ(i) and Γ((1 + i

√
3)/2). In particular, e 6= γ ∈ Γ has a

fixed point if and only if γ is conjugate, in Γ, to w or ρ±. Note that this implies that a
torsion-free subgroup of Γ acts freely on H. Consequently

Corollary 4.3.1 Torsion-free subgroups of SL(2,Z) are free.

Proof - Since a torsion free subgroup Γ′ ⊂ Γ acts freely on H, Γ′ is isomorphic to the funda-
mental group of MΓ′ . Clearly MΓ′ is homeomorphic to the manifold obtained by removing
several points from a compact orientable surface, and we showed in example ?? that the
fundamental group of such a surface is free. ♣

It seems difficult to directly establish freeness of a torsion-free subgroup of Γ without
realizing it as the fundamental group of a surface as described above.

Example 4.3.1 The principal congruence subgroup of level N, Γ(N), is the kernel of the
homomorphism

RN :
(
a b
c d

)
→
(
ā b̄
c̄ d̄

)
,

where ā denotes the reduction of a modN and N ≥ 2. Since Γ(N) is a normal subgroup
and w, ρ± 6∈ Γ(N), it is free by corollary 4.3.1. Consider the covering projection πΓ(N) :
H → Γ(N)\H = MΓ(N). It is clear that MΓ(N) is diffeomorphic to the surface obtained by
removing several points from a compact orientable surface M ′

Γ(N). Hence its fundamental
group, Γ(N), is the free group on nN + 2gN − 1 generators, where nN is the number of the
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points that are removed, and gN is the genus of M ′
Γ(N). One can also compute the numbers

nN and gN in terms of N for the congruence subgroup Γ(N). In fact,

n2 = 3; nN =
N2

2

∏
p|N

(1− 1

p2
) for N ≥ 3;

and

gN = 0 for N ≤ 5; gN = 1 +
N2(N − 6)

24

∏
p|N

(1− 1

p2
) for N ≥ 6.

The index of Γ(N) in Γ is

[Γ : Γ(N)] = N3
∏
p|N

(1− 1

p2
).

The proofs of these formulae are not relevant to the material of this text. The interested
reader is referred to [Ran] for their proofs and more. ♠

Exercise 4.3.1 Show that the six matrices(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,(

0 −1
1 0

)
,
(

0 −1
1 1

)
,
(−1 −1

1 0

) ,
form a set of coset representatives for Γ(2) in Γ.

Exercise 4.3.2 For positive integers N and N ′ let {N,N ′} denote their lcm. Show that

Γ(N) ∩ Γ(N ′) = Γ({N,N ′}).

Exercise 4.3.3 For positive integers N and N ′ let (N,N ′) denote their gcd. Show that the
group generated by Γ(N) and Γ(N ′) is Γ((N,N ′)).

Example 4.3.2 With a little bit of number theory one can exhibit other torsion-free (and
therefore free) subgroups of Γ. The subgroups

Γ◦(N) = {
(
a b
c d

)
| c ≡ 0 modN}.
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have important applications in number theory. Let N = p be a prime. From our analysis
of torsion elements in SL(2,Z) we deduce that if γ ∈ Γ◦(p) is a torsion element, then
its characteristic polynomial is either λ2 + 1 = 0 or λ2 − λ + 1 = 0. Substituting from

γ =
(
a b
pc′ d

)
in det(γ) = 1 and reducing mod p we obtain the relations

a2 + 1 ≡ 0 mod p, or a2 − a+ 1 ≡ 0 mod p.

From elementary number theory of quadratic residues we know that if p = 12k − 1, then
neither equation has a solution, and therefore for such p the subgroup Γ◦(p) is free. ♠

Exercise 4.3.4 Show that the index of Γ◦(N) in Γ is

[Γ : Γ◦(N)] = n
∏
p|n

(1 +
1

p
).

Exercise 4.3.5 Assume N is such that Γ◦(N) is torsion free. Use the covering space struc-
ture MΓ◦(N) →MΓ(N), the preceding exercise and example 4.3.1, to determine the structure of
the surface MΓ◦(N), i.e., determine the genus of its compactification M ′

Γ◦(N) and the number
of points that are removed.

Example 4.3.3 In this example we give another geometric interpretation to SL(2,Z). All
tori of a given dimension are diffeomorphic, however, they are not necessarily isometric or
even conformally isometric relative to the standard flat metric. To understand this point we
analyze conformal isometry classes of flat tori in dimension two. Let L be a lattice in R2.
The standard metric ds2 = dx2 + dy2 is invariant under translations and therefore induces
a flat metric on T = R2/L. Multiplication by a scalar λ > 0 is a conformal isometry, and
rotations leave the metric ds2 invariant. Therefore we may assume that the lattices L has a
basis

L : (α, β), (γ, δ) with det
(
α β
γ δ

)
= 1.

It is easily verified that ds2 = eρ(dx2 + dy2) is flat if and only if ρ is a constsant. Therefore
the set T1 of conformally equivalent flat tori in dimension two are in natural bijection with
the set of lattices in R2 of determinant 1 where two lattices differing by a rotation of R2 are
identified. Thus T1 is in natural bijection with SL(2,Z)\SL(2,R)/SO(2). ♠

Exercise 4.3.6 By introducing complex notation and considering lattices with basis 1, ω =
x + iy, y > 0, show that T1 is the orbit space of the upper half plane under the action of
SL(2,Z) by fractional linear transformations.
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Since the group SL(2,Z) is generated by the matrices

T =
(

1 1
0 1

)
, W =

(
0 −1
1 0

)
,

it is natural to try to determine the relations defining the group. It is more convenient to
work with SL(2,Z)/± I. The images of W and T in SL(2,Z)/± I will be denoted by the
same letters. Set S = TW , then S is an element of order 3 in SL(2,Z)/± I. Our goal is to
prove the free product decomposition

SL(2,Z)/± I ' Z/2 ? Z/3 (4.3.1)

with W and S generators for the groups on the right hand side. We need a criterion for
establishing that a group G is the free product of two subgroups A and B. Obviously, it
is necessary for A and B to generate G. To prove that G ' A ? B, it is sufficient (also a
necessary condition) to show that a word of the form

w = a1b1a2b2 · · · anbn, with ai ∈ A, bi ∈ B, (4.3.2)

where ai 6= e except possibly for i = 1 and bi 6= e except possibly for i = n, is not the
identity. The fact that these conditions imply G ' A ?B is almost immediate. To establish
validity of (4.3.1) by invoking this criterion, we look at the action of SL(2,Z)/ ± I on the
set of irrational real numbers by fractional linear transformations. Let R′

± denote the sets
of positive and negative irrational real numbers. Clearly R′

+ ∪ R′
− is invariant under the

action of SL(2,Z)/± I. Furthermore

W (R′
±) = R′

∓, S±1(R−) ⊂ R+. (4.3.3)

Now consider a word of the form (4.3.2) with A = Z/2 and B = Z/3. If w has odd length
then either a1 = e or bn = e (but not both). From (4.3.3) it follows that

WS±1W · · ·S±1W (R′
+) ⊂ R′

−, S±1W · · ·WS±1(R′
−) ⊂ R′

+.

Therefore a product of odd length > 1 is never equal to the identity. Let R′
>1 (respectively

R′
(0,1)) denote the set of irrational real numbers > 1 (respectively in (0, 1)). For a product

of even length of the form
w = S±1W · · ·S±1W, (4.3.4)

it is easily verified that (note S =
(

1 −1
1 0

)
)

w(R′
+) ⊂ R′

>1, or w(R′
+) ⊂ R′

(0,1),
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according as S or S−1 is the left most element in the expansion (4.3.4) of w. In either
case such product cannot be equal to e. For an word of the form w = WS±1 · · ·WS±1, by
conjugation with S∓1 we reduce it to one of the form (4.3.4). Therefore we have shown

Corollary 4.3.2 The group SL(2,Z)/± I is isomorphic to the free product of Z/2 and Z/3
with generators of the latter groups being W and S as defined above.

4.3.2 Dehn Twist and the Mapping Class Group

In example 4.3.3 we noted that the group SL(2,Z) appears in the classification of flat two
dimensional flat tori under conformal equivalence. There is an entirely different way in which
SL(2,Z) appears in the study of diffeomorphisms of tori. Let G be the group of orientation
preseving diffeomorphisms (or homemophisms) of the torus T 2, and G̃ be the subgroup
consisting of those diffeomorphisms which preserve the standard volume element dx ∧ dy
on T 2. G and G̃ are topologized by compact open topology and are topological groups. In
chapter 1, example ?? we showed that G̃ is an infinite dimensional group by constructing a
one parameter family of diffeomorphisms, preserving the volume element, for every smooth
function on T 2. All these diffeomorphisms are in the connected component of the identity
G◦ or G̃◦. The quotient group G/G◦ is called the mapping class group of T 2 and is denoted
by M1. The structure of M1 is described by the following proposition:

Proposition 4.3.2 M1 is isomrphic to SL(2,Z).

This proposition is a special of a more general theorem about the mapping class group
of compact orientable surfaces. To understand the case of a surface of genus g, it is useful to
elaborate on proposition 4.3.2. It is clear that every element of SL(2,Z) acting as a linear
transformation of R2 induces an orientation preserving diffeomorphism of T 2 = R2/Z2. A
linear transformation g ∈ SL(2,Z) induces an automorphism of Z2 = H1(T

2;Z) which is
given by the same matrix g relative to the appropriate basis. Therefore unless g = e, the
transformation of T 2 induced by g is not homotopic to the identity and therefore does not
lie in the connected component G◦ of identity. The transformations of T 2 induced by the
matrices

U =
(

1 1
0 1

)
, V =

(
1 0
1 1

)
,

which we still denote by U and V , are special cases of diffeomorphisms called Dehn twists
which are defined below. Proposition 4.3.2 states that Dehn twists U and V generate the
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mapping class group of T 2 since U and V generate SL(2,Z). It is this form of the proposition
which generalizes to arbitrary genus g ≥ 1. To give the general definition of a Dehn twist,
let γ be a simple closed curve on a surface representing a homology class. Denote the image
of γ by Cγ and let Tγ ' [−1, 1]× Cγ be a tubular neighborhood of Cγ. Denote the variable
along [−1, 1] by x and that along γ by θ ∈ [0, 1] with 1 identified with 0. Consider the
diffeomorphism ϑγ of Tγ defined by

ϑγ(x, θ) =
{

(x, θ + x), if x ∈ [0, 1];
(x, θ − x), if x ∈ [−1, 0].

(4.3.5)

It is immediate that the diffeomorphisms of T 2 induced by U and V are of the form ϑγ

for the appropriate choice of γ. We refer to ϑγ as the Dehn twist relative to γ. It is more
appropriate to consider the isotopy class of diffeomorphisms or homeomorphisms of which a
representative is ϑγ and call the isotopy class a Dehn twist. This abuse of language will cause
no confusion in the sequel. For a surface Mg of genus g let γ1, · · · , γ3g−1 be the simple closed
curves as shown in Figure XXXX for the case g = 3. Then the generalization of proposition
4.3.2 to arbitrary genus is

Proposition 4.3.3 Let γ1, · · · , γ3g−1 be the simple closed curves as described above and ϑj

be the Dehn twist relative to γj. Then ϑ1, · · · , ϑ3g−1 generate the mapping class group Mg.

(THIS SUBSECTION IS INCOMPLETE)
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4.4 Relations with Geometry and Group Theory

4.4.1 Spaces of Constant Curvature

In this subsection we discuss some important classes of simply connected Riemannian man-
ifolds. Our knowledge of local differential geometry, the fundamental groups and covering
spaces enables us to understand the structure of simply connected complete Riemannian
manifolds of constant sectional curvature. The following observation relates local isometries
to covering projections:

Lemma 4.4.1 Let π : M → N be a mapping of connected Riemannian manifolds of the
same dimension such that π?(ds2

N) = ds2
M , i.e., π is a local isometry. If M is complete then

N is also complete and π is onto. (By taking a point out of M , we see that the hypothesis
of completeness is necessary.)

Proof - It is clear from the local isometry property that Imπ is open in N . Let x ∈ Imπ
and γ be a geodesic in N with γ(0) = x. Let y ∈ M be such that π(y) = x. The condition
π?(ds2

N) = ds2
M implies that that π? : TyM → TxN is injective and consequently there is a

geodesic δ in M with δ(0) = y such that πδ = γ. This implies completeness of N which also
implies that the map is onto since N is connected. ♣

Lemma 4.4.2 Let π : M → N be a mapping of connected Riemannian manifolds of the
same dimension such that π?(ds2

N) = ds2
M . If M is complete then (M,π,N) is a covering

projection.

Proof - Let ρ > 0 be sufficiently small so that the conditions of remark (XXX) of chapter
2 are fulfilled for BN

ρ ⊂ TxN . Let BN
ρ (x) = Expx(B̄ρ). It is clear from the above cited

remark that π maps BM
ρ (y) isometrically onto BN

ρ (x) for every y ∈ π−1(x). We show that
for y 6= y′ ∈ π−1(x) we have BM

ρ (y) ∩BM
ρ (y′) = ∅. If z ∈ v then the geodesics joining y and

y′ to z yield either two geodesics joining x to π(z) ∈ BN
ρ (x) or a geodesic joining x to itself.

Neither alternative is possible. To complete the proof that (M,π,N) is a covering projection
we have to show

π−1(BN
ρ (x)) =

⋃
y∈π−1(x)

BM
ρ (y). (4.4.1)

Let w ∈ BN
ρ (x), π(z) = w and γ be the geodesic in BN

ρ (x) joining w to x. Then there is δ
with δ(0) = z such that πδ = γ and by completeness we obtain y′ ∈M such that z ∈ BM

ρ (y′).
This proves (4.4.1). ♣

To give a classification of complete, simply connected Riemannian manifolds of constant
curvature we need the following simple lemma:
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Lemma 4.4.3 Let P and Q be Riemannian manifolds of constant curvature κ and of the
same dimension. Let ϕ : BP

ε (y) → BQ
ε (ϕ(y)) be an isometry, and z ∈ ∂BP

ε (y). Then there
is ρ > 0 such that the restriction of ϕ to BP

ρ (z) ∩ BP
ε (y) extends to an isometry of BP

ρ (z)
onto its image. The extension is unique.

Proof - The lemma is a simple consequence of the classification of local isometries of spaces
of constant curavture given in chapter 2 proposition (XXX). ♣

Proposition 4.4.1 All simply connected complete Riemannian manifolds of constant sec-
tional curvature κ ≤ 0 of dimension n are isometric and consequently contractible.

Proof - Let Hn be the hyperbolic space of dimension n with sectional curvature κ < 0, and
N a Riemannian manifold of dimension n of constant sectional curvature κ. Let z ∈ Hn and
x ∈ N . Since a Riemannian metric is locally determined by its sectional curvatures, there
is ε > 0 and an isometry π mapping BHn

ε (z) onto BN
ε (x) and π(z) = x. Since geodesics are

mapped to geodesics by an isometry, the map π is

π : Expz(ξ) −→ Expx(π?(ξ)), for ξ ∈ BHn
ε ⊂ TzHn. (4.4.2)

Exp is a diffeomorphism of TzHn ontoHn since geodesics inHn diverge. If w ∈ Hn then there
is a unique geodesic joining z to w, i.e., there is a unique ζ ∈ TzHn such that Expz(ξ) = w,
and by defining π(w) = Expx(π?(ξ)) we extend π to a mapping of Hn → N . To see that π
is a local isometry, let τ > 0 be the largest number such that for all t < τ and all ξ ∈ TzHn

of norm 1, the map π is an isometry at Expz(tξ). By lemma 4.4.3 the isometry π extends
beyond τ and is necessarily given by expression in (4.4.2) since an isometry maps geodesics
to geodesics. Hence π is a local isometry and by lemma 4.4.2 and uniqueness of the universal
cover, π is an isometry. Exactly the same argument works for κ = 0 with Rn replacing Hn.
This completes the proof of the proposition. ♣

An important consequence of lemma 4.4.1 is

Corollary 4.4.1 (Cartan-Hadamard) A simply connected Riemannian manifold M with
sectional curvatures ≤ 0 is diffeomorphic to Rm.

Proof - It follows from divergence property of geodesics in a non-positively curved Rieman-
nian manifold that the mapping π = Expx : TxM →M is a submersion. π is a local isometry
relative to the metric π?(ds2

M) on Rm = TxM and by lemma 4.4.1, a covering projection. By
simple connectedness it is a diffeomorphism. ♣

For spaces of constant positive curvature we have:



504 CHAPTER 4. COVERING PROJECTIONS...

Proposition 4.4.2 A complete simply connected Riemannian manifold of dimension m and
of constant positive sectional curvature κ > 0 is isometric to the sphere of radius 1√

κ
in Rm+1.

Proof - By scaling we may assume κ = 1. Let z ∈ Sm be, for example, the “north pole”,
and x ∈ M . Since curvature locally determines the metric, there is ε > 0 and an isometry
π : BSm

ε (z) onto BM
ε (x) with π(z) = x. Just as in the case of constant non-positive curvature

this isometry is given by (4.4.2) with Sm replacing Hn. From chapter 2 subsection (XXX)
we know that the map Expz is a diffeomorphism from the ball of radius π in TzS

m onto
its image. Therefore the map π is in fact defined on BSm

π (z). To extend π to Sm we have
to show that Expx(ξ) is independent of the choice of unit tangent vector ξ ∈ TxM . Let
x1 = Expx(ξ) 6= Expx(η) = x2 for unit tangent vectors ξ, η ∈ TxM , and consider a curve
δ : I → M joining x1 to x2. Then the set of geodesics joining x to the points δ(s) gives a
variation of the geodesic γ(t) = Expx(tξ) and a consequently a Jacobi field along γ which
vanishes at x but not at Expx(πξ) which is not possible. Therefore the desired extension of
π exists. To see that π is necessarily smooth and a local isometry, let 0 < t◦ < π and let
y = Expz(t◦ξ). By looking at π as defined in a neighborhood of y we easily see that the
extension of π is smooth and a local isometry. By lemma 4.4.2, π : Sm → M is a covering
projection and in view of simple connected of M , it is an isometry. ♣

4.4.2 Growth of Fundamental Group

Let M be a Riemannian manifold with sectional curvatures bounded above by ρ < 0, and π :
M̃ →M be its universal covering space with the induced metric π?(ds2

M). The fundamental
group Γ = π1(M,x) acts properly discontinuously a a group of isometries of M̃ . Let us
assume M is compact which implies that Γ has a finite set of generators {γ1, · · · , γn}. (For
convenience we assume that the set of generators is invariant under taking inverses.) Thus
every γ = Γ is a word

γ = γi1γi2 · · · γis . (4.4.3)

The length of γ, denoted by L(γ), is the minimum of s over all representations of γ as a
product of the generators. Let N(s) denote the number of elements γ ∈ Γ with L(γ) ≤ s.
One may pose the question of how N(s) grows as s → ∞. For example, does it have
polynomial or exponential growth? We can gain some understanding of this question by
invoking a little geometry. The following exercise shows that exponential growth is the
best/worst (depending on the individual’s attitude) that one can expect:
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Exercise 4.4.1 Let Fn be the free group on n generators. Show that the growth function N
satisfies

c1e
αs ≤ N(s) ≤ c2e

βs,

for some positive numbers c1, c2, α, β (In particular, one cannot expect super-exponential
growth like eαeβs

for some positive numbers α and β.)

We noted in example (XXX) of chapter 2 that the volume of a ball in a Riemannian
manifold with sectional curvatures bounded above by a negative constant grows exponentially
with the radius. Let x ∈ M̃ and r > 0 be sufficietly large so that π(Br(x)) = M . Let d(x, y)
denote the distance of x, y ∈ M̃ and

β = inf d(Br(x), γ(Br(x))),

where inf is taken with respect to all γ ∈ Γ such that Br(x) ∩ γ(Br(x)) = ∅. Since
∪γγ(Br(x)) = M̃ , the finite set ∆ = {γ1, · · · , γn} consisting of those γ’s for which Br(x) ∩
γ(Br(x)) 6= ∅, is a set of generators for Γ. First we look at the growth function for
this set of generators. Let y ∈ M̃ and δ : I → M̃ be a geodesic joining x to y. Let
0 = t◦ < t1 < · · · ts−1 < ts = 1 such that

d(δ(tj), δ(tj+1) < β,

and set xj = δ(tj). Let δj ∈ Γ (possibly identity) be such that xj ∈ δj(Br(x)) Since
d(xj, xj+1) < β, δ−1

j δj+1 ∈ ∆. Now

δs = δ1 · (δ−1
1 δ2) · · · (δ−1

s−2δs−1)(δ
−1
s−1δs)

which is a word of length s in the generators ∆. Therefore we have shown

Lemma 4.4.4 With the above notation and hypotheses, if d(x, γ(x)) < sβ, then L∆(γ) ≤ s.

Recall from chapter 2, example (XXXX) that

liminfR→∞
vol(BR(x))

eεR
> 0 (4.4.4)

for some sufficiently small ε > 0. Lemma 4.4.4 and (4.4.4) imply the existence of η > 0 such
that

liminfs→∞
N∆(s)

eηs
> 0; (4.4.5)

in other words, the number of words of length s, relative to the generating set ∆, grows
exponentially with s. The role of the particular generating set ∆ is not essential. In fact,
we have
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Proposition 4.4.3 Let M be a compact Riemannian manifold with sectional curvatures
bounded above by a negative constant. Then the function N(s) has exponential growth relative
to any generating set.

Proof - It only remains to show that the property of having exponential growth is indepen-
dent of the choice of set of generators. If ∆1 and ∆2 are two sets of generators, by expressing
elements of each in terms of the other, we see that there is an integer k such that

N∆1(s) ≤ N∆2(ks), N∆2(s) ≤ N∆1(ks),

which implies the required result. ♣

Exercise 4.4.2 Let T n = Rn/Zn be the n-dimensional torus. Show that for its fundamnen-
tal group, Zn, the growth function N satisfies

αsn ≤ N(s) ≤ βsn

for some positive numbers α and β.

Exercise 4.4.3 Let T be the group of real 3 × 3 upper triangular matrices with 1’s along
the diagonal, Γ ⊂ T be the subgroup consisting of integral matrices. Show that the growth
function of the fundamental group Γ of the quotient manifold Γ\T satisfies

αs4 ≤ N(s) ≤ βs4

for some positive numbers α and β.

It is reasonable to inquire whether there are finitely generated (abstract) groups whose
growth function satisfies the inequalities

c1e
sα ≤ N(s) ≤ c2e

sβ

,

where 0 < α < β < 1, and cj > 0. For a discussion of such groups see [GrKu].

4.4.3 Flat Riemannian Manifolds

One of the consequences of Bieberbach solution to Hilbert’s eighteenth problem is
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Theorem 4.4.1 Every discrete subgroup Γ ⊂ E(m) with compact quotient Γ\Rm fits into
an exact sequence

0 −→ L −→ Γ −→ G −→ 1, (4.4.6)

where the normal subgroup L = Γ ∩Rm is a finitely generated free abelian group of rank m,
is a maximal abelian subgroup, and G is a finite group. Conversely, a group Γ containing a
free abelian group L of rank m such that

1. L ⊂ Γ is a normal subgroup;

2. Γ/L is a finite group;

3. L is a maximal abelian subgroup Γ;

can be realized as a discrete subgroup of E(m) with compact orbit space Γ\Rm. (We assume
m ≥ 2; the case m = 1 is easily treated separately.)

An immediate consequence of theorem 4.4.1 is that a group Γ satisfying the hypotheses
of the theorem can be realized as a subgroup of Zm.GL(m,Z) (semi-direct product) whose
image under the projection Zm.GL(m,Z) → GL(m,Z) is finite.

Theorem 4.4.1 is not valid without the assumption of compactness of the orbit space
Γ\Rm. In fact, let Rm = V1 ⊕ V2, 0 6= u ∈ V1 ' Rn, A ∈ O(m − n) (acting on V2) be an
element of infinite order, and Γ be the subgroup generated by the Euclidean motion (u,A).
It is clear that Γ is a discrete subgroup of E(m) (isomorphic to Z) and Γ∩Rm = e and acts
on V1 freely as a group of translations. The following proposition, which incorporates this
example, shows that a modified version of theorem 4.4.1 is still valid for the non-compact
case.

Proposition 4.4.4 Let Γ ⊂ E(m) be a discrete subgroup, then Γ contains an abelian normal
subgroup Γ◦ of finite index containing all the translations in in Γ. Given an abelian subgroup
Γ ⊂ E(m), then there is a subspace V ⊂ Rm such that Γ admits of the decomposition
Γ = Γ1×Γ2 with Γ2 finite and acting trivially on V and Γ1 a free abelian group acting freely
as a group of translations on V .

The solution to Hilbert’s eighteenth also contains the following finiteness result:

Proposition 4.4.5 For each m, there are only finitely many crystallographic groups of the
form (4.4.6). There are only finitely many diffeomorphism classes of compact flat Rieman-
nian manifolds of a given dimension m.
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The proof of proposition 4.4.5 makes use of the following result (due to Minkowski) which
is of independent interest and extends torsion freeness of congruence subgroups of SL(2,Z)
to GL(m,Z).

Proposition 4.4.6 Let p ≥ 3 be an odd prime, and Rp : GL(n,Z) → GL(n,Z/p) be the
reduction mod p map. Then Ker(Rp) is torsion free and every finite subgroup of GL(n,Z)
is mapped injectively into GL(n,Z/p).

Proof - Let γ ∈ GL(n,Z) be a torsion element so that γl = I, and assume γ ∈ Ker(Rp). If
l > 1 then we may assume l is a prime. Define T ′ = γ − I, then T ′ = prT where pr > 1 is
the highest power of p dividing the entries of the matrix T ′. Therefore

0 = γl − I = lprT +

(
l

2

)
p2rT 2 + · · · (4.4.7)

Since l is a prime, (4.4.7) implies l = p and r = 1. Therefore

T +

(
p

2

)
T 2 +

(
p

3

)
pT 3 + · · · = 0. (4.4.8)

The hypothesis p ≥ 3 implies p|
(

p
2

)
which, in view of (4.4.8), contradicts the assumption

that not every entry of T is divisible by p. Hence γ = I. ♣
Bieberbach’s solution to Hilbert’s eighteenth problem extends earlier results of Jordan and

has been significantly simplified by Frobenius and others (see [Oli]) and will be discussed in
the final subsection of this section. Here we mainly concentrate on some examples especially
in connection with the theory of covering spaces and fundamental groups of compact flat
Riemannian manifolds.

By a crystallographic group we mean a discrete subgroup Γ ⊂ E(m) with compact quo-
tient space Γ\Rm. Note that in theorem 4.4.1 we did not require the orbit space Γ\Rm

to be a manifold. Since G ⊂ E(m) = Rm.O(m), in case M = Γ\Rm is a manifold, the
standard Euclidean metric on Rm is invariant under Γ and induces a flat Riemannian met-
ric on M . A discrete subgroup of E(m) is necessarily closed, and it is straightforward to
verify that a subgroup Γ ⊂ E(m) acts discontinuously on Rm if and only is it is discrete,
i.e., there is neighborhood U of e ∈ E(m) such that the sets γ(U) and U are disjoint ex-
cept possibly for finitely many γ’s. The first issue we address is when a discrete subgroup
Γ ⊂ E(m) = Rm.O(m) determines a covering projection p : Rm → Γ\Rm, i.e., when is
the action properly discontinuous. If the action of every γ 6= e on Rm = E(m)/O(m) is
free from fixed points (i.e. the action is free), then M is a manifold and π : Rm → M is a
covering projection. Conversely, if γ 6= e has a fixed point in Rm then p : Rm → Γ\Rm is
not a covering projection.
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Lemma 4.4.5 Let Γ ⊂ E(m) be a discrete subgroup. Then M = Γ\Rm = Γ\E(m)/O(m)
is a manifold and the canonical mapping p : Rm →M is a covering projection if and only if
Γ is torsion free.

Proof - If γ ∈ Γ is torsion, then the point
∑

j γ
j(x) is fixed by γ where x ∈ Rm. Conversely

assume x ∈ Rm is fixed by γ ∈ Γ. Let τx be translation by x. Then γ ∈ τxO(m)τ−x ∩ Γ.
Since Γ is closed, τxO(m)τ−x ∩ Γ contains torsion elements unless τxO(m)τ−x ∩ Γ = e. ♣

Example 4.4.1 For a lattice L ⊂ Rm ⊂ E(m) acting on (left) on Rm by translations, the
quotient space L\Rm is a compact manifold, in fact anm-dimensional torus. In this example,
we construct a noncommutative discrete subgroup Γ ⊂ E(m) such that the quotient space
Γ\Rm is a compact manifold and the canonical mapping π : Rm →M = Γ\Rm is a covering
projection. Now let e1, · · · , em be the standard basis for Rm and A be the permutation
matrix mapping ei to ei+1 and em to e1. Then Am = I. Let L = Zm be the lattice of vectors
with integer coordinates. Let Γ be the subgroup of E(m) generated Euclidean motions of the
form (ej, A). Thus G ' Z/m in notation of theorem 4.4.1. We show that Γ has the required
properties. Discreteness and noncommutativity of Γ are clear and it suffices to show that it
is torsion free. Every γ ∈ Γ is of the form γ = (v, Ak) for some v ∈ L. Let V ⊂ Rm be the
orthogonal complement of the vector w =

∑
ei, (Aw = w), i.e., the subspace consisting of

vectors of the form
∑
aiei with

∑
ai = 0. If γ has finite order then v ∈ L ∩ V in view of the

above analysis. Since (u,A)−1 = (−A−1u,A−1) and (v, Ak) is a product of terms of the form
(ei, A) and (−ek, A

−1), we have the expression

γ = (v, Ak) = (ε1ei1 + · · ·+ εleil , A
ε1 · · ·Aεl),

where εj = ±1. Thus v ∈ V if and only if
∑
εj = 0 in which case

Ak = Aε1 · · ·Aεl = A
∑

εj = I.

Therefore Γ is torsion free. Notice that Γ contains the abelian normal subgroup L′ generated
by (ei − ej, I), (e1 + · · · + em, I), 1 ≤ i, j ≤ m, and Γ/L′ is isomorphic to the cyclic group
Z/(m). However Γ is not isomorphic to the semi-direct product of L′ and Z/(m) since it is
torsion free. ♠

Exercise 4.4.4 Show that the discrete subgroup Γ of example 4.4.1 fits into an exact se-
quence

0 −→ Zm−1 −→ Γ −→ Z −→ 0.
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If we remove the requirement of torsion freeness, then we can easily construct many
groups Γ ⊂ E(m) containing an abelian normal subgroup L of finite index. Of course for a
finite subgroup G ⊂ O(m) leaving a lattice L ⊂ Rm invariant, one can consider the semi-
direct product L.G. However, there are many examples of discrete subgroups Γ ⊂ E(m)
which are not semi-direct products. One refers to an exact sequence of the form (4.4.6) as
an extension of L by G or simply a group extension. The case of the semi-direct product is
called the trivial extension. In view of the abelian assumption on L, the conjugation action
of Γ on L induces a homomorphism G → Aut(L) which enables one to define semi-direct
product. A necessary and sufficient condition for Γ to be isomorphic to the semi-direct
product of G and L is the existence of a homomorphism χ : G→ Γ whose composition with
the homomorphism π : Γ → G is the identity map of G. In fact, the semi-direct product
structure in such a case is given by

γ −→ (γ(χπ(γ))−1, π(γ)) ∈ L ·G.

The following exercise shows that there are non-trivial group extensions which neverthe-
less contain torsion elements.

Exercise 4.4.5 Let G = Sm be the symmetric group on m letters represented by m×m per-
mutation matrices, i.e., a permutation is regarded as the orthogonal transformation effecting
the same permutation of the standard basis e1, · · · , em of Rm. Let

γ1 = (e1, σ12), γ2 = (e2, σ23), · · · , γm−1 = (em, σm1),

where σij denotes the permutation transposing the indices i and j. Let Γ ⊂ E(m) be the
group generated by γ1, · · · , γm, and ρ : Γ → Sm be the homomorphism ρ((u, σ)) = σ. Show
that for σ ∈ Sm \ Am, every (u, σ) ∈ ρ−1(σ) has infinite order, and deduce that

0 −→ L −→ Γ −→ G −→ 1

is a non-trivial group extension. Exhibit torsion elements in Γ.

Our immediate goal is to show that example 4.4.1 can be generalized in the sense that
for every finite group G one can construct an exact sequence (4.4.6) with Γ torsion free. It
is convenient to introduce a definition. If the orbit space M = Γ\Rm is a manifold, one then
refers to G = Γ/L as the linear holonomy group of the Riemannian manifold M . Implicit in
this definition is that the Riemannian metric on M is the flat metric induced from Rm. The
key observation in proving that every finite group may be realized as the linear holonomy
group of a flat Riemannian manifold is
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Lemma 4.4.6 Let FN be the free group on N generators and G = FN/R for some normal
subgroup R (of relations). Then the commutator subgroup [R,R] is a normal subgroup of
FN , and FN/[R,R] is torsion free.

Proof - The first assertion is immediate. To prove the second assertion let e 6= γ ∈
FN/[R,R]. If γ ∈ R/[R,R] then clearly γ has infinite order. So assume γ 6∈ R and let
∆ be the subgroup of FN generated by R and γ. ∆/[∆,∆] is a free abelian group and since
[∆,∆] ⊃ [R,R], if γ is a torsion element of FN/[R,R] then γ ∈ [∆,∆]. Now [∆,∆] ⊂ R
since

(γar)(γbr′)(r−1γ−a)(r′−1γ−b) = (γarγ−a)(γa+br′rγ−a−b)(γbr′−1γ−b)

which clearly lies in R. Therefore γ ∈ R contrary to hypothesis. ♣
Lemma 4.4.6 suggests that the obvious choice for a crystallographic group with linear

holonomy G is Γ = FN/[R,R], where G ' FN/R. In order for theorem 4.4.1 to be applicable
we still need to establish that R/[R,R] is a maximal abelian subgroup of FN/[R,R]. The
following lemma implies the required maximality:

Lemma 4.4.7 Let R ⊂ FN be a normal subgroup of finite index m of the free group FN and
N ≥ 2. Then the conjugation action of the finite group G = FN/R on R/[R,R] is effective,
i.e., if g ∈ G, and for all r ∈ R, grg−1[R,R] = r[R,R], then g = e

Proof - Assume the contrary and let g′ ∈ FN \R be an element representing g ∈ FN/R, F ⊂
FN the subgroup generated by R and g′. Let q be the order of g ∈ G, then {e, g, · · · , gq−1}
is a complete set of coset representatives for F/R. By proposition 4.3.1 F is a free group on
s generators and since R ' FNm−m+1 we have

s = 1 +
(N − 1)m

q
. (4.4.9)

Clearly [F, F ] = [R,R] and therefore F/[R,R] is a free abelian group containing a subgroup
(namely, R/[R,R]) isomorphic to ZNm−m+1. Therefore

s ≥ Nm−m+ 1. (4.4.10)

Relations (4.4.9) and (4.4.10) show that s = N = 1. ♣
It is clear the lemma 4.4.7 implies that R is a maximal abelian subgroup of FN/[R,R]

and consequently theorem 4.4.1 is applicable to show
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Corollary 4.4.2 For every finite group G there is a lattice of rank m and a torsion free
crytallographic group Γ ⊂ E(m) containing L as the subgroup of translations and G ' Γ/L.
Equivalently, there is a compact flat Riemannian manifold with linear holonomy group G.

Another consequence of theorem 4.4.1 is the fact the fundamental group of a compact
flat Riemannian manifold determines the manifold up to diffeomorphism.

Corollary 4.4.3 Let M and M ′ be compact flat Riemannian manifolds, of dimensions m
and m′, with fundamental groups Γ = π1(M,x) and Γ′ = π1(M

′, x′). If Γ and Γ′ are iso-
morphic, then m = m′ and there is a linear isomorphism of Rm onto itself inducing a linear
diffeomorphism (but not necessarily an isometry) of M and M ′.

Proof - Let L = Γ∩Rm and L′ = Γ′∩Rm′
. Then L and L′ are the maximal abelian normal

subgroups of their respective groups and any isomorphism Φ : Γ → Γ′ necessarily maps L
isomorphically onto L′. Denote this isomorphism by T . In particular m = m′ and we obtain
the row exact commutative diagram with vertical arrows isomorphisms:

0 −→ L −→ Γ −→ G −→ 0
T ↓ Φ ↓ φ ↓

0 −→ L′ −→ Γ′ −→ G′ −→ 0

Here G and G′ are finite subgroups of O(m). From the semi-direct product decomposition
E(m) = Rm.O(m) it follows that for every (u, h), (v, g) ∈ Γ we have (v, g)(u, h) = (v + g ·
u, gh) and consequently

(T (v) + φ(g) · T (u), φ(gh)) = (T (v) + T (g · u), φ(gh)).

In other words, we have

φ(g) = TgT−1.

It follows that T induces a diffeomorphism of the of the flat manifolds M and M ′. Since T
may not be a Euclidean motion, the induced diffeomorphism is not necessarily an isometry.
♣

A geometric method for the construction of discrete subgroups of E(m), which extends
to the constant curvature as well, will be discussed in connection with Riemannian manifolds
of constant negative curvature.
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Example 4.4.2 In this example we show that the assumption that Γ is a subgroup of
E(m) is essential and theorem 4.4.1 is not valid if we replace Euclidean motions with affine
transformations. We use the notation of example (XXXX) of chapter 2. Let U be the group
of 3× 3 upper triangular matrices with 1’s along the diagonal. Recall that relative to a left
invariant metric ds2, U which is diffeomorphic to R3, is not flat. The left action of U on
itself yields affine transformations of R3 which are isometries relative to ds2, but are not
Euclidean motions. Let UZ ⊂ U be the subgroup consisting of integral matrices. Clearly, UZ

acts by left translations as a properly discontinuous group of isometries of U relative to ds2,
and M = UZ\U is a compact manifold. However UZ does not contain an abelian normal
subgroup of finite index. Notice that the action of UZ on U is by affine transformations of
R3 = U which are not Euclidean isometries. It is a simple matter to generalize this example
to obtain many properly discontinuous groups of affine transformations of Rm, m ≥ 3, with
compact quotient. ♠

It appears that the theory of torsion free discrete subgroups of E(m) is not adequately
developed. For example, given a representation ρ : G → O(m), where G is a finite group,
and ρ(G) leaves a lattice L invariant, it is interesting to know when there is a torsion free
discrete subgroup Γ ⊂ E(m) containing a lattice L′ ⊂ L as a maximal abelian subgroup and
Γ/L′ ' G. For some results about torsion free discrete subgroups of E(m) see [FH]. The
following lengthy example demonstrates the difficulty in establishing torsion freeness.

Example 4.4.3 LetDn denote the dihedral group of order 2n. In this example we construct,
for every odd integer n, an exact sequence of the form (4.4.6) with G = Dn and Γ torsion
free. Recall that Dn is the semi-direct product Cn.Z/2 of the of the cyclic group Cn ' Z/n
of order n and Z/2 with the latter group acting on the former by mapping an element to
its inverse. We write t for the non-identity element of Z/2 and fix a generator α for Cn.
Consider the representation ρ of Cn on Rn with the standard basis e1, · · · , en given by

ρ(α)(ej) = ej+1

where the indices are computed mod n. Let Rn ⊕ Rn = IndDn
ρ in the notation of repre-

sentation theory. To describe this explicitly consider R2n with basis e1, · · · , e2n and let Cn

act on the span of e1, · · · , en according to the representation ρ. We let Z/2 act on R2n by
defining action of t ∈ Z/2 by t : ei → en+i for i ≤ n. Then Cn leaves the span of en+1, · · · , e2n

invariant and the action of α on this subspace is given by

α : en+i −→ α.t.(ei) = t(tαt).(ei) = tα−1.(ei) = en+i−1, for i > 1
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and α(en+1) = e2n. n being odd, we let 2k = n+ 1 and set t′ = α−ktαk. The group Dn can
be generated by two elements t and t′. In fact note that tα−ktαk = α2k = α. Let Γ ⊂ E(2n)
be the subgroup generated by transformations of the form

(ei, t), (ea, t
′) where i ≤ n and a ≥ n+ 1, (4.4.11)

and their inverses. Here t and t′ are regarded as orthogonal transformation of R2n. Γ
is a discrete subgroup of E(2n) and Γ\R2n is compact. It is clear that any expansion of
(v, σ) ∈ Γ as a product of generators given in (4.4.11) and their inverses contains either an
even number or an odd number of factors according as σ ∈ Cn or σ 6∈ Cn. Since the vector
z = e1 + · · · + e2n is fixed by the action of D2n, if v is not orthogonal to z, then (v, σ) ∈ Γ
has infinite order. Therefore

1. If (v, σ) is a product of odd length when as expressed in terms of generators (4.4.11)
and their inverses, then (v, σ) is not a torsion element.

To facilitate understanding the argument for torsion freeness of Γ we introduce a mapping
λ : Γ −→ Z⊕ Z. An element of Γ has a unique expression of the form

(v, σ) = (a1e1 + · · ·+ a2ne2n, σ), with aj ∈ Z, σ ∈ D2n.

Define

λ(v, σ) = (a1 + · · ·+ an, an+1 + · · ·+ a2n).

Each of the n dimensional subspaces spanned by e1, · · · , en and en+1, · · · , e2n is invariant
under Cn and the vectors e1 + · · ·+ en and en+1 + · · ·+ e2n are fixed by this subgroup. The
second observation in proving torsion freeness of Γ is:

2. An element (v, σ) ∈ Γ is torsion if and only if λ(v, σ) = (0, 0) and e 6= σ ∈ Cn.

This statement follows immediately from example (XXX) of chapter 1 or by an elementary
calculation.

If A is an element of the form (ei, t), (i ≤ n), and B an element of the form (ea, t
′),

(a ≥ n + 1), or their inverses, then for the value of λ on products of length 2 we have the
following table:

Type 1 λ Type 2 λ Type 3 λ Type 4 λ
AA (1,1) AB (2,0) BB (1,1) BA (0,2)
AA−1 (0,0) AB−1 (1,-1) BB−1 (0,0) B−1A (-1,1)
A−1A (0,0) A−1B (1,-1) B−1B (0,0) BA−1 (-1,1)
A−1A−1 (-1,-1) A−1B−1 (0,-2) B−1B−1 (-1,-1) B−1A−1 (-2,0)
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If (v, σ) ∈ Γ is product of length two and (u, τ) ∈ Γ, then

λ((v, σ)(u, τ)) = λ(v, σ) + λ(u, τ). (4.4.12)

It follows that (4.4.12) is valid for all (v, σ), (u, τ) ∈ Γe where Γe is the subgroup of all
products of even length, i.e., all (v, σ)’s with σ ∈ Cn. We write λ = (λ1, λ2) and let
λ̄ = (λ̄1, λ̄2) where λ̄j denotes the reduction of λj mod n. Now we can show

3. Let (v, αr) be a product of r elements of type 2, and (u, α−s) be a product of s elements
of type 4 in the table. Then

λ̄(v, αr) = λ̄(u, α−s) (4.4.13)

if and only if r ≡ s mod n.

To prove this assertion notice that in view of validity of 4.4.12 on Γe and the possible values
of λ as described in the table, we have partitions

r = r1 + r2 + r3, s = s1 + s2 + s3,

and

λ̄(v, αr) = (2r1 + r2,−r2 − 2r3), λ̄(u, α−s) = (−2s1 − s2, s2 + 2s3).

Therefore the equation (4.4.13) is equivalent to 2r ≡ 2s mod n or r ≡ s mod n since n is
odd. Having proven validity of (3) we can establish torsion freeness of Γ. In view of (1)
the only possible torsion elements are products of even length in the generators of Γ and
their inverses. Every (v, σ) ∈ Γe is a product of elements of the four types described in the
table. Let r be the number elements of type 2 and s the number of elements of type 4 in the
table. It follows easily from the table, (2) and (4.4.13) that in order for (v, σ) to be torsion
it is necessary that λ̄(v, αr) = λ̄(u, α−s). From (3) we see easily that for such (v, σ) we have
σ = e. This completes the proof of torsion freeness of Γ. ♠

4.4.4 2 and 3-D Crystals

Understanding the structure of crystals was an important factor in the development of the
theory of discrete groups of Euclidean motions. Mathematically, a crystal structure (denoted
by (L,G)) consists of a lattice L ⊂ Rm, together with a finite subgroup G ⊂ GL(m,R)
(called point group in chemistry literature) leaving the lattice L invariant. By a general
theorem of algebra, given G and L there are finitely many group extensions of the form
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(4.4.6). The question arises given a finite group G ⊂ GL(m,R), whether there are G-
invariant lattices L ⊂ Rm. Clearly if such L exists then g(L), where g lies in the normalizer
NG of G in GL(m,R), is also invariant under G. Therefore it is reasonable to designate
two G-invariant lattices L and L′ as G-equivalent if they differ by an element of NG. For
example, if G = {e}, then all lattices in Rm are G-equivalent. We should also define an
equivalence relation on the set of crystal structures. Given a crystal structure (L,G) and
g ∈ GL(m,R), then (g(L), gGg−1) is also a crystal structure. Thus one defines two crystal
structures as equivalent if they differ by an element g ∈ GL(m,R). In this subsection we
consider crystal structures in dimensions 2 and 3.

Example 4.4.4 Let G = Z/n be the cyclic group of order n acting on R2 by rotations
R 2kπ

n
through angles 2kπ

n
. We want to determine lattices in R2 invariant under G. If n = 2

then G = {±I} and every lattice is invariant under G. Furthermore, G lies in the center
of GL(2,R) and and therefore all lattices are G-equivalent. If G = Z/3, then the lattice L
is invariant under rotation by 2π

3
. Let 0 6= v1 ∈ L be a non-zero vector of minimal length,

v2 = R 2π
3
(v1) and L′ ⊂ L be the sublattice generated by v1, v2. Let w a vector of minimal

length in L \ L′. In view of invariance of L and L′ under G = Z/3 and the minimality of
length assumption, we may assume that the angle between w and v1 lies in the open interval
(2π

3
, π). But then the vector w + v1 has length less than that of w contrary to hypothesis.

Therefore L = L′. The normalizer of Z/3 in GL(2,R) is R××O(2). Therefore all G = Z/3-
invariant lattices in R2 are G-equivalent to one generated by the vectors v1, v2 = R 2π

3
(v1).

This lattice is also invariant under G = Z/6. It follows that Z/6-invariant lattices are the
same as Z/3-invariant lattices. For G = Z/4 we proceed similarly. Let v1 ∈ L be a non-
zero vector of minimal length, v2 = Rπ

2
(v1), and L′ the lattice generated by v1, v2. Let

w ∈ L\L′ be a vector of minimal length. From minimality and Z/4-invariance assumptions,
we deduce w can be chosen so that the angle between w and v1 lies in the interval (2π

3
, π)

and therefore w + v1 is a vector of length less than that of w. Therefore L′ = L, and all
Z/4-invariant lattices in R2 are Z/4-equivalent to the standard lattice spanned by e1 = (1, 0)
and e2 = (0, 1). Finally assume n = 5 or n ≥ 7, and let v1 be a non-zero vector of minimal
length in L. Let

w =

Rπ(k−1)
k

(v1), if n = 2k;

R 2π(k−1)
n

(v1), if n = 2k − 1.

Then the vector w + v1 has length less than that of v1. Consequently for n = 5 or n ≥ 7
there are no Z/n-invariant lattices in R2. ♠
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For n ≥ 3, an injective homomorphism ρ : Z/n → GL(2,R) is necessarily conjugate to
one into SO(2). In fact, the eigenvalues of ρ(1) are necessarily primitive nth roots of unity,

i.e., they are e±
2πik

n for some k relatively prime to n, which implies that ρ(1) is conjugate to
a 2× 2 rotation matrix. For n = 2, either both eigenvalues of ρ(1) are −1 in which case ρ(1)
is rotation through π, or there is a basis v1, v2 such that

ρ(1)(v1) = v1, ρ(1)(v2) = −1.

The two cases are distinguished according as det(ρ(1)) = ±1.
Let G ' Z/2×Z/2. To distinguish two copies of Z/2 we write G ' {e, ε}×{e′, ε′}. Then

there is a basis v1, v2 for R2 such that the matrices (ε, e′) and (e, ε′) are represented as

(ε, e′) ↔
(−1 0

0 1

)
, (e, ε′) ↔

(
1 0
0 −1

)
After possibly replacing G ' Z/2×Z/2 we may assume that v1, v2 is the standard orthonor-
mal basis e1, e2.

Exercise 4.4.6 Let G ' Z/2× Z/2 acting on R2 as diagonal matrices
(±1 0

0 ±1

)
. Show

that there are two equivalence classes of of crystal structures (L,G), namely,

1. L is generated by e1, e2.

2. L is generated by e1 and w = 1
2
e1 +

√
3

2
e2.

Exercise 4.4.7 For the group G of order 8 of symmetries of the square, show that there are
two inequivalent crystal structures (L,G). (Assume the standard basis e1, e2 are eigenvectors
for Z/2× Z/2, and consider the lattices generated e1, e2 and 2e1, e1 + e2.)

Exercise 4.4.8 Let G = S3 and L be the lattice spanned by e1,−1
2
e1 +

√
3

2
e2 with the even

permutation (123) acting as rotation by 2π
3
. Show that

1. ρ((12))(e1) = −e1, ρ((12))(−1
2
e1 +

√
3

2
e2) = 1

2
e1 +

√
3

2
e2.

2. ρ′((12))(e1) = e1, ρ((12))(−1
2
e1 +

√
3

2
e2) = −1

2
e1 −

√
3

2
e2.

extend the action of Z/3 to S3. Denote the representations of S3 by ρ and ρ′. Show that ρ and
ρ′ are equivalent representations and ρ(σ), ρ′(σ′), σ ∈ S3, are integral matrices relative to

the basis e1,−1
2
e1 +

√
3

2
e2. Prove that there is no g ∈ GL(2,Z) implementing the equivalence

of ρ and ρ′.
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In chapter 1, §XXXX, we determined finite subgroups of SO(3). The first step in the
determination of 3-D crystal structures is to determine which of these finite groups leave a
lattice in R3 invariant. The following simple lemma eliminates most finite subgroups and
reduces the problem to a finite number of cases:

Lemma 4.4.8 Let e 6= g ∈ SO(3) leave a lattice L ⊂ R3 invariant. Then g is a rotation by
π, 2π

3
, π

2
or π

3
.

Proof - Assume g is not a rotation through angle π, and v ∈ L ⊂ R3 be linearly independent
from the axis of rotation of g. Let Πg denote the plane of rotation of g. Then the vectors
v − g(v) and g(v)− g2(v) are linearly independent and lie in L ∩ Πg. Therefore by the two
dimensional case (example 4.4.4) g cannot be rotation through 2π

n
where n = 5 or n ≥ 7. ♣

Note in particular that lemma 4.4.8 eliminates the icosahedral group (' A5) as a point
group in dimension 3. Using this lemma, one can determine all the possible point groups in
dimension three. The book-keeping is facilitated by splitting up the set of point groups into
three classes, viz.,

1. Groups constructed from rotation group Z/n in the plane.

2. Groups constructed from the dihedral group Dn = Z/n.Z/2 acting on the plane.

3. Groups constructed from the group of proper symmetries of the (regular) tetrahedron
or the cube.

Each case is subdivided according as the group is contained in SO(3), or contains the in-
version −I or a reflection. Since the arguments are straightforward, lengthy and hardly
enlightening, we tabulate the complete list of thirty two possible point groups. It is conve-
nient to introduce some notation. We make use of the representations−1 0 0

0 1 0
0 0 −1

↔ [x̄, y, z̄],

−1 0 0
0 0 −1
0 1 0

↔ [x̄, z̄, y] etc.

Recall from chapter 1 §XXXX that the group of proper symmetries of the regular tetrahedron
is isomorphic to the alternating group A4. B3 is the group of order 48 of symmetries of the
cube and contains the group B′

3 of proper symmetries of the cube as a subgroup of index
two. The following table is more or less self-explanatory except for the numbers in the last
column which will explained shortly:
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Class G ⊂ SO(3) −I ∈ G −I 6∈ G L
1 I I ∪ (−I) − 1
1 Z/2 = I ∪ [x̄, ȳ, z] Z/2 ∪ (−I)Z/2 I ∪ [x, y, z̄] 2
1 Z/3 Z/3 ∪ (−I)Z/3 − 5
1 Z/4 = Z/2 ∪ [y, x̄, z]Z/2 Z/4 ∪ (−I)Z/4 Z/2 ∪ [ȳ, x, z̄]Z/2 4
1 Z/6 = Z/3 ∪ [x̄, ȳ, z]Z/3 Z/6 ∪ (−I)Z/6 Z/3 ∪ [ȳ, x, z̄]Z/3 5
2 D2 = Z/2 ∪ [x, ȳ, z̄]Z/2 D2 ∪ (−I)D2 Z/2 ∪ [x̄, y, z]Z/2 3
2 D3 = Z3 ∪ [y, x, z̄]Z/3 D3 ∪ (−I)D3 Z/3 ∪ [ȳ, x̄, z]Z/3 5
2 D4 = Z/4 ∪ [x, ȳ, z̄]Z/4 D4 ∪ (−I)D4 Z/4 ∪ [x̄, y, z]Z/4 4
2 − − D2 ∪ [ȳ, x, z̄]D2 4
2 D6 = Z/6 ∪ [y, x, z̄]Z/6 D6 ∪ (−I)D6 Z6 ∪ [ȳ, x̄, z]Z/6 5
2 − − D3 ∪ [x, y, z̄]D3 5
3 A4 A4 ∪ (−I)A4 − 7
3 B′

3 B3 = B′
3 ∪ (−I)B′

3 A4 ∪ [y, x, z]A4 7

The action of the cyclic groups Z/n, n = 2, 3, 4, 6, on R3 is defined in the first column of
the table. So is the action of the dihedral groups Dn, n = 2, 3, 4, 6. Note that D2∪(−I)D2 '
(Z/2)3. The isomorphisms

Z/4 ∪ [x, ȳ, z̄]Z/4 ' D2 ∪ [y, x̄, z]D2, Z/6 ∪ [y, x, z̄]Z/6 ' D3 ∪ [x̄, ȳ, z]D3,

explain the blanks in the first two columns of the table. The thirty two point groups enu-
merated in the above table leave a lattice invariant. Therefore it is necessary to exhibit a
lattice invariant under each of the given point groups. We exhibit below seven lattice which
prove that the groups in the above table do indeed leave a lattice invariant. The numbers
in the last column of the table refer to these lattices as enumerated below. The lattices
given below are representatives from G-equivalence classes and we also have indicated the
prevalent terminology from crystallography. Throughout, v1, v2, v3 denotes a basis for L, the
length of vi is denoted by li, and Aij denotes the angle between between vi and vj. It is
convenient to interpret a statement such as l1 = l2, l3 arbitrary as l3 6= l1 = l2 in spite of the
fact in the equivalence class there is a lattice with l3 = l1 = l2. The latter lattice will have
more symmetries and maybe regarded as a degenerate case of the former.

1. (Triclinic) - v1, v2, v3 are any three linearly independent vectors.

2. (Monoclinic) - li’s are arbitrary, but A23 = A13 = π
2

and A12 is arbitrary.

3. (Orthorhombic) - li’s are arbitrary, but Aij = π
2
.
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4. (Tetragonal) - l1 = l2, l3 arbitrary, and Aij = π
2
.

5. (Hexagonal) - l1 = l2, l3 arbitrary, A23 = A13 = π
2
, and A12 = 2π

3
.

6. (Trigonal) - l1 = l2 = l3, and A12 = A23 = A13 <
2π
3

.

7. (Cubic) - l1 = l2 = l3 and Aij = π
2
.

The seven lattices enumerated above are not the only ones admitting of the given finite
groups of symmetry (see for example, exercise 4.4.7). In crystallography literature the above
seven are known as primitive Bravais classes. There are also seven imprimitive lattices
which are derived from the above as indicated below. The resulting fourteen lattices are
called Bravais lattices.

1. Lattice generated by the monoclinic lattice together with the vector 1
2
(v1 + v2).

2. Three lattices derived from the orthorhombic lattice:

(a) By addition of the vector 1
2
(v1 + v2);

(b) By addition of the vector 1
2
(v1 + v2) + v3;

(c) By addition of the vectors 1
2
(v1 + v2),

1
2
(v2 + v3) and 1

2
(v3 + v1).

3. Lattice obtained by adding the vector 1
2
(v1 + v2 + v3) to the tetragonal lattice.

4. Two lattices derived from the Cubic lattice:

(a) By addition of the vector 1
2
(v1 + v2 + v3);

(b) By addition of the vectors 1
2
(v1 + v2),

1
2
(v2 + v3) and 1

2
(v3 + v1).

Having determined the equivalence clases of crystal structures, we still have to determine
all goup extensions of the form (4.4.6). This is not a trivial problem and the solution
involves lengthy case by case constructions. In dimension two one obtains 17 such groups;
there are 230 such groups in 3-D and 4783 in dimension four. We have already indicated the
explicit construction of some of these groups in the preceding subsection. For a complete
construction of all such groups in dimensions two and three see [Bur]. In dimension four a
complete enumeration is given in [B...Z].

Only a small number of the crystallographic groups are torsion free. In fact in dimension
two there are only two such groups namely Z and the torsion free group constructed in
example 4.4.1 for m = 2. The latter group is the fundamental group of the Klein bottle. In
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dimension three there are ten torsion free crytallographic groups of which six are contained
in SE(3) so that the orbit space Γ\R3 is an orientable manifold of dimension three. An
enumeration of these groups is given in the following examples:

Example 4.4.5 It is not difficult to describe the fundamental groups of compact flat ori-
entable Riemannian manifolds M of dimension three. The matrices in the following enumer-
ation are relative to the standard basis e1, e2, e3 of R3:

1. π1 ' Z3 in which case the M is a torus of dimension three.

2. The point group G = Z/2 which acts on R3 via the matrix A =

−1 0 0
0 −1 0
0 0 1

. A

set of generators for Γ is

γ = (e3, A), τ1 = (e1, I), τ2 = (e2, I).

3. The point group is Z/3 which acts on R3 via the matrix

A =

−
1
2
−
√

3
2

0
√

3
2

−1
2

0
0 0 1


Γ is generated by

γ1 = (e3, A), τ1 = (e1, I), τ2 = (−1

2
e1 +

√
3

2
e2, I).

This is group is isomorphic to the group described in example 4.4.1 for m = 3.

4. The point group is Z/4 generated by rotation by π
2

given by the matrix

A =

 0 −1 0
1 0 0
0 0 1


The group Γ is generated by

γ1 = (e3, A), τ1 = (e1, I), τ2 = (e2, I).
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5. The point group is Z/2× Z/2 with the generators acting by the matrices

A =

−1 0 0
0 −1 0
0 0 1

 , B =

 1 0 0
0 −1 0
0 0 −1


The subgroup Γ is generated by

γ1 = (e3, A), γ2 = (e1, B), τ1 = (e2, I).

6. The point group is Z/6 acting by rotation by kπ
3

generated by:

A =


1
2

−
√

3
2

0
√

3
2

1
2

0
0 0 1


The group Γ is generated by

γ1 = (e3, A), τ1 = (e1, I), τ2 = (
1

2
e1 +

√
3

2
e2, I).

The non-orientable case is given below. ♠

Exercise 4.4.9 Show that the groups exhibited in example 4.4.5 are torsion free.

Example 4.4.6 Continuing with example 4.4.5, we enumerate compact flat non-orientable
manifolds.

1. The point group is Z/2 acting on R3 by the matrix A =

 0 1 0
1 0 0
0 0 1

. The group

Γ = Γ1 × Z where Γ1 is the group constructed in example 4.4.1 for m = 2. The orbit
space Γ\R3 is K × S1 where K is the Klein bottle.

2. The point group is Z/2 acting on R3 via the matrix A =

 1 0 0
0 1 0
0 0 −1

. The group Γ

is generated by

γ1 = (e1, A), τ1 = (2e2, I), τ2 = (e1 + e2 − e3, I).
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3. The point group is Z/2× Z/2 acting diagonally on R3 via matrices

A =

 1 0 0
0 1 0
0 0 −1

 , B =

 1 0 0
0 −1 0
0 0 1


The group Γ is generated by

γ1 = (e2, A), γ2 = (e1, AB), τ1 = (e3, I).

4. The point group is Z/2× Z/2 acting diagonally on R3 via matrices

A =

 1 0 0
0 1 0
0 0 −1

 , C =

 1 0 0
0 −1 0
0 0 −1


The group Γ is generated by

γ1 = (e1, C), γ2 = (e2 + e3, A), τ1 = (2e3, I).

The verification of torsion free-ness of these groups is left as an exercise. ♠

Exercise 4.4.10 Show that there is one and only one compact flat three dimensional man-
ifold with vanishing first Betti number, and its linear holonomy group is Z/2 × Z/2.(This
manifold is called a Hantsche-Wendt manifold.)

4.4.5 Proofs of Bieberbach’s theorems

In this subsection we prove theorem 4.4.1 and propositions 4.4.4 and 4.4.5. We represent
elements γ, δ ∈ Γ in the form γ = (u,A) and δ = (v,B) following the semi-direct product
decomposition E(m) = Rm.O(m). We recall that E(m) ⊂ GL(m + 1,R) where (u,A) is

represented as the matrix
(
A u
0 1

)
. The standard Euclidean metric on Rn2

restricts to the

metric on GL(n,R) given by ||C||2 = Tr(CC ′) and called the Hilbert-Schmidt norm. For
a > 0 we let Γa be the subgroup generated by elements (u,A) ∈ Γ such that ||A − I|| < a.
The following properties of the Hilbert-Schmidt norms of matrices A,B and u ∈ Rm are
easy to verify:

1. ||A|| = m for A ∈ O(m);
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2. ||AB|| ≤ ||A||.||B||, and ||Au|| ≤ ||A||.||u||;

3. ||AB|| = ||B|| for A ∈ O(m)

The idea of the proof of theorem 4.4.1 is to show that for all a > 0, Γa is a normal
subgroup of finite index in Γ and if a is sufficiently small (in fact, a ≤ 1

2
), then Γa is abelian.

Then one shows that Γa is contained in Rm. To carry out the proof we begin with

Lemma 4.4.9 Γa ⊂ Γ is a normal subgroup of finite index.

Proof - Normality follows from the identity ||UAU−1−I|| = ||A−I|| where U ∈ O(m). Since
O(m) is compact, for every a > 0 there is N such that for every subset {A1, · · · , AN} ⊂ Γ
there are indices i, j with ||Ai − Aj|| < a. Given a > 0 let {(u1, A1), · · · , (un, An)} ⊂ Γ be a
maximal subset with the property ||Ai −Aj|| ≥ a for all 1 ≤ i, j ≤ n. For (v,B) ∈ Γ, ||Ai −
B|| < a for some i by the maximality assumption. Now (ui, Ai)

−1(v,B) = (v−A−1
i ui, A

−1
i B)

and ||A−1
i B − I|| = ||Ai −B|| < a proving (ui, Ai)Γa = (v,B)Γa, i.e., Γa has finite index. ♣

The fact that Γa is abelian for a > 0 sufficiently small is proven in several steps. The
first lemma is a simple exercise in linear algebra:

Lemma 4.4.10 Let A,B ∈ O(m) and ||B − I|| < 2. If A and BAB−1 (or BA−1B−1)
commute, then so do A and B.

Proof -Consider the decomposition of the complexification Cm = V1⊕· · ·⊕Vr into eigenspaces
corresponding to distinct eigenvalues of A. The subspaces Vj are orthogonal. Since A
and BAB−1 commute, the subspaces Vj are invariant under BAB−1, and consequently
AB−1(Vj) = B−1(Vj), i.e., B−1(Vj) is invariant under A. Therefore B−1(Vj) =

∑
i(B

−1(Vj)∩
Vi). Now if B−1(v) is orthogonal to v, 0 6= v ∈ Rm, then necessarily ||B−1−I|| = ||B−I|| ≥ 2
contradicting ||B − I|| < 2. Therefore B−1(Vj) = Vj = B(Vj) for all j which implies that A
and B commute. The proof in case of commutativity of A and BA−1B−1 is similar. ♣

Lemma 4.4.11 Let γ = (u,A), δ = (v,B) be in Γ1. If AB = BA then γδ = δγ.

Proof - Let γ1 = γδγ−1δ−1 and inductively define γn = γγn−1γ
−1γ−1

n−1. It is a simple
calculation that

γ1 = (c, I), and γn = ((A− I)n−1w, I),

where w = (I − A)u − (I − B)v. Now ||(I − A)nw|| ≤ ||I − A||n||w|| → 0 as n → ∞, and
by discreteness of Γ, γn = (0, I) for all n ≥ N , i.e., (I − A)N−1(w) = 0. Let Rm = V1 ⊕ V2
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where V1 is eigenspace corresponding to eigenvalue 1, and V2 is its orthogonal complement.
Since I − A is bijective on V2, (I − A)N−1(w) = 0 implies γ2 = (0, I). Now γ2 = γγ1γ

−1γ−1
1

and so γ1 commutes with γ, and consequently γ commutes with δγ−1δ−1. By lemma 4.4.10
γ and δ commute. ♣

Lemma 4.4.12 Let γ = (u,A) ∈ Γ1/2 and δ = (v,B) ∈ Γ2. Then AB = BA.

Proof - Let δ1 = δγδ−1 and inductively define δn = δn−1γδ
−1
n−1. Set δn = (wn, Cn). Then

Cn = Cn−1AC
−1
n−1 and

wn = (I − Cn−1AC
−1
n−1)(wn−1) + Cn−1(u). (4.4.14)

Therefore

||wn|| ≤ ||u||+ a||wn−1|| ≤
1

1− a
||u||,

where a ≤ 1
2
. Thus the sequence {wn} ⊂ Rm remains bounded and consequently {δn} has a

convergent subsequence. Now, unless A = Cn for all n sufficiently large, we have
||A− Cn+1|| = ||ACn − CnA||

= ||(A− Cn)(A− I)− (A− I)(A− Cn)||
≤ 2||I − A||.||A− Cn||.

This means that Cn → A as n → ∞ since 2||I − A|| < 1, and by discreteness A = Cn

for all n sufficiently large. In particular, A commutes with Cn = Cn−1AC
−1
n−1 and since

||Cj − I|| < 2 for all j, Cn−1 commutes with A by lemma 4.4.10. Proceeding inductively, we
see that C1 = BAB−1 commutes with A and consequently A and B commute. ♣

Lemmas 4.4.11 and 4.4.12 imply

Corollary 4.4.4 Γ1/2 is abelian.

Next we show that if Γ\Rm is compact and Γ is abelian, then Γ is necessarily a lattice
in the normal subgroup Rm ⊂ E(m). The first observation in this direction is

Lemma 4.4.13 Let Γ ⊂ E(m) be an abelian group and (u,A) ∈ Γ. There is (v, I) ∈ E(m)
such that Au′ = u′ where (u′, A) = (−v, I)(u,A)(v, I).

Proof - Consider the orthogonal direct sum decomposition Rm = V1 ⊕ V2 where V1 is the
eigenspace for eigenvalue 1 of A and V2 its orthogonal complement. Clearly V2 = Im(A− I)
and u′ = u+ (A− I)v. The required result follows immediately. ♣
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Continuing with the assumption that Γ is an abelian discrete subgroup of E(m) (not
necessarily with compact quotient) we let (u,A) ∈ Γ be such that the eigenvalue 1 has
minimal multiplicity. If 1 were not an eigenvalue of A, then in view of lemma 4.4.13, we
may assume u = 0. Therefore if (v,B) ∈ Γ, then commutativity of Γ implies v = 0 and
AB = BA. Consequently Γ ⊂ O(m) and it is a finite group by discreteness. We have shown

Lemma 4.4.14 Let Γ ⊂ E(m) be a discrete abelian group of infinite order. Then

min
(u,A)∈Γ

(Multiplicity of Eigenvalue 1 of A) ≥ 1.

Let (Rm)A be the eigenspace for eigenvalue 1, and Γ be as in lemma 4.4.14. Choose
(u,A) ∈ Γ such that dim(Rm)A = k ≥ 1 is minimal. Writing (u,A) as an (m+ 1)× (m+ 1)
matrix we have, after possibly replacing Γ by a conjugate subgroup in E(m), we have

(u,A) =

 Ik 0 u1

0 A1 0
0 0 1

 ,
where Ik is k × k identity matrix, u1 a column vector in Rk and A1 an (m − k) × (m − k)
orthogonal matrix all whose eigenvalues are 6= 1. Representing (v,B) ∈ Γ in the similar
block form

(v,B) =

B2 0 v1

0 B1 v2

0 0 1

 ,
we immediately see that commutativity of Γ implies v2 = 0. It follows that we have orthog-
onal direct sum decomposition

Rm ' V1 ⊕ V2, with V1 ' Rk, and V2 ' Rm−k,

with V1 invariant under Γ. Summarizing, we have,

Lemma 4.4.15 With the above notation, V1 is invariant under Γ.

Proof of proposition 4.4.4 - IN view of lemma 4.4.9 and corollary 4.4.4 it remains to prove
the proposition in the special case where Γ is abelian. We proceed by induction on m. Let
V1 ' Rk be as in lemma 4.4.15. Then V1 is invariant under Γ and so we have homomorphism
ρ : Γ → Γ′ ⊂ E(k) by restriction to V1. The kernel of ρ is a discrete subgroup of O(m− k)
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and is therefore finite. If dimV1 < m then we can apply the induction hypothesis to V1 to
obtain the decomposition Γ′ = Γ′1 × Γ′2 as stated in the proposition. We obtain the exact
sequence

0 −→ ∆ −→ Γ −→ Γ′1 −→ 0,

with ∆ finite since Kerρ is finite. This sequence splits in view of the fact that Γ′1 is a free
abelian group and therefore Γ = Γ′ × ∆. The required result follows easily assuming that
dimV1 < m. If V1 = Rm, then Γ is a group of translations and the required result is clearly
valid. ♣
Corollary 4.4.5 An abelian discrete subgroup of Γ ⊂ E(m) with compact quotient is the
free abelian group of translations generated by a basis for Rm.

Proof of theorem 4.4.1 - Since maximality of the normal abelian subgroup L ⊂ Γ of
theorem 4.4.1 is clear, the proof of the direct implication of that theorem is complete. We
prove the converse statement. Let f1, · · · , fm ∈ Γ be a basis for the free abelian group L and
for γ ∈ Γ define the matrix Aγ = (Aγ

jk) by

γfjγ
−1 =

m∑
k=1

Aγ
kjfk.

Since L is maximal, the mapping γ → Aγ is an embedding of Γ/L into GL(m,Z), and Γ is
realized as a subgroup of Zm.GL(m,Z) (semi-direct product). Since Γ/L is finite we may
assume its image lies in O(m). This completes the proof of theorem 4.4.1. ♣

The finiteness statement 4.4.5 is a purely algebraic corollary of the theory we have de-
veloped. We consider the realization of the fundamental group Γ of a compact flat manifold
of dimension m as a subgroup of Zm.GL(m,Z).

Lemma 4.4.16 GL(m,Z) contains only finitely many conjugacy classes of finite subgroups.

Proof - Let ρ3 : GL(m,Z) → GL(m,Z/3) denote the reduction mod 3 map, and Γ′(3)
denote its kernel. For every finite subgroup G′ ⊂ GL(m,Z) let G = ρ3(G

′) and Γ′ = ρ−1
3 (G).

Consider the the exact sequence

(1) −→ Γ′(3) −→ Γ′ −→ G −→ (1).

Since ρ3 is injective on finite subgroups (proposition 4.4.6), we have a splitting homomor-
phismG→ Γ′ and therefore Γ′ = Γ′(3).G (semi-direct product). It follows that the subgroups
of GL(m,Z) which map isomorphically onto G under ρ3 form a single conjugacy class in Γ′

by a theorem of algebra3. The finiteness assertion of the lemma follows from finiteness of

3This follows from the vanishing of the cohomology set H1(G; Γ(3)) or that every crossed homomorphism
is inner.
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GL(m,Z/3). ♣
Proof of proposition 4.4.5 - It is a standard theorem in algebra that there are only only
finitely many group extensions of the form (??) for a given finite group and action of G on
L. In view of lemma 4.4.16 and corollary 4.4.3 imply the required finiteness. The second
assertion follows from the first and corollary 4.4.3. ♣

4.4.6 The Laplacian and the Fundamental group

(THIS SUBSECTION IS NOT INCLUDED)

4.4.7 Braids and Configuration Spaces

(THIS SUBSECTION IS NOT INCLUDED)
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4.5 Theorem of Hurewicz and Knot Groups

4.5.1 Fundamental Group and First Homology

We noted earlier that van Kampen’s theorem is the analogue of the Mayer-Vietoris sequence
for the fundamental group. To emphasize this similarity, we derive the basic relation between
the fundamental group and the first homology group by relating van Kampen’s theorem to
the Mayer-Vietoris sequence. Let Z be a simplicial or cell complex and γ ∈ π1(Z, z). Then
γ defines an element of H1(Z;Z) since γ has empty boundary and if γ and γ′ are homotopic
relative to ∂I, then the homotopy shows that γ and γ′ define the same element in H1(Z;Z).
The resulting map

h : π1(Z, z) → H1(Z;Z)

is called the Hurewicz homomorphism. Since H1(Z;Z) is abelian, Kerh contains the commu-
tator subgroup of π1(Z, z). As another application of van Kampen’s theorem we show the
kernel is in fact equal to the commutator subgroup of π1(X, x).

We have already noted the fundamental group and first homology groups of a finite graph
are the free group and the free abelian group on the same number of generators. Since in
this case a cycle is precisely a loop, it is easy to see that the Hurewicz map h is surjective,
and the kernel is precisely the commutator subgroup. Clearly the same conclusion is valid
for cell complexes of dimension one.

For a general simplicial or cell complex Z, a comparison of van Kampen’s theorem and the
Mayer-Vietoris sequence shows that the kernel of the Hurewicz map of π1(Z, z) → H1(Z;Z)
is indeed the commutator subgroup. Although the theorem is true under very general con-
ditions, we limit our proof to the case of finite simplicial or cell complexes and we prove
it by induction on the number of simplices or cells. We already know the theorem to be
true for cell complexes of dimension one. Therefore it suffices to investigate the relationship
between fundamental groups and first homology groups of X, Y, Z and A where Z = X ∪ Y
and A = X ∩ Y and all spaces in consideration are path connected. Path-connectedness
is necessary to make van Kampen’s theorem applicable. The main point in the proof is a
simple algebraic observation. Let Γ,Γ′ and ∆ be groups, and ı : ∆ → Γ and ı′ : ∆ → Γ′ be
homomorphisms. Let Γ1 = Γ/[Γ,Γ], Γ′1 and ∆′

1 denote the abelianizations of Γ, Γ′ and ∆
respectively. Motivated by van Kampen’s theorem, we define Γ ?∆ Γ′ as the quotient of the
free product Γ ? Γ′ by the normal subgroup R generated by the elements

ı(δ)ı′(δ)−1
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as δ ranges over ∆. For γ ∈ Γ, δ ∈ ∆ etc. let γ̄, δ̄ etc. denote their images in Γ1, ∆1 etc.
The map ı induces a homomorphism ı̄ : ∆1 → Γ1; and ı̄′ is similarly defined. The proof of
the following lemma is straighforward:

Lemma 4.5.1 With the above notation we have

[Γ ?∆ Γ′]1 ' (Γ1 ⊕ Γ′1)/N,

where N ⊂ Γ1 ⊕ Γ′1 is generated by elements of the form

(̄ı(δ̄), ı̄′(δ̄))

Pictorially one can exhibit the lemma as the following commutative row-exact diagram:

1 −→ R −→ Γ ? Γ′ −→ Γ ?∆ Γ′ −→ 1
↓ ↓ ↓

0 −→ N −→ Γ1 ⊕ Γ′1
ρ−→ [Γ ?∆ Γ′]1 −→ 0

It is clear that the homomorphism ρ is onto and the proof of the lemma is the verification of
Kerρ = N which is straightforward. Applying the lemma to Z = X ∪ Y , with A = X ∩ Y ,
Γ = π1(X, x), etc. one obtains

Theorem 4.5.1 (Hurewicz) Let Z be a cell or simplicial complex. Then the kernel of the
Hurewicz homomorphism h : π1(Z, z) → H1(Z;Z) is the commutator subgroup [π1(Z, z), π1(Z, z)]
of π1(Z, z).

As a first application of the theorem of Hurewicz we consider a knot K ⊂ S3. Set
SK = S3 \K, and π1 = π1(SK ;x). Since H1(SK ;Z) ' Z, the theorem of Hurewicz gives the
exact sequence

1 −→ π̂1 −→ π1 −→ Z −→ 0, (4.5.1)

where π̂1 is the commutator subgroup of π1.

Corollary 4.5.1 The fundamental group π1 = π1(SK ;x) of a knot complement admits of
the semi-direct product decomposition

π1 ' π̂1.Z.

Proof - Since Z is free, the exact sequence (4.5.1) admits of a splitting homomorphism
χ : Z → π1. ♣
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Example 4.5.1 We discuss Poincaré’s example of a compact manifold with the same ho-
mology as S3 but with a different fundamental group. Identify S3 with the group of unit
quaternions or equivalently with SU(2) and recall that we have a surjective homomorphism
ρ : SU(2) → SO(3) with Kerρ = ±I. From example ?? of chapter 1 we know that A5,
the alternating group on five letters, can be realized as a subgroup of SO(3) by identi-
fying it with the group of rotational symmetries of the icosahedron or dodecahedron. Let
Γ = ρ−1(A5) ⊂ SU(2). The left translation action of Γ on SU(2) is orientation preserving and
the quotient space M = Γ\SU(2) is an orientable manifold. In particular, H3(M ;Z) ' Z.
For a group G let Ĝ denote the its commutator subgroup. Then

ρ(Γ̂) = Â5 = A5, (4.5.2)

and consequently either Γ̂ = Γ or Γ̂ has index two in Γ. We show that the latter alternative
is not possible. In fact, if it were, then ρ would map Γ̂ bijectively onto A5 and consequently
ρ−1 would be a splitting homomorphism A5 → Γ. Since ±I is the center of SU(2) this gives
the direct product decomposition Γ ' A5 × (Z/2). Consider the subgroup

{e, (12)(34), (13)(24), (14)(23)}

of A5. Every non-identity element of this subgroup is realized as a rotation by π in SO(3)
and their pre-images in SU(2) are conjugate to the quaternion i which has order 4. Therefore
the decomposition Γ ' A5 × (Z/2) is not possible and we necessarily have Γ̂ = Γ. By the
theorem of Hurewicz

H1(M ;Z) = 0. (4.5.3)

It is an immediate consequence of Poincaré duality (which will be discussed in chapter 6) that
H2(M ;Z) = 0. Anticipating this result we have exhibited an orientable manifold with the
same homology as S3 but not the same homotopy type. A compact manifold with the same
homology as Sn is called a homology n-sphere. The group Γ = ρ−1(A5) ⊂ SU(2) is called
the binary icosahedral group. This example has a very special character. For no other n one
can find a compact homogeneous space with the same homology as Sn but with a different
homotopy type (see [Br]). The binary icosahedral group is unique in the sense that it is
the only finite perfect group which admits of an irreducible complex representation which
acts without fixed points on the unit sphere. The representation is also unique and is the
restriction of the natural representation of SU(2) as above. The proof of these uniqueness
assertions is rather lengthy, and the interested reader is referred to [Wolf]. In the following
examples we construct many other homology spheres based on a different approach. ♠
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Example 4.5.2 We can use our knowledge of torus knots to construct examples of homol-
ogy 3-spheres (other than S3.) Let K ⊂ S3 be a knot and TK be a small open tubular
neighborhood of K. Consider two copies M1,M2 of SK = S3 \ TK and let ϕ : ∂M1 → ∂M2

be a diffeomorphism. Let us compute the homology of M = M1]ϕM2 which is a compact
manifold (see remark (XXX) of chapter 1). The Mayer-Vietoris sequence yields (coefficient
group Z is omitted)

Z⊕ Z = H1(∂SK)
A−→ H1(M1)⊕H1(M2) −→ H1(M) −→ 0.

Here H1(M1)⊕H1(M2) ' Z⊕Z and the integral 2× 2 matrix A depends on the map ϕ. If
detA = ±1, then H1(M ;Z) = 0. Recall that a meridian and a longitude represent generators
of H1(∂TK ;Z). There is a diffeomorphism ψ of ∂TK interchanging a given meridian and a
given longitude. In fact, we can identify ∂TK with R2/Z2 such that the given meridian
and longitude are represented by the line segments joining the origin to (1, 0) and (0, 1)
respectively. Then the diffeomorphism ψ is induced by the orientation reversing linear map(

0 1
1 0

)
. Now let the diffeomorphism ϕ be the map ψ. Then A = ψ and H1(M ;Z) = 0.

Since ψ is orientation reversing, the M1]ϕM2 is an orientable manifold M . From vanishing
of H2(SK ;Z), we obtain H2(M ;Z) = 0 by an application of the Mayer-Vietoris sequence.
Consequently, M is a homology 3-sphere. In the next example we discuss the fundamental
group of M . ♠

Example 4.5.3 We continue with example 4.5.2 and specialize to the case K = K2,3 is
the trefoil knot. We want to apply van Kampen’s theorem to obtain a presentation of
the fundamental group of M . The trefoil knot corresponds to the case n = 1 in example
4.2.17. In terms of the Wirtinger presentation we have ξ = ξ2ξ3ξ2 and η = ξ2ξ3. Then, by a
straightforward calculation, a meridian and a longitude are represented by

µ = ξ2 = η−1ξ, λ = ξ3ξ2ξ1ξ
−3
2 = ξ2(ξ−1η)6

respectively. Therefore π1(M,x) is is the group on four generators ξ, η, α, β subject to the
relations

ξ2 = η3, α2 = β3, ξ2(ξ−1η)6 = β−1α, α2(α−1β)6 = η−1ξ.

We show that π1(M,x) 6= 0 which implies that M is (homotopically) distinct from S3.
Let Am denote the alternating group on m letters. It is straightforward to check that the
mapping

ξ, α −→ (34)(67), η, β −→ (123)(456)

defines a homomorphism of π1(M,x) into A7 and therefore π1(M,x) 6= 0. ♠
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Remark 4.5.1 The construction of the preceding example generalizes to give infinitely
many distinct homology 3-spheres. In fact using the knot K2,2n+1 (see example 4.2.17)
in exactly the same way we obtain a manifold which we denote by Mn. Its fundamental
group is defined by four generators ξ, η, α, β subject to the relations

ξ2 = η2n+1, α2 = β2n+1, ξ2(ξ−1ηn)4n+2 = β−nα, α2(α−1βn)4n+2 = η−nξ.

Then the assignment

ξ, α −→ (2n+ 1 2n+ 2)(4n+ 2 4n+ 3),

η, β −→ (12 · · · 2n+ 1)(2n+ 2 2n+ 3 · · · 4n+ 2).

defines a homomorphism of π1(Mn, x) into A4n+3. Furthermore, one shows that if (4n+3)! <
2m + 1, and 2m + 1 is a prime, then any homomorphism of π1(Mm, x) into S4n+3 ⊃ A4n+3

is necessarily trivial and therefore Mn and Mm are homotopically distinct. The reader is
referred to [Gro] for a detailed treatment. ♥

4.5.2 Theorem of Hurewicz and Alexander Polynomials

In this subsection we use the the theorem of Hurewicz and the theory of covering spaces to
obtain an invariant of a knot which is less precise but more manageable than the fundamental
group of the knot complement. Let K ⊂ R3, SK = S3\K and S̃K = S̃ be its universal cover.
Fix a base point x ∈ SK and let π1 = π1(SK , x) and π̂1 denote the commutator subgroup of
π1. According to the theorem of Hurewicz π1/π̂1 ' Z since H1(SK ;Z) ' Z for every knot
K. Regular covering spaces of SK are in one to one correspondence with normal subgroups
of π′ ⊂ π1. We denote by pab : S̃K,ab → SK the regular covering space corresponding to the
normal subgroup π̂1. The group of covering transformations of the regular covering space
corresponding to the normal subsgroup π′ is π/π′. The maximal regular covering space of
SK with abelian group of covering transformations is pab : S̃K,ab → SK . Any other regular
covering of SK with abelian group of covering transformations is a quotients S̃K,ab by a
subgroup of Z. Therefore all such coverings have cyclic groups of covering transformations,
namely, Z or Z/(m). We denote the covering space corresponding to the latter group by
S̃K,m. The above can be summarized in the following diagram:

S̃K → S̃K,ab → S̃K,m

↘ ↓ ↙
SK
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One can invoke the theorem of Hurewicz to gain some understanding of S̃K,ab for a
presentation of the fundamental group of SK by generators and relations. Since S̃K,ab is
the quotient of S̃K by π̂1, the first homology of S̃K,ab is H1(S̃K,ab;Z) ' π̂1/[π̂1, π̂1]. It is
convenient to look at H1(S̃K,ab;Z) as a module over the ring of finite Laurent series in one

variable and with integer coefficients, namely, R def
= Z[t, t−1]. Note that R is simply the

group algebra of π1/π̂1 ' Z with Z coefficients. It may be judicious to distinguish between
Z as a coefficient group and as the group π1/π̂1. For this reason we write J for the integers
regarded as π1/π̂1, so that R = Z[J ]. We represent J multiplicatively as {tn}n∈Z. Let us
first describe the R-module structure of H1(S̃K,ab).

Let ε ∈ π1(SK) be such that it maps to t = 1 ∈ H1(SK ;Z) = J under the Hurewicz map.
(The equality t = 1 means we have fixed one of the two isomorphisms J ' Z.) For α ∈ π̂1

define t.α = ε−1αε ∈ π̂1. t.α, thus defined, depends on the choice of ε, however, the image of
t.α in π̂1/[π̂1, π̂1] is independent of the choice ε since two such choices differ by an element of
π̂1. Hence we have endowed H1(S̃K,ab;Z) ' π̂1/[π̂1, π̂1] with the structure of an R-module.
The following simple lemma is useful in understanding the structure of H1(S̃K,ab;Z):

Lemma 4.5.2 There is a set of generators {γ; β1, ..., βk} for π1(SK) with βj ∈ π̂1, and
γ ∈ π1.

Proof - The assertion follows from the fact that π1/π̂1 ' Z. ♣

Remark 4.5.2 Lemma 4.5.2 does not imply that π̂1 is generated by {β1, ..., βk}. As we
shall see later π̂1 is generally not finitely generated, however, lemma 4.5.2 says that as an
R-module, π̂1 is finitely generated. ♥

The key idea is to choose a set of generators for π1 as specified by Lemma 4.5.2, and
represent H1(S̃K,ab;Z) as the cokernel of an R-linear operator A on R⊕ ...⊕R. Notice that
in this description of H1(S̃K,ab;Z), it is realized as a module over Z[t, t−1] which is a richer
structure than just an abelian group. We refer to A as an Alexander matrix of the knot K.
Of course A is not uniquely determined by K. The determinant of A (if non-zero) is called
the Alexander polynomial of the knot K and will be denoted by ∆K(t). More generally, if A
is an n×n matrix then the ideal generated by (n− k)× (n− k) minors of A is called the kth

Alexander ideal of the knot and is denoted by IK
k . For ∆K(t) and IK

k to be a geometrically
meaningful it is necessary to show that they only depend on the cokernel of A and not A
itself since the cokernel is H1(S̃K,ab;Z). For the proof of this basic fact see corollary 4.7.1 is
the final subsection of this chapter.

The Alexander polynomial is defined up to multiplication by a unit of Z[t, t−1]. The units
of this ring are {±tn}. Therefore the degree of the Alexander polynomial is defined as the
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difference of the degrees of the highest and lowest powers of t that appear in ∆K(t). Similarly,
the constant term of the Alexander polynomial is the coefficient of the lowest power of t that
appears in ∆K(t). Unless stated to the contrary, we normalize the Alexander polynomial so
that the lowest power of t appearing in ∆K(t) is zero. This makes ∆K(t) a polynomial and
uniquely determines it up to multiplication by ±1. The fact that the Alexander polynomial
depends only on K and not the matrix A has the following important consequence:

Corollary 4.5.2 Let N be the degree of the Alexander polynomial, then

tN∆K(t−1) = ∆K(t).

Proof - In the group algebra R = Z[J ] we have the freedom of a choice of the generator
for J ' Z. Thus replacing the generator t by t−1 induces an automorphism of the R-
module Coker(A), and det(A) remains unchanged up to multiplication by a unit of R, i.e.,
tN∆K(t−1) = ±∆K(t). Substituting t = 1 we see that the sign ± is necessarily +. ♣

Example 4.5.4 Consider the torus knot K = Km,n. The fundamental group of SK is
isomorphic to the quotient of the free group on two generator x and y by the relation
xm = yn. Let us compute a set of generators as specified by lemma 4.5.2. The images
of x and y in π1/π̂1 are nt and mt where t is ±1. Let r and s be integers such that
rm+ sn = 1. (Recall that in the definition of the torus knot Km,n we assumed that m and
n are relatively prime positive integers.) Then xsyr maps to t ∈ Z. We set γ = xsyr ∈ π1.
Let β1 = xγ−n and β2 = yγ−m, then {γ; β1, β2} is a set of generators of the required form
for π1(SK). The relations are

(β1γ
n)m = (β2γ

m)n, γ = (β1γ
n)s(β2γ

m)r.

Note that a word in βi’s and γ lies in π̂1 if and only if the sum of the exponents of γ is zero.
Therefore we multiply the first relation by γ−mn to obtain a relation in π̂1. Assuming r < 0
(one of r and s is negative) we rewrite the second relation in the form γ(βγm)−r = (β1γ

n)s.
Multiplying both sides of this equation by γ−ns we obtain an equation where both sides are
in π̂1. Abelianizing the relations in their new form yields (recall r < 0):

(tn + t2n + ...+ tmn)β1 − (tm + t2m + ...+ tmn)β2 = 0;
(tn + t2n + ...+ tns)β1 − (tm + t2m + ...+ t−mr)β2 = 0.

This means that π̂1/[π̂1, π̂1] is the cokernel of the R-linear mapping of R⊕R into itself given
by the matrix

A =
(
tn + t2n + ...+ tmn −tm − t2m − ...− tmn

tn + t2n + ...+ tns −tm − t2m − ...− t−mr

)
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To determine the structure of this module we try to diagonalize A by transformations of the
form A → PAQ where P and Q are matrices with entries from R and determinant a unit
in R. Since R is not a principal ideal domain, there is no guarantee of success and in fact
there are knots for which this is not possible. However, in this particular example, after a
simple calculation we obtain the following canonical form for A:(

1 0
0 ∆K(t)

)
, where ∆K(t) =

(1− t)(1− tmn)

(1− tm)(1− tn)
.

Of course, ∆K(t) is, up to a unit in R, the determinant of the matrix A. The fact that
∆K(t) is a polynomial with integer coefficients in t and constant term 1 is easily proved
by looking at the roots of the denominator. It is the Alexander polynomial of the torus
knot K = Km,n. From the canonical form of the matrix A and the expansion ∆K(t) =
t(m−1)(n−1) + · · ·+ 1, it follows that as a module over Z[t, t−1], H1(S̃K,ab;Z) is isomorphic to
ZN where N = (m− 1)(n− 1), and 1, t, · · · , tN−1 a Z basis exhibiting the action of t. ♠

Exercise 4.5.1 With the presentation of the group of the figure 8 knot K given by four
generators {ξ1, ξ2, ξ3, ξ4} subject to the relations

ξ3ξ2 = ξ1ξ3, ξ4ξ2 = ξ3ξ4, ξ3ξ1 = ξ1ξ4,

show that we can set τ = ξ3, β1 = ξ−1
1 ξ3, β2 = ξ3ξ

−1
2 and β3 = ξ−1

4 ξ3 in the notation of
lemma 4.5.2. Rewriting the relations in terms of β’s and t, show that the Alexander matrix
of K is the R-linear map of R⊕R⊕R into itself given by the matrix

A =

 1 −1 0
0 1 1− (1/t)

−1 + (1/t) 0 −1/t

 .
Deduce that the Alexander polynomial of the figure 8 knot is t2−3t+1, and H1(S̃K,ab;Z) ' Z2.
What is the action of t?

The examples of Alexander polynomial given above (torus knots and figure 8 knot) are
particularly simple. While obtaining the Wirtinger presentation is essentially a mechanical
procedure, experimenting with the computation of the Alexander polynomial of more com-
plex knots will convince the reader that obtaining the matrix A may require some degree
of ingenuity. As such the calculation of the matrix A is not sufficiently simplified so that
that the computation of the Alexander polynomial can be implemented by a straightforward
algorithm. The problem of an easily implementable algorithm for computing the Alexander
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polynomial of a knot is solved by invoking our knowledge of covering spaces which reduces
the problem to a straightforward calculation. This method was abstracted into an algebraic
formalism called Free Differential Calculus (see e.g. [CrF]). It is both more illuminating and
expedient for our immediate goal to simply explain the geometric content of this algebraic
formalism and understand its application to the calculation of Alexander polynomials rather
than develop the algebraic machinery formally.

It is convenient to remove a tubular neighborhood of K from S3 so that SK is a compact
manifold with boundary and therefore a finite cell complex. It is no loss of generality to
assume that SK has only one cell of dimension zero, namely the base point x ∈ SK . As usual
we denote by Sj

K the j-skeleton of SK . The group J ' Z acts on S̃K,ab. We endow S̃K,ab

with the structure of regular a cell complex so that the cell structure is invariant under the
action of the group of covering transformations J . This is done by defining the zero cells of
S̃K,ab to be p−1

ab (x). Then lifting the 1-cells to all points y ∈ p−1
ab (x) to obtain S̃1

K,ab. Using
the homotopy lifting property, we then lift 2-cells etc. In the computation of π1 or H1, cells
of dimension three play no role.

A loop γ representing an element of π1 also represents an element of π̂1 if and only if its
lift to S̃K,ab (with base point y) is a loop, and this requirement is independent of the choice
of the base point y ∈ S̃K,ab with pab(y) = x. Fix y◦ ∈ p−1

ab (x). For γ ∈ π1 we denote by γ̃
its lift to S̃K,ab with base point y◦. For t ∈ Z, we denote by t.ξ̃ the lift of ξ with base point
t.y◦. Denote the canonical homomorphism π1 → Z by τ , and the image of ξ in Z by τξ. It
is clear that for ξ, δ ∈ π1 we have

η̃ξ = τξ.η̃ • ξ̃, (4.5.4)

where we have used • to denote the composition of paths in S̃K,ab. Equation (4.5.4) is the
fundamental geometric fact which reduces the calculation of the Alexander polynomial(s)
to a straightforward algorithm. It is also the basis for the algebraic development of free
differential calculus.

The Wirtinger presentation of the fundamental group is often convenient for computing
the Alexander polynomial or Alexander ideals. The following lemma plays an important role
in the development of the algorithm for this purpose and its proof is almost immediate:

Lemma 4.5.3 The Wirtinger presentation of the fundamental group SK has the following
properties:

1. Every generator ξj of the Wirtinger presentation is mapped to a generator of J by τ ;

2. Every relation of the Wirtinger presentation lifts to a loop in S̃1
K,ab.
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Recall that H1(S̃
1
K,ab, S̃

◦
K,ab;Z) is the free abelian group on all the lifts t.ξ̃j, t ∈ J ' Z.

Therefore it is the free R-module on generators ξ1, · · · , ξn (in the Wirtinger presentation).
Let γj denote the image of ξj in H1(S̃

1
K,ab, S̃

◦
K,ab;Z). Note that t = τξj

∈ H1(SK ;Z) = J
independently of of j, and for all j, k,

τξj
(ξk) = t.γk. (4.5.5)

Connectedness of S̃1
K,ab implies that the long exact sequence reduces to

0 −→ H1(S̃
1
K,ab;Z) −→ H1(S̃

1
K,ab, S̃

◦
K,ab;Z)

δ1−→
H◦(S̃

◦
K,ab;Z) −→ H◦(S̃

1
K,ab;Z) −→ 0.

(4.5.6)

Kerδ1 is precisely H1(S̃
1
K,ab;Z) (identified with its image in H1(S̃

1
K,ab, S̃

◦
K,ab;Z)). Observe that

the lifts of ξi and ξj with base point y◦ are two distinct curves joining y◦ to t.y◦. With this
observation one proves easily that a basis for Kerδ1 = H1(S̃

1
K,ab;Z) as an R-module is given

by
γ1 − γ2, γ2 − γ3, · · · , γn−1 − γn. (4.5.7)

Note that Kerδ1 is precisely the abelian group generated by the loops in H1(S̃
1
K,ab, S̃

◦
K,ab;Z).

Therefore by lemma 4.5.3 the relations in the Wirtinger presentation are represented by
homology classes in Kerδ1. From the calculation of homology of a space given as a cell
complex we know that H1(S̃K,ab;Z) is the quotient

H1(S̃
1
K,ab;Z)/N,

where N = δ2(H2(S̃
2
K,ab, S̃

1
K,ab;Z)) is the set of relations in homology. Now N is easily

computable from (4.5.4) (• becomes + in homology) and the Wirtinger presentation, and
therefore we can effectively calculate the matrix A. To see this point clearly we work out an
example.

Example 4.5.5 Consider the knot in Figure 5.1 (generally known as 61). In the Wirtinger
presentation the generators are ξ1, · · · , ξ6 and the relations are

ξ1ξ5 = ξ6ξ1, ξ2ξ5 = ξ5ξ1, ξ2ξ4 = ξ5ξ2, ξ4ξ2 = ξ3ξ4, ξ6ξ3 = ξ3ξ1.

Lifting the first relation to S̃1
K,ab and using (4.5.4) we obtain

τξ5 ξ̃1 • ξ̃5 = τξ1 ξ̃6 • ξ̃1.
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Abelianizing this relation and expressing it in terms of the basis γi − γi+1, we get

0 = (γ1 − γ5)− t · (γ1 − γ6) =
4∑

i=1

(1− t) · (γi − γi+1)− t · (γ5 − γ6).

Repeating the process for the remaining relations we obtain the matrix

A =


1− t 1− t 1− t 1− t −t

1 1− t 1− t 1− t 0
0 1− t 1− t −t 0
0 1 1− t 0 0
1 1 t t t


Computing the determinant of A and normalizing by dividing by−t2 we obtain the Alexander
polynomial 2t2 − 5t+ 2 of the knot in question. ♠

Exercise 4.5.2 Compute the Alexander matrices of the following knots as shown in Figure
5.2 and show the Alexander polynomials are as indicated:

1. (52 Knot): ∆K(t) = 2t2 − 3t+ 2;

2. (73 Knot): ∆K(t) = 2t4 − 3t3 + 3t2 − 3t+ 2;

3. (77 Knot): ∆K(t) = t4 − 5t3 + 9t2 − 5t+ 1.

Exercise 4.5.3 Show that the Alexander polynomial of the knot shown in Figure 5.3 is
2t2 − 5t + 2 (just as for the knot in example 4.5.5). However, the ideal generated by 2t− 1
and t−2 is an Alexander ideal for the knot in this exercise, while the Alexander ideals, except
for (∆K) = (det(A)), for the knot in example 4.5.5 are the unit ideal.

Remark 4.5.3 It is not difficult to construct nontrivial knots K with Alexander polynomial
∆K(t) = 1. A discussion of this fact is postponed to chapter 6 since it is most easily
understood in the context of Seifert surfaces which are introduced in that chapter. ♥

4.5.3 Torus Knots

In our development of knot theory so far, we relied mainly on algebraic techniques related
to the theorem of Hurewicz. Deeper insight into the structure of knots requires the intro-
duction geometric ideas and especially the notion of a Seifert surface. The application of the
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concept of a Seifert surface to knot theory requires the notion of linking number which will
be discussed in the context of cohomology in chapter 6. In this subsection we study some
geometric properties of torus knots which allow us to introduce Seifert surfaces in an ana-
lytical manner in the context of torus knots. These knots are very special and considerably
simpler than most knots. Nevertheless, it is useful to understand certain concepts in this
simpler context.

Let m > 1 and n > 1 be relatively prime positive integers and Km,n be the torus knot
which may be defined as the intersection of the locus zn

1 − zm
2 = 0 in C2 with the the sphere

|z1|2 + |z2|2 = 1. We set f(z) = zn
1 − zm

2 and notice that we have the mapping

ϕ = ϕm,n : SK −→ S1, ϕm,n(z1, z2) =
f(z)

|f(z)|
.

Our goal is to prove that for the torus knot K = Km,n, ϕm,n : SK → S1 is actually
a fibre bundle with a typical fibre MK a connected orientable surface and determine the
structure of MK . Let MK,θ = ϕ−1(eiθ) denote the fibre over the point eiθ. We refer to a fibre
MK,θ = ϕ−1(eiθ) as a Seifert surface.

First we introduce some notation. Let <,> denote the standard Hermitian inner product
on C2 so that its real part < <,> is the standard inner product on R4. To relate the the
derivative of the map ϕ to that of the polynomial f , we let ∇ denote the complex gradient
operator, that is

∇ = (
∂

∂x1

− i
∂

∂y1

,
∂

∂x2

− i
∂

∂y2

),

where zj = xj + iyj. Set ϕ(z) = eiθ(z) where θ is a many-valued but real function of z, and
let D = ( ∂

∂x1
, ∂

∂y1
, ∂

∂x2
, ∂

∂y2
). Then it is a simple calculation that

iDθ =
Df

f
− D|f |

|f |
=

1

2
(
Df

f
− Df̄

f̄
).

Therefore

Dθ = (
∂v

∂x1

,
∂v

∂y1

,
∂v

∂x2

,
∂v

∂y2

), (4.5.8)

where log f = u+ iv. In view of the Cauchy Riemann equations we have

∇ log f = 2i(
∂v

∂x1

+ i
∂v

∂y1

,
∂v

∂x2

+ i
∂v

∂y2

), (4.5.9)

Now we can prove
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Lemma 4.5.4 Let K = Km,n be the torus knot of type (m,n) as described above. Then for
every eiθ ∈ S1, MK,θ is a smooth surface.

Proof - It suffices to show that ϕm,n has no critical point in the complement of the knot
Km,n. Critical points of ϕ are the points where Dθ(z) = λ(x1, y1, x2, y2), for some real λ. In
view of (4.5.8) and (4.5.9) this condition is equivalent to

i∇ log f(z1, z2) = λ(z1, z2), (4.5.10)

for some real λ. To prove that ϕ has no critical point, we show that (4.5.10) can be fulfilled
only for λ lying on the positive purely imaginary axis. Let zj = ρje

iθj and zn
1 − zm

2 = Rei∆.
Then, in view of (4.5.10), at a critical point we have

∆ +
π

2
− (n− 1)θ1 = arg(λ) + θ1, and ∆ +

3π

2
− (m− 1)θ2 = arg(λ) + θ2.

Therefore nθ1 and mθ2 differ by π implying that zn
1 and −zm

2 have identical arguments.
Consequently ∆ = nθ1 = −mθ2. Thus arg(λ) = π

2
, i.e., λ lies on the positive purely

imaginary axis as desired. ♣
Let ζ be the vector field on SK defined by ζ = ( iz1

n
, iz2

m
), then

< < ζ, (z1, z2) >= 0,

and consequently ζ is tangent to the sphere S3. Let p(t) denote a solution curve to ζ. The

differential equation dp(t)
dt

= ζ being linear, is easily integrated to yield the solution

p(t) = (Ae
it
n , Be

it
m ),

where A and B are arbitrary complex numbers. For |A|2 + |B|2 = 1, the solution curve p(t)
lies on S3 since ζ is tangent to it. If in addition An = Bm then p(t) moves along the knot
Km,n and otherwise it is disjoint from it.

In view of (4.5.8) and (4.5.9) we have

dθ(p(t))

dt
=

1

2
=(∇ log f · ζ) = 1. (4.5.11)

The solution to (4.5.11) is
θ(p(t)) = θ◦ + t, (4.5.12)

with θ◦ referring the initial surface. The solution (4.5.12) shows that the one parameter
family p(t) preserves the fibres of ϕm,n : SK → S1 by mapping each fibre to another. We
have
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Lemma 4.5.5 ϕm,n : SK → S1 is a fibration, and its fibres MK,θ are orientable.

Proof - The existence of fibre preserving one parameter family p(t) implies local triviality
of ϕm,n : SK → S1 and that it is a fibration. It follows from (4.5.11) that ζ is everywhere
transverse to the fibres of ϕm,n : SK → S1 and therefore the fibres are orientable. ♣

Lemma 4.5.6 Every fibre MK,θ is connected.

Proof - Since ϕ : SK → S1 is a fibre bundle it suffices to show that one fibre is connected.
We show MK,◦ (the fibre over 1 ∈ S1) is connected. Let z = (z1, z2) = (r1e

iα1 , r2e
iα2),

w = (w1, w2) = (R1e
iβ1 , R2e

iβ2) be points in MK,◦. Then r2
1 + r2

2 = 1 and R2
1 + R2

2 = 1 and
so we set

r1 = cosφ, r2 = sinφ, R1 = cosψ, R2 = sinψ, 0 ≤ φ, ψ ≤ π

2

The assumption z, w ∈MK,◦ means

einα1 cosn φ− eimα2 sinm φ = ρ1, einβ1 cosn ψ − eimβ2 sinm ψ = ρ2, (4.5.13)

with ρj > 0. To construct a path joining z to w, represent α = (α1, α2) and β = (β1, β2)
as pairs of unit vectors (einα1 , ei(π+mα2)) and (einβ1 , ei(π+mβ2)) in the complex plane. For the
pair (einξ, ei(π+mη)) solvability of

einξ cosn φ− eimη sinm φ ∈ R+, 0 ≤ φ, ψ ≤ π

2

is equivalent to the statement that 1 ∈ C lies in the cone4 formed by the vectors einξ, ei(π+mη).
It is now easy to see how to construct a path in MK,◦ joining z to w (see Figure 5.4). ♣

An important consequence of the realization of SK as a fibre bundle over S1 is that we
can gain better understanding of the structure of π1(SK , x). Example 4.2.7 and lemmas
4.5.4, 4.5.5 and 4.5.6 imply

Corollary 4.5.3 The fundamental group π1(SK , x), where K is the torus knot Km,n, admits
of the semi-direct product decomposition

π1(SK , x) ' Fs · Z.

The free group Fs in this decomposition is the commutator subgroup π̂ and s = (m−1)(n−1).

4The cone formed by vectors v, w means the set {av + bw} ⊂ C = R2 as a, b range over positive real
numbers.
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Proof - Since the fundamental group of a compact surface with boundary is free, it only
remains to prove the last assertion about the commutator subgroup. Denote π1(SK , x) by π1

and its commutator subgroup by π̂1. Since the commutator subgroup is the smallest normal
subgroup with abelian quotient, π̂1 ⊆ Fs. This together with π1/π̂1 ' Z imply that we have
the exact sequence

0 −→ Fs/π̂1 −→ Z −→ Z −→ 0,

which splits and is therefore impossible unless Fs = π̂1 as desired. By example 4.5.4
H1(S̃K,ab;Z) ' Z(m−1)(n−1). Therefore s = (m− 1)(n− 1) as asserted. ♣

The following lemma helps one visualize how the fibres MK,θ are situated in SK :

Lemma 4.5.7 Every fibre MK,θ has points arbitrarily close to every point of Km,n.

Proof - Let wn
1 − wm

2 = 0 and set

z1 = w1 + ε1e
iβ1 , z2 = w2 + ε1e

iβ2 .

Then

zn
1 − zm

2 = nε1e
iβ1wn−1

1 −mε2e
iβ2wm−1

1 + · · · (higher order terms in εj
′s)

Let εj > 0 be such that |nε1wn−1
1 | = |mε2wm−1

2 |. The required result follows by taking εj’s
sufficiently small and varying βj’s (or using the implicit function theorem to be precise). ♣

Lemma 4.5.7 and the above analysis imply that SK = ∪θMK,θ with each fibre MK,θ a
compact smooth surface with boundary Km,n.

Using the notion of a Seifert surface, we construct the universal abelian cover S̃K,ab by
cutting and pasting. Make a cut in SK along a Seifert surface, for example MK,◦, and open
up the incision to obtain a new manifold S ′K with boundary. Since SK → S1 is a fibre bundle,
S ′K ' [0, 2π]×MK,◦. The boundary ∂S ′K is connected and has a natural decomposition into

∂S ′K = M+
K,◦ ∪M−

K,◦. (4.5.14)

where M+
K,◦ and M−

K,◦ are disjoint copies of MK,◦. Let SK,j, for j ∈ Z, be a copy of S ′K and
set

∂SK,j = M+
K,j ∪M−

K,j,

with the obvious meaning for the sets on the right. Identify M+
K,j with M−

K,j+1 for all j ∈ Z

to obtain a connected manifold of dimension 3. This manifold is S̃K,ab.
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The identification of M+
K,j and M−

K,j+1 is described by the the solution p(t) of the vector
field ζ. In view of (4.5.12), p(2kπ)’s lie on the same surface MK,θ◦ for k ∈ Z. We can assume
the labeling of M±

K,j is such that p(−2π) is a diffeomorphism of M+
K,j onto M−

K,j. Composing
this diffeomorphism with the identification of SK,j with SK,j+1 we obtain the map which
identifies M+

K,j and M−
K,j+1.

The action of the (monodromy) group J ' Z of covering transformations of S̃K,ab → SK

is given by

t : SK,j −→ SK,j+1.

The diffeomorphism p(−2π) : M+
K,j ' M−

K,j induces an isomorphism of H1(M
+
K,j;Z) onto

H1(M
−
K,j;Z), which yields an integral matrix

A : Z(m−1)(n−1) −→ Z(m−1)(n−1)

of determinant ±1. Using the Mayer-Vietoris sequence it is straightforward to see that
the first homology group of S̃Km,n,ab is the cokernel of the R-module homomorphism (R =
Z[t, t−1])

tI − A : R(m−1)(n−1) −→ R(m−1)(n−1). (4.5.15)

The matrix tI − A is an Alexander matrix for the torus knot Km,n and its determinant is
the Alexander polynomial. The practical calculation of the matrix A, valid for an arbitrary
knot, requires the notion of linking number which is introduced in chapter 6 in the context
of cohomology.

Let S̃K,l denote the cyclic l-sheeted covering of SK where K = Km,n. With this picture in
mind, it is (in principle) straightforward to calculate H1(S̃K,l;Z). Geometrically, l-sheeted
covering means we identify M+

K,l−1 with M−
K,◦. Therefore to calculate H1(S̃K,l;Z) we add the

relation tl − 1 = 0 to the Alexander matrix and then compute the cokernel. The resulting
module is not the entire H1(S̃K,l;Z). One should take the direct sum of this module with
Z to obtain H1(S̃K,l;Z). The reason is that there is a cycle in H1(S̃K,l;Z) which is mapped
to l times a generator of H1(SK ;Z) and is not represented in Coker(tI −A). The pre-image
under the covering map S̃K,l → SK of a meridian of the torus ∂SK represents this cycle
in H1(S̃K,l;Z). The case of 1-sheeted covering gives interesting information. Here we have
to set t = 1 in the presentation for the Alexander module. Since a 1-sheeted cover is the
manifold SK itself, the matrix I − A should be invertible which implies

∆K(1) = ±1. (4.5.16)

The above considerations about l-sheeted coverings and in particular (4.5.16) are valid for
all knots. We will return to subject later.
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Exercise 4.5.4 Verify the following statements about l-sheeted coverings of the complement
of the trefoil knot K:

H1(S̃K,3;Z) ' Z⊕ Z/3⊕ Z/3, H1(S̃K,4;Z) ' Z⊕ Z/3,

H1(S̃K,5;Z) ' Z, H1(S̃K,6;Z) ' Z⊕ Z⊕ Z.

The geometric picture of the torus knot described above is what one tries to generalize to
arbitrary knots. While the notion of Seifert surface generalizes and one can do the cutting
and pasting to construct S̃K,ab, there is no fibre bundle structure SK → S1 and no vector field
ζ whose integral curves give a diffeomorphism of M−

K,j and M+
K,j. In chapter 6 we show that

we still have a mapping ϕ : SK → S1 which when composed with any branch of logarithm
on S1 ⊂ C gives a (local) Morse function on SK , i.e., a circle valued Morse function. For
certain (but not all) regular values eiθ, the submanifold ϕ−1(eiθ) is a Seifert surface for the
knot. This Morse function necessarily has critical points for a general knot and the structure
of the critical points and a linear mapping that it induces determine an Alexander module,
and therefore the Alexander polynomial and ideals.
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4.6 Discrete Subgroups of SL(2,R) and SL(2,C)

4.6.1 Hyperbolic and Loxodromic Transformations

In this subsection we study some elementary properties of discrete subgroups Γ of SL(2,R)
and SL(2,C) such that the canonical mapHi →M = Γ\Hi, i = 2, 3, is a covering projection
andM is a compact manifold. Although we limit ourselves to hyperbolic spaces in dimensions
two and three, there are far reaching generalizations of these results which we will not go
into. Recall from example (XXXX) of chapter 1 that the hyperbolic space H3 can be realized
as the upper half space and the action of SL(2,C) is by fractional linear transformations:(

a b
c d

)
: w −→ (aw + b)(cw + d)−1,

where w = z + tj, t > 0, z ∈ C, and the quantities in consideration are computed according
to the algebra of quaternions. In particular, the isotropy subgroup of the point j ∈ H3 is
SU(2). We have

Lemma 4.6.1 M = Γ\Hi is a manifold and the canonical map π : Hi → M = Γ\Hi a
covering projection if and only if Γ is torsion free.

Proof - We consider the case i = 3; the case i = 2 is similar. It is clear thatH3 →M = Γ\H3

is a covering projection (and consequently M a manifold) if and only if Γ acts properly
discontinuously on H3. It is easy to see that latter condition is equivalent to the action Γ
being free (i.e., e 6= γ ∈ Γ then γ(w) 6= w for all w ∈ H3). Since the isotropy subgroup of j
is SU(2) and SL(2,C) acts transitively on H3, the isotropy subgroup of a point w = g(j) is
gSU(2)g−1. Therefore the action of Γ is free if and only if

Γ ∩ gSU(2)g−1 = e.

Since Γ is discrete this is equivalent to Γ containing no torsion element other than the
identity. ♣

It is customary to refer to the discrete subgroup Γ is such that M = Γ\Hi is compact as
a cocompact subgroup. By a unipotent matrix we mean a matrix all whose eigenvalues are 1.
By a loxodromic transformation5 we mean an element g ∈ SL(2,C) with distinct eigenvalues
λi and |λi| 6= 1. It is easy to see that loxodromic tranformations are characterized by the
property of having two distinct fixed points both lying on the boundary C∪∞ of the upper
half space. A loxodromic transformation A ∈ SL(2,R) is called hyperbolic.

5There is some discrepancy in the literature about the terms loxodromic and hyperbolic transformation.
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Lemma 4.6.2 The fixed points of a hyperbolic transformation A ∈ SL(2,R) necessarily lie
in R ∪∞.

Proof - The characteristic polynomial of a loxodromic transformation is λ2 − (a + d)λ + 1
with discriminant ∆ = (a+ d)2 − 4. Now a+ d is real and if (a+ d)2 > 4 then the equation
az+b
cz+d

= z has distinct real roots unless b = c = 0 in which case 0 and ∞ are fixed points of
A. If (a+d)2 < 4 then the characteristic polynomial can be written as λ2− (2 cos θ)λ+1. It
follows that A is conjugate to a rotation matrix and its eigenvalues have norm 1 contradicting
the hypothesis. ♣

Lemma 4.6.3 Let A ∈ SL(2,R). The following condition are equivalent:

1. A is hyperbolic.

2. A has distinct real eigenvalues.

3. Tr(g)2 > 4.

Proof - The lemma follows easily fom the observation that for A ∈ SL(2,C), the quadratic
equations det(λI − A) = 0 and aλ+b

cλ+d
= λ have identical discriminant ∆ = (a+ d)2 − 4. ♣

An important property of loxodromic (or hyperbolic) transformations is that every such
matrix γ leaves a unique geodesic γ̃ invariant, namely the geodesic joining its fixed points
which lie on the boundary. One refers to the geodesic γ̃ as the axis of the loxodromic
(hyperbolic) transformation γ. The concept of axis plays an essential role in the subsection
on closed geodesics on Γ\Hj and line geometry.

Exercise 4.6.1 Given a pair of distinct points ζ1, ζ2 ∈ C (resp. R) and a complex number
τ (resp. a real number τ with τ 2 > 4) there is a pair of loxodromic (resp. hyperbolic)
transformations of trace τ whose axis is the unique geodesic with end points ζ1, ζ2.

The following lemma is a consequence of the Lebesgue covering lemma:

Lemma 4.6.4 Let M be a compact Riemannian manifold. Then there is δ > 0 such that
for all x ∈M the ball of radius δ centered at x is a contractible neighborhood of x.

Now we can relate compactness of M to the group theory of Γ.

Lemma 4.6.5 Let Γ be a torsion free cocompact discrete subgroup of SL(2,R) or SL(2,C).
Then Γ contains no unipotent matrix other than the identity.
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Proof - Let γ ∈ Γ be a unipotent element. After replacing Γ with a conjugate gΓg−1 we

may assume γ =
(

1 c
0 1

)
. Let z = it in case of Γ ⊂ SL(2,R) and z = tj otherwise. Then

the length of the straight line segment joining z to γ(z) tends to zero as t → ∞. This line
segment represents γ 6= e in the fundamental group of M . On the other hand, lemma 4.6.4
implies that by taking t sufficiently large we can make this loop contractible to a point and
therefore γ = e. ♣

Corollary 4.6.1 Let Γ be a torsion free cocompact discrete subgroup of SL(2,R) Then every
γ ∈ Γ, γ 6= ±e, is hyperbolic.

Proof - In view of lemmas 4.6.5 and 4.6.3 we need to show Tr(γ)2 < 4 is not possible. Since
Γ ⊂ SL(2,R) and the discriminant of the quadratic equation az+b

cz+d
= z is Tr(γ)2 − 4, the

condition Tr(γ)2 < 4 implies that γ has a fixed point in H2. Then H2 →M is not a covering
projection contrary to lemma 4.6.1. ♣

Lemma 4.6.6 Let Γ ⊂ SL(2,C) be a torsion free cocompact discrete subgroup. If ±e 6= γ ∈
Γ then the eigenvalues of γ do not lie on the unit circle, or equivalently, γ is loxodromic.

Proof - Assume the contrary. After replacing Γ with a conjugate we may assume γ =(
eiθ 0
0 e−iθ

)
or is a unipotent matrix. Then γ leaves the point j ∈ H3 fixed and H3 →M is

not a covering projection. ♣

Corollary 4.6.2 Let Γ be a cocompact torsion free discrete subgroup of SL(2,R) or SL(2,C).
Then every abelian subgroup of Γ is cyclic.

Proof - Let e 6= γ ∈ Γ ⊂ SL(2,R). Then γ is hyperbolic and therefore has distinct
real eigenvalues. Therefore after replacing Γ by a conjugate subgroup we may assume γ =(
es 0
0 e−s

)
with s 6= 0. If e 6= δ ∈ Γ commutes with γ then δ =

(
et 0
0 e−t

)
with t 6= 0. If

s and t are linearly dependent over the rationals then there is q ∈ Q such that s = aq and
t = bq with a, b ∈ Z which shows that the subgroup generated γ and δ is cyclic. If s and t
are linearly independent over Q then from elementary number theory we know that we can
approximate 0 arbitrarily closely by sums of the form as + bt with a, b ∈ Z. This implies
that the subgroup generated by γ and δ has elements arbitrarily close to the identity and
therefore is not discrete. The case of SL(2,C) is similar. Here we can assume

γ =
(
es+iσ 0

0 e−s−iσ

)
, δ =

(
et+iτ 0

0 e−t−iτ

)
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with s 6= 0 and t 6= 0 in view of lemma 4.6.6. If s and t are linearly independent over the
rational numbers, then let aj, bj be a sequence of integers such that ajs+ bjt→ 0 as j →∞.

Then the sequence γajδbj gets arbitrarily close to the unit circle
(
eiθ 0
0 e−iθ

)
contradicting

discreteness of Γ. So assume as + bt = 0 for some integers a and b. Then ei(aσ+bτ) = 1 for
otherwise Γ either contains torsion elements or is not discrete. It follows that there is r+ iρ
such that es = en(r+iρ) and et = em(r+iρ) for some integers m,n. ♣

In order to understand the structure of the quotient space Γ\Hj, it is important to
construct a fundamental domain for the action of Γ. There is a standard procedure for
constructing a fundamental domain for a group Γ acting properly discontinuously and by
isometries on a complete Riemannian manifold M . Fix x ∈M and for every γ ∈ Γ let

Uγ = {y ∈M | d(x, y) ≤ d(γ.x, y)}.

It is not difficult to show that
⋂

γ Uγ is a fundamental domain for the action of Γ. The
proof of this fact can be found in many texts, e.g. [Ra]. For certain subgroups Γ ⊂ SL(2,R)
acting by fractional linear transformations on H2 there is a different method for constructing
fundamental domains which is computationally more tractable than the method described
above. This method makes use of the concept of isometric circles which is described below.
For this method to be applicable to subgroups Γa,p, it is necessary to conformally map
the upper half plane onto the unit disc D by a fractional linear transformation C, and
accordingly replace Γa,p with CΓa,pC

−1. We simply write Γ for CΓa,pC
−1, and note that

CSL(2,R)C−1 = SU(1, 1). The following lemma isolates the advantage of working on D
rather than H2 as will become clear shortly:

Lemma 4.6.7 Let γ ∈ Γa,p be a hyperbolic element. Then CγC−1 is not diagonal.

Proof - Since γ 6= ±I is a hyperbolic element, its eigenvalues are real. A 2 × 2 diagonal
matrix of determinant 1 with real entries does not leave the unit disc D invariant unless it
is ±I. ♣

Given γ =
(
a b
c d

)
∈ SU(1, 1),with c 6= 0, the equation |cz + d| = 1 defines a circle Cγ.

The reason for transforming the problem from H2 to D is the requirement c 6= 0 which is
fulfilled by lemma 4.6.7. The center and radius of Cγ are

Cγ : Center = (−d
c
, 0), Radius =

1

|c|
. (4.6.1)

Cγ is called the isometric circle of γ. Geometrically, Cγ is the subset of C where the
fractional linear transformation defined by γ is an isometry relative to the Euclidean metric
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dx2 + dy2 = dzdz̄. The transformationγ is length decreasing in the exterior of the isometric
circle and length increasing in its interior. Denoting the exterior and interior of Cγ by Ce

γ

and Ci
γ respectively we can restate this fact as

γ?(dzdz̄) < dzdz̄, for z ∈ Ce
γ, and γ?(dzdz̄) > dzdz̄, for z ∈ Ci

γ. (4.6.2)

Note that γ maps Ce
γ onto Ci

γ−1 and vice versa. The following lemma plays the key role in
the application of the concept of isometric circle:

Lemma 4.6.8 Let γ, δ ∈ SU(1, 1) and assume that the isometric circles Cγ−1 and Cδ are
exterior to each other. Then Cγδ lies in the interior of Cγ.

Proof - Let z lie in the exterior of Cγ, then γ(z) lies in the interior Cγ−1 which is contained
in the exterior of Cδ. Therefore

(γδ)?(dzdz̄) = δ?γ?(dzdz̄) < dzdz̄.

Therefore Ce
γδ ⊂ Ce

γ and the required result follows. ♣

Corollary 4.6.3 Let γ ∈ SU(1, 1) and assume C−1γC ∈ SL(2,R) is a hyperbolic transfor-
mation. Then Cγ and Cγ−1 are exterior to each other and for n ≥ 1, Ci

γn+1 ⊂ Ci
γn.

Proof - Since for a hyperbolic transformation |a + d| > 2, the first assertion is a simple
computation using (4.6.1). The second assertion is an inductive argument where lemma
4.6.8 is applied with δ = γn. Q E D

The following simple corollary relates the concept of isometric circle to a fundamental
domain for Γ:

Corollary 4.6.4 Let Γ1 ⊂ Γ = CΓa,pC
−1 be a subgroup such that C−1γC ∈ SL(2,R) is a

hyperbolic transformation for all ±e 6= γ ∈ Γ1. A fundamental domain for Γ is

FΓ = D
⋂
γ

Ce
γ.

In practical applications of corollary 4.6.4 the intersection is only over a finite set {γ1, · · · , γN}
generating the group Γ. This point is clarified in lemma 4.6.13 below. Some examples of
fundamental domains for explicitly given groups are given in the next section.
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4.6.2 Quaternion Groups

In this subsection we give an arithmetical construction for discrete groups Γ acting on the
hyperbolic plane or space Hj, j = 2, 3, such that Γ \ Hj is compact. There are several
reasons for doing this. As a consequence of our construction we obtain a proof of a version
of the uniformization theorem according to which every compact orientable surface of genus
≥ 2 admits of a metric of constant negative curvature. In particular, the upper half plane
is the universal covering space of such a surface. The construction is explicitly given by
2 × 2 matrices and lends itself to calculation more readily than the geometric proof. The
explicit nature of the arithmetical construction makes it possible to study the behavior of
other geometric quantities. In the next section we study the behavior of closed geodesics on
compact manifolds Γ\Hj, j = 2, 3.

First we consider the two dimensional case. Let p > 2 be a prime and a ∈ Z a quadratic
non-residue mod p, i.e., the equation x2 ≡ a mod p has no solution. Let Γ = Γa,p be the
subgroup of SL(2,R) consisting of matrices of the form

Γa,p :
(

x◦ + x1

√
a x2

√
p+ x3

√
ap

x2
√
p− x3

√
ap x◦ − x1

√
a

)
, xj ∈ Z. (4.6.3)

The requirement Γ ⊂ SL(2,R) means

x2
◦ − ax2

1 − px2
2 + apx2

3 = 1. (4.6.4)

Note that matrices of the above form in SL(2,R) for a group. The fact that Γa,p is an infinite
discrete group is elementary number theory. For example, it is classical that the so-called
Pell’s equation x2 − ay2 = 1 has an infinity of solutions (in integers) generated by a least
solution. Given a solution (x, y), then the matrices(

x+ y
√
a 0

0 x− y
√
a

)n

yield an infinity of solutions to Pell’s equation and an infinite abelian subgroup of Γ.

Lemma 4.6.9 Let p be of the form 4m + 1. Then subgroup Γa,p is torsion free and conse-
quently H2 →MΓ = Γ \ H2 is a covering projection.

Proof - It suffices to prove the first assertion. The law of quadratic reciprocity and the
assumption on p imply that −1 is a quadratic residue. Let ±e 6= γ ∈ Γa,p be an element of
finite order, then its eigenvalues are e±iθ and its characteristic equation is λ2−(2 cos θ)λ+1 =
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0. Therefore with the notation of (4.6.3) x◦ = 0,±1, and γ is conjugate to a rotation matrix.
In the latter case, x◦ = ±1, γ is conjugate to ±I and therefore γ = ±I. In the former case,
x◦ = 0 and (4.6.4) becomes 1 + ax2

1 + px2
2 = apx2

3. Reducing mod p we obtain

1 + ax2
1 ≡ 0 mod p,

which is not possible since −1 is a quadratic residue and a is not. ♣

Remark 4.6.1 If the prime p is of the form 4m+3 then Γa,p may contain elements of finite
order. For example, let a = 2, p = 3, then the matrix( √

2
√

3 +
√

6√
3−

√
6 −

√
2

)
has order 4. ♥

Example 4.6.1 The trace of an element of Γa,p is an even integer. Since an element of
finite order is conjugate to a rotation matrix, every element (6= ±e) of finite order in Γa,p

necessarily has trace zero. Let Γ◦a,p be the subgroup of Γa,p consisting of elements with
x2 ≡ 0 mod a in the notation of (4.6.3). It is trivial that such matrices form a subgroup of
finite index in Γa,p. For γ ∈ Γ◦a,p we have x◦ ≡ 1 mod a and therefore Γ◦a,p is torsion free. ♠

Example 4.6.2 The subgroups Γa,p are not neceessarily maximal among discrete subgroups
of SL(2,R). For a positive integer δ ≡ 1 mod 4 and y1, y2 integers of the same parity, the
quantities

ξ1, ξ2 =
y1 ± y2

√
δ

2

are integers in Q(
√
δ). In fact, ξj’s are the roots of an equation of the form x2 + bx+ c = 0

with δ = b2 − 4c. Therefore matrices of the form

γ =

 x◦+x1

√
δ

2

(x2+x3

√
δ)
√

p

2
(x2−x3

√
δ)
√

p

2
x◦−x1

√
δ

2


where the integers xj satisfy x◦ ≡ x1 mod 2 and x2 ≡ x3 mod 2, form a discrete subgroup
Γ′δ,p ⊂ SL(2,R). Clearly Γδ,p ⊂ Γ′δ,p. Let γ′ ∈ Γ′δ,p be of the same form as γ with the integers
xj denoted by yj’s. If xj ≡ yj mod 2, then it is readily verified that γ′−1γ ∈ Γδ,p. It follows
that Γδ,p has index 4 in Γ′δ,p. ♠
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HERE WE ADD EXPLICIT EXAMPLES OF FUNDAMENTAL DOMAINS

We have so far constructed some examples of compact quotients of H2 by explicitly
exhibiting torsion free discrete subgroups of SL(2,R). An immediate consequence of the
above example is a version of the uniformization theorem, namely,

Corollary 4.6.5 A compact orientable surface of genus ≥ 2 admits of a metric of con-
stant negative curvature. In particular, The universal covering space of a compact orientable
surface of genus g ≥ 2 is the upper half plane.

Proof - Example ?? shows that a surface of genus 2 admits of a metric of constant negative
curvature. Since an n-sheeted covering of a compact orientable surface of genus g = 2 is a
surface of genus of genus n+ 1 (example ?? of chapter4)the required result follows. ♣

Exercise 4.6.2 Let g > 1 and Ng be the compact non-orientable surface constructed in
chapter 3 subsection 5 (i.e., a compact non-orientable surface other than the projective plane
or the Klein bottle). Show that the universal covering space of Ng is the upper half plane.

To extend the arithmetical construction of discrete subgroups of SL(2,R) to that of
SL(2,C) we recall some facts from elementary number theory. Let O = Z[i] be the ring of
Gaussian integers. We have

Proposition 4.6.1 O is a principal ideal domain. A prime p ∈ Z remains a prime in O
if and only if p ≡ 3 mod 4. For such p the field O/(p) is isomorphic to the finite field of p2

elements.

Example 4.6.3 For p 6≡ 3 mod 4, p splits in O. For example,
2 = (1 + i)(1− i), 5 = (1 + 2i)(1− 2i), 13 = (2 + 3i)(2− 3i),
17 = (1 + 4i)(1− 4i), 29 = (5 + 2i)(5− 2i), 37 = (6 + i)(6− i)
41 = (4 + 5i)(4− 5i), 53 = (7 + 2i)(7− 2i), 61 = (5 + 6i)(5− 6i)

For primes p ≡ 3 mod 4 the finite field O/(p) ' Fp2 is isomorphic to and is identified with
Fp2 can be realized as the set {a+bi} with a, b ranging over Z/p and field operations defined
accordingly. Let p = 3. The quadratic residues in F×

9 are {±1,±i}, and the quadratic
non-residues are 1± i and 2± i. For p = 7 the quadratic residues in F×

49 are
±1, ±2, ±3, ±i, ±2i, ±3i,
1± i, 2± i, 3± 2i, 4± i, 5± 4i, 6± 5i.

The remaining elements of F×
49 are quadratic non-residues. ♠
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Let Γ̃a,p ⊂ SL(2,C) be the subgroup consisting of matrices of the form

γ =
(

z◦ + z1

√
a z2

√
p+ z3

√
ap

z2
√
p− z3

√
ap z◦ − z1

√
a

)

where zj ∈ O, and det(γ) = z2
◦ − az2

1 − pz2
2 + apz2

3 = 1. Let Λ◦ ⊂ C3 ' R6 be the lattice
which is O-linear combinations of the matrices

f1 =
(√

a 0
0 −

√
a

)
, f2 =

(
0

√
p√

p 0

)
, f3 =

(
0

√
ap

−√ap 0

)
,

It is immediately verified that Λ◦ is invariant under the conjugation action X → gXg−1 of
Γ̃a,p. Consequently, Γ̃a,p is a discrete subgroup of SL(2,C).

Lemma 4.6.10 For a prime integer p ≡ 3 mod 4 and a ∈ O a quadratic non-residue in
Fp2, then the only solutions in O of the equation

az2
1 + pz2

2 − apz2
3 = 0

are zj = 0.

Proof - Reducing the equation az2
1 + pz2

2 − apz2
3 = 0 mod p we obtain the equation z2

1a = 0
in Fp2 . It follows that z1 = v1p for some v1 ∈ O. Substituting we obtain

apv2
1 + z2

2 − az2
3 = 0. (4.6.5)

Reduction modp shows that (4.6.5) has no solution in O since a is a quadratic non-residue.
♣

Lemma 4.6.11 For a prime integer p ≡ 3 mod 4 and a ∈ O a quadratic non-residue in
Fp2, Γ̃a,p/± I is a torsion free discrete subgroup of SL(2,C).

Proof - Since a torsion element γ ∈ Γ̃a,p is conjugate to a unitary matrix, we necessarily have
z◦ = 0 for γ 6= ±I. Therefore az2

1 + pz2
2 = apz2

3 + 1. Reducing modp we obtain az2
1 = −1 in

Fp2 . Now −1 = i2 and therefore a is a quadratic residue in Fp2 contrary to hypothesis. ♣
We now prove compactness of the orbit spaces Γa,p\H2 and Γ̃a,p\H3. The proof, follows

an idea of Mostow and Tamagawa (see [Bo]) and is based on Mahler’s compactness criterion
(see chapter 1, example (XXXX)). It is applicable to general arithmetic groups, a subject
that we shall not go into. We identify C3 (resp. R3) with the space of 2 × 2 complex
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(res. real) trace zero matrices and let SL(2,C) (resp. SL(2,R)) act on it via the adjoint
representation X → gXg−1. Fix the basis

f1 =
(√

a 0
0 −

√
a

)
, f2 =

(
0

√
p√

p 0

)
, f3 =

(
0

√
ap

−√ap 0

)
,

for C3 (resp. R3), and let Λ◦ (resp. L◦) be the lattice which is O = Z[i] (resp. Z) linear
combinations of f1, f2, f3. Then Γ̃a,p (resp. Γa,p) is the subgroup of SL(2,C) (resp. SL(2,R))
leaving the lattice Λ◦ (resp. L◦) invariant. Therefore the orbit space Γ̃a,p \ SL(2,C) (resp.
Γa,p \ SL(2,R)) can be identified with the set R of lattices of the form gL◦g

−1 with the
obvious topology. Every lattice L ⊂ C3 (resp. L ⊂ R3) is of the form A(Λ◦) (resp.A(L◦))
where A ∈ GL(3,C) (resp. A ∈ GL(3,R)). For any basis {vj} for L, the volume of the
parallelpiped spanned by the vectors {vj} is independent of the choice of the basis and is equal
to | det(A)|2V◦ (resp. | det(A)|V◦) where V◦ is the volume of the parallelepiped spanned by
f1, f2, f3, if1, if2, if3 (resp. f1, f2, f3). One refers to | det(A)|V◦ as the volume of the lattice L
and denotes it by vol(L). By Mahler’s compactness criterion (see chapter 1, example(XXX))
compactness of R is equivalent to the following conditions:

1. There is a neighborhood U of 0 ∈ C3 (resp. R3) such that for every X ∈ L◦ and
g ∈ SL(2,C) (resp. g ∈ SL(2,R)) we have gXg−1 6∈ U ;

2. vol(L) is bounded on R.

Verification of (1) - The verification of (1) depends on the following lemma (which also
generalizes to n× n matrices in the appropriate form):

Lemma 4.6.12 Let X be 2 × 2 trace zero complex matrix with distinct eigenvalues ±β.
Then the orbit {gXg−1}g∈GL(2,C) is a closed subset of C3 disjoint from the ball of radius |β|
centered at the origin.

Proof - Since the orbit space {gXg−1}g∈GL(2,C) is defined by equation Y 2 +det(X)I = 0 (Y

is a variable 2× 2 complex traceless matrix), it is a closed subset of C3. For X =
(
β 0
0 −β

)
and g =

(
a b
c d

)
with det g = 1 we have

gXg−1 =
(

(ad+ bc)β −2abβ
2cdβ −(ad+ bc)β

)
.
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Therefore for Y = (yij) and relative to the Euclidean norm ||Y || =
√∑

i,j |yij|2, we have

||gXg−1||2 = [4|ab|2 + 4|cd|2 + 2|ad+ bc|2]|β|2 ≥ 2|ad− bc|2|β|2.

Since det(g) = 1 the required result follows. ♣
In view of the lemma, the validity of condition (1) follows once we show that the eigen-

values of a matrix X ∈ L◦ are uniformly bounded away from zero. The characteristic
polynomial of

X =
(

z1

√
a z2

√
p+ z3

√
ap

z2
√
p− z3

√
ap −z1

√
a

)
(4.6.6)

is λ2 + δ = 0 where
δ = −az2

1 − pz2
2 + apz2

3 . (4.6.7)

Since δ ∈ O, the eigenvalues ±
√
−δ are uniformly bounded away from zero unless δ vanishes.

For a solution (z1, z2, z3) ∈ O3 of the diophantine equation δ = 0 we have z1 ∈ pO and setting
z1 = py1 we obtain the equation

az2
3 = apy2

1 + z2
2 .

Reducing mod p we see that the equation (4.6.7) has no solution in Fp2 in view of the
assumption that a is a quadratic non-residue in Fp2 . This completes the verification of
condition (1).
Verification of (2) - The symmetric bilinear pairing

(X, Y ) −→ Tr(XY )

is nondegenerate on the space of traceless matrices and the image of SL(2,C) lies in the
orthogonal group of this pairing. Since det is a bounded function on the orthogonal group
(in fact, ±1), the validity of (2) follows and we have established

Proposition 4.6.2 1. Let a be a quadratic non-residue mod p, then the orbit space Γa,p\H2

is compact.

2. For p ≡ 3 mod 4 and a ∈ O = Z[i] a quadratic non-residue in Fp2 = O/(p), the orbit

space Γ̃a,p\H3 is a compact manifold.

Remark 4.6.2 The essential point in the above proof was that there are no unipotent ma-
trices (i.e., both eigenvalues are 1) in Γa,p or Γ̃a,p (other than ±I) or the lattice L◦ contained
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no non-zero nilpotent matrix. Note that the orbit of
(

0 1
0 0

)
approaches the origin under

conjugation. On the other hand, the orbit {gXg−1}, for X in (4.6.6, is closed. This is
characteristic property of diagonalizable as opposed to nilpotent matrices. In the language
of algebraic groups, the choice of the lattice L◦ defines a rational structure for the algebraic
group G = SL(2,C) or G = SL(2,C) × SL(2,C) for which Γa,p or Γ̃a,p is an arithmetic
subgroup. The condition that a is a quadratic non-residue mod p or as an element of Fp2

implies that every element of GQ is diagonalizable (over C) which is a necessary and suffi-
cient condition for the quotient of the real points of a semi-simple algebraic group defined
over Q by an arithmetic subgroup to be compact (see [Bo]). ♥

Let F′Γ be a relatively compact set in Hj, containing a fundamental domain for the Γ.
Then there are only finitely many γ′s such that

γ(F′Γ) ∩ F′Γ 6= ∅.

Let Θ denote this finite set.

Lemma 4.6.13 With the above notation and hypothesis, Θ is a set of generators for Γ.

Proof - Let Γ′ be the subgroup generated by Θ, z ∈ F′Γ, and γ ∈ Γ. Then there is δ ∈ Γ′

such that δγ(z) ∈ F′Γ. Now this implies that δγ ∈ Γ′ and so Γ′ = Γ. ♣
An immediate corollary is

Corollary 4.6.6 The groups Γa,p and Γ̃a,p are finitely generated.

The assumption of compactness is not necessary for lemma 4.6.13 and corollary 4.6.6. The
same conclusion is valid for general arithmetic groups. The above arithmetical construction
of cocompact discrete subgroups of SL(2,R) and SL(2,C) can be generalized to give many
other such subgroups. Our purpose here was merely to show that cocompact torsion free
discrete subgroups can be easily constructed. One refers to the groups Γ′δ,p, Γa,p, Γ̃a,p and
their subgroups of finite index as quaternion groups.

4.6.3 Poincaré’s Construction

(THIS SUBSECTION IS NOT INCLUDED)
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4.6.4 Closed Geodesics

There is extensive literature on the subject of closed geodesics on Riemannian manifolds.
Since geodesics are solutions of systems of (non-linear) second order ordinary differential
equations, in fact of Hamiltonian systems (see chapter 2, §Symplectic Manifolds), it is not
surprising that this subject relates to the theory of dynamical systems. The problem of
finding closed geodesics is that of finding periodic solutions of the corresponding system of
differential equations. In this subsection we concentrate on compact manifolds of the form
M = Γ\Hj, j = 2, 3, and Γ a discrete subgroup of the type explicitly constructed in the
subsection on quaternion groups. Then the generally difficult problem of detecting periodic
solutions is easily solved by elementary algebra.

Let Γ ⊂ SL(2,R) or SL(2,C) be a discrete subgroup such that Γ\Hj is a compact
manifold. Every γ ∈ Γ, γ 6= ±e, is necessarily hyperbolic or loxodromic (corollary ??). Then
γ has two distinct fixed points (z1, z2) on R or C according as γ is hyperbolic or loxodromic.
Let γ̃ be the axis of γ, i.e., the geodesic with end-points z1 and z2. Since the end-points of
a geodesic invariant under γ remain fixed under γ, γ̃ is the unique geodesic in Hj invariant
under γ. Thus for every z ∈ Im(γ̃), γ(z) also lies on Im(γ̃), and the tangent vector to γ̃ at
z is mapped to the tangent vector to γ̃ at γ(z). Since a geodesic is completely determined
by a point and the tangent vector to it at the point (i.e., the solution to a system of second
order ordinary differential equations with given initial conditions), the image γ̄ of γ̃ in Γ\Hj

is a closed geodesic. This is the key observation that makes it possible to explicitly exhibit
closed geodesics on Γ\Hj.

Lemma 4.6.14 To every non-identity element γ of the fundamental group of M corresponds
a closed geodesic γ̄ in M . Every closed geodesic on M corresponds to a non-identity element
of the fundamental group.

Remark 4.6.3 Note that the closed geodesics corresponding to γ and γn are the same
except that the latter winds around n times the former. ♥

Proof - The fundamental group of M is isomorphic to Γ/± e (if −e 6∈ Γ, the fundamental
group is isomorphic to Γ). Therefore the above analysis assigns a unique closed geodesic to
every non-identity element of the fundamental group. Conversely, given a closed geodesic γ̄
in M , we lift it to a (complete) geodesic γ̃ in Hj. Since γ̄ is a closed geodesic, there is γ ∈ Γ
mapping z ∈ Imγ̃ to γ(z) ∈ Imγ̃ and mapping the tangent vector at z to γ̃ to the tangent
vector at γ(z) to γ̃. It follows that γ̃ is invariant under γ or equivalently γ̃ is the axis of γ.
♣
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Having reduced the problem of detecting closed geodesics in M to an algebraic one, we
address the issue of the length (or period) lγ of the closed geodesic γ̃. Naturally lγ is the
distance traveled along image of γ̃ in M , starting at any point z◦, until the first return to
z◦ with the tangents vectors also being identical. The geodesic in M may have many self-
intersections. Let γ ∈ Γ and z ∈ Im(γ̃), then the length of the closed geodesic in M = Γ\Hj

corresponding to γ is
lγ = dist(z, γ(z)). (4.6.8)

We have

Lemma 4.6.15 Let β, β−1 be the eigenvalues of γ ∈ Γ, γ 6= ±e. The length of the closed
geodesic in M corresponding to γ is

lγ = ±2 log |β|.

proof - We prove the assertion for the upper half space; the two dimensional case being a
special case. If γ is diagonal (with diagonal entries β, β−1) then the line etj is the geodesic
invariant under γ. Consequently

lγ = dist(z, γ(z)) = ±2 log |β|

as desired. The general case is reduced to the diagonal case by replacing γ with a digonal
matrix AγA−1, A ∈ SL(2,C), and noting that the quantities lγ and β remain unchanged. ♣

Let us specialize to M = Γ\H2. The eigenvalues eα, e−α of a hyperbolic transformation
γ ∈ Γ ⊂ SL(2,R) are real, and after possibly replacing γ by −γ we have

Tr(γ) = eα + e−α.

It follows that

lγ = 2 log(Tr(γ)) +O(
1

Tr(γ)2
). (4.6.9)

For a given positive number L, let ϑa,p(L) denote the number of possible lengths < L of
closed geodesics on M = Γa,p\H2 . Then ϑa,p(L) is approximately equal to the number of
possible values of Tr(γ) < eL/2. Now γ ∈ Γa,p is of the form

γ =
(

x◦ + x1

√
a x2

√
p+ x3

√
ap

x2
√
p− x3

√
ap x◦ − x1

√
a

)
with xj ∈ Z. Let N (m) denote integers n < m such that the diophantine equation

ax2
1 + px2

2 − apx2
3 = n2 − 1

has a solution xj ∈ Z. Since Tr(γ) = 2x◦ our analysis proves
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Proposition 4.6.3 Let p ≡ 1 mod 4 and a ∈ Z be a quadratic non-residue mod p. Then

ϑa,p(L) = N (
1

2
eL/2) +O(1).

Exercise 4.6.3 Let p ≡ 3 mod 4 and a be a quadratic non-residue modp. Let Γ◦a,p be the
subgroup of Γa,p consisting matrices with x2 ≡ 0 mod a (see example ??). Formulate and
prove the analogue of proposition 4.6.3 for M = Γ◦a,p\H2.

Next we consider the three dimensional case M = Γ\H3. Let β = a+ ib and without loss
of generality assume |β| > 1 in lemma 4.6.15. Then

elγ = a2 + b2 ∼ |Trγ|2. (4.6.10)

Let ϑ̃(L) denote the number of lengths < L of closed geodesics on M = Γ̃a,p\H3. Similarly,
let Ñ (m) denote the number of n < m for which the system of diophantine equations

|z◦|2 = n, z2
◦ − az2

1 − pz2
2 + apz2

3 = 1

have a solution zj ∈ O. Then the above analysis implies

Proposition 4.6.4 Let p ≡ 3 mod 4 and a ∈ O = Z[i] be a quadratic non-residue in
Fp2 = O/(p). Then

ϑ̃(L) = Ñ (
1

4
eL) +O(1).

Propositions 4.6.3 and 4.6.4 (and exercise 4.6.3) relate the lengths of closed geodesics to
number theory, and make it feasible to numerically investigate the distribution of lengths of
closed geodesics.

4.6.5 Line Geometry of Hyperbolic Plane/Space

For a better understanding of geometry in the hyperbolic plane/space it is convenient to
introduce some algebraic machinery. An application of this algebraic development is the
Fenchel-Nielsen description of the moduli space of surfaces which is given in the next sub-
section.

Given a (complete) geodesic γ in Hi, i = 2, 3, there is a unique one parameter subgroup
{exp(tξ)} ⊂ SL(2,C) leaving the geodesic invariant. In fact, for the positive y-axis, ξ =
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(
1 0
0 −1

)
and for other geodesics it is given by g−1ξg for some g ∈ SL(2,C) (or g ∈ SL(2,R)

if the geodesic is in H2.) Note also that for every t 6= 0, exp tξ is loxodromic (or hyperbolic)
and γ = γexp tξ. If the geodesic is of the form γA for a loxodromic or hyperbolic matrix A,
then the corresponding one parameter group is

exp(tξ) with ξ = A− A−1, t ∈ R. (4.6.11)

Thus we have assigned to a geodesic γ in Hi, i = 2, 3, a matrix ξ ∈ SL(2,R) or SL(2,C)
which is unique up to multiplication by a nonzero scalar. This matrix is often called the line
matrix of the geodesic γ. Clearly the end points of the geodesic γA are the fixed points of
the line matrix ξ = A− A−1. The line matrix of a loxodromic transformation is necessarily
non-singular since

det(A− A−1) = 4− (a+ d)2.

In particular, for a hyperbolic transformation A ∈ SL(2,R) we have det(A−A−1) < 0. Thus
by multiplying the line matrix ξ by a scalar matrix we can normalize ξ to have determinant
−1. To make the line matrices unique we consider (complete) geodesics with orientations
which is equivalent to assigning an order to their end points (i.e., fixed points). Given a line
matrix U = (uij), traceless and of determinant −1, its fixed points are

z =
u11 − 1

u21

, z′ =
u11 + 1

u21

, if u21 6= 0.

If u21 = 0, then u11 = ±1 and its fixed points are

z =
−u12

2
, z′ = ∞, if u11 = 1; z = ∞, z′ =

u12

2
, if u11 = −1.

Thus we have represented the end points as an ordered pair (z, z′). Notice that the assigned
orientation is compatible with the action of SL(2,C) (or SL(2,R)). This means that if the
oriented geodesic γ has line matrix U and ordered set of end points (z, z′) according to the
above rule, then the line matrix of the oriented geodesic g(γ) is gUg−1 and its ordered set
of end points is (g(z), g(z′)). With this normalization we have a bijection between the set
of oriented complete geodesics and normalized line matrices. The normalized line matrix
of a loxodromic (or hyperbolic) transformation A will be denoted by LA. This matrix
representation of geodesics is quiet useful in understanding the geometry of polygons in the
hyperbolic plane and space. Let us prove some of the properties of this correspondence:
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Lemma 4.6.16 Let A ∈ SL(2,C) be a loxodromic transformation and η ∈ SL(2,C) be the
line matrix of a geodesic δ. The line matrix A− A−1 is traceless and nonsingular, and δ is
orthogonal to γA if and only if Tr(Aη) = 0.

Proof - We may assume A is diagonal with diagonal entries a and a−1. Then γA is the line
tj for the hyperbolic space and ti for the hyperbolic plane where t > 0. Writing η = (ηjk),
the condition Tr(Aη) = 0 becomes (a − 1

a
)η11 = 0. Therefore η11 = 0 = η22. The geodesic

corresponding to the line matrix η is the half circle joining the points ±
√

η12

η21
, and therefore

intersects γA orthogonally. ♣
Let γA and γB be the axes of loxodromic transformations A and B. We say γA and γB

are disjoint if their closures in H3 ∪C ∪∞ are disjoint. An immediate consequence of the
lemma is

Corollary 4.6.7 Let A and B be loxodromic transformations and assume that the corre-
sponding axes γA and γB are disjoint. Then γA and γB have a unique common normal and
AB −BA is a line matrix for it.

Note that two intersecting geodesics cannot have a common normal since otherwise we
obtain a triangle with angle sum > π. By the corollary the common normal of two disjoint
geodesics is unique, and we denote by λ = λ(A,B) the signed length of the segment of the
common normal of γA and γB which connects them. The sign ± depends on the orientation
as explained below.

Corollary 4.6.8 Let A and B be loxodromic (or hyperbolic) transformations with disjoint
axes γA and γB. Let LC be the normalized line matrix of their common normal. Then

coshλ =
1

2
Tr(LALB), sinhλ =

1

2
Tr(LALBLC),

where λ = λ(A,B) and in the second equation orientations are incorporated (see below for
explanation).

Proof - We may assume that the line matrices are

LA =
(

0 1
1 0

)
, LB =

(
0 es

e−s 0

)
, LC =

(
1 0
0 −1

)
,

and the required result follows by direct calculation. ♣
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The quantity λ = λ(A,B) appearing in the statement of the corollary 4.6.8 is the length
of the geodesic segment together with a sign. Let LA, LB and LC be as in the proof of
corollary 4.6.8. From the description of the orientation attached to a geodesic described
by its line matrix it is clear that the ordered pair of fixed points for the line matrix LA is
(−1, 1), for LB is (−es, es), and for LC is (0,∞). For s > 0 if we move along the three
geodesics according to the directions determined by the ordered pairs of end-points, then
the sign is negative. Reversing the orientation of a geodesic which is expressed by replacing
a line matrix by its negative, will multiply λ by −1.

Exercise 4.6.4 Let Li be the normalized line matrices of oriented geodesics γi, i = 1, 2, 3,
passing through a given point p ∈ H3. Show that the unit tangents to γ1, γ2 and γ3 form a
positively oriented orthonormal frame if and only if

L3L2L1 = I.

Exercise 4.6.5 Let ξ and η be the line matrices of two (complete) geodesics on H2. Show
that the geodesics γξ and γη intersect in H2 (resp. do not intersect) if and only if det([ξ, η]) >
0 (resp. det([ξ, η]) < 0). Prove also that rank([ξ, η]) = 1 is a necessary and sufficient
condition for γξ and γη to have exactly one common end-point.

Exercise 4.6.6 Let ξ and η be the line matrices of two (complete) geodesics on H3. Show
that the geodesics γξ and γη intersect transversally if and only if det([ξ, η]) is real and positive.
Prove also that rank([ξ, η]) = 1 is a necessary and sufficient condition for γξ and γη to have
exactly one common end-point.

By a polygon or n-gon in H2 we mean a compact region P bounded by n geodesic arcs.
In general these geodesic arcs may intersect and P does not necessarily lie on one side of
the every bounding (complete) geodesic (see Figure XXXX). An n-gon P which lies on one
side of every bounding (complete) geodesic is called convex. Hexagons (i.e., regions bounded
by six geodesic arcs) in the hyperbolic plane are especially significant in studying geometry
of surfaces. By a right n-gon we mean one all whose angles are π

2
. The following algebraic

lemma is useful:

Lemma 4.6.17 Let Li, i = 1, · · · , 6 denote the normalized line matrices of the sides Si of
the right hexagon S ⊂ H2. We assume Si is adjacent to Si±1 (i mod 6). Then

L2
i = I, LiLi+1 = −Li+1Li, Tr(L4L3L2)Tr(L3L2L1) = −2Tr(L4L1).
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Proof - The first two relations follow by direct calculation since we may assume Li and Li+1

are of the form LB and LC given in the proof of corollary 4.6.8. For 2× 2 matrices A and B
we have

Tr(AB) + Tr(ǍB) = Tr(A)Tr(B), (4.6.12)

where Ǎ denotes the matrix of cofactors of A. For a traceless 2× 2 matrix A of determinant
−1 we have Ǎ = A, and the matrix of cofactors of AB is B̌Ǎ. Therefore

Tr(L4L3L2)Tr(L3L2L1) = Tr(L4L3L2L3L2L1) + Tr(L2L3L4L3L2L1).

Applying the first two relations we obtain the desired result. ♣

Corollary 4.6.9 (Law of sines of a right hexagon) Let S be a right hexagon with sides Si

and corresponding normalized line matrices Li. We assume Si is adjacent to Si±1(mod6),
and denote the signed length of Si by λi. Then

sinhλ1

sinhλ4

=
sinhλ3

sinhλ6

=
sinhλ5

sinhλ2

.

Proof - Let λ14 denote the signed length of the common normal connecting the sides S1 and
S4. Then in view of corollary 4.6.8 and the third relation of lemma 4.6.17 we have

coshλ14 = − sinhλ2 sinhλ3.

Similarly,

coshλ14 = − sinhλ5 sinhλ6.

The required identity follows immediately. ♣

Corollary 4.6.10 (Law of cosines of a right hexagon) Let S be a right hexagon with sides Si

and corresponding normalized line matrices Li. We assume Si is adjacent to Si±1(mod6),
and denote the signed length of Si by λi. Then

coshλn = − coshλn−2 coshλn+2 + sinhλn−2 sinhλn+2 coshλn+3,

Proof - Using lemma 4.6.17, equation (4.6.12) and with the same notation and reasoning
similar to the proof of corollary 4.6.9 we have

Tr(L5L4L3)Tr(L4L2)Tr(L3L2L1) = Tr(L5L4L3)[Tr(L4L2L3L2L1) + Tr(L2L4L3L2L1)]
= −2Tr(L5L4L3)Tr(L4L3L1)
= −2Tr(L5L4L3L4L3L1)− 2Tr(L3L4L5L4L3L1)
= 2Tr(L5L1) + 2Tr(L3L5L3L1)
= 4Tr(L5L1) + 2Tr(L3L5)Tr(L3L1).

In view of corollary 4.6.8 this identity implies the required result for n = 6. Cyclic permu-
tation of indices 1, 2, · · · , 6 yields the desired result. ♣
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Example 4.6.4 Let a < 0 < b be real numbers and γ be the unique geodesic with end
points (a, b) (as ordered pair). It is a simple calculation that the normalized line matrix of
γ is

La,b =

(
a+b
b−a

2ab
a−b

2
b−a

a+b
a−b

)

The line matrix of the imaginary axis is
(

1 0
0 −1

)
and therefore

Tr(La,b

(
1 0
0 −1

)
) = 2

b+ a

b− a
. (4.6.13)

Computing the angle of intersection θ of γ and the imaginary axis we obtain

cot θ =
a+ b

2
√
−ab

.

Comparing with (4.6.13) we deduce that if two geodesics γ and δ intersect at an angle θ then

cos θ =
1

2
Tr(LγLδ) (4.6.14)

where Lγ and Lδ are the corresponding (normalized) line matrices. It is clear that the
conclusion is valid for H3 as well as for the hyperbolic plane. ♠

Example 4.6.5 While corollary 4.6.10 was about right hexagons, its proof together with
example 4.6.4 imply a law of cosines for the pseudo-right pentagons and pseudo-right quadri-
laterals as well. In this and the following example we make this point precise. By a pseudo-
right pentagon we mean a pentagon (with sides geodesic segments) such that four of its five
angles are π

2
. We denote the non-right angle by θ. For definiteness let Li denote the normal-

ized line matrix of side Si and assume θ is the angle between S1 and S5. An examination of
the proofs of corollary 4.6.10 and lemma 4.6.17 shows that we have

1

2
Tr(L5L1) = − coshλ4 coshλ2 + sinhλ4 sinhλ2 coshλ3. (4.6.15)

Now S1 and S5 intersect and therefore they do not have a common normal, however, example
4.6.4 is applicable to yield

cos θ = − coshλ4 coshλ2 + sinhλ4 sinhλ2 coshλ3. (4.6.16)

This is the law of cosines for pseudo-right pentagons. ♠
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Exercise 4.6.7 Construct convex right pentagons in H2.

Example 4.6.6 The case of a pseudo-right quadrilateral is simpler. By a pseudo-right
quadrilateral we mean a 4-gon, with sides geodesic arcs, such that three of its four angles are
π
2
. Obviously there are no right quadrilaterals in H2 since the sum of the angles of a triangle

in the hyperbolic plane is < π. Let θ < π
2

be the angle between the sides S1 and S4. An
examination of the proof of lemma 4.6.17 and corollary 4.6.8 show that the third identity of
the lemma implies

1

2
Tr(L4L1) = − sinhλ2 sinhλ3,

where as usual orientations are incorporated to obtain correct signs. Just as in example
4.6.5, the left hand side of the above eqaution is cos θ and therefore we obtain

cos θ = − sinhλ2 sinhλ3. (4.6.17)

This is the law of cosines for pseudo-right quadrilaterals. ♠

Example 4.6.7 The law of cosines for a right hexagon in the hyperbolic plane (corollary
4.6.10) gives rise to an interesting algebraic identity which one can verify directly. Motivated
by this law we let u1, u3 and u5 be indeterminates and define v2, v4 and v6 as

v2 =
u5 + u1u3√

(u2
1 − 1)(u2

3 − 1)
, v4 =

u1 + u3u5√
(u2

3 − 1)(u2
5 − 1)

, v6 =
u3 + u1u5√

(u2
1 − 1)(u2

5 − 1)
.

The remarkable fact is that u1, u3 and u5 are defined by similar formulae in terms of v2, v4

and v6, namely,

u1 =
v4 + v2v6√

(v2
2 − 1)(v2

6 − 1)
, u3 =

v6 + v2v4√
(v2

2 − 1)(v2
4 − 1)

, u5 =
v2 + v4v6√

(v2
4 − 1)(v2

6 − 1)
.

The validity of these formulae is established by direct substitution or by using a symbolic
manipulation software. The algebraic validity of these relations is in fact useful in under-
standing the geometry of right hexagons in the hyperbolic plane. ♠

We can now prove

Proposition 4.6.5 Given positive real numbers α, β and γ, there is a unique (up to an
isometry of the hyperbolic plane) convex right hexagon, such that

λ1 = α, λ3 = β, λ5 = γ.

Here λi denotes the length of the side Si of the hexagon and Si is adjacent to Si±1(mod6).
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Proof - Uniqueness follows easily from the law of cosines for hexagons and the fact that all
angles are π

2
. Using the law of cosines for a right hexagon in the hyperbolic plane (corollary

4.6.10) we determine λ2, λ4 and λ6. Let S1 be a geodesic segment of length λ1. Draw a
geodesic segment S2 of length λ2 from an end point of S1 and orthogonal to S1. Similarly
draw a segment of length λ3 from the other end point of S2 orthogonal to S2. There is
an ambiguity in drawing S3 since the (complete) geodesic containing S2 disconnects the
hyperbolic plane into two components. The choice should be such that S1 and S3 lie on the
same side of S2. One proceeds in the obvious way to construct the sides S1, · · · , S6. It is
necessary to show that the construction can be carried out in such a way that for every i,
the sides Sj, j 6= i, lie on the same side of the complete geodesic containing Si and that we
obtain a hexagon. Since S1 and S3 have a common normal, namely S2, they do not intersect.
Assume S4 and S1 intersect. Then example 4.6.6 is applicable and in particular (4.6.17) is
valid. Substituting for sinhλ2 we obtain

cos2 θ =
(coshλ5 + coshλ1 coshλ3)

2

sinh2 λ1

> 1,

which is impossible. Therefore the (complete) geodesics containing S1 and S4 do not intersect
and S1, S2 and S3 lie on the same side of the (complete) geodesic containing S4. Now assume
the (complete) geodesics containing S1 and S5 intersect. Then example 4.6.5 is applicable
and in particular (4.6.16) is valid. In view of example 4.6.7 we can substitute in (4.6.16) for
coshλ3 in terms of coshλ2i, (i = 1, 2, 3), to obtain

cos2 θ = cosh2 λ6 > 1,

which is impossible. Therefore the (complete) geodesics containing S1 and S5 do not intersect
and the condition regarding the sides Sj, j 6= i, lying in the same side is fulfilled. The common
normal of S1 and S5 necessarily has length λ6. ♣

Exercise 4.6.8 Show that α, µ and β are the lengths of three consecutive sides of a right
hexagon if and only if

coshµ >
1 + coshα cosh β

sinhα sinh β
.

4.6.6 Decomposition of Surfaces

Let M be a compact orientable surface of genus g > 1. By cutting M along 3g − 3 simple
closed curves as indicated in Figure XXXX we can decompose M into 2g − 2 surfaces with
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boundary each diffeomorphic to S2 with three (small) discs removed. Such a surface will be
called a pantaloon6. The choice of simple closed curves to obtain such a decomposition is
not unique not even up to free homotopy. However, once a choice is made, say γ′1, · · · , γ′3g−3,
it is possible to uniquely choose simple closed geodesics γ1, · · · , γ3g−3 such that γi is freely
homotopic to γ′i as shown in lemma 4.6.18 below.

Lemma 4.6.18 Let M be a compact orientable surface of genus g > 1, and δ be a simple
closed curve representing a nontrivial element of π1(M ; p). Then there is a unique simple
closed geodesic γ freely homotopic to δ.

Proof - We have δ : I →M with δ(0) = δ(1) = p. The universal cover of M is the hyperbolic
plane H and π1(M ; p) is identified with a discrete subgroup Γ ⊂ SL(2,R). Therefore the
loop δ is identifed with an element A ∈ Γ. Let p̃ ∈ H be any point lying over p ∈M . Then
the image γ′ of the unique geodesic segment in H joining p̃ to A(p̃) in M is homotopic to δ,
however the end points may have distinct tangents and therefore γ′ may not be smooth. In
view of proposition ??, A ∈ Γ is necessarily hyperbolic and let γA be its axis. Let q ∈ γA be
any point, then the image of the segment of γA joining q to A(q) is the desired simple closed
curve. Q E D

From now on we assume that the decomposition of the surface M into pantaloons is
accomplished by cutting along simple closed geodesics, and regard a pantaloon as a surface
of constant curvature −1 with boundary consisting of three simple closed geodesics. As
noted earlier, the universal cover of a compact orientable surface of genus g > 1 is the upper
half plane H. However, the 4g-gon in the proof of the topological uniformization theorem
is far from unique and there may be many diffeomorphic surfaces which are not isometric
relative to the metric induced from the upper half plane. Our goal now is to show how
the decomposition into pantaloons enables one to gain some understanding of the space of
compact surfaces of a given genus under isometric equivalence relative to the Poincaré metric.

Let P be a pantaloon and P ′ be its double. Then we can attach P and P ′ together along
the corresponding boundaries to obtain a compact surface N of genus two which admits
of a metric of constant negative curvature −1. The boundary curves represent non-trivial
free homotopy classes in the fundamental group of N . The universal covering space of N
is the upper half plane and its fundamental group π1(N ; p) acts on H2 as a discontinuous
group of fractional linear transformations. Let γi, i = 1, 2, 3, be simple closed geodesics in N
representing the boundary curves of P as given in lemma 4.6.18, and γ̃i’s be their respective
lifts to complete geodesics in H.

6In view of the discrepancy between the American and British usages of pants we use pantaloon rather
than a pair of pants to describe such a surface.
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Lemma 4.6.19 Let M be a compact orientable surface of constant negative curvature −1,
γ and δ two distinct non-intersecting closed geodesics on M . Let γ̃ and δ̃ be their lifts to the
upper half plane. Then γ̃ and δ̃ are disjoint.

Proof - It suffices to show that γ̃ and δ̃ do not have a common end-point. Two geodesics
in the upper half plane having one common end-point can be transformed to two vertical
lines. Since the hyperbolic distance between two such geodesics tends to zero as one moves
to infinity, they cannot project to two disjoint closed geodesics in M . ♣

By lemma 4.6.19 γ̃i and γ̃j are disjoint and therefore there is a unique geodesic ν̃ij

normal to both γ̃i and γ̃j. The image νij of ν̃ij in P ⊂ N is a geodesic orthogonal to the
boundary geodesics γi and γj and it is the unique geodesic in P orthogonal to both boundary
components. We refer to νij as a seam of the pantaloon P . P has three seams.

Lemma 4.6.20 A pantaloon is determined up to isometry by the lengths of its boundary
closed geodesics.

Proof - Let λi, i = 1, 2, 3 be the lengths of the boundary geodesics of the pantaloon P .
Cutting the pantaloon P along its three seams, we obtain two right hexagons Q1 and Q2

whose alternate sides (corresponding to the seams along which we cut) are equal (see Figure
XXXX). By proposition 4.6.5 Q1 and Q2 differ by an isometry of the upper half plane.
Consequently the three remaining alternate sides of Pi have lengths λ1

2
, λ2

2
and λ3

2
. Invoking

proposition 4.6.5 we see that Q1 and Q2 and therefore P are determined uniquely up to an
isometry by λ1, λ2 and λ3. ♣

The proof of lemma 4.6.20 and lemma 4.6.18 imply

Corollary 4.6.11 Every pantaloon can be give a metric of constant negative curvature -1
such that the boundary curves are geodesics.

Given a decomposition of M into pantaloons, M = ∪2g−2
a=1 Pa, we assign to M , relative to

this decomposition, 3g−3 real numbers log λj where j = 1, · · · , 3g−3 and λj’s are lengths of
the simple closed geodesics determining the decomposition of M into pantaloons. Now given
2g − 2 pantaloons Pa, a = 1, · · · 2g − 2 we endows the pantaloons with metrics of constant
curvature −1 with the boundary of Pa consisting of three simple closed geodesics γa1, γa2 and
γa3 of lengths λa1, λa2 and λa3 respectively (see corollary 4.6.11). We assume that a pairing
between the boundary curves of the pantaloons is given so that for every pair (a, i) there
is a unique pair (a, i) = (b, j) with the properties a 6= b and λai = λbj is specified. This
correspondence allows one to attach the pantaloons together to obtain a compact orientable
surface of genus g. However, the attaching process is not unique. To understand this let
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the seams of the pantaloon Pa be denoted by σak so that σai is the normal to the boundary
curves γai and γai+1, i, i + 1 mod 3. In attaching the pantaloon Pa to pantaloon Pb along
the curves γai and γbj where (a, i) = (b, j), the seams σai and σbj do not necessarily line up.
We denote the angle between them by θai or θbj where (a, i) = (b, j). In the definition of
θai there is a sign ambiguity which we can resolve by fixing orientations for the pantaloons.
We assign an arbitrary orientation to one pantaloon, say to P1, then assign orientations to
Pa, Pb and Pc, where (1, 1) = (a, i), (1, 2) = (b, j) and (1, 3) = (c, k) so that the induced
orientations on the corresponding boundaries cancel. It is clear that we can continue the
process until we have assigned definite orientations on all the 2g− 2 pantaloons. Now let θai

be measured by moving in the direction of the induced orientation on the boundary geodesic
γai by Pa. This defines θai unambiguously and θai = θbj if (a, i) = (b, j).

Now note that in attaching Pa to Pb along the boundary geodesics γai and γbj we can
choose the angle θai = θbj arbitrarily and the resulting surface Pa∪Pb will still carry a metric
of constant curvature −1. This is due to the fact that motion along the boundary geodesic
γai is given by a transformation exp(tξ) where ξ ∈ SL(2,R) which leaves the Poincaré metric
invariant. Therefore we have assigned to a compact orientable surface M of genus g > 1
and constant negative curvature −1, together with a fixed decomposition M = ∪Pa into
pantaloons, 6g − 6 real numbers (log λak, θak). The real numbers (log λak, θak) are called the
Fenchel-Nielsen coordinates of the compact orientable surface M (with fixed decomposition
into pantaloons). Two compact orientable surfaces of genus g together Riemannian metrics
of constant negative curvature −1 are considered equivalent if there is an isometry of one onto
the other. With this notion of equivalence of surfaces we can restate the above considerations
as

Corollary 4.6.12 The space of compact orientable surfaces of genus g > 1 together with a
Riemannian metric of constant negative curvature −1 depends on 6g − 6 real parameters.

We can also consider isometric equivalence classes of pataloons together with Riemannian
metrics of constant negative curvature −1 such that the boundary curves are geodesics. To
each such pantaloon we assign the triple (log λ1, log λ2, log λ3) ∈ R3. With this notion of
equivalence the analysis of the geometry of pantaloons or right hexagons in H2 implies

Corollary 4.6.13 The space of pantaloons together with Riemannian metrics of constant
negative curvature such that the boundary curves are geodesics is the quotient of R3 under
the permutation action of S3.
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4.7 Some Algebra and its Applications

4.7.1 Schanuel’s Lemma and Alexander Polynomials

In the proof of well-definedness of Alexander polynomials, The principal issue is gaining
some understanding of linear algebra over a ring R which is not necessarily a principal ideal
domain. Lemmas 4.7.1 and 4.7.2 below, are valid under very general hypothesis on the
ring R and it is not necessary to assume R = Z[t, t−1]. The proof of the following critical
observation, known as Schanuel’s Lemma, is reminiscent of the construction of the pull-back
of a fibre bundle.

Lemma 4.7.1 Let A and B be n × n matrices with entries from R. Assume that the R-
modules M and N , defined by the following exact sequences, are isomorphic:

0 → Rn A−→ Rn πA−→M → 0, 0 → Rn B−→ Rn πB−→ N → 0.

Then Im(A)⊕Rn ' Im(B)⊕Rn.

Proof - Let φ : M → N be an isomorphism, L ⊂ Rn ⊕Rn be the submodule defined as

L = {(x, y) ∈ Rn ⊕Rn | φπA(x) = πB(y)}.

Since Rn is free, there is an R-module homomorphism hA : Rn → Rn such that πB · hA =
φ · πA, or equivalently the following diagram commutes:

Rn πA−→ M
hA ↓ ↓φ
Rn πB−→ N

Similarly one defines hB. Consider the homomorphisms ψA : Im(A) ⊕ Rn → L and ψB :
Im(B)⊕Rn → L defined by

ψA(A(u), y) = (A(u) + hB(y), y), ψB(B(v), x) = (x,B(v) + hA(x)).

Injectivity of ψA and ψB is clear and surjectivity follows from the exactness hypotheses. ♣

Exercise 4.7.1 Show, by means of an example, that the homomorphisms hA and hB in the
above proof need not be isomorphisms.
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The proof of Schanuel’s Lemma gives us (2n)× (2n) matrices

ΨA ↔
(
A hB

0 I

)
, ΨB ↔

(
I 0
hA B

)
Let J A

k denote the ideal generated in R by the (2n−k)× (2n−k) minors of the matrix ΨA.
Since Im(ψA) = L = Im(ψB), the columns and rows of ΨA are linear combinations of those
of ΨB and vice versa. It follows that

J A
k = J B

k . (4.7.1)

Let IA
k denote the ideal generated in R by the (n− k)× (n− k) minors of A. It is clear that

J A
k = IA

k , J B
k = IB

k . (4.7.2)

Equations (4.7.1) and (4.7.2) imply

Lemma 4.7.2 Let A and B be n × n matrices with entries from R such that Coker(A) '
Coker(B) as R-modules. Then IA

k = IB
k .

An immediate consequence of lemma 4.7.2 is

Corollary 4.7.1 The Alexander ideals and polynomial are well-defined.

Proof - In order to deduce the required result from lemma 4.7.2 it suffices to remove the
restriction that the matrices A and B have the same size. If A is n× n and B is m×m and

m < n then replace B by
(
I 0
0 B

)
to make it n × n. The hypothesis on isomorphisms of

cokernels is simply the fact that the cokernels are H1(S̃K,ab;Z) as an R-module. ♣
Let A : Rn → Rn be an n× n matrix with non-zero determinant det(A) = ts(a◦ + a1t+

· · · + alt
l). We assume a◦al 6= 0. The implication of the following algebraic lemma about

H1(S̃K,ab;Z) is given in the corollary 4.7.2 below:

Lemma 4.7.3 With the above notation assume gcd(a◦, a1, · · · , al) = 1. Then Coker(A) has
no torsion relative to Z, i.e., if b ∈ Z, z ∈ Rn and bz ∈ Im(A), then z ∈ Im(A).

Proof - Writing bζ = Aη, where ζ and η are column vectors, we obtain bA?ζ = det(A)η
where A? denotes the adjoint of the matrix A. Let p be a prime and q = pf the highest pth

power dividing b. Denote the components of the vector η by ηi(t) = tri(ηi◦+ηi1t+ · · ·+ηist
s).

By a familiar algebraic argument, gcd(a◦, a1, · · · , am) = 1 implies all the coefficients ηij are
divisible by q = pf . Therefore η = bξ with ξ ∈ Rn, and consequently bζ = bAξ and
ξ ∈ Im(A). ♣
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Corollary 4.7.2 The homology group H1(S̃K,ab;Z) has no torsion.

Proof - Since the Alexander polynomial of ∆(t) satisfies ∆(1) = ±1, the hypothesis of
lemma 4.7.3 are fulfilled, and the required result follows. ♣

The structure of H1(S̃K,ab;Z) can be determined if the constant term ∆K(0) = ±1. We
obtain a slightly stronger result. Let c = ∆K(0) and Z[1

c
] be the ring of rational numbers

whose denominators are powers of c. In view of the symmetry property of the Alexander
polynomial ∆K(t), the coefficients of the highest order and lowest order terms are c. Recall
∆K(t) = det(A) where A : Rn → Rn and we may also regard A as an Rc-module mapping
of Rn

c to itself. Let l be the degree of ∆K .

Lemma 4.7.4 The monomials 1, t, t2, · · · , tl−1 form a set of generators form Coker(A) as a
Z[1

c
]-module.

Proof - In view of the identity

A?A = AA? = det(A)I, (4.7.3)

where A? denotes the adjoint of the matrix A, det(A) annihilates Coker(A). We can write

ct−1 =
1

t
∆K(t)−

l−1∑
j◦

ajt
j.

Since c and t are units in Rc and ∆K(t) annihilates Coker(A), image of t−1 in Coker(A) is
in the span of 1, t, t2, · · · , tl−1. Similarly, tl lies in the span of 1, t, t2, · · · , tl−1. The required
result follows easily. ♣

In view of lemma 4.7.4 and corollary 4.7.2, Coker(A) is a finitely generated free Z[1
c
]-

module with the structure of an R-module (R = Z[t, t−1]). Action of t ∈ R on Coker(A) is
given by an N ×N matrix T = (Tjk) and therefore from standard linear algebra, Coker(A)
is isomorphic to the Coker(tI − T ) where tI − T : RN → RN . By lemma 4.7.2 the ideal
generated by (N−k)×(N−k) minors of tI−T is the identical with the ideal (n−k)×(n−k)
minors of A. In particular for k = 0 we obtain

∆K(t) = det(A) = α det(tI − T ), (4.7.4)

where α is a unit in R. Therefore N = l, and we obtain

Corollary 4.7.3 Let c ∈ Z be the constant term of the Alexander polynomial ∆K(t), and
l = deg(∆K(t)). Then

H1(S̃K,ab;Z[
1

c
]) ' Z[

1

c
]l.
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4.7.2 Clifford Algebras

In this section we give a generalization of Hamilton quaternions which enables us to construct
the double covering of SO(n) (see examples 4.2.1, 4.2.6 and exercise 4.2.4.) As a by-product
of the algebraic construction, we exhibit a number (in fact, the maximal number possible) of
linearly independent vector fields on odd dimensional spheres. Clifford algebras have many
applications to geometry (see for example [LM] and [Mor]). Let k be the field of real or
complex numbers, V be a vector space of dimension m over k, and q be a (non-degenerate)
quadratic form on V . Denote the associated bilinear form by Bq. For k = R we assume q
has signature (r,m− r), i.e., q has r negative eigenvalues and m− r positive ones. Let T (V )
be the tensor algebra on V . The Clifford algebra on V relative to q is the quotient of T (V )
by the ideal generated by

u⊗u− q(u), u ∈ V.

For k = R we denote the Clifford algebra by A(r,m− r) or A(q) and for k = C we denote
the Clifford algebra by A(m) or A. Note that over C all non-degenerate quadratic forms
are equivalent, so that we may assume that the matrix of q is the identity matrix. Over R,
q may be put in diagonal form with all eigenvalues ±1. It is clear that the complexification
of A(r,m − r) is A(m). Our objective in this section in to understand the structure of the
Clifford algebras and give some applications. It is an immediate consequence of the definition
of Clifford algebra that it satisfies the following:

• (Universal Mapping Property) Let W be a vector space over k and q a non-
degenerate quadratic form on W . Given a linear map ϕ of W into an associative
algebra A over k such that ϕ(w)ϕ(w) = q(w)1, then it extends uniquely to an algebra
homomorphism ϕ′ : A(q) → A such the following diagram commutes:

W
ϕ−→ A

ι ↘ ↗ ϕ′

A(q)

where ι is the obvious inclusion of W in A(q).

It is not difficult to show that as a vector space A(r,m− r) or A(m) is isomorphic to the
exterior algebra over V . In fact, if • denotes the multiplication in the Clifford algebra, then
by considering (u+ v)•(u+ v) we obtain

u•v + v•u = 2Bq(u, v). (4.7.5)
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Consequently, if {e1, ..., em} is a basis for V , then {1 = e0, ei1•...•eik} for i1 < ... < ik and
k ≤ m is a basis for the Clifford algebra. The subspace spanned by products of the form
ei1 • ... • eik , for i1 < ... < ik, will be denoted L(k), and A(r,m− r) '⊕L(k) (direct sum
of vector spaces).

Example 4.7.1 Consider the special case k = R, m = 2 and q(x) = −||x||2 where || · ||
denotes the Euclidean norm. Then A(q) has dimension 4. Let {e1, e2} be an orthonormal
basis for V ; set e0 = 1 and e3 = e1•e2. Then the algebra structure of A(q) is described by
the relations

e0 = identity, e2i = −1, ei•ej + ej•ei = 0 for i = 1, 2, 3 and j > i.

Therefore A(q) is isomorphic to the division algebra of the Hamilton quaternions H. ♠

Exercise 4.7.2 Prove the following isomorphisms:

1. A(1, 0) ' C;

2. A(0, 1) ' R⊕R;

3. A(0, 2) 'M2(R) ' A(1, 1);

where Mn(k) is the full matrix algebra of n× n matrices over k.

A useful tool for determining the structure of an algebra is the following simple observation:

Lemma 4.7.5 Let A be an associative algebra with unit 1, and e and f be central elements
in A such that ef = 0,and e + f = 1. Then Ae and Af are two-sided ideals in A and
A ' Ae⊕ Af as algebras.

The proof of the lemma is straightforward and the isomorphism is given by a→ ae+ af . ♣

Example 4.7.2 Consider the special case k = R, m = 3 and q(x) = −||x||2. Then A(q) has
dimension 8. It is a simple matter to verify that the center of A(q) has dimension two and
is spanned by 1 and u = e1 • e2 • e3. Now set e = (1 + u)/2 and f = (1 − u)/2 and note
that the conditions of lemma 4.7.5 are satisfied. Therefore A(q) ' A(q)e⊕A(q)f . A basis
for A(q)e is {e, (e2 • e3 − e1)/2, (e3 • e1 − e2)/2, (e1 • e2 − e3)/2}. With this choice of basis
it is trivial to verify that A(q)e is isomorphic to H. Similarly, one shows A(q)f ' H, and
consequently A(q) ' H⊕H. ♠



576 CHAPTER 4. COVERING PROJECTIONS...

Exercise 4.7.3 Prove the following isomorphisms:

1. A(0, 3) 'M2(C) ' A(2, 1);

2. A(1, 2) ' H⊕H.

While it is possible to use lemma 4.7.5 together with some elaborate book-keeping to
determine the structure of Clifford algebras, it is more enlightening to invoke the following
ingenious device known as the Periodicity theorem:

Theorem 4.7.1 (Periodicity Theorem) There are isomorphisms

1. A(m+ 2) ' A(m)⊗M2(C) for m ≥ 0;

2. A(m+ 2, 0) ' A(0,m)⊗A(2, 0) for m ≥ 0;

3. A(0,m+ 2) ' A(m, 0)⊗A(0, 2) for m ≥ 0;

4. A(r + 1,m− r + 1) ' A(r,m− r)⊗A(1, 1) for m, r ≥ 0.

Proof - The proof of these statements being similar, we only prove (4), and indicate the
necessary changes for the other cases. Let {e1, ..., em+2} be a basis for W = Rm+2 such that
q(ei) = −1 for i ≤ r + 1 and q(ei) = 1 for i ≥ r + 2. We let V ' Rm and V ′ ' R2 be
the subspaces of W spanned by the vectors {e1, ..., er, er+2, ..., em+1} and and {er+1, em+2}
respectively. Then the restrictions of q to V and V ′ have signatures (r,m − r) and (1, 1)
respectively. Consider the linear map ϕ of W into A(r,m− r)⊗A(1, 1) defined by

ϕ(ei) = ei ⊗ er+1 • em+2, for i ≤ r, and r + 2 ≤ i ≤ m+ 1,

and

ϕ(er+1) = 1⊗ er+1, ϕ(em+2) = 1⊗ em+2.

Then ϕ extends to an algebra homomorphism ϕ′ ofA(r+1,m−r+1) intoA(r,m−r)⊗A(1, 1).
Since ϕ′ is surjective, it is an isomorphism for dimension reasons. This proves (4). To prove
(2), we let W ' Rm+2, q be negative definite, and {e1, ..., em+2} be a basis for W such that
Bq(ei, ej) = −δij. Let V and V ′ be real vector spaces of dimensions m and 2 respectively.
Let q1 and q2 be positive and negative definite quadratic forms on V and V ′ respectively. We
choose bases {f1, ..., fm} and {g1, g2} for V and V ′ respectively such that Bq1(fi, fj) = δij
and Bq2(gi, gj) = −δij. Then set

ϕ(ei) = fi ⊗ g1 • g2, for i ≤ m,
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and

ϕ(ei) = 1⊗ gi−m, for i = m+ 1,m+ 2.

The rest of the proof is just as before. ♣
With the aid of theorem 4.7.1, we can easily describe the structure of all the Clifford

algebras. The complex case is given by

Corollary 4.7.4 We have isomorphisms A(2k) ' M2k(C), and A(2k + 1) ' M2k(C) ⊕
M2k(C).

The real case is more complex, and is given by

Corollary 4.7.5 We have isomorphisms A(r + 8,m − r) ' A(r,m − r) ⊗ M16(R), and
A(r,m− r + 8) ' A(r,m− r)⊗M16(R).

The low dimensional cases are given in the following table (the proof of the low dimen-
sional cases is by repeated application of the periodicity theorem):

Real Clifford Algebras in Low Dimensions

A(r,m− r) r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

m− r = 0 R C H 2H M2(H) M4(C) M8(R) 2M8(R)
m− r = 1 2R M2(R) M2(C) M2(H) 2M2(H) M4(H) M8(C) M16(R)
m− r = 2 M2(R) 2M2(R) M4(R) M4(C) M4(H) 2M4(H) M8(H) M16(C)
m− r = 3 M2(C) M4(R) 2M4(R) M8(R) M8(C) M8(H) 2M8(H) M16(H)
m− r = 4 M2(H) M4(C) M8(R) 2M8(R) M16(R) M16(C) M16(H) 2M16(H)
m− r = 5 2M2(H) M4(H) M8(C) M16(R) 2M16(R) M32(R) M32(C) M32(H)
m− r = 6 M4(H) 2M4(H) M8(H) M16(C) M32(R) 2M32(R) M64(R) M64(C)
m− r = 7 M8(C) M8(H) 2M8(H) M16(H) M32(C) M64(R) 2M64(R) M128(R)

N.B. - 2A in the above table means A⊕ A.

Exercise 4.7.4 Let Z(r,m−r) (or Z(q)) denote the center of the Clifford algebra A(r,m−r)
(or A(q)). Show that

1. If m− 2r ≡ 1 mod(4), then Z(r,m− r) ' R⊕R;

2. If m− 2r ≡ 3 mod(4), then Z(r,m− r) ' C;
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3. If m− 2r is even, then Z(r,m− r) ' R;

4. The center Z(m) of A(m) is C or C⊕C according as m is even or odd.

The subspace L(2) is a Lie algebra under the bracket operation

[ei • ej, ek • el] = ei • ej • ek • el − ek • el • ei • ej.

This follows easily from (4.7.5). Furthermore, by the same reasoning V ' Rm ⊂ A(q) is
also invariant under the linear transformation

T (ξ)(v) = ξ • v − v • ξ, v ∈ V, ξ ∈ L(2).

Furthermore, from (4.7.5) it follows easily that the linear transformation T (ξ) satisfies

Bq(T (ξ)v, w) +Bq(v, T (ξ)w) = 0, (4.7.6)

i.e., T (ξ) is skew-symmetric relative to the symmetric bilinear form Bq. Thus T is a homo-
morphism of L(2) into the Lie algebra SO(r,m− r).

Exercise 4.7.5 Show that [V,L(2k)] ⊆ L(2k − 1),and [V,L(2k − 1)] ⊆ L(2k). Hence, or
otherwise, prove that if ξ ∈ A(r,m− r) is such that [ξ, V ] ⊆ V , then ξ ∈ Z(q)⊕L(2). Show
also that T is an isomorphism of Lie algebras.

Example 4.7.3 We now construct the universal covering groups of SO(m) for m ≥ 3. Let
Spin(m), called the spin group, be the analytic subgroup of the group A(m, 0)× of invertible
elements of A(m, 0) corresponding to the Lie algebra L(2). The Lie algebra homomorphism
T induces a homomorphism τ of Spin(m) into SO(m) by

τ(exp ξ) = exp(T (ξ)).

From exercise 4.7.5 it follows that τ is onto. Assume m ≥ 3. Let {e1, e2} be such that
Bq(ei, ej) = −δij. Then by a simple calculation

exp(te1 • e2) = (cos t)e0 + (sin t)e1 • e2.

Consequently, ±e0 ∈ Spin(m), and therefore Ker(τ) ⊇ {±e0}. Since π1(SO(m), e) = Z/2,
Spin(m) is the universal covering group of SO(m). ♠

Exercise 4.7.6 By imitating the argument of example 4.7.3 construct the double covering
of SO◦(m − 1, 1) where m ≥ 4 and SO◦(m − 1, 1) denotes the connected component of
SO(m− 1, 1). Prove also that this is the universal covering group of SO◦(m− 1, 1).
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Exercise 4.7.7 Show that the universal covering group of SO(m, 2) is infinitely sheeted.
Describe the universal covering group of SO◦(m− r, r) where m− r, r ≥ 3.

To facilitate further applications of Clifford algebras, we have to make an observation.
Since the algebra A(r,m−r) is semi-simple, the irreducible (left)-modules for A(r,m−r) are
isomorphic to the minimal (left) ideals which are easily described. In fact, it is easy to verify
that the minimal left ideals in Mn(k) are isomorphic to the ideal consisting of matrices with
zeroes everywhere except along one column where the entries are arbitrary. In particular,
they are isomorphic to kn.

Exercise 4.7.8 Let m = 8k+r. Show that the dimension of a non-trivial irreducible module
W for A(m, 0) is

dimR(W ) =


24k if r = 0;
24k+1 if r = 1;
24k+2 if r = 2, 3;
24k+3 if r = 4, 5, 6, 7.

Exercise 4.7.9 Assume q is negative definite and let {e1, ..., em} be an orthonormal basis
for Rm, i.e., q(ei) = −1. Show that with respect to the basis {1 = e0, ei1 • ... • eik} of
A(m, 0), the matrix of multiplication by ei is skew-symmetric. Deduce that every irreducible
A(m, 0) module admits of an inner product such the action of V ' Rm ⊂ A(m, 0) is by skew
symmetric linear transformations.

Example 4.7.4 We use our knowledge of the Clifford algebras to construct linearly inde-
pendent vector fields on odd dimensional spheres. By this we mean vector fields ξ1, ..., ξr
which are linearly independent at every point of the sphere S2n−1. Of course there are no
such vectors fields on even dimensional spheres. Let W ' RN be a module for A(m, 0) and
as noted in exercise 4.7.9 there is an inner product <,> on W relative to which the action
of V ' Rm ⊂ A(m, 0) is by skew symmetric transformations. Therefore < e •w,w >= 0 for
e ∈ V , w ∈ W , and e•w is perpendicular to w. Hence e•w may be regarded as a vector field
ξe on SN−1. Now e • w 6= 0 for e 6= 0 and w 6= 0 since < e • w, e • w >= − < e2 • w,w >=
−q(e) < w,w >, so that ξe is a nowhere vanishing vector field. Similarly, if {e1, ..., em} is
basis for V , then the vector fields {ξe1 , ..., ξem} are linearly independent at every point. This
construction yields m linearly independent vector fields on SN−1 provided W ' RN is a
direct sum of (non-trivial) irreducible A(m, 0) modules. Clearly all such modules are even
dimensional which confirms the fact there are no nowhere vanishing vector fields on even



580 CHAPTER 4. COVERING PROJECTIONS...

dimensional spheres. We can also determine the maximal number of linearly independent
vector fields on odd dimensional spheres which can be obtained in this fashion. To do so we
have to determine, for a given N = 2n, the largest integer m such that RN is a direct sum
of non-trivial irreducible A(m, 0) modules. Writing N = 24a+b(2l + 1) where 0 ≤ b ≤ 3, and
using exercise 4.7.8, it easy to show that the largest such m is 8a+ 2b − 1. Therefore S2n−1

admits of (at least) 8a+2b− 1 linearly independent vector fields. The fact that this number
is exact is considerably deeper. ♠
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