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0.1 Markov Chains

0.1.1 Generalities

A Markov Chain consists of a countable (possibly finite) set S (called the state space) together
with a countable family of random variables X◦, X1, X2, · · · with values in S such that

P [Xl+1 = s | Xl = sl, Xl−1 = sl−1, · · · , X◦ = s◦] = P [Xl+1 = s | Xl = sl].

We refer to this fundamental equation as the Markov property. The random variables
X◦, X1, X2, · · · are dependent. Markov chains are among the few sequences of dependent
random variables which are of a general character and have been successfully investigated
with deep results about their behavior. Later we will discuss martingales which also provide
examples of sequences of dependent random variables. Martingales have many applications
to probability theory.

One often thinks of the subscript l of the random variable Xl as representing the time
(discretely), and the random variables represent the evolution of a system whose behavior is
only probabilistically known. Markov property expresses the assumption that the knowledge
of the present (i.e., Xl = sl) is relevant to predictions about the future of the system, however
additional information about the past (Xj = sj, j ≤ l − 1) is irrelevant. What we mean
by the system is explained later in this subsection. These ideas will be clarified by many
examples.

Since the state space is countable (or even finite) it customary (but not always the case)
to use the integers Z or a subset such as Z+ (non-negative integers), the natural numbers
N = {1, 2, 3, · · · } or {0, 1, 2, · · · ,m} as the state space. The specific Markov chain under
consideration often determines the natural notation for the state space. In the general case
where no specific Markov chain is singled out, we often use N or Z+ as the state space. We
set

P l,l+1
ij = P [Xl+1 = j | Xl = i]

For fixed l the (possibly infinite) matrix Pl = (P l,l+1
ij ) is called the matrix of transition

probabilities (at time l). In our discussion of Markov chains, the emphasis is on the case where
the matrix Pl is independent of l which means that the law of the evolution of the system is
time independent. For this reason one refers to such Markov chains as time homogeneous or
having stationary transition probabilities. Unless stated to the contrary, all Markov chains
considered in these notes are time homogeneous and therefore the subscript l is omitted
and we simply represent the matrix of transition probabilities as P = (Pij). P is called
the transition matrix. The non-homogeneous case is generally called time inhomogeneous or
non-stationary in time!
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The matrix P is not arbitrary. It satisfies

Pij ≥ 0,
∑

j

Pij = 1 for all i. (0.1.1.1)

A Markov chain determines the matrix P and a matrix P satisfying the conditions of (0.1.1.1)
determines a Markov chain. A matrix satisfying conditions of (0.1.1.1) is called Markov or
stochastic. Given an initial distribution P [X◦ = i] = pi, the matrix P allows us to compute
the the distribution at any subsequent time. For example, P [X1 = j,X◦ = i] = pijpi and
more generally

P [Xl = jl, · · · , X1 = j1, X◦ = i] = Pjl−1jl
Pjl−2jl−1

· · ·Pij1pi. (0.1.1.2)

Thus the distribution at time l = 1 is given by the row vector (p1, p2, · · · )P and more
generally at time l by the row vector

(p1, p2, · · · )PP · · ·P︸ ︷︷ ︸
l times

= (p1, p2, · · · )P l. (0.1.1.3)

For instance, for l = 2, the probability of moving from state i to state j in two units of time
is the sum of the probabilities of the events

i→ 1 → j, i→ 2 → j, i→ 3 → j, · · · , i→ n→ j,

since they are mutually exclusive. Therefore the required probability is
∑

k PikPkj which
is accomplished by matrix multiplication as given by (0.1.1.3) Note that (p1, p2, · · · ) is a
row vector multiplying P on the left side. Equation (0.1.1.3) justifies the use of matrices
is describing Markov chains since the transformation of the system after l units of time is
described by l-fold multiplication of the matrix P with itself.

This basic fact is of fundamental importance in the development of Markov chains. It is
convenient to make use of the notation P l = (P

(l)
ij ). Then for r+ s = l (r and s non-negative

integers) we have

P l = P rP s or P
(l)
ij =

∑
k

P
(r)
ik P

(s)
kj . (0.1.1.4)

Example 0.1.1.1 Let Z/n denote integers mod n, let Y1, Y2, · · · be a sequence of indepen-
dent indentically distributed (from now on iid) random variables with values in Z/n and
density function

P [Y = k] = pk.
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Set Y◦ = 0 and Xl = Y◦ + Y1 + · · ·+ Yl where addition takes place in Z/n. Using

Xl+1 = Yl+1 +Xl,

the validity of the Markov property and time stationarity are easily verified and it follows
that X◦, X1, X2 · · · is a Markov chain with state space Z/n = {0, 1, 2, · · · , n − 1}. The
equation Xl+1 = Yl+1 +Xl also implies that transition matrix P is

P =



p◦ p1 p2 · · · pn−2 pn−1

pn−1 p◦ p1 · · · pn−3 pn−2

pn−2 pn−1 p◦ · · · pn−4 pn−3
...

...
...

. . .
...

...
p2 p3 p4 · · · p◦ p1

p1 p2 p3 · · · pn−1 p◦


We refer to this Markov chain as the general random walk on Z/n. Rather than starting at
0 (X◦ = Y◦ = 0), we can start at some other point by setting Y◦ = m where m ∈ Z/n. A

possible way of visualizing the random walk is by assigning to j ∈ Z/n the point e
2πij

n on the
unit circle in the complex plane. If for instance pk = 0 for k 6= 0,±1, then imagine particles
at any and all locations j ↔ e

2πij
n , which after passage of one unit of time, stay at the same

place, or move one unit counterclockwise or clockwise with probabilities p◦, p1 respectively
and independently of each other. The fact that moving counterclockwise/clockwise or staying
at the same location have the same probabilities for all locations j expresses the property
of spatial homogeneity which is specific to random walks and not shared by general Markov
chains. This property is expressed by the rows of the transition matrix being shifts of each
other as observed in the expression for P . For general Markov chains there is no relation
between the entries of the rows (or columns) except as specified by (0.1.1.1). Note that the
transition matrix of the general random walk on Z/n has the additional property that the
column sums are also one and not just the row sums as stated in (0.1.1.1). A stochastic
matrix with the additional property that column sums are 1 is called doubly stochastic.

Example 0.1.1.2 We continue with the preceding example and make some modifications.
Assume Y◦ = m where 1 ≤ m ≤ n− 2, and pj = 0 unless j = 1 or j = −1 (which is the same
thing as n − 1 since addition is mod n.) Set P (Y = 1) = p and P [Y = −1] = q = 1 − p.
Modify the matrix P by leaving Pij unchanged for 1 ≤ i ≤ n− 2 and defining

P◦◦ = 1, P◦j = 0, Pn−1 n−1 = 1, Pn−1 k = 0, j 6= 0, k 6= n− 1.

This is still a Markov chain. The states 0 and n−1 are called absorbing states since transition
outside of them is impossible. Note that this Markov chain describes the familiar Gambler’s
Ruin Problem. ♠
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Remark 0.1.1.1 In example 0.1.1.1 we can replace Z/n with Z or more generally Zm so
that addition takes place in Zm. In other words, we can start with iid sequence of random
variables Y1, Y2, · · · with values in Zm and define

X◦ = 0, Xl+1 = Yl+1 +Xl.

By the same reasoning as before the sequence X◦, X1, X2, · · · is a Markov chain with state
space Zm. It is called the general random walk on Zm. If m = 1 and the random variable Y
(i.e. any of the Yj’s) takes only values ±1 then it is called a simple random walk on Z and if
in addition the values ±1 are assumed with equal probability 1

2
then it is called the simple

symmetric random walk on Z. The analogous definition for Zm is obtained by assuming that
Y only takes 2m values

(±1, 0, · · · , 0), (0,±1, 0, · · · , 0), · · · , (0, · · · , 0,±1),

each with probability 1
2m

. One similarly defines the notions of simple and symmetric random
walks on Z/n. ♥

In a basic course on probability it is generally emphasized that the underlying probability
space should be clarified before engaging in the solution of a problem. Thus it is important
to understand the underlying probability space in the discussion of Markov chains. This is
most easily demonstrated by looking at the Markov chain X◦, X1, X2, · · · , with finite state
space {1, 2, · · · , n}, specified by an n × n transition matrix P = (Pij). Assume we have
n biased dice with each die having n sides. There is one die corresponding each state. If
the Markov chain is in state i then the ith die is rolled. The die is biased and side j of die
number i appears with probability Pij. For definiteness assume X◦ = 1. If we are interested
in investigating questions about the Markov chain in L ≤ ∞ units of time (i.e., the subscript
l ≤ L), then we are looking at all possible sequences 1k1k2k3 · · · kL if L < ∞ (or infinite
sequences 1k1k2k3 · · · if L = ∞). The sequence 1k1k2k3 · · · kL is the event that die number 1
was rolled and side k1 appeared; then die number k1 was rolled and side k2 appeared; then
die number k2 was rolled and side number k3 appeared and so on. The probability assigned
to this event is

P1k1Pk1k2Pk2k3 · · ·PkL−1kL
.

One can graphically represent each event 1k1k2k3 · · · kL as a function consisting of broken
line segments joining the point (0, 1) to (1, k1), (1, k1) to (2, k2), (2, k2) to (3, k3) and so on.
Alternatively one can look at the event 1k1k2k3 · · · kL as a step function taking value km on
the interval [m,m+ 1). Either way the horizontal axis represents time and the vertical axis
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the state or site. Naturally one refers to a sequence 1k1k2k3 · · · kL or its graph as a path, and
each path represents a realization of the Markov chain. Graphic representations are useful
devices for understanding Markov chains. The underlying probability space Ω is the set of
all possible paths in whatever representation one likes. Probabilities (or measures in more
sophisticated language) are assigned to events 1k1k2k3 · · · kL or paths (assuming L < ∞)
as described above. We often deal with conditional probabilities such as P [?|X◦ = i]. The
appropriate probability space in this, for example, will all paths of the form ik1k2k3 · · · .

Example 0.1.1.3 Suppose L = ∞ so that each path is an infinite sequence 1k1k2k3 · · · in
the context described above, and Ω is the set of all such paths. Assume P

(l)
ij = α > 0 for

some given i, j and l. How is this statement represented in the space Ω? In this case we
consider all paths ik1k2k3 · · · such that kl = j and no condition on the remaining km’s. The
statement P

(l)
ij = α > 0 means this set of paths in Ω has probability α. ♠

What makes a random walk special is that instead of having one die for every site, the
same die (or an equivalent one) is used for all sites. Of course the rolls of the die for different
sites are independent. This is the translation of the space homogeneity property of random
walks to this model. This construction extends in the obvious manner to the case when
the state space is infinite (i.e., rolling dice with infinitely many sides). It should be noted
however, that when L = ∞ any given path 1k1k2k3 · · · extending to ∞ will generally have
probability 0, and sets of paths which are specified by finitely many values ki1ki2 · · · kim will
have non-zero probability. It is important and enlightening to keep this description of the
underlying probability space in mind. It will be further clarified and amplified in the course
of future developments.

Example 0.1.1.4 Consider the simple symmetric random walk X◦ = 0, X1, X2, · · · where
one may move one unit to the right or left with probability 1

2
. To understand the underlying

probability space Ω, suppose a 0 or a 1 is generated with equal probability after each unit of
time. If we get a 1, the path goes up one unit and if we a 0 then the path goes down one unit.
Thus the space of all paths is the space of all sequences of 0’s and 1’s. Let ω = 0a1a2 · · ·
denote a typical path. Expanding every real number α ∈ [0, 1] in binary, i.e., in the form

α =
a1

2
+
a2

22
+
a3

23
+ · · · ,

with aj = 0 or 1, we obtain a one to one correspondence between [0, 1] and the set of paths1.
Under this correspondence the set of paths with a1 = 1 is precisely the interval [1

2
, 1] and

1There is the minor problem that a rational number has more than one representation, e.g., 1
2 = 1

4 + 1
8 +· · ·

But such non-uniqueness occurs for only rational numbers which are countable and therefore have probability
zero as will become clear shortly. Thus it does not affect our discussion.
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the set of paths with a1 = 0 is the interval [0, 1
2
]. Similarly, the set of paths with a2 = 0

corresponds to [0, 1
4
] ∪ [1

2
, 3

4
]. More generally the subset of [0, 1] corresponding to ak = 0 or

ak = 1 is a union of 2k disjoint intervals each of length 1
2k+1 . Therefore the probability of the

set of paths with ak = 0 (or ak = 1) is the just the sum of the lengths of these intervals. Thus
in this case looking at the space of paths and corresponding probabilities as determined by
the simple symmetric random walk is nothing more than taking lenths of unions of intervals
in the most familiar way. ♠

With the above description of the undelying probability space Ω in mind, we can give
a more precise meaning to the word system and its evolution as referenced earlier. Assume
the state space is finite, S = {1, 2, · · · , n} for example, and imagine a large number Mn of
dice with M identical dice for each state i. As before assume for definiteness that X◦ = 1
and at time l = 0 all M dice corresponding to state 1 are rolled independently of each other.
The outcomes are k1

1, k
2
1, · · · , kM

1 . At time l = 1, k1
1 dice corresponding to state 1, k2

1 dice
corresponding state 2, k3

1 dice corresponding state 3, etc. are rolled independently. The
outcomes will be k1

2 dice will show 1, k2
2 will show number 2 etc. Repeating the process,

we independently roll k1
2 dice corresponding state 1, k2

2 dice corresponding to state 2, k3
2

dice corresponding to state 3 etc. The outcomes will be k1
3, k

2
3, · · · , kn

3 , and we repeat the
process. In this fashion instead of obtaining a single path we obtain M paths independently
of each other. At each time l, the numbers k1

l , k
2
l , k

3
l , · · · , kM

l define the system and the
paths describe the evolution of the system. The assumption that X◦ = 1 was made only
for convenience and we could have assumed that at time l = 0, the system was in state
k1
◦, k

2
◦, · · · , kM

◦ in which case at time l = 0 dice numbered k1
◦, k

2
◦, · · · , kM

◦ would have been
rolled independently of each other. Since M is assumed to be an arbitrarily large number,
from the set of paths that at time l are in state i, a portion approximately equal to Pij

transfer to state j in time l + 1 (Law of Large Numbers).
To give another example, assume we have M (a large number) of dice all showing number

1 at time l = 0. At the end of each unit of time, the number on each die will either remain
unchanged, say with probability p◦, or will change by addition of ±1 where addition is in
Z/n. We assume ±1 are equally probable each having probability p1 and p◦ + 2p1 = 1. As
time goes on the composition of the numbers on the dice will change, i.e, the system will
evolve in time. While any individual die will undergo many changes (with high probability),
one may expect that the total composition of the numbers on the dice to settle down to
something which can be understood, like for example, approximately the same number of
0’s, 1’s, 2’s, · · · , n − 1’s. In other words, while each individual die changes, the system as
a whole will reach some form of equilibrium. An important goal of this course is provide
an analytical framework which would allow us to effectively deal with phenomena of this
nature.
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EXERCISES

Exercise 0.1.1.1 Consider the simple symmetric random walks on Z/7 and Z with X◦ = 0.
Using a random number generator make graphs of ten paths describing realizations of the
Markov chains from l = 0 to l = 100.

Exercise 0.1.1.2 Consider the simple symmetric random walk S◦ = (0, 0), S1,S2, · · · on Z2

where a path at (i, j) can move to either of four points (i ± 1, j), (i, j ± 1) with probability
1
4
. Assume we impose the requirement that the random walk cannot visit any site more than

once. Is the resulting system a Markov chain? Prove your answer.

Exercise 0.1.1.3 Let S◦ = 0, S1, S2, · · · denote the simple symmetric random walk on Z.
Show that the sequence of random variables Y◦, Y1, Y2, · · · where Yj = |Sj| is a Markov chain
with state space Z+ and exhibit its transition matrix.

Exercise 0.1.1.4 Consider the simple symmetric random walk on Z2 (see exercise 0.1.1.2
for the definition). Let Sj = (Xj, Yj) denote the coordinates of Sj and define Zl = X2

l + Y 2
l .

Is Zl a Markov chain? Prove your answer. (Hint - You may use the fact that an integer
may have more than one essentially distinct representation as a sum of squares, e.g., 25 =
52 + 0 = 42 + 32.)
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0.1.2 Classification of States

The first step in understanding the behavior of Markov chains is to classify the states. We
say state j is accessible from state i if it possible to make the transition from i to j is finite
units of time. This translates into P

(l)
ij > 0 for some l ≥ 0. This property is denoted by

i → j. If j is accessible from i and i is accessible from j then we say i and j communicate.
In case i and j communicate we write i ↔ j. Communication of states is an equivalence
relation which means

1. i↔ i. This is valid since P ◦ = I.

2. i↔ j implies j ↔ i. This follows from the definition of communicate.

3. If i ↔ j and j ↔ k, then i ↔ k. To prove this note that the hypothesis implies
P

(r)
ij > 0 and P

(s)
jk > 0 for some integers r, s ≥ 0. Then P

(r+s)
ik ≥ P

(r)
ij P

(s)
jk > 0 proving

k is accessible from i. Similarly i is accessible from k.

To classify the states we group them together according to the equivalence relation ↔ (com-
munication).

Example 0.1.2.1 Let the transition matrix of a Markov chain be of the form

P =

(
P1 0
0 P2

)
where P1 and P2 are n× n and m×m matrices. It is clear that none of the states i ≤ n is
accessible from any of the states n+ 1, n+ 2, · · · , n+m, and vice versa. If the matrix of a
finite state Markov chain is of the form

P =

(
P1 Q
0 P2

)
,

then none of the states i ≤ n is accessible from any of the states n + 1, n + 2, · · · , n + m,
however, whether a state j ≥ n+ 1 is accessible from a state i ≤ n depends on the matrices
P1, P2 and Q. ♠

For a state i let d(i) denote the greatest common divisor (gcd) of all integers l ≥ 1 such

that P
(l)
ii > 0. If P

(l)
ii = 0 for all l ≥ 1, then we set d(i) = 0. If d(i) = 1 then we say state i
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is aperiodic. If d(i) ≥ 2 then we say state i is periodic with period d(i). A simple example
of a Markov chain where every state has period n is given by the n× n transition matrix

P =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


The process represented by this matrix is deterministic not probabilistic since it means that
with the passage of each unit of time the transitions

1 → 2, 2 → 3, · · · , n− 1 → n, n→ 1

take place with probability 1. Although this example is somewhat artificial, yet one should
keep such chains in mind. A more realistic example of a periodic Markov chain (i.e., every
state is periodic) is given by the following example:

Example 0.1.2.2 Consider a simple random walk on Z/n with n = 2m an even integer,
i.e., assume the random variable Y of the definition of general random walk on Z/n has
density function

P [Y = 1] = p > 0, P [Y = n− 1] = q = 1− p > 0.

Looking at this random walk as taking place on the points e
2πij

n on the unit circle, we see
that it describes the evolution of a system where after passage of each unit of time it moves
counterclockwise one unit with probability p and clockwise with probability q = 1−p. Since
both p and q are positive and n is even, every state is periodic with period 2. In fact,
assuming X◦ = 0, X2l ∈ {0, 2, · · · , 2m} and X2l−1 ∈ {1, 3, · · · , 2m− 1}. If n were odd, then
every state would be aperiodic. It is also clear that every state communicates with every
other state. The same conclusions are valid for a simple random walk on Zm. ♠

The relationship between periodicity and communication is described by the following
lemma:

Lemma 0.1.2.1 If i↔ j, then d(i) = d(j).



10

Proof - Let m, l and r be such that

P
(m)
ij > 0, P

(l)
ji > 0, P

(r)
ii > 0.

Then

P
(l+m)
jj > 0, P

(l+r+m)
jj > 0.

Since d(j) is the gcd of all k such that P
(k)
jj > 0, d(j) divides l+m, l+r+m and consequently

d(j)|(l+ r+m−m− l) = r. From d(j)|r it follows that d(j)|d(i). Because of the symmetry
between i and j, d(i)|d(j), and so d(i) = d(j) as required. ♣

To further elaborate on the states of a Markov chain we introduce the notion of first
hitting or passage time Tij which is a function (or random variable) on the probability space
Ω with values in N. To each ω ∈ Ω, which as we explained earlier, is a path or sequence

ω = ik1k2 · · · , Tij, assigns the smallest positive integer l ≥ 1 such that ω(l)
def
= kl = j. We

also set

F l
ij = P [Tij = l] = P [Xl = j,Xl−1 6= j, · · · , X1 6= j | X◦ = i].

The quantity

Fij =
∞∑
l=1

F l
ij

is the probability that at some point in time the Markov chain will visit or hit state j given
that it started in state i. A state i is called recurrent if Fii = 1; otherwise it is called
transient. The relationship between recurrence and communication is given by the following
lemma:

Lemma 0.1.2.2 If i↔ j, and i is recurrent, then so is j.

Proof - Another proof of this lemma will be given shortly. Here we prove it using only the
idea of paths. Let l be the smallest integer such that P

(l)
ij > 0. Therefore the set of paths Γl

ij

which at time 0 are at i and at time l are at j has probability P
(l)
ij > 0. By the minimality

of l and Markov property, the paths in Γl
ij do not return to i before hitting j. If j were not

recurrent then a subset Γ′ ⊂ Γl
ij of positive probability will never return to j. But then this

subset cannot return to i either since otherwise a fraction of positive probability of it will
return to j. Therefore the paths in Γl

ij do not return to i which contradicts the recurrence
of i. ♣

A subset C ⊂ S is called irreducible if all states in C communicate. C is called closed if
no state outside of C is accessible from any state in C. A simple and basic result about the
classification of states of a Markov chain is
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Proposition 0.1.2.1 The state space of a Markov chain admits of the decomposition

S = T ∪ C1 ∪ C2 ∪ · · · ,

where T is the set of transient states, and each Ci is an irreducible closed set consisting of
recurrent states.

Proof - Let C ⊂ S denote the set of recurrent states and T be the complement of C. In
view of lemma 0.1.2.2 states in T and C do not communicate. Decompose C into equivalence
classes C1, C2, · · · according to ↔ so that each Ca is irreducible, i.e., all states within each
Ca communicate with each other. It remains to show no state in Cb or T is accessible from
any state in Ca for a 6= b. Assume i → j with i ∈ Ca and j ∈ Cb (or j ∈ T ), then P

(l)
ij > 0

for some l, and let l be the smallest such integer. Since by assumption j 6→ i then P
(m)
ji = 0

for all m, that is, there are no paths from state j back to state i, and it follows that

∞∑
k=1

F k
ii ≤ 1− P

(l)
ij < 1,

contradicting recurrence of i. ♣
Next we turn our attention to Markov chains. Let X◦, X1, · · · be a Markov chain and

for convenience let Z+ be the state space. Recall that the random variable Tij is the first
hitting time of state j given that the Markov chain is in state i at time l = 0. The density
function of Tij is F l

ij = P [Tij = l]. Naturally we define the generating function for Tij as

Fij =
∞∑
l=1

F l
ijξ

l.

Note that the summation starts at l = 1 not 0. We also define the generating function

Pij =
∞∑
l=0

P
(l)
ij ξ

l.

These infinite series converge for |ξ| < 1. Much of the theory of Markov chains that we
develop is based on the exploitation of the relation between the generating functions P?

and F? as given by the following theorem whose validity and proof depends strongly on the
Markov property:

Theorem 0.1.2.1 The following identities are valid:

FiiPii = Pii − 1, Pij = FijPjj for i 6= j.
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Proof - The coefficients of ξm in Pij and in FijPjj are

P
(m)
ij , and

m∑
k=1

F k
ijP

(m−k)
jj

respectively. The set of paths that start at i at time l = 0 and are in state j at time l = m
is the disjoint union (as k varies) of the paths starting at i at time l = 0, hitting state j for
the first time at time k ≤ m and returning to state j after m − k units of time. Therefore
P

(m)
ij =

∑
k F

k
ijP

(m−k)
jj proving the second identity. Noting that the lowest power of ξ in Pii

is zero, while the lowest power of ξ in Fii is 1, one proves the first identity similarly. ♣
The following corollaries point to the significance of proposition 0.1.3.1:

Corollary 0.1.2.1 A state i is recurrent if and only if
∑

l P
(l)
ii = ∞. Equivalently, a state

k is transient if and only if
∑

l P
(l)
kk <∞.

Proof - From the first identity of proposition 0.1.3.1 we obtain

Pii(ξ) =
1

1− Fii(ξ)
,

from which the required result follows by taking the lim ξ → 1−. ♣

Remark 0.1.2.1 In the proof of corollary 0.1.3.1, the evaluation of lim ξ → 1− requires
justification since the series for Fii(ξ) and Pii(ξ) may be divergent for ξ = 1. According to a
theorem of analysis (due to Abel) if a power series

∑
cjξ

j converges for |ξ| < 1 and cj ≥ 0,
then

lim
ξ→1−

∞∑
j=◦

cjξ
j = lim

n→∞

n∑
j=◦

cj =
∞∑

j=◦

cj,

where we allow ∞ as a limit. This result removes any technical objection to the proof of
corollary 0.1.3.1. Note the assumption cj ≥ 0 is essential. For example, substituting x = 1
in 1

1+x
=

∑
(−1)nxn, valid for |x| < 1, we obtain

1

2
= 1− 1 + 1− 1 + 1− 1 + · · · ,

which is absurd in the ordinary sense of convergence of series. ♥

Corollary 0.1.2.2 If i is a recurrent state and i↔ j, then j is recurrent.
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Proof - By assumption

P
(k)
ij > 0, P

(m)
ji > 0

for some k and m. Therefore∑
l

P
(l)
jj ≥

∑
r

P
(k+r+m)
jj ≥ P

(m)
ji P

(k)
ij

∑
r

P
(r)
ii = ∞,

which proves the assertion by corollary 0.1.3.1. ♣
We use corollary 0.1.3.1 to show that, in a sense which will be made precise shortly,

a transient state is visited only finitely many times with probability 1. It is important
to understand clearly the sense in which this statement is true. Let X◦, X1, X2, · · · be a
Markov chain with state space Z+, X◦ = 0 and 0 a transient state. Let Ω be the underlying
probability space and Ω◦ be the subset consisting of all ω = 0k1k2 · · · such that kl = 0 for
infinitely many l’s. Let Ω(m) ⊂ Ω be subset of ω = 0k1k2 · · · such that km = 0. The key
observation is proving that the subset Ω◦ has probability 0 is the identity of sets

Ω◦ =
∞⋂
l=1

∞⋃
m=l

Ω(m). (0.1.2.1)

To understand this identity let Al = ∪∞m=lΩ
(m), then Al ⊃ Al+1 ⊃ · · · and each Al contains

all paths which visit 0 infinitely often. Therefore their intersection contains all paths that
visit 0 infinitely often. On the other hand, if a path ω visits 0 only finitely many times then
for some N and all l ≥ N , ω 6∈ Al and consequently ω 6∈ ∩Al. This proves (0.1.3.5). Now

since 0 is transient
∑

l P
(l)
◦◦ <∞ which implies

P [∪∞m=lΩ
(m)] ≤

∞∑
m=l

P (m)
◦◦ −→ 0 (0.1.2.2)

as l→∞. It follows from (0.1.3.5) that

Corollary 0.1.2.3 With the above notation and hypotheses, P [Ω◦] = 0.

In other words, corollary 0.1.3.3 shows that while the set of paths starting at a transient
state 0 and visiting it infinitely often is not necessarily empty, yet it has probability zero.

Remark 0.1.2.2 In an infinite state Markov chain the set of paths visiting a given transient
state at least m times may have positive probability for every m. It is shown later that if
p 6= 1

2
then for the simple random walk on Z every state is transient. It is a simple matter

to see that if in addition p 6= 0, 1 then the probability of at least m visits to any given state
is positive for every fixed m <∞. ♥
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EXERCISES

Exercise 0.1.2.1 Consider a n × n chess board and a knight which from any position can
move to all other legitimate positions (according to the rules of chess) with equal probabilities.
Make a Markov chain out of the positions of the knight. What is the decomposition in
proposition 0.1.2.1 in cases n = 3 and n = 8?

Exercise 0.1.2.2 Let i and j be distinct states and l be the smallest integer such that P
(l)
ij >

0 (which we assume exists). Show that

l∑
k=1

F
(k)
ii ≤ 1− P

(l)
ij .

Exercise 0.1.2.3 Consider the Markov chain specified by the following matrix:
9
10

1
20

0 1
20

0
0 3

4
1
4

0 0
0 4

5
1
5

0
0 0 0 3

4
1
4

0 0 0 3
4

1
4


Draw a directed graph with a vertex representing a state, and arrows representing possible
transitions. Determine the decomposition in proposition 0.1.2.1 for this Markov chain

Exercise 0.1.2.4 The transition matrix of a Markov chain is

(
p 1− p

1− q q

)
, where 0 ≤

p, q ≤ 1. Classify the states of two state Markov chains according to the values of p and q.

Exercise 0.1.2.5 Number the states of a finite state Markov chain according to the decom-
position of proposition 0.1.2.1, that is, 1, 2, · · · , n1 ∈ T , n1 + 1, · · · , n2 ∈ C1, etc. What
general form can the transition matrix P have?

Exercise 0.1.2.6 Show that a finite state Markov chain has at least one recurrent state.

Exercise 0.1.2.7 For an integer m ≥ 2 let m = akak−1 · · · a1a◦ denote its expansion in base
10. Let 0 < p < 1, q = 1 − p, and Z≥2 = {2, 3, 4, · · · } be the set of integers ≥ 2. Consider
the Markov chain with state space Z≥2 defined by the following rule:

m −→

{
max(2, a2

k + a2
k−1 + · · ·+ a2

1 + a2
◦) withprobability p;

2 withprobability q.
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Let X◦ be any distribution on Z≥2. Show that

C = {2, 4, 16, 20, 37, 42, 58, 89, 145}

is an irreducible closed set consisting of recurrent states, and every state j 6∈ C is transient.

Exercise 0.1.2.8 We use the notation and hypotheses of exercise 0.1.2.7 except for changing
the rule defining the Markov chain as follows:

m −→

{
max(2, a2

k + a2
k−1 + · · ·+ a2

1 + a2
◦) withprobability p;

max(2, ak + ak−1 + · · ·+ a1 + a◦) withprobabilityq.

Determine the transient and recurrent states and implement the conclusion of proposition
0.1.2.1.

Exercise 0.1.2.9 Consider the two state Markov chain {Xn} with transition matrix(
p 1− p

1− q q

)
where 0 < p, q < 1. Let Tij denote the first passage/hitting time of state j given that we are
in state i and µij be its expectation. Compute µij by

1. Using the density function for the random variable Tij;

2. Conditioning, i.e., using the relation E[E[X|Y ]] = E[X].

Exercise 0.1.2.10 Consider the Markov chain with transition matrix1
3

1
3

1
3

1
4

3
4

0
0 0 1


Let Tij denote the first passage/hitting time of state j given that we are in state i. Compute
P [T12 <∞] and P [T11 <∞]. What are the expectations of T12 and T11?

Exercise 0.1.2.11 Let P denote the transition matrix of a finite aperiodic irreducible Markov
chain. Show that for some n all entries of P n are positive.
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0.1.3 Generating Functions

Generating Functions are an important tool in probability and many other areas of math-
ematics. Some of their applications to various problems in stochastic processes will be
discussed gradually in this course. The idea of generating functions is that when we have a
number (often infinite) of related quantities, there may be a method of putting them together
and get a nice function which can be used to draw conclusions that may not have possible,
or would have been difficult, otherwise. To make this vague idea precise we introduce several
examples which demonstrate the value of generating functions.

Let X be a random variable with values in Z+ and let fX be its density function:

fX(n) = P [X = n].

The most common way to make a generating function out of the quantities fX(n) is to define

FX(ξ) =
∞∑

n=◦

fX(n)ξn = E[ξX ]. (0.1.3.1)

This infinite series converges for |ξ| < 1 since 0 ≤ fX(n) ≤ 1 and fX(n) = 0 for n < 0. The
issue of convergence of the infinite series is not a serious concern for us. FX is called the
probability generating function of the random variable X. The fact that FX(ξ) = E[ξX ] is
significant. While the individual terms fX(n) may not be easy to evaluate, in some situations
we can use our knowledge of probability, and specifically of the fundamental relation

E[E[Z | Y ]] = E[Z], (0.1.3.2)

to evaluate E[Z] directly, and then draw conclusions about the random variable X. Examples
0.1.3.2 and 0.1.3.4 are simple demonstrations of this point.

Example 0.1.3.1 Just to make sure we understand the concept let us compute FX for a
couple of simple random variables. If X is binomial with parameter (n, p) then fX(k) =(

n
k

)
pkqn−k where q = 1− p, and

FX(ξ) =
n∑

k=◦

(
n

k

)
pkqn−kξk = (q + pξ)n.

Similarly, if X is a Poisson random variable, then

fX(k) = e−λλ
k

k!
.
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Consequently we obtain the expression

FX(ξ) =
∑

e−λλ
k

k!
ξk = eλ(ξ−1),

for the generating function of a Poisson random variable. ♠

Let Y be another random variable with values in Z+ and let FY (η) be its probability
generating function. The joint random variable (X, Y ) takes values in Z+ × Z+ and its
density function is fX,Y (n,m) = P [X = n, Y = m]. Note that we are not assuming X and
Y are independent. The probability generating function for (X, Y ) is defined as

FX,Y (ξ, η) =
∑

n≥◦,m≥◦

fX,Y (n,m)ξnηm = E[ξXηY ].

An immediate consequence of the definition of independence of random variables is

Proposition 0.1.3.1 The random variables X and Y are independent if and only if

FX,Y (ξ, η) = FX,Y (ξ, 1)FX,Y (1, η).

An example to demonstrate the use of this proposition follows:

Example 0.1.3.2 A customer service manager receives X complaints every day and X is
a Poisson random variable with parameter λ. Of these, he/she handles Y satisfactorily and
the remaining Z unsatisfactorily. We assume that for a fixed value of X, Y is a binomial
random variable with parameter (X, p). Let us compute the probability generating function
for the joint random variable (Y, Z). We have

FY,Z(η, ζ) = E[ηY ζZ ]
= E[ηY ζX−Y ]
= E[E[ηY ζX−Y ] | X]
= E[ζXE[(η

ζ
)Y ] | X]

= E[ζX(pη
ζ

+ q)X ]

= eλ(pη+qζ−1)

= eλp(η−1)eλq(ζ−1)

= FY (η)FZ(ζ).
From elementary probability we know that random variables Y and Z are Poisson, and thus
the above calculation implies that the random variables Y and Z are independent! This is
surprising since Z = X − Y . It should be pointed out that in this example one can also
directly compute P [Y = j, Z = k] to deduce the independence of Y and Z. ♠
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Example 0.1.3.3 For future reference (see the discussion of Poisson processes) we calculate
the generating function for the trinomial random variable. The binomial random variable was
modeled as the number ofH’s in n tosses of a coin whereH appeared with probability p. Now
suppose we have a 3-sided die with side i appearing with probability pi, p1 + p2 + p3 = 1.
Let Xi denotes the number of times side i has appeared in n rolls of the die. Then the
probability density function for (X1, X2) is

P [X1 = k1, X2 = k2] =

(
n

k1, k2

)
pk1

1 p
k2
2 p

n−k1−k2
3 . (0.1.3.3)

The generating function for (X1, X2) is a function of two variables, namely,

FX1,X2(ξ, η) =
∑

P [X1 = k1, X2 = k2]ξ
k1ηk2 ,

where the summation is over all pairs of non-negative integers k1, k2 with k1 + k2 ≤ n.
Substituting from (0.1.3.3) we obtain

FX1,X2(ξ, η) = (p1ξ + p2η + p3)
n, (0.1.3.4)

for the generating function of the trinomial random variable. ♠

Next we turn our attention to Markov chains. Let X◦, X1, · · · be a Markov chain and
for convenience let Z+ be the state space. Recall that the random variable Tij is the first
hitting time of state j given that the Markov chain is in state i at time l = 0. The density
function of Tij is F l

ij = P [Tij = l]. Naturally we define the generating function for Tij as

Fij =
∞∑
l=1

F l
ijξ

l.

Note that the summation starts at l = 1 not 0. We also define the generating function

Pij =
∞∑
l=0

P
(l)
ij ξ

l.

These infinite series converge for |ξ| < 1. Much of the theory of Markov chains that we
develop is based on the exploitation of the relation between the generating functions P?

and F? as given by the following theorem whose validity and proof depends strongly on the
Markov property:
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Theorem 0.1.3.1 The following identities are valid:

FiiPii = Pii − 1, Pij = FijPjj for i 6= j.

Proof - The coefficients of ξm in Pij and in FijPjj are

P
(m)
ij , and

m∑
k=1

F k
ijP

(m−k)
jj

respectively. The set of paths that start at i at time l = 0 and are in state j at time l = m
is the disjoint union (as k varies) of the paths starting at i at time l = 0, hitting state j for
the first time at time k ≤ m and returning to state j after m − k units of time. Therefore
P

(m)
ij =

∑
k F

k
ijP

(m−k)
jj proving the second identity. Noting that the lowest power of ξ in Pii

is zero, while the lowest power of ξ in Fii is 1, one proves the first identity similarly. ♣
The following corollaries point to the significance of proposition 0.1.3.1:

Corollary 0.1.3.1 A state i is recurrent if and only if
∑

l P
(l)
ii = ∞. Equivalently, a state

k is transient if and only if
∑

l P
(l)
kk <∞.

Proof - From the first identity of proposition 0.1.3.1 we obtain

Pii(ξ) =
1

1− Fii(ξ)
,

from which the required result follows by taking the lim ξ → 1−. ♣

Remark 0.1.3.1 In the proof of corollary 0.1.3.1, the evaluation of lim ξ → 1− requires
justification since the series for Fii(ξ) and Pii(ξ) may be divergent for ξ = 1. According to a
theorem of analysis (due to Abel) if a power series

∑
cjξ

j converges for |ξ| < 1 and cj ≥ 0,
then

lim
ξ→1−

∞∑
j=◦

cjξ
j = lim

n→∞

n∑
j=◦

cj =
∞∑

j=◦

cj,

where we allow ∞ as a limit. This result removes any technical objection to the proof of
corollary 0.1.3.1. Note the assumption cj ≥ 0 is essential. For example, substituting x = 1
in 1

1+x
=

∑
(−1)nxn, valid for |x| < 1, we obtain

1

2
= 1− 1 + 1− 1 + 1− 1 + · · · ,

which is absurd in the ordinary sense of convergence of series. ♥
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Corollary 0.1.3.2 If i is a recurrent state and i↔ j, then j is recurrent.

Proof - By assumption

P
(k)
ij > 0, P

(m)
ji > 0

for some k and m. Therefore∑
l

P
(l)
jj ≥

∑
r

P
(k+r+m)
jj ≥ P

(m)
ji P

(k)
ij

∑
r

P
(r)
ii = ∞,

which proves the assertion by corollary 0.1.3.1. ♣
We use corollary 0.1.3.1 to show that, in a sense which will be made precise shortly,

a transient state is visited only finitely many times with probability 1. It is important
to understand clearly the sense in which this statement is true. Let X◦, X1, X2, · · · be a
Markov chain with state space Z+, X◦ = 0 and 0 a transient state. Let Ω be the underlying
probability space and Ω◦ be the subset consisting of all ω = 0k1k2 · · · such that kl = 0 for
infinitely many l’s. Let Ω(m) ⊂ Ω be subset of ω = 0k1k2 · · · such that km = 0. The key
observation is proving that the subset Ω◦ has probability 0 is the identity of sets

Ω◦ =
∞⋂
l=1

∞⋃
m=l

Ω(m). (0.1.3.5)

To understand this identity let Al = ∪∞m=lΩ
(m), then Al ⊃ Al+1 ⊃ · · · and each Al contains

all paths which visit 0 infinitely often. Therefore their intersection contains all paths that
visit 0 infinitely often. On the other hand, if a path ω visits 0 only finitely many times then
for some N and all l ≥ N , ω 6∈ Al and consequently ω 6∈ ∩Al. This proves (0.1.3.5). Now

since 0 is transient
∑

l P
(l)
◦◦ <∞ which implies

P [∪∞m=lΩ
(m)] ≤

∞∑
m=l

P (m)
◦◦ −→ 0 (0.1.3.6)

as l→∞. It follows from (0.1.3.5) that

Corollary 0.1.3.3 With the above notation and hypotheses, P [Ω◦] = 0.

In other words, corollary 0.1.3.3 shows that while the set of paths starting at a transient
state 0 and visiting it infinitely often is not necessarily empty, yet it has probability zero.
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An important general observation about generating functions is that the moments of a
random variable X with values in Z+ can be recovered from the knowledge of the generating
function for X. In fact, we have

E[X] = (
dFX(ξ)

dξ
)ξ=1− , if P [X = ∞] = 0. (0.1.3.7)

Occasionally one naturally encounters random variables for which P [X = ∞] > 0 while the
series

∑
nP [X = n] < ∞. In such cases E[X] = ∞ for obvious reasons. If furthermore

E[X] <∞, then

Var[X] =

[
d2FX(ξ)

dξ2
+
dFX(ξ)

dξ
−

(
dFX(ξ)

dξ

)2]
ξ=1−

. (0.1.3.8)

Another useful relation involving generating functions is∑
n

P [X > n]ξn =
1− E[ξX ]

1− ξ
. (0.1.3.9)

The identities are proven by simple and formal manipulations. For example to prove (0.1.3.9),
we expand right hand side to obtain

1− E[ξX ]

1− ξ
=

(
1−

∞∑
n=0

P [X = n]ξn

)( ∞∑
n=0

ξn

)
.

The coefficient of ξm is on right hand side is

1−
m∑

j=0

P [X = j] = P [X > m],

proving (0.1.3.9). The coefficient P [X > n] of ξn on left hand side of (0.1.3.9) is often called
tail probabilities. We will see examples of tail probabilities later.

Example 0.1.3.4 As an application of (0.1.3.7) we consider a coin tossing experiment where
H’s appear with p and T ’s with probability q = 1 − p. Let the random variable X denote
the time of the first appearance of a sequence of m consecutive H’s. We compute E[X]
using (0.1.3.7) and by evaluating FX(ξ) = E[ξX ], and the latter calculation is carried out by
conditioning. Let HrT s be the event that first r tosses were H’s followed by s T ’s. It is clear
that for 1 ≤ j ≤ m

E[ξX | Hj−1T ] = ξjE[ξX ], E[ξX | Hm] = ξm
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Therefore
E[ξX ] = E[E[ξX | Y ]]

=
∑m

j=1 qp
j−1ξjE[ξX ] + pmξm.

Solving this equation for E[ξX ] we obtain

FX(ξ) = E[ξX ] =
pmξm(1− pξ)

1− ξ + qpmξm+1
. (0.1.3.10)

Using (0.1.3.7), we obtain after a simple calculation,

E[X] =
1

p
+

1

p2
+ · · ·+ 1

pm
.

Similarly we obtain

Var[X] =
1

(qpm)2
− 2m+ 1

qpm
− p

q2

for the variance of X. ♠

In principle it is possible to obtain the generating function for the time of the first
appearance of any given pattern of H’s and T ’s by repeated conditioning as explained in the
preceding examples. However, it is more beneficial to introduce a more efficient machinary
for this calculation. The idea is most clearly explained by following through an example.
Another application of this idea is given in the subsection on Patterns in Coin Tossing.

Suppose we want to compute the time of the first appearance of the pattern A, for
example, A = HHTHH. We treat H and T as non-commuting indeterminates. We let X
be the formal sum of all finite sequences (i.e., monomials in H and T ) which end with the
first appearance of the pattern A. We will doing formal algebraic operations on these formal
sums in two non-commuting variables H and T , and also introduce 0 as the zero element
which when multiplied by any quantity gives 0, and is the additive identity. In the case of
the pattern HHTHH we have

X = HHTHH + HHHTHH +

THHTHH + HHHHTHH +

HTHHTHH + THHHTHH +

TTHHTHH + . . .

Similarly let Y be the formal sum of all sequences (including the empty sequence which is
represented by 1) which do not contain the given pattern A. For instance for HHTHH we
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get

Y = 1 + H + T + HH + HT + TH + TT +

. . . + HHTHT + HHTTH + . . .

There is an obvious relation between X and Y independently of the chosen pattern, namely,

1 + Y (H + T ) = X + Y. (0.1.3.11)

The verification of this identity is almost trivial and is accomplished by noting that a mono-
mial summand of X + Y of length l either contains the given pattern for the first time at
its end or does not contain it, and then looking at the first n− 1 elements of the monomial.
There is also another linear relation between X and Y which depends on the nature of the
the desired pattern. Denote a given pattern by A and let Aj (resp. Aj) denote the first j
elements of the pattern starting from right (respectively left). Thus for HHTHH we get

A1 = H, A2 = HH, A3 = THH, A4 = HTHH;
A1 = H, A2 = HH, A3 = HHT, A4 = HHTH.

Let ∆j be 0 unless Aj = Aj in which case it is 1. We obtain

Y A = S(1 + A1∆n−1 + A2∆n−2 + . . .+ An−1∆1). (0.1.3.12)

For example in this case we get

Y HHTHH = S(1 + A3HH + A4H).

Some experimentation will convince the reader that this identity is really the content of
conditioning argument involved in obtaining the generating function for the time of first
occurrence of a given pattern. At any rate its validity is easy to see. Equations (0.1.3.11)
and (0.1.3.12) give us two linear equations which we can solve easily to obtain expressions
for X and Y . Our primary interest in the expression for X. Therfore substituting for Y in
(??) from (??) we obtain

A(1−X) = X

[
A+

(
1 +

n−1∑
j=1

Aj∆j

)(
1−H − T

)]
(0.1.3.13)

which gives an expression for X. Now assume H appears with probability p and T with
probability q = 1 − p. Since X is the formal sum of all finite sequences ending in the first
appearance of the desired pattern, by substituting pξ for H and qξ for T in the expression
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for X we obtained the desired probability generating function F (for the time τ of the
first appearance of the pattern A). Denoting the result of this substitution in Aj, A, . . . by
Aj(ξ), A(ξ), . . . we obtain

F(ξ) =
A(ξ)

A(ξ) +
(
1 +

∑n−1
j=1 A

j(ξ)∆n−j

)(
1− ξ

) . (0.1.3.14)

For example in this case A = HHTHH from the equations

1 + Y (T +H) = X + Y, Y HHTHH = X(1 +HHT +HHTH),

we obtain the expression

F(ξ) =
p4qξ5

p4qξ5 + (1 + p2qξ3 + p3qξ4)(1− ξ)
,

for the generating function of the time of the first appearance of HHTHH. From (0.1.3.13)
one easily obtains the expectation and variance of τ . In fact we obtain

E[τ ] =
1+

∑n−1
j=1 Aj(1)∆n−j

A(1)
, Var[τ ] = E[τ ]2 − 1+

∑n−1
j=1 (2j−1)Aj∆n−j

A(1)
. (0.1.3.15)

In principle it is possible to obtain the generating function for the time of the first
appearance of any given pattern of H’s and T ’s by repeated conditioning as explained in the
preceding examples. However, it is more beneficial to introduce a more efficient machinary
for this calculation. The idea is most clearly explained by following through an example.
Another application of this idea is given in the subsection on Patterns in Coin Tossing.

Suppose we want to compute the time of the first appearance of the pattern A, for
example, A = HHTHH. We treat H and T as non-commuting indeterminates. We let X
be the formal sum of all finite sequences (i.e., monomials in H and T ) which end with the
first appearance of the pattern A. We will doing formal algebraic operations on these formal
sums in two non-commuting variables H and T , and also introduce 0 as the zero element
which when multiplied by any quantity gives 0, and is the additive identity. In the case of
the pattern HHTHH we have

X = HHTHH + HHHTHH +

THHTHH + HHHHTHH +

HTHHTHH + THHHTHH +

TTHHTHH + . . .
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Similarly let Y be the formal sum of all sequences (including the empty sequence which is
represented by 1) which do not contain the given pattern A. For instance for HHTHH we
get

Y = 1 + H + T + HH + HT + TH + TT +

. . . + HHTHT + HHTTH + . . .

There is an obvious relation between X and Y independently of the chosen pattern, namely,

1 + Y (H + T ) = X + Y. (0.1.3.16)

The verification of this identity is almost trivial and is accomplished by noting that a mono-
mial summand of X + Y of length l either contains the given pattern for the first time at
its end or does not contain it, and then looking at the first n− 1 elements of the monomial.
There is also another linear relation between X and Y which depends on the nature of the
the desired pattern. Denote a given pattern by A and let Aj (resp. Aj) denote the first j
elements of the pattern starting from right (respectively left). Thus for HHTHH we get

A1 = H, A2 = HH, A3 = THH, A4 = HTHH;
A1 = H, A2 = HH, A3 = HHT, A4 = HHTH.

Let ∆j be 0 unless Aj = Aj in which case it is 1. We obtain

Y A = S(1 + A1∆n−1 + A2∆n−2 + . . .+ An−1∆1). (0.1.3.17)

For example in this case we get

Y HHTHH = S(1 + A3HH + A4H).

Some experimentation will convince the reader that this identity is really the content of
conditioning argument involved in obtaining the generating function for the time of first
occurrence of a given pattern. At any rate its validity is easy to see. Equations (0.1.3.16)
and (0.1.3.17) give us two linear equations which we can solve easily to obtain expressions
for X and Y . Our primary interest in the expression for X. Therefore substituting for Y in
(??) from (??) we obtain

A(1−X) = X

[
A+

(
1 +

n−1∑
j=1

Aj∆j

)(
1−H − T

)]
(0.1.3.18)

which gives an expression for X. Now assume H appears with probability p and T with
probability q = 1 − p. Since X is the formal sum of all finite sequences ending in the first
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appearance of the desired pattern, by substituting pξ for H and qξ for T in the expression
for X we obtained the desired probability generating function F (for the time τ of the
first appearance of the pattern A). Denoting the result of this substitution in Aj, A, . . . by
Aj(ξ), A(ξ), . . . we obtain

F(ξ) =
A(ξ)

A(ξ) +
(
1 +

∑n−1
j=1 A

j(ξ)∆n−j

)(
1− ξ

) . (0.1.3.19)

For example in this case A = HHTHH from the equations

1 + Y (T +H) = X + Y, Y HHTHH = X(1 +HHT +HHTH),

we obtain the expression

F(ξ) =
p4qξ5

p4qξ5 + (1 + p2qξ3 + p3qξ4)(1− ξ)
,

for the generating function of the time of the first appearance of HHTHH. From (0.1.3.18)
one easily obtains the expectation and variance of τ . In fact we obtain

E[τ ] =
1+

∑n−1
j=1 Aj(1)∆n−j

A(1)
, Var[τ ] = E[τ ]2 − 1+

∑n−1
j=1 (2j−1)Aj∆n−j

A(1)
. (0.1.3.20)

There are elaborate mathematical techniques for obtaining information about a sequence
of quantities of which a generating function is known. Here we just demonstrate how by
a simple argument we can often deduce good approximation to a sequence of quantities qn
provided the generating function Q(ξ) =

∑
n qnξ

n is a rational function

Q(ξ) =
U(ξ)

V (ξ)
,

with degU < deg V . For simplicity we further assume that the polynomial V has distinct
roots α1, · · · , αm so that Q(ξ) has a partial fraction expansion

Q(ξ) =
m∑

j=1

bj
ξ − αj

, with bj =
−U(αj)

V ′(ξj)
.

Expanding 1
αj−ξ

in a geometric series

1

αj − ξ
=

1

αj

1

1− ξ
αj

=
1

αj

[1 +
ξ

αj

+
ξ2

α2
j

+ · · · ]
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we obtain the following expression for qn:

qn =
b1

αn+1
1

+
b2

αn+1
2

+ · · ·+ bm
αn+1

m

(0.1.3.21)

To see how (0.1.3.21) can be used to give good approximations to the actual values of qn’s,
assume |α1| < |αj| for j 6= 1. Then we use the approximation qn ∼ b1

αn+1
1

.

Example 0.1.3.5 To illustrate the above idea of using partial fractions consider example
0.1.3.4 above. We can write the generating function (0.1.3.10) for the time of first appearance
of pattern of m consecutive H’s in the form

FX(ξ) =
pmξm

1− qξ(1 + pξ + · · ·+ pm−1ξm−1)
.

Denoting the denominator by Q(ξ), we note that Q(1) > 0, limξ→∞Q(ξ) = −∞ and Q is a
decreasing function of ξ ∈ R+. Therefore Q has a unique positive root α > 1. If γ ∈ C with
|γ| ≤ α, then

|qγ(1 + pγ + · · ·+ pm−1γm−1)| ≤ |qα(1 + pα + · · ·+ pm−1αm−1)| = 1,

with = only if all the terms have the same argument and |γ| = α. It follows that α is the
root of Q(ξ) = 0 with smallest absolute value. Applying the procedure described above we
obtain the approximation

Fl ∼
(α− 1)(1− pα)

(m+ 1−mα)q
α−l−1,

where Fl is the probability that first of pattern H · · ·H is at time l so that FX(ξ) =
∑
Flξ

l.
This is a good approximation. For instance for m = 2 and p = 1

2
we have F5 = .09375 and

the above approximation gives F5 ∼ .09579, and the approximation improves as l increases.
♠

For a sequence of real numbers {fj}j≥◦ satisfying a linear recursion relation, for example,

αfj+1 + βfj + γfj−1 = 0, (0.1.3.22)

it is straighforward to explicitly compute the generating function F(ξ). In fact, it follows
from (0.1.3.22) that

αF(ξ) + βξF(ξ) + γξ2F(ξ) = αf◦ + (αf1 + βf◦)ξ.
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Solving this equation for F we obtain

F(ξ) =
αf◦ + (αf1 + βf◦)ξ

α+ βξ + γξ2
. (0.1.3.23)

Here we assumed that the coefficients α, β and γ are independent of j. It is clear that
the method of computing F(ξ) is applicable to more complex recursion relations as long as
the coefficients are independent of j. If these coefficients have simple dependence on j, e.g.,
depend linearly on j, then we can obtain a differential equation for F. To demonstrate this
the point we consider the following simple example with probabilistic implications:

Example 0.1.3.6 Assume we have the recursion relation (the probabilistic interpretation
of which is given shortly)

(j + 1)fj+1 − jfj − fj−1 = 0, j = 2, 3, · · · (0.1.3.24)

Let F(ξ) =
∑∞

j=1 fjξ
j. To compute F note

F′ = f1 + 2f2ξ + 3f3ξ
2 + · · ·

ξF′ = f1ξ + 2f2ξ
2 + · · ·

ξF = f1ξ
2 + · · ·

It follows that

(1− ξ)
dF

dξ
− ξF = f1 + (f1 + 2f2)ξ. (0.1.3.25)

As an application to probability we consider the matching problem where n balls numbered
1, 2, · · · , n are randomly put in boxes numbered 1, 2, · · · , n; one in each box. Let fn be
the probability that the numbers on balls and boxes containing them have no matches. To
obtain a recursion relation for fj’s let Aj be the event of no matches, and Bj be the event
that the first ball is put in a box with a non-matching number. Then

fj+1 = P [Aj+1 | Bj+1]
j

j + 1
. (0.1.3.26)

On the other hand,

P [Aj+1 | Bj+1] =
1

j
fj−1 +

j − 1

j
P [Aj | Bj]. (0.1.3.27)

Equations (0.1.3.26) and (0.1.3.27) imply validity of (0.1.3.24) and (0.1.3.25) with

f1 = 0; f2 =
1

2
. (0.1.3.28)
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Therefore to compute the generating function F(ξ) we have to solve the differential equation

(1− ξ)
dF

dξ
= ξF + ξ,

with F(0) = 0. Making the substitution H(ξ) = (1−ξ)F(ξ), the differential equation becomes
H ′ +H = ξ which is easily solved to yield

F(ξ) =
e−ξ

1− ξ
− 1.

Expanding as a power series, we obtain after a simple calculation

fk =
1

2!
− 1

3!
+ · · ·+ (−1)k

k!
. (0.1.3.29)

Thus for k large, the probability of no matches is approximately 1
e
. Of course one can derive

(0.1.3.29) by a more elementary (but substantially the same) argument. ♠

Example 0.1.3.7 Consider the simple random walk on the integer which moves one unit to
the right with probability p and one unit to the left with probability q = 1−p and is initially
at 0. Let pl denote the probability that the walk is at 0 at time l and P◦◦(ξ) =

∑
plξ

l denote
the corresponding generating function. It is clear that p2l+1 = 0 and

p2l =

(
2l

l

)
plql.

Therefore

P◦◦(ξ) =
1√

1− 4pqξ2
.

Let Fl denote the probability that first return to 0 occurs at time l. It follows that theorem
0.1.3.1 that

F◦◦(ξ)
def.
=

∑
Flξ

l = 1−
√

1− 4pqξ2.

Consequently the probability of eventual return to the origin is 1− |p− q|. Let the random
variable T◦◦ be the time of the first return to the origin. Let p = q = 1

2
. Differentiating

F◦◦(ξ) with respect to ξ and setting ξ = 1 we obtain

E[T◦◦] = ∞.

In other words, although with probability 1 every path will return to the origin, the expecta-
tion of the time return is infinite. For p 6= q there is probability |p−q| > 0 of never returning
to the origin and therefore the expected time of return to the origin is again infinite. ♠
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A consequence of the the computation of the generating function F◦◦(ξ) is the classifica-
tion of the states of the simple random walk on Z:

Corollary 0.1.3.4 For p 6= q the simple random walk on Z is transient. For p = q = 1
2
,

every state is recurrent.

Proof - the first statement follows from the fact the with probability |q − p| > 0 a path
will never return to the origin. Setting p = q = 1

2
and ξ = 1 in F◦◦(ξ) we obtain F◦◦(1) = 1

proving recurrence of 0 and therefore all states. ♣

Example 0.1.3.8 Consider the simple random walk S1, S2, · · · on Z whereX◦ = 0, Xj = ±1
with probabilities p and q = 1 − p, and Sl = X◦ + X1 + · · · + Xl. Let Tn be the random
variable denoting the time of first visit to state n ∈ Z given that X◦ = 0. In this example
we investigate the generating function for Tn, namely,

F◦n(ξ) =
∞∑
l=1

P [Tn = l]ξl

be its probability generating function. It is clear that

P [Tn = l] =
l−1∑
j=1

P [Tn−1 = l − j]P [T1 = j].

From this identity it follows that

F◦n(ξ) = [F◦1(ξ)]
n. (0.1.3.30)

which reduces the computation of F◦n to that of F◦1. It is immediate that

P [T1 = l] =

{
qP [T2 = l − 1], if l > 1;

P [T◦1 = 1] = p, if l = 1.

This together with (0.1.3.30) imply

F◦1(ξ) = pξ + qξ[F◦1(ξ)]
2.

Solving the quadratic equation we obtain

F◦1(ξ) =
1−

√
1− 4pqξ2

2qξ
. (0.1.3.31)

Substituting ξ = 1 we see that the probability that the simple random walk ever visits 1 ∈ Z
is min(1, p

q
). ♠
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Example 0.1.3.9 We shown that the simple symmetric random walk on Z is recurrent and
exercise 0.1.3.11 show that the same conclusion is valid for for the simple symmetric random
walk on Z2. In this example we consider the simple symmetric random walk on Z3. To carry
out the analysis we make use of an elementary fact regarding multinomial coefficients. Let(

N
n1 n2··· nk

)
denote the multinomial coefficient(

N

n1 n2 · · · nk

)
=

N !

n1!n2! · · ·nk!
,

where N = n1 + n2 + · · · + nk and all integers nj are non-negative. Just as in the case of
binomial coefficients the maximum of

(
N

n1 n2··· nk

)
occurs when the the quantities n1, · · · , nk

are (approximately) equal. We omit the proof of this elementary fact and make use of it for
k = 3. To determine recurrence/transience of the random walk on Z3 we proceed as before

by looking at
∑
P

(l)
◦◦ . We have P

(2l+1)
◦◦ = 0 and

P (2l)
◦◦ =

∑
i+j+k=l

(
2l

i i j j k k

)
1

62l
.

Multiplying the above expression by (l!)2

(l!)2
and simplifying we obtain

P (2l)
◦◦ =

l∑
i,j=0

(
2l

l

)
l!2

[i!j!(l − i− j)!]2
1

62l
.

To estimate this expression, we make use of the obvious fact

1 = (
1

3
+

1

3
+

1

3
)l =

l∑
i,j=0

l!

i!j!(l − i− j)!

1

3l
.

This allows us to write

P (2l)
◦◦ ≤

(
2l

l

)
1

22l

1

3l
Ml,

where

Ml = max
0≤i+j≤l

l!

i!j!(l − i− j)!
.

Using the fact that the maximum Ml is achieved for approximately i = j = l
3
, we obtain

P (2l)
◦◦ ≤ l!

[(l/3)!]322l3l

(
2l

l

)
.
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Now recall Stirling’s formula

n! =
√

2πnn+ 1
2 e−neρ(n), where

1

12(n+ 1
2
)
< ρ(n) <

1

12n
. (0.1.3.32)

Applying Stirling’s formula we obtain the bound∑
l

P (l)
◦◦ =

∑
l

P (2l)
◦◦ ≤ γ

∑
l

1

l3/2
<∞,

for some constant γ. Thus 0 and therefore all states in the simple symmetric random walk
on Z3 are transient. By a similar argument, the simple symmetric random walk is transient
in dimensions ≥ 3. ♥
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EXERCISES

Exercise 0.1.3.1 Let P = (Pij) be a (possibly infinite) Markov matrix, and P l = (P
(l)
ij ).

Show that if j is a transient state then for all i we have∑
l

P
(l)
ij <∞.

Exercise 0.1.3.2 Show that if states i and j of a Markov chain communicate and they are
recurrent, then Fij = 1, i.e., with probability 1, every path starting at i will visit j.

Exercise 0.1.3.3 Consider the Markov chain on the vertices of a square with vertices A =
(0, 0), B = (1, 0), C = (0, 1) and D = (1, 1), where one moves along an horizontal edge with
probability p and along a vertical edge with probability q = 1 − p, and is initially at A. Let
Fl denote the probability that first return to state A occurs at time l, and pl = P

(l)
AA denote

the probability that that the Markov chain is in state A at time l. Show that the generating
functions functions F(ξ) =

∑
Flξ

l and P (ξ) =
∑
plξ

l are

P (ξ) =
1

2
(

1

1− (1− 2p)2ξ2
+

1

1− ξ2
), F (ξ) =

P (ξ)− 1

P (ξ)
.

Exercise 0.1.3.4 Consider the coin tossing experiment where H’s appear with probability p
and T’s with probability q = 1 − p. Let Sn denote the number of T ’s before the appearance
of the nth H. Show that the probability generating function for Sn is

E[ξSn ] =

(
p

1− qξ

)n

.

Exercise 0.1.3.5 Consider the coin tossing experiment where H’s appear with probability p
and T’s with probability q = 1− p. Compute the probaility generating function for the time
of first appearance of the following patterns:

1. THH;

2. THHT ;

3. THTH.

Exercise 0.1.3.6 Show that the generating function for the pattern HTTHT is We can
easily solve this for E[ξT ]:

FT (ξ) = E[ξT ] =
p2q3ξ3

1 + p2q3ξ5 + pq2ξ3 − ξ − pq2ξ4
.
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Exercise 0.1.3.7 Let an denote the number of ways an (n + 1)-sided convex polygon with
vertices P◦, P1, · · · , Pn can be decomposed into triangles by drawing non-intersecting line
segments joining the vertices.

1. Show that

an = a1an−1 + a2an−2 + · · ·+ an−1a1, with a1 = 1.

2. Let A(ξ) =
∑∞

n=1 anξ
n be the corresponding generating function. Show that A(ξ) satis-

fies the quadratic relation

A(ξ)− ξ = [A(ξ)]2.

3. Deduce that

A(ξ) =
1−

√
1− 4ξ

2
, and an =

1

n

(
2(n− 1)

n− 1

)
.

Exercise 0.1.3.8 Let qn denote the probability that in n tosses of a fair coin we do not get
the sequence HHH.

1. Use conditioning to obtain the recursion relation

qn =
1

2
qn−1 +

1

4
qn−2 +

1

8
qn−3.

2. Deduce that the generating function Q(ξ) =
∑
qjξ

j is

Q(ξ) =
2ξ2 + 4ξ + 8

−ξ3 − 2ξ2 − 4ξ + 8
.

3. Show that the root of the denominator of Q(ξ) with smallest absolute value is α1 =
1.0873778.

4. Deduce that the approximations qn ∼ 1.23684
(1.0873778)n+1 yield, for instance,

q3 ∼ .8847, q4 ∼ .8136, q12 ∼ .41626

(The actual values q3 = .875, q4 = 8125 and q12 = .41626.)
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Exercise 0.1.3.9 In a coin tossing experiment heads appear with probability p. Let An be
the event that there are an even number of heads in n trials, and an be the probability of An.
State and prove a linear relation between an and an−1, and deduce that∑

anξ
n =

1

2
(

1

1− ξ
+

1

1− (1− 2p)ξ
).

Exercise 0.1.3.10 In a coin tossing experiment heads appear with probability p and q =
1 − p. Let X denote the time of first appearance of the pattern HTH. Show that the
probability generating function for X is

FX(t) =
p2qξ3

1− t+ pqξ2 − pq2ξ3
.

Exercise 0.1.3.11 Consider the random walk on Z2 where a point moves from (i, j) to any
of the points (i± 1, j), (i, j ± 1) with probability 1

4
. Show that the random walk is recurrent.

(Use the idea of example 0.1.3.9.)
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0.1.4 Stationary Distribution

It was noted earlier that one of the goals of the theory of Markov chains is to establish that
under certain hypotheses, the distribution of states tends to a limiting distribution. If indeed
this is the case then there is a row vector π = (π1, π2, · · · ) with πj ≥ 0 and

∑
πj = 1, such

that π(◦)P n → π as n → ∞. Here π(◦) denotes the initial distribution. If such π exists,
then it has the property πP = π. For this reason we define the stationary or equilibrium
distribution of a Markov chain with transition matrix P (possibly infinite matrix) as a row
vector π = (π1, π2, · · · ) such that

πP = π, with πj ≥ 0, and
∞∑

j=1

πj = 1. (0.1.4.1)

The existence of such a vector π does not imply that the distribution of states of the Markov
chain necessarily tends to π as shown by the following example:

Example 0.1.4.1 Consider the Markov chain given by the 3 × 3 transition matrix P =0 1 0
0 0 1
1 0 0

. Then for π(◦) = (1, 0, 0) the Markov chain moves between the states 1, 2, 3

periodically. On the other hand, for π(◦) = (1
3
, 1

3
, 1

3
) π(◦)P = π(◦). So for periodic Markov

chains, stationary distribution has no implication about a limiting distribution. This exam-
ples easily generalizes to n× n matrices. Another case to keep in mind when the matrix P

admits of a decomposition P =

(
P1 0
0 P2

)
. Each Pj is necessarily a stochastic matrix, and

if π(j) is a stationary distribution for Pj, then (tπ(1), (1− t)π(2)) is one for P , for 0 ≤ t ≤ 1.
Thus the long term behavior of this chain depends on the initial distribution. ♠

Our goal is to identify a set of hypotheses which imply the existence and uniqueness of
the stationary distribution π and such that the long term behavior of the Markov chain is
accurately represented by π. To do so we first discuss the issue of the existence of solution
to (0.1.4.1) for a finite state Markov chain. Let 1 denote the column vector of all 1’s, then
P1 = 1 and 1 is an eigenvalue of P . This implies the existence of a row vector v = (v1, · · · , vn)
such that vP = v, however, a priori there is no guarantee that the eigenvector v can be chosen
such that all its components vj ≥ 0. Therefore we approach the problem differently. The
existence of π satisfying (0.1.4.1) follows from a very general theorem with a simple statement
and diverse applications and generalizations. We state the theorem without proof since its
proof has no relevance to stochastic processes.
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Theorem 0.1.4.1 (Brouwer Fixed Point Theorem) - Let K ⊂ Rn be a convex compact2 set,
and F : K → K be a continuous map. Then there is x ∈ K such that F (x) = x.

Note that only continuity of F is required for the validity of the theorem although we
apply it for F linear. To prove existence of π we let

K = {(x1, · · · , xn) ∈ Rn |
∑

xj = 1, xj ≥ 0}.

Then K is a compact convex set and let F be the mapping v → vP . The fact that P is a
stochastic matrix implies that P maps K to itself. In fact, for v ∈ K let w = (w1, · · · , wn) =
vP , then wj ≥ 0 and∑

iwi =
∑

i,j vjPji

=
∑

j vj

∑
i Pij

=
∑

j vj

= 1,
proving w ∈ K. Therefore Brouwer’s Fixed Point Theorem is applicable to ensure existence
of π for a finite state Markov chain.

In order to give a probabilistic meaning to the entries πj of the stationary distribution
π, we recall some notation. For states i 6= j let Tij be the random variable of first hitting
time of j starting at i. Denote its expectation by µij. If i = k then denote the expectation
of first return time to i by µi and define µii = 0.

Proposition 0.1.4.1 Assume a solution to (0.1.4.1) exists for the Markov chain defined by
the (possibly infinite) matrix P , and furthermore

µij <∞, µj <∞ for all i, j.

Then πiµi = 1 for all i.

Proof - For i 6= j we have
µij = E[E[Tij | X1]]

= 1 +
∑

k Pikµkj,
and

µj = 1 +
∑

k

Pjkµkj.

2A closed and bounded subset of Rn is called compact. KıRn is convex if for x, y ∈ K the line segment
tx + (1− t)y, 0 ≤ t ≤ 1, lies in K. The assumption of convexity can be relaxed but compactness is essential.
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The two equations can be written simply as

µij + δijµj = 1 +
∑

k

Pikµkj, where δij =

{
1 if i = j ;

0 otherwise.
(0.1.4.2)

Multiplying (0.1.4.2) by πi and summing over i (j is fixed) we obtain∑
i πiµij +

∑
i πiδijµj = 1 +

∑
i

∑
k πiPikµkj

= 1 +
∑

k πkµkj.
Cancelling

∑
i πiµij from both sides we get the desired result. ♣

The proposition in particular implies that if the quantities µij and µj are finite, then a

stationary distribution, if exists, is necessarily unique. Clearly if P =

(
P1 0
0 P2

)
then some of

the quantities µij will be infinite. Since for finite Markov chains, the existence of a solution to
(0.1.4.1) has already been established, the main question is the determination of finiteness of
µik and µk and when the stationary distribution reflects the long term behavior of the Markov
chain. It is convenient to introduce two definitions. Let X◦, X1, X2, · · · be a Markov chain
with state space S and transition matrix P . Let S = T ∪ C1 ∪ · · · be the decomposition
of the state space into transient and recurrent classes as described in proposition 0.1.2.1.
The Markov chain or its transition matrix is called positive (resp. almost positive)3 if all
the entries Pij (resp. all the entries Pij with i, j recurrent states) are positive. A Markov
chain or its transition matrix P is called regular (resp. almost regular) if P l is positive (resp.
almost positive) for some l. Clearly if P l is positive (resp. almost positive) then Pm is also
positive (resp. almost positive) for all m ≥ l. For a finite state almost regular Markov chain
(so that there is at least one recurrent state by exercise 0.1.2.6) the set of recurrent classes
form one equivalence class. The set of transient state may or may not be empty.

To understand the long term behavior of the Markov chain, we show that under certain
hypotheses the entries of the matrix P l have limiting values

lim
l→∞

P
(l)
ij = pj. (0.1.4.3)

Notice that the value pj is independent of i so the matrix P l tends to a matrix P∞ with the
same entry pj along jth column. This implies that if the initial distribution is any vector
π◦ = (π◦1, π

◦
2, · · · , π◦N) then

π◦P∞ = (p1, · · · , pN).

Therefore the long term behavior of the Markov chain is accurately reflected in the vector
(p1, · · · , pN) and pj = πj. More precisely we prove the following theorem:

3The terminology almost positive or almost regular is not standard.
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Theorem 0.1.4.2 Let P be the transition matrix of a finite state regular Markov chain.
Then

lim
l→∞

P
(l)
ij = πj.

The theorem remains valid for almost regular chains with a minor modification. To
fix notation, we let the {1, 2, · · · , N} denote the state space of a finite Markov chain
X◦, X1, X2, · · · . Assume states {1, · · · , n} are transient and {n + 1, · · · , N} are recurrent.
The transition matrix of the Markov chain is necessarily of the form

P =

(
P11 P12

0 P22

)
,

and P22 is an (N −n)× (N −n) stochastic matrix and P22 is regular. Let (πn+1, · · · , πN) be
the stationary distribution of of P22. Then

lim
l→∞

P
(l)
ij =

{
0 if j ≤ n;

πj if j ≥ n+ 1.

The proof given below works without change for this slightly more general case.
The proof of the theorem requires proposition 0.1.4.2 below and the idea of coupling.

Proposition 0.1.4.2 Let Z◦, Z1, Z2, · · · be an almost regular Markov chain with finite state
space {1, 2, · · · ,M} and transition matrix P where we are assuming states m+1, · · · ,M are
recurrent. Then there are constants c <∞ and λ < 1 such that

P [TiM > l] < cλl.

In particular all moments of TiM exist and P [TiM > l] → 0 as l→∞.

We postpone the proof of the proposition and introduce a version of coupling in order
to prove theorem 0.1.4.2. Let us describe the idea of coupling. Assume two Markov chains
X1, X2, · · · and Y1, Y2, · · · have the same law (i.e., the same state space S and transition
matrix) but start with different initial distributions. We combine the Markov chain together
in the form (Xj, Yj) with state space S × S. The description of the underlying probability
space for the coupled Markov chain (Xj, Yj) requires some care. Assume S = {1, 2, · · · , N}
(for simplicity although finiteness is not necessary). In our description of the underlying
probability space of a Markov chain, e.g. X1, X2, · · · or Y1, Y2, · · · we used N -sided dice. If a
path for the coupled chain is in state (a, b), a 6= b, at time l then we roll dice corresponding
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to states a and b. The path moves to state (c, d) at time l+ 1 if the outcomes of the rolls of
the dice are c and d respectively. If the path is in state (a, a) at time l, then only one die
(corresponding to state a) is rolled and the path moves to state (b, b) where b is the outcome
of the roll of the die corresponding to state a. Thus if the coupled chain (Xj, Yj) enters the
set D = {(a, a) | a ∈ S} at time l then in all subsequent times it will be in D. One often
refers to D as the diagonal. The reason the idea of coupling is useful is that if we know the
development of a Markov chain for one initial distribution (for example, for Yj), and if we
know that the two chains merge, then we can deduce the long term term behavior of Xj. We
will now use this idea to prove theorem 0.1.4.2. Notice that if P is regular, then the coupled
chain (Xj, Yj) is almost regular. In fact, we have

Lemma 0.1.4.1 Assume P is regular. Then the coupled chain (Xj, Yj) is almost regular;
the transient states are T = {(a, b) | a 6= b, a, b ∈ S} and the recurrent states are D =
{(a, a) | a ∈ S}.

Proof - Assume X◦ = i and let j 6= i and a be states. Let Ω
(l)
i,j;a be the set of paths of the

coupled chain which at time 0 are in (i, j) and at time l in (a, a). Then

P [Ω
(l)
i,j;a] ≥ πjP

(l)
ia P

(l)
ja > 0,

for l sufficiently large. Therefore the diagonal is accessible from any state. It is clear that
non-diagonal states are not accessible from the diagonal. The required result follows from
regularity of the original Markov chain. ♣
Proof of Theorem 0.1.4.2 - Consider the coupled chain (Xj, Yj) where we assume that
the initial distribution X◦ = i and Y◦ = (π1, · · · , πN). Let T denote the first hitting time
of D. In view of lemma 0.1.4.1, with probability 1 paths of the coupled chain enter D. We
have

|P (l)
ij − πj| = |P [Xl = j]− P [Yl = j]|

≤ |P [Xl = j, T ≤ l]− P [Yl = j, T ≤ l]|+
|P [Xl = j, T > l]− P [Yl = j, T > l]|.

It follows from propsition 0.1.4.2 and lemma 0.1.4.1 that P [T > l] → 0 as l→∞. Therefore
each term P [Xl = j, T > l] and P [Yl = j, T > l] goes to zero as l →∞. If a path ω enters
D at time l′ then it remains in D for all l ≥ l′. Since with probability 1 every path eventually
enters D, the set of paths for which Xl(ω) 6= Yl(ω) will have arbitrarily small probability by
taking l sufficiently large. Therefore

lim
l→∞

|P [Xl = j, T ≤ l]− P [Yl = j, T ≤ l]| = 0

It follows that liml→∞ P
(l)
ij = πj. ♣
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We have shown that the stationary distribution exists for regular finite state Markov
chains and the entries of the stationary distribution are the reciprocals of the expected
return times to the corresponding states. We can in fact get more information from the
stationary distribution. For example, for states a and i let Ri(a) be the number of visits to
state i before first return to a given that initially the Markov chain was in state a. Ri(a) is
a random variable and we let

ρi(a) = E[Ri(a)].

We want to calculate ρi(a). Observe

Lemma 0.1.4.2 We have

ρi(a) =
∞∑
l=1

P [Xl = i, Ta ≥ l | X◦ = a]

where Ta is the first return time to state a.

Proof - Let Ω(l) denote the set of paths which are in state i at time l, and first return to a
occurs at time l′ > l. Define the random variable Il by

Il(ω) =

{
1 if ω ∈ Ω(l);

0 otherwise.

Then Ri(a) =
∑∞

l=1 Il. Conequently,

ρi(a) =
∞∑
l=1

E[Il] =
∞∑
l=1

P [Xl = i, Ta ≥ l | X◦ = a]

as required. ♣
It is clear that

P [X1 = i, Ta ≥ 1 | X◦ = a] = Pai.

For l ≥ 2 we use conditional probability
P [Xl = i, Ta ≥ l | X◦ = a] =

∑
j 6=a P [Xl = i, Ta ≥ l, Xl−1 = j | X◦ = a]

=
∑

j 6=a P [Xl = i | Ta ≥ l, Xl−1 = j,X◦ = a].

P [Ta ≥ l − 1, Xl−1 = j | X◦ = a]
=

∑
j 6=a PjiP [Ta ≥ l − 1, Xl−1 = j | X◦ = a].
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Substituting in lemma 0.1.4.2 and noting ρa(a) = 1 we obtain
ρi(a) = Pai +

∑
j 6=a Pji

∑
l≥2 P [Xl−1 = j, Ta ≥ l − 1 | X◦ = a]

= Pai +
∑

j 6=a ρj(a)Pji

=
∑
ρj(a)Pji,

where the last summation is over all j including j = a. This means the vector ρ =
(ρ1(a), ρ2(a), · · · ) satisfies

ρP = ρ, ρi(a) ≥ 0.

We now prove

Corollary 0.1.4.1 Assume the Markov chain has a unique stationary distribution and the
expected hitting times µi and µij are finite. Then

ρi(a) =
µa

µi

.

Proof - ρP = ρ and the hypotheses imply that ρ is a multiple of the stationary distribution.
Since ρa(a) = 1 the required result follows. ♣

We need some preliminary considerations for the proof of proposition 0.1.4.2. First
assume P is a regular N ×N matrix. Define (N − 1)× (N − 1) matrices Q(l) = (Q

(l)
ij ), where

1 ≤ i, j ≤ N − 1 by

Q
(l)
ij = P [Xl = j, TiN > l | X◦ = i].

Since the indices i, j ≤ N − 1 we have Q
(1)
ij = Pij and Q(l) = (Q(1))l, or equivalently,

Q
(l)
ij =

∑
j1 6=N

∑
j2 6=N

· · ·
∑

jl−1 6=N

Pij1Pj1j2 · · ·Pjl−1N . (0.1.4.4)

We need two simple technical lemmas.

Lemma 0.1.4.3 If P is positive then there is ρ < 1 such that

N−1∑
j=1

Q
(l)
ij < ρl,

and consequently
∑∞

l=1

∑N−1
j=1 Q

(l)
ij converges.
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Proof - Since P is positive

N−1∑
j=1

Pij ≤ ρ < 1

for some ρ and all i. It follows from (0.1.4.4) that

N−1∑
j=1

Q
(l)
ij ≤ ρl.

The required result follows from the convergence of a geometric series. ♣

Lemma 0.1.4.4 For a regular matrix P ,
∑N−1

j=1 Q
(l)
ij is a non-increasing function of l.

Proof - Since
∑N−1

j=1 Q
(1)
ij ≤ 1, we have

N−1∑
j=1

Q
(l+1)
ij ≤

N−1∑
k=1

Q
(l)
ik

N−1∑
j=1

Q
(1)
kj ≤

N−1∑
j=1

Q
(l)
ij .

Thus
∑N−1

j=1 Q
(l)
ij is a non-increasing function of l. ♣

Proof of proposition 0.1.4.2 First assume P regular. We have

P [TiN > l] =
N−1∑
j=1

P [TiN > l, Xl = j | X◦ = i] =
N−1∑
j=1

Q
(l)
ij .

By regularity of the Markov chain, Pm is positive for some m. Lemma 0.1.4.3 (or more

precisely its proof) implies that
∑N−1

j=1 Q
(mn)
ij < ρn < 1. By lemma 0.1.4.4 for nm ≤ l <

(n+ 1)m we have

N−1∑
j=1

Q
(l)
ij ≤

N−1∑
j=1

Q
(mn)
ij < (ρ

n
L )L < λL

for some λ < 1 and we need c to take care of the first m terms. This completes the proof of
the proposition for P regular.

For the general case of almost regular it is only necessary to make minor adjustments to

the above argument. Let P =

(
P11 P12

0 P22

)
be the matrix of a almost regular Markov chain.

Construct a new Markov chain with transition matrix

Q =

(
P11 q
0 1

)
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where q is a column vector of dimension m with entries q1, · · · , qm. The quantities qj are
uniquely determined by P11 and the requirement that Q is a stochastic matrix. The Markov
chain with transition matrix Q has one recurrent state, namely m+1, and m transient states.
The matrix Q is the transition matrix of the Markov chain where all the recurrent states of
P are collapsed into one state. This process facilitates the analysis. Write Ql in the form

Ql =

(
P l

11 q(l)

0 1

)
where q(l) is a column vector. It follows from regularity of the matrix P22 that for l sufficiently
large all entries of the vector q(l) are positive. Then the arguments of leading to the proof
of the proposition are applicable to show that

P [T ′i m+1 > l] < cλl (0.1.4.5)

where T ′i m+1 is the first hitting time of state m+1 starting at i for the Markov chain defined
by Q. In other words the probability of the set of paths starting at the transient state i
and first hitting a recurrent state at time > l approaches zero like cλl for some constants c
and λ < 1 as l → ∞. Combining (0.1.4.5) with the proposition for the case of regular P
we immediately complete the proof of the proposition after possibly replacing c by a larger
constant. ♣
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EXERCISES

Exercise 0.1.4.1 Consider three boxes 1,2,3 and three balls A,B,C, and the Markov chain
whose state space consists of all possible ways of assigning three balls to three boxes such that
each box contains one ball, i.e., all permutations of three objects. For definiteness, number
the states of the Markov chain as follows:

1 : ABC, 2 : BAC, 3 : ACB, 4 : CAB, 5 : BCA, 6 : CBA

A Markov chain is described by the following rule:

• A pair of boxes (23), (13) or (12) is chosen with probabilities p1, p2 and p3 respectively
(p1 + p2 + p3 = 1) and the balls in the two boxes are interchanged.

1. Exhibit the 6× 6 transition matrix P of this Markov chain.

2. Determine the recurrence, periodicity and transience of the states.

3. Show that for pj > 0 this Markov chain has a unique stationary distribution. Is the long
term behavior of this Markov chain reflected accurately in its stationary distribution?
Explain.

4. Find a permutation matrix4 S such that

SPS−1 =

(
0 Q1

Q2 0

)
,

where Qj’s are 3× 3 matrices.

Exercise 0.1.4.2 Consider the Markov chain with state space as in exercise 0.1.4.1, but
modify the rule • as follows:

• Assume pj > 0 and p1 + p2 + p3 < 1. Let q = 1− (p1 + p2 + p3) > 0. Interchange the
balls in boxes according to probabilities pj as in problem 1, and with probability q make
no change in the arrangement of balls.

1. Exhibit the 6× 6 transition matrix P of this Markov chain.

2. Determine the recurrence, periodicity and transience of the states.

4A matrix with entries 0 or 1 and exactly one 1 in every row and column is called a permutation matrix.
It is the matrix representation of permuting n letters or permuting the basis vectors.
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3. Does this Markov chain have a unique stationary distribution? Is the long term behavior
of the Markov chain accurately reflected by the stationary distribution? Explain.

Exercise 0.1.4.3 Consider ten boxes 1, · · · ,10 and ten balls A,B, · · · , J , and the Markov
chain whose state space consists of all possible ways of assigning ten balls to ten boxes such
that each box contains one ball, i.e., all permutations of ten objects. Let p1, · · · , p10 be positive
real numbers such that

∑
pj = 1, and define the transition matrix of the Markov chain by

the following rule:

• With probability pj, j = 1, · · · , 9, interchange the balls in boxes j and j + 1, and with
probability p10 make no change in the arrangement of the balls.

1. Show that this Markov chain is recurrent, aperiodic and all states communicate. (Do
not attempt to write down the transition matrix P . It is a 10!× 10! matrix.)

2. What is the unique stationary distribution of this Markov chain?

3. Show that all entries of the matrix P 45 are positive.

4. Exhibit a zero entry of the matrix P 44?

Exercise 0.1.4.4 Consider three state Markov chains X1, X2, · · · and Y1, Y2, · · · with the
same transition matrix P = (Pij). What is the transition matrix of the coupled chain
(X1, Y1), (X2, Y2), · · · ? What is the underlying probability space?

Exercise 0.1.4.5 Consider the cube with vertices at (a1, a2, a3) where aj’s assume values 0
and 1 independently. Let A = (0, 0, 0) and H = (1, 1, 1). Consider the random walk, initially
at A, which moves with probabilities p1, p2, p3 parallel to the coordinate axes.

1. Exhibit the transition matrix P of the Markov chain.

2. For π = (π1, · · · , π8), does

πP = π, πj > 0,
∑

πj = 1

have a unique solution?

3. Let Y be the random variable denoting the number of times the Markov chain hits H
before its first return to A. Show that E[Y ] = 1.

Exercise 0.1.4.6 Find a stationary distribution for the infinite state Markov chain described
of exercise 0.1.2.7. (You may want to re-number the states in a more convenient way.)
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Exercise 0.1.4.7 Consider an 8× 8 chess board and a knight which from any position can
move to all other legitimate positions (according to the rules of chess) with equal probabilities.
Make a Markov chain out of the positions of the knight (see exercise 0.1.2.1) and let P denote
its matrix of transition probabilities. Classify the states of the Markov chain determined by
P 2. From a given position compute the average time required for first return to that position.
(You may make intelligent use of the computer to solve this problem, but do not try to
simulate the moves of a knight and calculate the expected return time by averaging from the
simulated data.)

Exercise 0.1.4.8 Consider two boxes 1 and 2 containing a total N balls. After the passage
of each unit of time one ball is chosen randomly and moved to the other box. Consider the
Markov chain with state space {0, 1, 2, · · · , N} representing the number of balls in box 1.

1. What is the transition matrix of the Markov chain?

2. Determine periodicity, transience, recurrence of the Markov chain.

Exercise 0.1.4.9 Consider two boxes 1 and 2 each containing N balls. Of the 2N balls
half are black and the other half white. After passage of one unit of time one ball is cho-
sen randomly from each and interchanged. Consider the Markov chain with state space
{0, 1, 2, · · · , N} representing the number of white balls in box 1.

1. What is the transition matrix of the Markov chain?

2. Determine periodicity, transience, recurrence of the Markov chain.

3. What is the stationary distribution for this Markov chain?

Exercise 0.1.4.10 Consider the Markov chain with state space the set of integers Z and
(doubly infinite) transition matrix given by

pij =


pi ifj = i+ 1;

qi if j = i− 1;

0 otherwise.

where pi, qi are positive real numbers satisfying pi + qi = 1 for all i. Show that if this Markov
chain has a stationary distribution π = (· · · , πj, · · · ), then

πj = pj−1πj−1 + qj+1πj+1.
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Now assume q◦ = 0 and the Markov chain is at origin at time 0 so that the evolution of the
system takes place entirely on the non-negative integers. Deduce that if the sum

∞∑
n=1

p1p2 · · · pn−1

q1q2 · · · qn−1qn

converges then the Markov chain has a stationary distribution.

Exercise 0.1.4.11 Let α > 0 and consider the random walk Xn on the non-negative integers
with a reflecting barrier at 0 (that is, P◦1 = 1) defined by

pi i+1 =
α

1 + α
, pi i−1 =

1

1 + α
, for i ≥ 1.

1. Find the stationary distribution of this Markov chain for α < 1.

2. Does it have a stationary distribution for α ≥ 1?

Exercise 0.1.4.12 Consider a region D of space containing N paricles. After the passage
of each unit of time, each particle has probability q of leaving region D, and assume that
k new particles enter the region D following a Poisson distribution with parameter λ. The
exit/entrance of all the particles are assumed to be indpendent. Consider the Markov chain
with state space Z+ = {0, 1, 2, · · · } representing the number of particles in the region. Com-
pute the transition matrix P for the Markov chain and show that

P
(l)
jk −→ e−

λ
q
λk

qkk!
,

as l→∞.

Exercise 0.1.4.13 Let f1, f2, · · · be a sequence of positive real numbers such that
∑
fj = 1.

Let Fn =
∑n

i=1 fi and consider the Markov chain with state space Z+ defined by the transition
matrix P = (Pij) with

Pi◦ =
fi+1

1− Fi

, Pi i+1 = 1− pi◦ =
1− Fi+1

1− Fi

for i ≥ 0. Let ql denote the probability that the Markov chain is in state 0 at time l and T◦
be the first return time to 0. Show that

1. P [T◦ = l] = fl.
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2. For l ≥ 1, ql =
∑

k fkql−k. Is this the re-statement of a familiar relation?

3. Show that if
∑

j(1 − Fj) < ∞, then the equation πP = π can be solved to obtain a
stationary distribution for the Markov chain.

4. Show that the condition
∑

j(1−Fj) <∞ is equivalent to the finiteness of the expectation
of first return time to 0.

Exercise 0.1.4.14 Let P be the 6× 6 matrix of the Markov chain chain in exercise 0.1.4.2.
Let p1 = p2 = p3 = 2

7
and q = 1

7
. Using a computer (or otherwise) calculate the matrices P l

for l = 2, 5 and 10 and compare the result with the conclusion of theorem 0.1.4.2.

Exercise 0.1.4.15 Assume we are in the situation of exercise 0.1.4.3 except that we have
4 boxes instead of 10. Thus with probability pj, j = 1, 2, 3 the balls in boxes j and j + 1 are
interchanged, and with probability p4 no change is made. Set

p1 =
1

5
, p2 =

1

4
, p3 =

1

5
, p4 =

13

60
.

Exhibit the 24 × 24 matrix of the Markov chain. Using a computer, calculate the matrices
P l for l = 3, 6, 10 and 20 and compare the result with the conclusion of theorem 0.1.4.2.
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0.2 Examples of Markov Chains

0.2.1 Patterns in Coin Tossing

In this subsection we consider the problem of the first appearance of certain patterns in
coin tossing. To put the problem in a more concrete framework suppose two individuals
are playing a coin tossing game where a random number generator, starting at time l = 1,
produces a 0 or 1 (or equivalently an H or T ), with equal probability, each unit of time.
Player A chooses a pattern of some length n. Then player B chooses another pattern of the
same length. The random number generator is turned on and it produces a stream of 0’s and
1’s which we denote by X1, X2, · · · , Xl, · · · , where Xl denotes the integer generated at time
l. Our computer has a window which at time l displays the portion Xl−n+1, Xl−n+2, · · · , Xl

of the sequence. the player whose pattern appears first wins the game. The interesting
conclusion is that regardless of what pattern player A chooses, B can choose a pattern that
beats it (we assume n ≥ 3). Since there are only finitely many patterns of a given length
and each pattern of length n has the same probability of appearance in n tosses of a fair
coin, this may appear very surprising. Two points will clarify this matter.

The fact that all patterns of a given length have the same probability of appearance is not
relevant. For example assume player A chooses 000, then player B by choosing the pattern
100 will beat player A although both patterns have the same probability of appearance. In
fact if of the first three numbers generated are not 000 then necessarily player B wins because
in that case the first time 000 appears it is preceded by 1. Therefore probability of A winning
is only 1

8
. The point is that because we have a moving window which displays the sequence

Xl−n+1, Xl−n+2, · · · , Xl, the appearance of various patterns are no longer independent events.
Note that if A beatsB andB beats C we cannot conclude thatA beats C. To demonstrate

this point let us consider a different context. Assume we have three students A,B and C
who take 100 tests. Assume

1. A scored 70 on every test.

2. B scored 50 on tests 1 through 60, and scored 90 on tests 61 through 100.

3. C scored 45 on tests 1 through 40 and scored 80 on tests 41 through 100.

It follows that 60% of the times A scored higher than B; B scored higher than C 80% of the
times; but 60% of the times C scored higher than A. One can summarize this observation
by the statement that stochastic order relations, unlike standard ones, are not transitive.

Example 0.2.1.1 Before considering the general case let us analyze the case of patterns
of length n = 3 in greater detail. We have already shown that the pattern β = 100 beats
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α = 000 seven out of eight times. Let γ = 110 and A denote the event that β beats γ given
that X1 = 1. Since P [A | X2 = 1] = 0 we obtain

P [A] =
1

4
P [A | X2 = 0, X3 = 0] +

1

4
P [A | X2 = 0, X3 = 1].

It is clear that P [A | X2 = 1] = 0, P [A | X2 = 0, X3 = 0] = 1 and P [A | X2 = 0, X3 = 1] =
P [A]. Therefore P [A] = 1

3
. Let β>γ denote the event that β beats γ. Then

P [β>γ] =
1

2
P [A] +

1

2
P [β>γ|X1 = 0].

Since P [β>γ|X1 = 0] = P [β>γ] and P [A] = 1
3

we obtain

P [β>γ] =
1

3
,

or two out of three times pattern γ = 110 beats β = 100. How can we beat γ? Pattern
β′ = 011 beats γ three out of four times since unless X1 = 1, X2 = 1, in which case γ>β′, 011
beats 110. By symmetry pattern γ′ = 001 beats β′ = 011 two out of three times. Consider
the pattern ε = 101. We proceed as before by conditioning on X1:

P [ε>γ] = 1
2
P [ε>γ | X1 = 0] + 1

2
P [ε>γ | X1 = 1]

= 1
2
P [ε>γ] + 1

2
P [ε>γ | X1 = 1].

Let C be the event [ε>γ | X1 = 1]. Then P [C|X2 = 1] = 0 and consequently by conditioning
on X3 we obtain

P [C] =
1

2
P [C|X2 = 0] =

1

4
P [ε>γ] +

1

4
.

Substituting, we obtain after a simple calculation

P [ε>γ] =
1

3
.

We summarize our calculations as follows:

1. β = 100 beats α = 000 with probability 7
8
.

2. γ = 110 beats β = 100 with probability 2
3
.

3. β′ = 011 beats γ = 110 with probability 3
4
.

4. γ = 110 beats ε = 101 with probability 2
3
.
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In view of the symmetry between 0 and 1 this completes our claim that for every pattern of
length 3 there is pattern of the same length that beats it. ♠

While for short patterns one can completely analyze the situation by conditioning, it
is necessary to invoke some more sophisticated techniques to obtain formulas for relevant
probabilities. We invoke our knowledge of finite Markov chains for this purpose. Consider
the Markov chain whose state space S consists of ∅ and all patterns of length ≤ n. Thus
S has cardinality 2n+1 − 1. Initially the Markov chain is in state ∅, at time 1 it moves to
one of the states 0 or 1; at time 2 to one of the four states 00, 01, 10, 11 etc. until time n
when it enters one of the 2n patterns of length n. For l > n it remains in one of the states
corresponding to patterns of length n. Thus the states corresponding to ∅ and patterns of
length < n are transient while those of length n are recurrent.

Let α1, · · · , αk be patterns of length n of 0’s and 1’s, and set R = {α1, · · · , αk} ⊂ S. We
consider the problem of calculating the probability that the first visit to R is by hitting state
α1. Let a ∈ S but a 6∈ R, TaR denote the first hitting time of R starting at a, and µaR be its
expectation. For α ∈ R let Rα denote the event that the Markov chain enters R for the first
time through α ∈ R, i.e., the set of paths whose first visit to R is at α. Set ψaα = P [Rα]
where we are assuming that paths start at a. We have

µaβ = E[Taβ]
= E[Taβ − TaR] + E[TaR]
=

∑
α∈R E[Taβ − TaR | Rα]ψaα + µaR.

Looking at the paths, it is immediate that

E[Taβ − Taα | Rα] = µαβ.

Therefore
µaβ = µaR +

∑
α∈R

µαβψaα (0.2.1.1)

The quantities ψaα satisfy the linear relation∑
α∈R

ψaα = 1. (0.2.1.2)

Here we are using the assumption that the Markov chain enters the set R with probability
1 (recurrence, see below for further discussion). If R has cardinality r, then the equations
(0.2.1.1) and (0.2.1.2) form a linear system of r + 1 equations in r + 1 unknowns µiR, ψia

which can be solved to obtain the desired quantities. Note that in these equations µαα = 0.
Let us go back to our Markov chain. After time l = n a moving window exhibits the

latest pattern of length n which is a recurrent state, and states of length < n are transient.
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To demonstrate the applicability of the above analysis, we consider the special case where
R consists of two patterns of length n which we denote by 1 and 2. Let a = ∅. Then solving
equations (0.2.1.1) and (0.2.1.2) yields

ψ∅1 =
µ∅1 − µ∅2 + µ21

µ12 + µ21

, ψ∅2 =
µ∅2 − µ∅1 + µ12

µ12 + µ21

. (0.2.1.3)

The equations (0.2.1.3) enable one in general to compare the relative merit of two patterns
of length n = 3. Note that the numerator depends on the difference µ∅1 − µ∅2 which shows
that the time n − 1 required to get to patterns of length n is in fact irrelevant. The fact
that the solutions do not involve µaR is not limited to the case n = 3 since by taking the
differences of the equations in (0.2.1.1) and (0.2.1.2) we obtain a set of r equations in r
unknowns which does not involve µaR. Of course one should address the issue of solvability
of this system, however we will ignore this matter.

Although the term µaR does not appear in the calculation of ψ∅α, nevertheless it is
reasonable to compute it. Let R = {α1, · · · , αk} consist of k patterns of length n, and FR(ξ)

denote the generating function for the first hitting time of the set R. Let P
(l)
∅R denote the

probability the the window shows one of the patterns in R at time l, and PR(ξ) =
∑
P

(l)
∅Rξ

l

be its probability generating function. Then P∅R(ξ) can be easily expressed in terms of
P∅αj

(ξ)’s. It is clear that

P∅R(ξ) =
k∑

j=1

P∅αj
(ξ). (0.2.1.4)

This follows from the fact the events Xl = αi and Xl = αj for i 6= j are mutually exclusive
events. Since we already know, in principle, how to calculate P∅αj

(ξ), the calculation of
P∅R(ξ) is straightforward. We also have the relation

P∅R(ξ) = FR(ξ)PRR(ξ), (0.2.1.5)

where PRR(ξ) is the probability generating function for being in R given that initially the
MArkov chain is in R. Equation 0.2.1.5 is similar to the second equation in theorem 0.1.3.1.
In principle we also know how to calculate PRR(ξ), and therefroe we can calculate FR(ξ) and
calculate the required expectation. The generating function calculation is perhaps laborious
and it is not necessary for computing the quantities ψ∅a.

We already know how to calculate the expectation µ∅α of the first hitting time to state
α ∈ S for example by making use of the generating function for time of first appearance of
the pattern α. It is not difficult to calculate the expectation µαβ of the hitting time of β
given that we start in α 6= β. To do so we make use of generating function Fαβ. We have

µαβ = lim
ξ→1−

1− Fαβ(ξ)

1− ξ
. (0.2.1.6)
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The quotient on the right hand side is the derivative except that since the derivative may not
exist at ξ = 1, we prefer to use this expression. To evaluate the limit we multiply numerator
and denominator by Pββ(ξ) and use the fundamental relations of theorem 0.1.3.1 to obtain

µαβ = lim
ξ→1−

Pββ(ξ)− Pαβ(ξ)

(1− ξ)Pββ(ξ)
. (0.2.1.7)

Notice that for a recurrent state β we have limξ→1− Pββ(ξ) = ∞, so it is necessary to
determine the limit in the denominator.

Lemma 0.2.1.1 With the above notation we have

lim
ξ→1−

(1− ξ)Pββ(ξ) =
1

µβ

,

where µβ denotes the expectation of the first return time to β.

Proof - Let N be a large integer and write

Pββ(ξ) =
N∑

l=0

P
(l)
ββξ

l +
∞∑

l=N+1

P
(l)
ββξ

l.

Clearly for every fixed N <∞,

lim
ξ→1−

(1− ξ)
N∑

l=0

P
(l)
ββξ

l = 0.

On the other hand, from theorem 0.1.4.2 we know that for l sufficiently large, P
(l)
ββ is approx-

imately 1
µβ

which is the βth component of the vector representing the stationary distribution.

Therefore

lim
ξ→1−

(1− ξ)
∞∑

l=N+1

P
(l)
ββξ

l = lim
ξ→1−

[(1− ξ)
ξN+1

1− ξ

1

µβ

] =
1

µβ

,

completing the proof of the lemma. ♣
Note that lemma 0.2.1.1 did not make any use of the particular Markov chain under

discussion and is of a general nature. In evaluating the numerator of 0.2.1.7 we make use
of an observation about our particular Markov chain. Since we are interested in patterns
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of length n and our random number generator produces a 0 or a 1 at each unit of time
independently, we have

P
(l)
αβ = P

(l)
ββ for l ≥ n.

It follows that the numerator of 0.2.1.7 is the finite sum

1 +
n−1∑
l=1

[P
(l)
ββ − P

(l)
αβ ]. (0.2.1.8)

Therefore

µαβ =
(
1 +

n−1∑
l=1

[P
(l)
ββ − P

(l)
αβ ]

)
µβ. (0.2.1.9)

It should be pointed out the expectations µ∅α depend on the particular recurrent state
α. This point is discussed in exercise 0.2.1.3 below.

In the Markov chain of the above discussion, patterns of length n are the recurrent states
and those of length < n are transient. A related issue is whether as the window moves and
our computer generates 0’s and 1’s with probability 1

2
ad infinitum, every pattern (of fixed

length n) is generated infinitely often. We can answer this question more or less in the same
way that we showed that with probability 1 a transient state is visited only finitely many
times but with one important modification. If we are looking at patterns of length n then
we consider, for some starting point k = 1, · · · , n− 1, the set

Ω◦ =
∞⋂
l=1

∞⋃
m=l

Ω(k+mn),

where Ω(k+mn) is the set of paths which have the desired pattern at time k +mn, k +mn+
1, · · · , k +mn+ n− 1. Notice that here we are only looking at the sets Ω(k+mn) with k and
n fixed. It is clear the events Ω(k+n), Ω(k+2n), Ω(k+3n), · · · are independent. To prove that
every pattern of length appears infinitely often with probability 1, it suffices to show that
for some k the complement of Ω◦ has probability 0. The complement of Ω◦ is

Ω′
◦ =

∞⋃
l=1

∞⋂
m=l

Am,

where Am denote the complement of Ω(k+mn). Thus it suffices to show that for all l

P [
∞⋂

m=l

Am] = 0. (0.2.1.10)
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The independence of Ω(k+mn)’s as m varies implies that of A1, A2, A3, · · · and therefore we
have

P
[ i+j⋂

m=i

Am] =

i+j∏
m=i

(
1− P [Ω(k+mn)]

)
.

Since 1− x ≤ e−x we obtain

P
[ i+j⋂

m=i

Am

]
≤

i+j∏
m=i

e−P [Ω(k+mn)]. (0.2.1.11)

Now we make use of the fact each pattern is a recurrent state to conclude that, for some k,∑
m Ω(k+mn) = ∞. Substituting in (0.2.1.11) and letting j →∞ we conclude the validity of

(0.2.1.10). Therefore every pattern is visited infinitely often with probability 1. The general
issue of infinite visits to a recurrent state of a Markov chain will be discussed in a later
subsection.

The algebraic method developed earlier for the calculation of the generating function
of the time of the appearance of a pattern can be extended to this case of comparing the
relative merits of two patterns. Let A and B be two pattern of the same length n let XA be
the formal sum of all sequences of H’s T ’s terminating in pattern A and such that pattern
B does not appear anywhere. In other words, it is the formal sum of all possible sequences
with pattern A beating pattern B. Let Y be the formal sum of all finite sequences of H’s
T ’s not containing either pattern A or pattern B. Just as in the case of a single pattern it
is a simple matter to verify the validity of the following identity:

1 + Y (H + T ) = Y +XA +XB. (0.2.1.12)

Introduce the quantities ∆AB
j by

∆BA
j =

{
1 if Bj = Aj;

0 otherwise.

Note that ∆BA
j 6= ∆AB

j . It is straightforward to verify the validity of the following equations
which are patterned after a similar identity for the case of a single pattern:

Y A = XA

n−1∑
j=◦

∆A
n−jA

j +XB

n−1∑
j=◦

∆BA
n−jA

j, (0.2.1.13)
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and

Y B = XB

n−1∑
j=◦

∆AB
n−jA

j +XB

n−1∑
j=◦

∆B
n−jB

j. (0.2.1.14)

Let XA(ξ) denote the series obtained from substituting pξ for H and qξ for T in XA. If
we furthermore set ξ = 1 in XA(ξ) we obtain the probability that when pattern A appears
for the first time pattern B has not yet appeared. Now assume that the coin is fair so that
p = 1

2
= q. Then calculations simplify considerably and we obtain the neat formula (0.2.1.15)

given below describing the relative merits of patterns A and B. Note that to quantify the

relative merits of the patterns A and B we calculate
XA( 1

2
)

XB( 1
2
)
. This quotient being > 1 (resp.

< 1) means pattern A (resp. pattern B) is superior. It is straightforward algebra to show
that the substitution H = 1

2
= T in (eq:BoCan32) and (eq:BoCan32A) yields

XA(
1

2
)℘(A,A) +XB(

1

2
)℘(B,A) = XA(

1

2
)℘(A,B) +XB(

1

2
)℘(B,B),

where

℘(A,B) =
n−1∑
j=◦

2i∆AB
j .

Consequently
XA(1

2
)

XB(1
2
)

=
℘(B,B)− ℘(B,A)

℘(A,A)− ℘(A,B)
. (0.2.1.15)

From this formula it is a simple matter to examine the relative merits of any two given
patterns. A general formula for beating a pattern is given in exercise 0.2.1.5.
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EXERCISES

Exercise 0.2.1.1 Verify the conclusion of example 0.2.1.1 on the basis of (0.2.1.3).

Exercise 0.2.1.2 Assume the initial state is a pattern α of length n. Let T (r) denote the
time of the rth appearance of α. What is the normal approximation to T (r) as r →∞? How
should this modified if we start with initial state ∅?

Exercise 0.2.1.3 Use the generating functions for patterns 000 and 100 to show that µ∅α
depends on α.

Exercise 0.2.1.4 Analyze patterns of length four (as in example 0.2.1.1.

Exercise 0.2.1.5 Let A = A1A2 . . . An be a pattern of length n ≥ 3 with each Aj = H or T .
Let A′j be the reverse of Aj. Show that the pattern A′2A1A2 . . . An−1 beats pattern A.
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0.2.2 A Branching Process

It is natural to see if we can derive a formula for the generating function of sums of iid
random variables. In fact, more generally, we let N be a random variable with values in N
and X a random variable variable with values in Z+. Let X1, X2, · · · be a sequence of iid
random variables with with the same distribution as X. The random variable N may not
be independent from X1, X2, · · · . Set Y = X1 +X2 + · · ·+XN . We have

Lemma 0.2.2.1 With the above notation and hypothesis, we have

FY (ξ) = FN(FX(ξ)).

In particular, if N is a fixed integer, then FY (ξ) = FX(ξ)N .

Proof - We have
E[ξY ] = E[E[ξY | N ]]

(by independence) = E[E[ξX1 ] · · ·E[ξXN ]]
= E[E[ξX ]N ]
= FN(E[ξX ])
= FN(FX(ξ)),

proving the lemma. ♣
As another example of a Markov chain and application of generating functions we consider

a simple Branching Process. Assume at time l = 0 there is one particle. Let X be a random
variable with values in Z+ and f(k) = P [X = k] be its density function. At time l = 1 there
are X particles. At time l = 2 each particle that has appeared at time l = 1 is replaced by
X particles independently of each other. Thus if Zl is the number of particles at time l, (so
that Z◦ = 1), then

Zl+1 =

Zl∑
j=1

Xj (0.2.2.1)

whereXj are iid with the same distribution asX. We are interested in evaluating liml→∞ P [Zl =
0], i.e., the probability that the branching process (or chain) dies. The answer to this ques-
tion is quite simple and elegant in terms of the generating function FX(ξ). In fact, we show
that if ζ is smallest non-negative root of the equation FX(ξ) = ξ, then

lim
l→∞

P [Zl = 0] = ζ. (0.2.2.2)

To eliminate some trivial cases we assume

0 < f(0) < 1.
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Let ζn = P [Zn = 0]. In view of the the inclusion of events {Zn = 0} ⊂ {Zn+1 = 0}, we have

ζn ≤ ζn+1 ≤ 1,

and therefore limn→∞ ζn exists. We denote this limit by ζ. Set Gn(ξ) = FZn(ξ). Then lemma
0.2.2.1 implies

Gn+1(ξ) = Gn(FX(ξ)) = Gn−1(FX(FX(ξ))) = · · · = FX(Gn(ξ)).

Clearly P [Zn = 0] is the constant term of Fn(ξ) and so

ζn+1 = Fn+1(0) = FX(Fn(0)) = FX(ζn).

Let n→∞ to obtain

ζ = FX(ζ).

Now FX(ξ) in an increasing function of ξ since FX(ξ) = E[ξX ]. Let η > 0, FX(η) = η and η
be the smallest positive root of the equation FX(ξ) = ξ. If ζn < η, then (draw a picture and
use increasing property of FX)

ζn+1 = FX(ζn) ≤ FX(η) = η.

Since 0 < f(0) < 1 we have η > FX(0) = ζ◦, and it follows that ζ is the smallest positive
root of FX(ξ) = ξ.

Except when the density function fX of X has special forms, it is not possible to give
closed form expressions for the generating functions FX(ξ) and Fl(ξ). An example where
such a calculation is possible is given in exercise 0.2.2.3.

It is intuitively clear that as as l → ∞ one should expect Zl either go to ∞ or 0. This
follows easily from

Lemma 0.2.2.2 Assume f(1) 6= 1. The states 1, 2, 3, · · · of the branching process Z◦ =
1, Z1, Z2, · · · are transient.

Proof - Let k ≥ 1 be an integer and Fn =
∑

l≥1 P [Zn+l = k | Zn = k]. If f(0) = 0 then it is
clear that

Fn = f(1)n < 1.

If f(0) > 0, then we have

Fn ≤ 1− f(0)n < 1.

Since Fn is the probability of return to state k given that the branching process is in state
k at time n, we conclude that every k = 1, 2, 3, · · · is a transient state. ♣
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Corollary 0.2.2.1 With the above notation, assuming f(1) 6= 1 we have

lim
l→∞

Zl =

{
∞, withprobability 1− ζ;

0, withprobability ζ.

Proof - Since every state k = 1, 2, · · · is transient, and with probability 1 a transient is
visited only finitely many times, the possible limiting values for Zl are 0 and ∞ only. The
required result follows since ζ is the probability of extinction. ♣

Since the limiting values of Zl are only 0 and ∞, it is reasonable to try to understand
the limiting behavior of a branching process with µ = E[X] > 1 by looking at the random
variables Zl

µl . This will be discussed in the context of martingales. The case µ ≤ 1 is simpler

(see exercise 0.2.2.1).



62

EXERCISES

Exercise 0.2.2.1 With the above notation assume f(1) 6= 1, µ ≤ 1 and consider the branch-
ing process Z◦ = 1, Z1, Z2, · · · as above. Show that with probability 1

lim
l→∞

Zl = 0.

Exercise 0.2.2.2 Let Zn be a branching process with Z◦ = 1 and E(Z1) = µ. Show that for
m ≤ n we have

E(ZmZn) = µn−mE(Z2
m).

Exercise 0.2.2.3 Consider the branching process Z◦ = 1, Z1, Z2, · · · where f(k) = P [X =
k] = a

bk−1 for k = 1, 2, 3, · · · , and f(0) = 1 −
∑
f(k) where a, b > 0 and ab + 1 < b. Show

that

FX(ξ) = 1− ab

b− 1
+

abξ

b− ξ
, µ = E[X] =

ab2

(b− 1)2
.

Therefore if E[X] 6= 1 then the non-negative solution ζ of ξ = FX(ξ) giving the probability of
extinction is

ζ = b
b− ab− 1

b− 1
.

Calculate the generating functions Fl(ξ) for l = 2, 3. Draw the curves Fl(ξ) for l = 1, 2, 3
and a = b−1 = 1

3
.

Exercise 0.2.2.4 (Continuation of exercise 0.2.2.3) Deduce for µ 6= 1

Fl(ξ) = 1− µl

(
1− ζ

µl − ζ

)
+
µl

(
1−ζ
µl−ζ

)2
ξ

1− µl−1
µl−ζ

ξ

For µ = 1, Fl reduces to

Fl(ξ) =
lb− (lb+ b− 1)ξ

1− b+ lb− lbξ
.
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0.2.3 Fluctuations of the Random Walk on Z
In this subsection we analyze the simple symmetric random walk on Z by introducing the
geometric idea known as the Reflection Principle. Througout this section we assume p =
q = 1

2
unless explicitly stated to the contrary. While some of the conclusions we derive

from the reflection principle can also be obtained by calculations with generating functions,
the application of the former method is conceptually more appealing. As usual we let the
horizontal axis denote the (discrete) time variable and the vertical axis the states. Let
N (l, n) denote the set of paths starting at (0, 0) and ending at (l, n). Note that since we
looking at the paths of a simple random walk, we only allow paths where the point (l′,m) is
joined only to (l′+1,m+1) or (l′+1,m−1). The subset of N (l, n) consisting of paths such
that for some l′ < l the path reaches the point (l′, k), where k > n, is denoted by N (l, n, k).
Denote the cardinalities of N (l, n) and N (l, n, k) by N(l, n) and N(l, n, k) respectively. We
have

Lemma 0.2.3.1 N (l, n) is empty unless l ≥ |n| and l and n have the same parity (both odd
or both even). In such a case we have

N(l, n) =

(
l

l+n
2

)
.

Proof - The first statement is clear. A path joining (0, 0) to (l, n) is of the form

(0, 0), (1, ε1), (2, ε1 + ε2), · · · , (l,
l∑

j=1

εj), (0.2.3.1)

where εj’s are ±1 and
∑l

j=1 εj = n. Therefore the paths joining (0, 0) to (l, n) are precisely
those for which the number of εj = +1 exceeds those for which εj = −1 by n. The required
result follows. ♣

The quantities N(l, n) and P
(l)
◦n are easy to calculate, but it is not immediately clear how

to calculate N(l, n, k). The reflection principle allows us to calculate N(l, n, k) by relating
it to N(l, n′). For a path ω ∈ N (l, n, k) let l′ < l be the largest integer such that ω(l′) = k.
Now define the mapping R : N (l, n, k) → N (l, 2k − n) by reflecting the portion of the path
to the right of (l′, k) relative to the horizontal line through k. More precisely, if the path ω
is given as

ω : (0, 0) → (1, ω(1)) → (2, ω(2)) → · · · → (l, ω(l)),

then R(ω) is the path

R(ω)(j) =

{
ω(j) if j ≤ l′;

2k − ω(j) if l′ + 1 ≤ j ≤ l.
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The proof of the following basic lemma is straightforward:

Lemma 0.2.3.2 Let 0 < n ≥ k. Then R : N (l, n, k) → N(l, 2k − n) is a bijection (i.e.,
establishes one to one correspondence between the two sets).

In particular ,for k = n+ 1 we obtain

Corollary 0.2.3.1 The map R : N (l, n, n+ 1) → N (l, n+ 2) is a bijection

A fundamental consequence of corollary 0.2.3.1 is

N(l, n, n+ 1) = N(l, n+ 2) =

(
l

l+n
2

+ 1

)
. (0.2.3.2)

Now we apply the reflection principle or more precisely (0.2.3.2) to compute the density
function of the random variable T◦n (first hitting time of state n for a simple random walk
on Z). We want to determine the set of paths, in the range 0 ≤ l′ ≤ l, for which T◦n = l.
For a path ω in this set we have

ω(l − 1) = n− 1, and ω(j) ≤ n− 1 for all j ≤ l − 1.

It follows that set of such paths is precisely the complement ofN ′(l−1, n−1) inN (l−1, n−1).
Note that we are assuming ω(l) = n. Therefore the number of such paths in the range
0 ≤ l′ ≤ l is the cardinality of N (l − 1, n− 1)\N (l − 1, n− 1, n), i.e.,

N(l − 1, n− 1)−N(l − 1, n+ 1)

by (0.2.3.2). Representing such paths in the form (0.2.3.1), we note that for every such path
l+n
2
− 1 of εj’s are +1 and l−n

2
of εj’s are −1. Therefore

F l
◦n = P [T◦n = l] =

1

2

[(
l − 1

l+n
2
− 1

)
−

(
l − 1
l+n
2

)]
1

2l
=
n

l

(
l

l+n
2

)
1

2l
. (0.2.3.3)

Here we are assuming l and n have the same parity for otherwise F l
◦n = P [T◦n = l] = 0. Note

that the key step in the calculation of the density function for T◦n was the application of the
reflection principle which has other applications as well (see for example exercise 0.2.3.2). In
example 0.1.3.8 of subsection Generating Functions we derived the density function for T◦n.
It is instructive to consider relative merits of the two methods.
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Remark 0.2.3.1 For the simple random walk where p 6= q the above argument is applicable
to give

p

[(
l − 1

l+n
2
− 1

)
−

(
l − 1
l+n
2

)]
p

l+n
2 q

l−n
2 =

n

l

(
l

l+n
2

)
p

l+n
2 q

l−n
2

for F l
◦n = P [T◦n = l]. ♥

Now we apply the reflection principle to the simple symmetric random walk on Z and
derive the arc-sine law. Consider the simple symmetric random walk S◦ = 0, S1, S2, · · · on
Z. Let V2l be the random variable denoting the time prior to 2l+ 1 of the last visit to state
0. The computation of the density function of V2k is substantially similar to that of T◦n but
involves an additional observation. Clearly

P
(2m−1)
◦1 =

(
2m− 1

m

)
1

22m−1
. (0.2.3.4)

To calculate F 2m
◦◦ we consider the set B of all paths ω from (0, 0) to (2m, 0) such that ω(k) 6= 0

for all 1 ≤ k ≤ 2m− 1. This set is divided into two disjoint subsets

B = B+ ∪ B−

according as ω(k) is positive or negative for 1 ≤ k ≤ 2m− 1. Paths in B± are necessarily at
±1 at time l = 2m− 1. Clearly

F 2m
◦◦ =

1

2
P [B+] +

1

2
P [B−],

and P [B+] = P [B−. By reversing the paths in we see that the set of paths in B− are in
bijection with the paths from (0, 0) to (2m − 1, 1) such that ω(k) ≤ 0 for 1 ≤ k ≤ 2m − 1.
Therefore applying (0.2.3.3) we obtain

F 2m
◦◦ =

1

2
P [B+] +

1

2
P [B−] =

1

2m− 1

(
2m− 1

m

)
1

22m−1
. (0.2.3.5)

Now we can prove the important fact

Lemma 0.2.3.3 For the simple symmetric random walk on Z we have

P [T◦◦ > 2l] = P (2l)
◦◦ .
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Proof - From the identity

1

2m− 1

(
2m− 1

m

)
1

22m−1
=

(
2m− 2

m− 1

)
1

22m−2
−

(
2m

m

)
1

22m
,

and (0.2.3.5) we deduce5

F 2m
◦◦ = P (2m−2)

◦◦ − P (2m)
◦◦ . (0.2.3.6)

Since

P [T◦◦ > 2l] = 1−
l∑

m=1

F 2m
◦◦ ,

we obtain the required result from (0.2.3.6). ♣

Remark 0.2.3.2 It is interesting to compare the above proof of lemma 0.2.3.3 with one
based on generating functions which in fact is simpler. Recall that for the simple symmetric
random walk we have

F◦◦(ξ) = 1−
√

1− ξ2, P◦◦(ξ) =
1√

1− ξ2
.

Substituting for F◦◦ we obtain the identity

1− F◦◦(ξ)

1− ξ2
= P◦◦(ξ). (0.2.3.7)

We know from (0.1.3.9) that the left hand side of (0.2.3.7) is the generating function for the
tail probabilities

Coefficient of ξ2m is P [T◦◦ > 2m] = F 2m+2
◦◦ + F 2m+4

◦◦ + · · ·

This implies P 2l
◦◦ = P [T◦◦ > 2m] which is the conclusion of lemma 0.2.3.3. ♥

A consequence of lemma 0.2.3.3 is

Lemma 0.2.3.4 The density function of V2l is given by

P [V2l = 2k] = P [S2k = 0]P [S2l−2k = 0].

5It would be interesting to give a direct probabilistic interpretation of this identity in terms of cardinalities
of sets of paths. For the similar statement regarding F l

◦n we had shown, using the reflection principle, the

analogous formula F l
◦n = 1

2

[
P

(l−1)
◦n−1 − P

(l−1)
◦n+1

]
. Therefore this identity is not surprising.
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Proof - The event [V2l = 2k] means

S2k = 0, S2k+1 6= 0, · · · , S2l 6= 0,

which has the same probability as the event [T◦◦ > 2l − 2k]. Applying lemma 0.2.3.3 we
obtain the required result. ♣

It follows from lemma 0.2.3.4 that if l is odd then with probability 1
2

the simple symmetric
random walk on Z does not visit 0 during the interval [l, 2l]. This may appear rather
surprising at first.

In view of lemma 0.2.3.4 we have

P [V2l = 2k] =
1

22l

(
2k

k

)(
2l − 2k

l − k

)
. (0.2.3.8)

The arc-sine law is an asymptotic approximation to the probability P [V2l ≤ 2k] when both
l and k become large. To obtain the approximation we let x = k

l
, then

P [V2l ≤ 2k] =
1

22l

[2lx]∑
j=0

(
2j

j

)(
2l − 2j

l − j

)
.

To put this in more manageable form we make use of the Stirling approximation

n! '
√

2πe−nnn+ 1
2 , (0.2.3.9)

to obtain

P [V2l ≤ 2k] ' 1

π

∑
j

1

l

1√
j
l
(1− j

l
)
.

Substituting x = k
l

and converting the sum into an integral we obtain

P [V2l ≤ 2k] ' 1

π

∫ x

◦

dt√
t(1− t)

.

The change of variable
√
t = u immediately yields

Corollary 0.2.3.2 The distribution function for last visit to the origin is approximated by

P [V2l ≤ 2k] ' 2

π
sin−1

√
x.
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This is the arc-sine law approximating the probability that there are no crossings of zero
in the period 2k + 1, · · · 2l. The density function for V2l as given by lemma 0.2.3.4 will also
be refered to as the arc-sine law. A random variable with a similar distribution is that of
the time spent above or below the horizontal axis. If fact let U2l(ω) be the time spent by
the path above the horizontal axis. Then we have

Corollary 0.2.3.3 The density function for U2l is

P [U2l = 2k] = P [S2k = 0]P [S2l−2k = 0].

Proof - The proof is by induction on l. The validity of the assertion for small l (e.g., l = 1, 2)
is easily verified. We assume the assertion is valid for ≤ l − 1. Conditioning on the first
return time to the origin and noting that up to the first hitting time a path is entirely above
or below the horizontal axis, we obtain

P [U2l = 2k] =
1

2

k∑
j=1

F 2j
◦◦P [U2l−2j = 2k − 2j]

1

2

l−k∑
j=1

F 2j
◦◦P [U2l−2j = 2k].

Applying the induction hypothesis the right hand side becomes

P [U2l = 2k] =
1

2
P (2l−2k)
◦◦

k∑
j=1

F 2j
◦◦P

(2k−2j)
◦◦ +

1

2
P (2k)
◦◦

l−k∑
j=1

F 2j
◦◦P

(2l−2k−2j)
◦◦ .

The required result follows immediately. ♣
The reflection principle (or the generating function) allows to understand other properties

of the simple symmetric random walk on Z. For example, by applying lemma 0.2.3.2 we
prove

Lemma 0.2.3.5 The probability that the maximum of a path of length l is exactly n is equal
to the larger of the numbers P

(l)
◦n + P

(l)
◦n+1.(One of the two quantities P

(l)
◦r and P

(l)
◦r+1 is zero

for parity reasons.)

Proof - From the reflection principle (lemma 0.2.3.2) we know that N (l, n, k) has the same
cardinality as N (l, 2n − k). It follows that the probability of paths joining (0, 0) to (l, n)
with maximum exactly equal to k is

P
(l)
◦2k−n − P

(l)
◦2k+2−n.

Adding these quantities for all n (all but finitely many are zero) we obtain the desired result.
♣



0.2. EXAMPLES OF MARKOV CHAINS 69

With another geometric idea we can relate F l
◦n to the nth return time to the origin.

Assume l is even which no loss of generality. Consider the set Bl,n of paths which have
their nth return to the origin at time l. Any such path consists of n segments with end
points on the time (horizontal) axis. Two paths in Bl,n are considered equivalent (∼) if their
visits to the origin occur at the same times and between consecutive visits they can only
differ by a sign. In each equivalence class there are 2n paths which are obtained from each
other by changing signs in the segments joining consecutive returns to the origin. From each
equivalence class choose the unique representative ω for which ω(j) ≤ 0 for all 0 ≤ j ≤ l,
and denote this set of representatives for equivalence classes by B◦l,n. We establish a bijection
between B◦l,n and the set of paths ω for which T◦n(ω) = l−n. The bijection is best described
by looking at an example. Consider, e.g., the path

ω(1) = −1, ω(2) = 0, ω(3) = −1, ω(4) = −2, ω(5) = −1,
ω(6) = 0, ω(7) = −1, ω(8) = −2, ω(9) = −3, ω(10) = −2,
ω(11) = −1, ω(12) = 0,

for which n = 3, l = 12. We eliminate all portions of the path joining two consecutive
integers k and k + 1 for which ω(k) = 0. This will give us a new path of length l − n. For
example, the above path becomes (draw pictures of the paths)

ω(1) = 1, ω(2) = 0, ω(3) = 1, ω(4) = 2, ω(5) = 1,
ω(6) = 0, ω(7) = 1, ω(8) = 2, ω(9) = 3 ,

which is a path whose first hitting time of state 3 is 9. It is easy to see that this procedure
gives the claimed bijection. According to corollary ?? the number of such paths (or the
cardinality of B◦l,n) is

n

l − n

(
l − n

l
2

)
.

Therefore the probability of the event B◦l,n is n
l−n

(
l−n

l
2

)
1
2l and

P [Bl,n] =
n

l − n

(
l − n

l
2

)
1

2l−n

which is the same as F l−n
◦n . Therefore we have shown

Corollary 0.2.3.4 The probability that nth return to the origin occurs at time l is equal to
F l−n
◦n .

Another interesting aspect of the simple symmetric random walk on Z is the determi-
nation of the distribution of the number of crossings. A path ω has a crsooing at k ≥ 2 if
ω(k− 1)ω(k+ 1) < 0. Let Z2l−1 be the random variable which assigns to a path ω of length
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2l − 1 the number of its crossings. It is convenient to look only at paths of odd length to
ensure that the terminal point of the path does not lie on the horizontal axis for otherwise
there is an ambiguity as whether the end point should be counted as a crossing.We have

Proposition 0.2.3.1 The density function for Z2l−1 is given by

P [Z2l−1 = r] = 2P [S2l−1 = 2r + 1],

where r ≤ l.

Proof - We prove the assertion by induction on l. For l = 2 the assertion is proven easily by
inspecting the possibilities. We assume the assertion is true for odd integers ≤ 2l − 1. By
conditioning on the first return time to the origin we obtain

P [Z2l+1 = r] = 2
l∑

k=1

F 2k
◦◦

(
P [Z2l−2k+1 = r − 1] + P [Z2l−2k+1 = r]

)
.

The induction hypothesis and a comparison of the events S2l−2k+1 = 2r− 1, S2l−2k = 2r etc.
implies

P [Z2l+1 = r] = 2
l∑

k=1

F 2k
◦◦ P [S2l−2k+2 = 2r]. (0.2.3.10)

The sum on right hand side of (0.2.3.10) is the probability of reaching the point (2l + 2, 2r)
after at least one return to the origin. This quantity was essentially computed in exercise
0.2.3.2. We now compute without refernce to the exercise. Since X1 = ±1, we divide the
paths from (0, 0) to (2l + 2, 2r) into two subsets B± according as X1 = ±1. The event B−
has the same cardinality as the set of paths joining (0, 0) to (2l + 1, 2r + 1). We should
compute the cardinality of the subset B′+ ⊂ B+ which consists of paths with a return to the
origin. To calculate the cardinality of B′+ we make use of the reflection principle. Let l′ be
the smallest integer such that ω(l′) = 0, where ω ∈ B+. Reflecting the portion of the path
ω between the points (1, 1) and (l′, 0) with respect to the horizontal axis we see that B′+
has the same cardinality as the set of paths from (1,−1) to (2l, 2r), or equivalently the set
of paths joining (0, 0) to (2l − 1, 2r + 1). Putting these observations together we see that
(0.2.3.10) becomes

P [Z2l+1 = r] = 2P [S2l+1 = 2r + 1]

completing the induction. ♣
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Remark 0.2.3.3 Proposition 0.2.3.1 shows that for fixed l the probability of r ≤ l crossings
is a decreasing function of r. While this maybe counter-intuitive, it is compatible with the
conclusion of the arc-sine law about the density the density function of V2l. ♥

Another geometric idea which is useful in analyzing the random walk on Z is a duality
transformation which we now describe. Assume we are looking at the random walk from
time 0 to time l, so that we have

S◦ = 0, S1 = X1, S2 = X1 +X2, · · · , Sl = X1 + · · ·+Xl

where Xk’s are iid random variables taking values ±1 with equal probability 1
2
. To a path

ω(k), k = 0, · · · , l assign the path

ω?(0) = 0, ω?(1) = Xl, ω
?(2) = Xl +Xl−1, · · · , ω?(l) = X1 + · · ·+Xl.

The transformation ω → ω? is a bijection of the set paths starting at (0, 0) up to time
l, onto itself. It is called the dualizing transformation. The importance of the dualizing
transformation lies in the fact that expressing a condition on ω’s in terms of ω?’s sometimes
simplifies the calculation of probabilities. The following example demonstrates this fact:

Example 0.2.3.1 Consider the familiar T◦n which is the first hitting time of state n > 0.
The event T◦n = l is the set of paths ω such that

ω(l) = n, ω(l) > ω(k) for k = 1, · · · , l − 1.

Applying the dualizing transformation this condition becomes

ω?(k) > 0, ω?(l) = r.

This latter condition was in fact investigated in the proof of proposition 0.2.3.1. In essence
we had to count the number of paths from (0, 0) to (l, r) which stayed above the horizontal
axis for all time k = 1, · · · , l (see also exercise 0.2.3.2). This number is

(
l−1

l+n
2
−1

)
−

(
l−1
l+n
2

)
, and

thus we obtain another derivation for the density function of T◦n. ♠
Example 0.2.3.2 For given l let B be the set of paths of length l such that the terminal
point ω(l) is visited prior to time l. Applying the duality operator we see that the subset B
has the same cardinality as the subset B? of paths satisfying

ω?(j) = 0, for some j > 0.

It follows that the distribution of last visit to the terminal point is identical with that of
last visit to the origin in simple symmetric random walk. The latter follows the (discrete)
arc sine law and therefore the density function of last visit follows the same law. This in
particular implies the surprising fact that the last visit to the terminal point is more likely
to occur near the beginning or the end rather than in the middle. ♠
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EXERCISES

Exercise 0.2.3.1 Consider the simple symmetric random walk on Z2 with X◦ = (0, 0). Let
T be the first hitting time of the line x+ y = m.

1. Show that the generating function for T is

FT (ξ) = [ξ−1(1−
√

1− ξ2)]m.

2. Show that E[T ] = ∞.

3. Let (Xn, Yn) denotes the coordinates of of the random walk at time n. Prove that

E[X2
n + Y 2

n ] = n.

Exercise 0.2.3.2 Consider the simple symmetric random walk S1, S2, · · · on Z where X◦ =
0, Xj = ±1 with probabilities 1

2
, and Sl = X◦ +X1 + · · ·+Xl. Show that for n ≤ l we have

P [S1 6= 0, S2 6= 0, · · · , S2l 6= 0 | S2l = 2n] =
n

l
.

(Hint - Use the reflection principle.)

Exercise 0.2.3.3 Let S◦ = 0, S1, S2, · · · be the simple symmetric random walk on Z as in
exercise 3 above. Let Ra denote the number of visits to a ∈ Z before first return to 0 and ρa

be its expectation. Show that

ρa = 1.

(Hint - Show that

ρa =
∞∑
l=1

P [Sl = a, S1 6= 0, · · · , Sl−1 6= 0].

Now using the observation that given Sl = a the conditions

X1 + · · ·+Xj 6= 0 an Xj+1 + · · ·+Xl 6= a

are equivalent, deduce that ρa =
∑
F l
◦a.)
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Exercise 0.2.3.4 Let p < 1− p = q and consider the simple random walk S◦ = 0, S1, · · · on
Z where transition from i to i + 1 (resp. i − 1) occurs with probability p (resp. q). Let Va

denote the number of visits to state a where for a = 0 we include the visit at time l = 0.

1. Show that

E[V◦] =
1

q − p
.

2. Show that

E[V1] =
p

q(q − p)
.

3. Show that for a positive integer a we have

E[Va] =
1

q − p
(
p

q
)a.

Exercise 0.2.3.5 Make a simulation of the simple symmetric random walk on Z by consid-
ering one hundred realizations of the paths from l = 0 to l = 99 and

1. Compute the mean and standard deviation of the number of crossings of the horizontal
axis.

2. Compute the number Z of changes of sign for the one hundred realizations. How does
the empirical probability (on the basis of one hundred realizations) of P [Z = n] for
n = 1, · · · , 10 compare with the theoretical prediction?

Exercise 0.2.3.6 Make a simulation of the simple symmetric random walk on Z by con-
sidering one hundred realizations of the paths from l = 0 to l = 10, 000. Let U denote the
amount of time the random walk is above the horizontal axis. Compute the empirical prob-
ability (on the basis of one hundred realizations) of P [U ≥ n] for n = 6000, 7, 000, 8, 000
and 9,000. How does this compare with the theoretical prediction (the arc sine law)?
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0.2.4 An Example from Economics/Game Theory

A simple model in economics, formulated as a finding the or an optimal strategy in a game,
can be described as follows: Suppose we have a Markov chain X◦, X1, · · · with state space S
and a real valued function f : S → R. The value of the random variable may be thought of
as the nominal value of an investment at time l, and the states of the Markov chain reflect
various economic parameters such as prices of certain commodities, demand for certain items,
consumer confidence etc. Let α > 0 and assume that we have the option of cashing in our
investment at any time l in which case we receive a sum of f(Xl). Since f(Xl) represents the
the nominal value of the investment it is reasonable to consider the quantity e−αlf(Xl) as the
real value of the investment at time l. We can make the problem slightly more complicated
by introducing a cost function g which is non-negative real valued function on the state space
so that real value of the investment at time l would be

e−αlf(Xl)−
l−1∑
j=0

e−αjg(Xj).

Since we are allowed to observe the Markov chain at all times, we can devise a strategy for
cashing in our investment. For instance one may decide that if the demand for a commodity
goes below a certain threshold then we cash in. Or one may use the strategy that if in
each of three successive periods the real value of the investment is increased by a certain
amount, then it is time to cash in. Since the values of the Markov chain represent the the
market fluctuations of the investment, a strategy should be defined as a random variable T
which at each time l depends only the values X◦, X1, · · · , Xl and perhaps other observables
until time l. Obviously we do not want T to depend on the knowledge of the future which
is not available. Such T is codified as a stopping time for which we will shortly give a
precise definition. In order to do so it is useful to first re-examine the notion of conditional
probability. The reformulation of the concepts of conditional probability and expectation
given below will be useful in other contexts such as martingales.

Recall that we have a probability space Ω on which random variables are defined. For
simplicity we may assume the random variables assume only a countable set of values,
however, the results are valid for random variables taking values in R. To obtain this greater
generality requires a refinement of the notion of conditional probability and expectation
which is not of immediate concern to us and is therefore postponed to a later subsection.
The assumption that random variables take only countably many values dispenses with the
need to introduce the concept of σ-algebras. For random variables X and Y conditional
probability P [X = a|Y ] is itself a random variable. For every b ∈ Z such that P [Y = b] 6= 0
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we have

P [X = a | Y = b] =
P [X = a and Y = b]

P [Y = b]
.

Similarly conditional expectation E[X|Y ] is a random variable which takes different values
for different b’s. We can put this in a slightly different language by saying that Y defines a
partition of the probability space Ω;

Ω =
⋃
b∈Z

Ab, (disjoint union) (0.2.4.1)

where Ab = {ω ∈ Ω | Y (ω) = b}. Thus conditional expectation is a random variable which
is constant on each piece Ab of the partition defined by Y . With this picture in mind we
redefine the notion of conditioning by making use of partitionings of the probability space.
So assume we are given a partition of the probability space Ω as in (0.2.4.1), however we
do not require that this partition be defined by any specifically given random variable. It is
just a partition which somehow has been specified. Each subset Ab is an event and if Ab has
non-zero probability, then P [X|Ab] and E[X|Ab] make sense. It is convenient to introduce a
succint notation for a partition. Generally we use A or An to denote a partition or sequence
of partitions which we shall encounter shortly. Notice that each An is a partition of the
probability space and the subscript n does not refer to the subsets comprising the partition
A. By A ≺ A′ we mean every subset of Ω defined by the partition A is a union of subsets
of Ω defined by the partition A′. In such a case we say A′ is a refinement of A. For example
if Y and Z are random variables, we define the partition AY as

Ω =
⋃

AY
b , where AY

b = {ω|Y (ω) = b},

and similarly for AZ . Then the collection of intersections AY
b ∩ AZ

c defines a partition A′

which is a refinement of both AY and AZ . The set AY
b ∩AZ

c consists of all ω ∈ Ω such that
Y (ω) = b and Z(ω) = c. For a random variable X notion of P [X = a|A] simply means
that for every subset of positive probability defined by the partition A we have a number
which is the conditional probability of X = a given that subset. Thus P [X = a|A] itself is a
random variable which is constant on each subset Ab of the partition defined by A. Similarly,
the conditional expectation E[X|A] is a random variable which is constant on each subset
defined by the partition A.

Given a partition A we say a random variable X is A-admissible if X is constant on
every subset defined by A. For example, the random variables P [X = a|A] and E[X|A] are
A-admissible. For an A-admissible random variable X clearly we have

E[X | A] = X. (0.2.4.2)
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If A′ is a refinement of the partition A, then

E[E[X | A′] | A] = E[X | A]. (0.2.4.3)

This is a generalization of the statement E[E[X|Y ]] = E[X] and its proof is again just a re-
arrangemet of a series. We will often use the notation Ei[Y ], where Y is a random variable
that depends on the Markov chain Xj and i ∈ S, as the conditional expectation

Ei[Y ] = E[Y | X◦ = i].

Assume we are given a sequence of partitions Al with Al ≺ Al+1. A random variable
T : Ω → Z+ such that the set {ω ∈ Ω | T (ω) = l} is a union of subsets of Al is called a
Markov time. If in addition P [T <∞] = 1, then T is called a stopping time. In particular,
if we let Al to be the partition defined by the the random variables X◦, X1, · · · , Xl, then
the fact that the strategy or stopping time T depends only on observations Xj up to and
including time l is expressed by the Markov time condition that {ω ∈ Ω | T (ω) = l} is a union
of subsets of Al. However, by freeing Al from the random variables Xj we allow ourselves to
incorporate other market conditions into the strategy which may not be directly picked up
the Markov chain X◦, X1, · · · . The condition P [T < ∞] = 1 is a technical condition which
is necessary for finiteness of certain expectations.

With these preliminaries out of the way we go back to our original problem. As a first
step, if the cost function is identically 0, then we define the value of the game as

V (i) = sup
T

Ei[e
−αTf(XT )],

where the supremum is taken over all possible stopping times T . The random variable
e−αTf(XT ) represents the the real value of investment if we follow the given strategy T and
V (i) is the largest expected value of the investment among all possible strategies. If there is
a cost function g which represents the nominal cost of the investment in each time period,
then we define the value of the game as

V (i) = sup
T

Ei[e
−αTf(XT )−

T−1∑
l=0

e−αlg(Xl)],

where the summation is over all possible stopping times T . Our problem therefore can be
reformulated more precisely in two steps as follows:

1. Compute the value of the game.

2. Can we find a stopping time T◦ which realizes the value of the game.



0.2. EXAMPLES OF MARKOV CHAINS 77

The solution to this problem can be stated as the following theorem:

Theorem 0.2.4.1 Assume f and g are bounded non-negative functions on the state space
S. Then there is a minimal solution to the inqualities

V (i) ≥ −g(i) + e−α
∑

j PijV (j), i ∈ S;

V (i) ≥ f(i), i ∈ S.

The value of the game is this minimal solution. Let R = {i ∈ S | V (i) = f(i)}. If the state
space is finite, then the optimal stopping time T is the time of first visit to R.

The proof of this theorem requires introducing some interesting ideas. First let us under-
stand what it says. Assume the state space is finite which is generally the case in practice,
although this finite number can be quite large. Nevertheless the value of the game can be
computed by looking at it as a problem in linear programming, viz.,

Minimize
∑

i V (i), subject to
V (i) ≥ −g(i) + e−α

∑
j PijV (j), i ∈ S;

V (i) ≥ f(i), i ∈ S.

Thus one can make use of a standard linear programming software for solving for the function
V . Note that the reason we can formulate the solution in this fashion is the existence of a
minimal solution as stated in theorem 0.2.4.1. When the cardinality of S is small it is not
difficult to calculate the the value of the game by carrying out the minimization problem.
An examination of some special cases (see for example exercises 0.2.4.1 and 0.2.4.2) give a
good idea on how f and V are related. Roughly speaking, V looks like a function which
passes through some of the local maxima of f (namely, the set R) and the graph of f lies
below it. Then theorem 0.2.4.1 describes the optimal strategy by comparing V and f . The
optimal strategy T does not depend on the initial state i, X◦ = i which also intuitively makes
sense. For infinite state spaces, the optimal stopping time may not exist in the sense that
no strategy may have the the same expected return as the the value of the game, however,
one can get arbitrarily close to the value by appropriate choice of T .

The proofs of these statements require the introduction some important machinery and
is the given later.
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EXERCISES

Exercise 0.2.4.1 Consider the Markov chain with state space {0, 1, 2, · · · , 9} and transition
matrix P defined as

Pij =


1
2
, if j = i± 1 and i = 1, · · · , 8;

1, if i = j = 0;
1
3
, if i = 9 and j = 0, 8, 9;

0, otherwise.

Let f be defined by

f(0) = 0, f(1) = 3, f(2) = 10, f(3) = 12, f(4) = 8,

f(5) = 7, f(6) = 11, f(7) = 15, f(8) = 12, f(9) = 5.

Let α = 0 and g ≡ 0. Compute the value of the game and exhibit f and V on the same
graph. What is the optimal stopping time?

Exercise 0.2.4.2 (Continuation of exercise 0.2.4.1) With the same notation and hypotheses
of exercise 0.2.4.1 except that α = log 10

9
and

g(i) =

{
1, if i 6= 0;

0 if i = 0.

Compute the value of the game and exhibit f and V on the same graph. What is the optimal
stopping time?



0.2. EXAMPLES OF MARKOV CHAINS 79

0.2.5 Generating Functions Revisited

We have already seen that generating functions can be useful in the investigation of problems
in Markov chains. The crux of the matter was the following issues:

1. Given a sequence of quantities {an} satisfying some recursive relation, one seeks a
closed form formula for the expression

∑
anξ

n. The recursion relation, in many cases,
is obtained by conditioning on appropriate random variables.

2. Once the generating function is calculated explicitly, then we need analytical tools to
extract information from the generating function about the original problem.

In this subsection we elaborate on these themes in several ways. It is not the case that∑
anξ

n is the only way of constructing a general formula (generating function) which in
principle contains all the information about a given sequence of quantities {an}. We show
by means of examples that, depending on the situation, other infinite sums may be more
suitable for obtaining closed form expressions containing all the required information. No
attempt will be made to develop a general theory, and the reader is referred to H. Wilf -
Generatingfunctionology for a more systematic treatment and references to the literature.
Regarding the second issue, we explain some mathematical tools with emphasis on their
application to concrete problems.

The first problem we consider has the flavor of one from physics or chemistry and models
of this general form exist in abundance. Let L ⊂ R2 be a lattice and since the exact nature
of the lattice makes a difference we limit ourselves to two cases. Identify R2 with complex
numbers C, let ζ = e

2πi
3 so that ζ is the unit vector making a 120◦ angle with the positive

x-axis. Define

L1 = {a+ ib | a, b ∈ Zh}, L2 = {a+ bζ | a, b ∈ Z
h√
3
},

where h > 0 is fixed constant which is introduced for physical reasons and is useful when
approximating a continuous domain by a discrete mesh. The nearest neighbors of the origin
in each of the two cases are

N1 = {±h,±ih}, N2 = {± h√
3
,±ζ h√

3
,±(1 + ζ)

h√
3
}.

By translations we obtain the nearest neighbors of all the points in the lattice Lj. In case L1

every point has q1 = 4 nearest neighbors, while every point in L2 has q2 = 6 nearest neighbors.
Points which are nearest neighbors of each other are called adjacent. The distance between
adjacent points is h in case L1 and h√

3
in case L2. Consider a bounded open set Ω ⊂ C
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whose boundary ∂Ω consists of continuous curves with no self intersections and such that
each maximal connected boundary curve consists of line segments joining adjacent points.
Examples of such regions are shown in Figures XXXXX. Now assume each site/point is
occupied by an atom and atoms which are nearest neighbors of each other are joined by an
edge. We also assume that the atoms are identical. We obtain a graph Γ, which includes
the boundary of the region, and will play an important role in the sequel. Points not on the
boundary are called interior. Let N be the number of interior points and B the number of
boundary points. We assume that non-adjacent atoms do not exert any force on each other
but there is interaction between adjacent ones. Interior atoms can move along perpendiculars
to the plane of the lattice, but boundary points are required to remain fixed for all time.
The vertical motions of the interior atoms are assumed to be governed by

m
d2ζj
dt2

= −K
∑

(ζj − ζjk
), (0.2.5.1)

where the summation is over all neighbors j1, . . . , jq of the nearest neigbors of the site j,
and m denotes the mass of the atom. This is similar to Hooke’s law in physics and one
reasonably expects the system to display oscillatory motion like vibrations of a drum. For
this reason we make the substitution

ζj(t) = Aje
iωt.

If ζj satisfies (0.2.5.1) then it is a simple calculation that ω is of the form

ω2 =
qh2K

2m
λ,

where λ is the eigenvalue of the system

2

qh2

q∑
k=1

(Ajk
− Aj) = −λAj, subject to Aj = 0 for j ∈ ∂Ω, (0.2.5.2)

where q = q1 = 4 or q2 = 6 depending on the lattice under consideration. This problem can
be re-stated in the more succint form of an eigenvalue problem

Tw = µw (0.2.5.3)

where the N ×N matrix T is defined as

Tjk =

{
1, if j and kareadjacent;

0, otherwise.
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(In graph theory T is called the adjacency matrix of the graph.) The eigenvalues µ and
“frequencies” ω are related by

µ = q − m

K
ω2.

In particular only finitely many frequencies ω1, . . . , ωN are possible.
The problem we want to investigate is how the frequencies ωj can be related to the

geometry of the domain Ω. It is reasonable to assert the frequencies (at least in the case
of a continuous domain) are the harmonics one hears upon playing on the drum of the
given shape. Therefore a more general question is whether, in the discrete framework, the
knowledge of the eigenvalues (or frequencies) determines the shape of the drum. While the
answer is negative, yet there close relationship between the frequencies and the geometry of
the drum which we now investigate.

To investigate this problem it is convenient to introduce the generating function

H(ξ) =
∑

eµjξ = p◦ + p1ξ + p2
ξ2

2
+ p3

ξ3

3!
+ . . .

where ps =
∑

j µ
s
j is the sum of the sth powers of the eigenvalues of T . Clearly

ps = Tr(T s). (0.2.5.4)

The key observation in the evaluation of Tr(T s) that it is equal the number of paths starting
from an interior point j and returning to j in s steps without entering the boundary, and
summing over all j. Perhaps the most conceptually transparent way of seeing the validity of
this assertion is by considering the Markov chain with state space (of cardinality N +B) the
vertices of the graph Γ and where one moves from an interior point to any one of its nearest
neighbors with probability 1

q
and the boundary points are absorbing in the sense that once

a path hits a boundary point, it remains there for ever. With this interpretation the validity
of the assertion about Tr(T s) is immediate. Obviously for s = 1 no such path exists and

p◦ = N, p1 = 0. (0.2.5.5)

In case of L1, p2k+1 = 0. For s = 2 the number of such paths is

p2 = qN −B. (0.2.5.6)

In general, ps can be computed recursively from

ps = Nρs − Λs,1 − Λs,2 − . . .− Λs,s−1, (0.2.5.7)
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where Λs,l is the number of closed paths of length s whose first hitting time of the boundary
is l, and ρs is the number closed paths in the lattice Li starting at the origin and of length
s. We can use this observation to compute p3 for the lattice L2. Let τ be the number of
triangles which have exactly one vertex on the boundary. Then Λ3,2 = 2τ , and

p3 = Nρ3 −
ρ3

q
B − 2τ. (0.2.5.8)

This formula can be further simplified. Assume Ω consists c disjoint domains Ω1, . . . ,Ωc and
the domain Ωα has hα holes so that its boundary consists of hα + 1 disjoint closed curves
without self-intersection. Set h =

∑
α hα. Then (0.2.5.8) can be simplified as

c− h =
1

6
p3 −

1

2
p2 + p◦ (0.2.5.9)

for the lattice L2. The derivation of this formula is by purely geometric considerations and
is left to the reader since it is not relevant to the subject of this text.

It should be emphasized that in the above calculation H(ξ) was defined as a generating
function in terms of analytical data (namely, the frequencies or eigenvalues), yet the coeffi-
cients have simple geometric interpretations. Looking at the underlying Markov chain on the
associated graph facilitated relating the coefficients of the generating function to a problem
on counting paths which then revealed the geometric nature of the coefficients pk at least
for small k.


