
1 Some Mathematical Ideas and their Appli-

cations

1.1 An Idea from Analysis

Spectral theory is one of most fruitful ideas of analysis and has applications
to probability theory. We do not intend to give a sophisticated treatment of
the spectral theorem, rather we loosely explain the general idea and apply it
to a random walk problems. Even understanding the broad outlines of the
theory is a useful mathematical tool.

Let A be an n×n matrix with eigenvalues λ1, · · · , λn counted with multi-
plicity, and assume A is diagonalizable. The diagonalization of the matrix A
can be accurately interpreted as taking the underlying vector space to be the
space L(S) of functions (generally complex-valued) on a set S = {s1, · · · , sn}
of cardinality n and the matrix A to be the operator of multiplication of
an element ψ ∈ L(S) by the function ϕA which has value λj at sj. In this
manner we have obtained the simplest form that a matrix can reasonably
be expected to have. Of course not every matrix is diagonalizable but large
classes of matrices including an open dense subset of them are. The idea
of spectral theory is to try to do the same, to the extent possible, for infi-
nite matrices or linear operators on infinite dimensional spaces. Even when
diagonalization is possible for infinite matrices, several distinct possibilities
present themselves which we now describe:

1. (Pure Point Spectrum) There is a countably infinite set S = {s1, s2, · · ·}
and a complex valued function φA defined on S such that the action of
the matrix A is given by multiplication by ϕA. The underlying vector
space is the vector space of square summable functions on S, i.e., if we
set ψk = ψ(sk), then

∑
k |ψk|2 <∞. It often becomes necessary to take

a weighted sum in the sense that there is a positive weight function
1
ck

and the undelying vector space is the space of sequences {ψk} such
that

∑
k

1

ck
|ψk|2 <∞.

The weight function 1
ck

is sometimes called Plancherel measure.
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2. (Absolutely Continuous Spectrum) There is an interval (a, b) (closed or
open, a and/or b possibly∞), a function ϕA such that A is the operator
of multiplication of functions on (a, b) by ϕA. Often the operator A
acts on an infinite dimensional vector space H where there is a positive
definite inner product < ., . > is defined. In such a situation we can take
a basis e1, e2, . . . for H such that < ei, ej >= 0 or 1 according as i 6= j
or i = j. The matrix A of a linear operator may be given relative to the
basis e1, e2, . . .. Then there are functions ϕ1, ϕ2, . . . corresponding to
the basis e1, e2, . . . and a positive or non-negative function 1

c(λ)
(called

the Plancherel measure) such that the underlying vector space is the
space of functions ψ on (a, b) with the property∫ b

a
|ψ(λ)|2 dλ

c(λ)
<∞.

The functions ϕj satisfy

∫ b

a
ϕj(λ)ϕk(λ)

dλ

c(λ)
= δjk,

where δjk is 0 or 1 according as j 6= k or j = k.

3. (Singular Continuous Spectrum) There is an uncountable set S of Lebesgue
measure zero (such as the Cantor set) such that A can be realized as
multiplication by a function ϕA on S. The underlying vector space is
again the space of square integrable functions on S relative to some
measure on S. One often hopes that the problem does not lead to this
case.

4. None of the above cases covers the case of a matrix of the form
(

0 1
0 0

)
.

One can also consider an infinite dimensional analogue of it where H
is an infinite dimensional space with basis e1, e2, . . . and T : H → H is
the operator defined by

T (e1) = 0, T (en+1) = en for n ≥ 1.

Of course this operator is not diagonalizable. In the broad outline of
the theory that we describing we assume that for some reason we know
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that the operators in question are in fact diagonalizable. Operators
given by symmetric or Hermitian matrices are always diagonalizable.
We will dwell on this point.

5. It is possible for an operator to be a combination of the above cases.
The cases of greatest interest are those when a problem can be reduced
to cases 1 or 2. Singular spectrum occurs naturally in connection with
fractals as stationary distributions associated to certain Markov pro-
cesses.

The first two cases and their combination is of greatest interest to us.
In order to demonstrate the idea we look at some familiar examples and
demonstrate the diagonalization process.

Example 1.1.1 Let A be the differentiation operator d
dx

on the space of
periodic functions with period 2π. Since

d

dx
einx = ineinx,

in is an eigenvalue of d
dx

. Writing a periodic function as a Fourier series

ψ(x) =
∑
n∈Z

ane
inx,

we see that the appropriate set S is S = Z and

ϕ d
dx

(n) = in.

The Plancherel measure is 1
ck

= 1
2π

and from the basic theory of Fourier series

(Parseval’s theorem) we know that∫ π

−π
ψ
d

dx
φ̄dx = − i

2π

∑
n∈Z

nanb̄n,

where ψ(x) =
∑

n∈Z ane
inx and φ(x) =

∑
n∈Z bne

inx. ♠

Example 1.1.2 Let f be a periodic function of period 2π and Af be the
operator of convolution with f , i.e.,

Af : ψ −→ 1

2π

∫ π

−π
f(x− y)ψ(y)dy
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Assume f(x) =
∑

n fne
inx and ψ(x) =

∑
n ane

inx. Substituting the Fourier
series for f and ψ in the defintiion of Af we get

Af (ψ) =
1

2π

∑
n,m

eimx
∫ π

−π
fname

i(n−m)ydy =
∑
m

fmame
imx.

This means that in the diagonalization of the operator Af , the set S is Z,
and the function ϕAf

is

ϕAf
(n) = fn.

The underlying vector space and Plancherel measure is the same as in ex-
ample 1.1.1. Thus Fourier series transforms convolutions into multiplication
of Fourier coefficients. The fact that Fourier series simultaneously diagonal-
izes convolutions and differentiation reflects the fact that convolutions and
differentiation commute and commuting diagonalizable matrices can be si-
multaneously diagonalized. Convolution operators occur frequently in many
areas of mathematics and engineering. ♠

Example 1.1.3 Examples 1.1.1 and 1.1.2 for functions on R or Rn when
the periodicity assumption is removed. For a function ψ of compact support
(i.e., ψ vanishes outside a closed interval [a, b]) Fourier transform is defined
by

ψ̃(λ) =
∫ ∞

◦
e−iλxψ(x)dx.

Integration by parts shows that under Fourier transform the operator of
differentiation d

dx
becomes multiplication by −iλ:

˜(dψ
dx

)
(λ) = (−iλ)ψ̃(λ).

Similarly let Af denotes the operator of convolution by an integrable function
f :

Af (ψ) =
∫ ∞

−∞
f(x− y)ψ(y)dy.

Then a change of variable shows∫ ∞

−∞
e−iλx

∫ ∞

−∞
f(x− y)ψ(y)dydx = f̃(λ)ψ̃(λ).
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Therefore the diagonalization process of the differentiation and convolution
operators on functions on R leads to case (2) with S = R, d

dx
↔ −iλ, and

Af ↔ f̃ . For the underlying vector space it is convenient to start with the
space of compactly supported functions on R and then try to extend the
operators to L2(S). There are technical points which need clarification, but
for the time being we are going to ignore them. ♠

Example 1.1.4 Let us apply the above considerations to the simple random
walk on Z. The random walk is described by convolution with the function
f on Z defined by

f(n) =


p, if n = 1;
q, if n = −1;
0, otherwise.

Convolution on Z is defined similar to the cases on R except that the integral
is replaced by a sum:

Af (ψ) = f ? ψ(n) =
∑
k∈Z

f(n− k)ψ(k).

Let ej be the function on Z defined by ej(n) = δjn where δjn is 1 if j = n and
0 otherwise. It is straightforward to see that the matrix of the operator Af

relative to the basis ej for the vector space of functions on Z is the matrix
of transition probabilities for the simple random walk on Z. Example 1.1.2
suggests that this situation is dual to one described in that example. For S
we take the interval [−π, π], to state j corresponds the periodic function eijx

and the action of the transition matrix P is given by multiplication by the
function

peix + qe−ix = (p+ q) cos x+ i(p− q) sinx.

The probability of being in state 0 at time 2l is the therefore the constant
term in the Fourier expansion of (peix + qe−ix)2l, viz.,(

2l

l

)
plql,

which we had easily established before. ♠
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Example 1.1.5 A more interesting example is the application of the idea of
the spectral theorem to to the reflecting random walk on Z+ where the point
0 is a reflecting barrier. The matrix of transition probabilities is given by

P =


0 1 0 0 · · ·
1
2

0 1
2

0 · · ·
0 1

2
0 1

2
· · · ... ...

...
...

. . .


Assume the diagonalization can be implemented so that P becomes multi-
plication by the function ϕP (x) = x on the space of functions on an interval
which we take to be [−1, 1]. If the state n corresponds to the function φn

then we must require

xφ◦ = φ1, xφn(x) =
1

2
φn−1(x) +

1

2
φn+1(x).

Using the elementary trigonometric identity

cosα cos β =
1

2
cos(α− β) +

1

2
cos(α+ β)

we obtain the following functions φn:

φ◦(x) = 1, φn(x) = cosnθ, where θ = cos−1 x. (1.1.1)

The polynomials φn(θ) = cos(n cos−1 θ) are generally called Chebycheff poly-
nomials. The above discussion should serve as a good motivation for the
introduction of these polynomials which found a number of applications. For
the Plancherel measure we seek a function 1

c(θ
such that

∫ 1

−1
φn(θ)φm(θ)

dθ

c(θ)
= δmn.

In terms of θ ∈ [0, π] and the orthogonality relations∫ π

0
cosmθ cosnθdθ =

π

2
δmn.

To obtain the Plancherel measure we express dθ as a function of x using the
relations

θ = tan−1 y

x
, y =

√
1− x2.
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We obtain

1

c(θ)
=

1

π
√

1− θ2
.

The coefficients of the matrix P l can be computed in terms of the Chebycheff
polynomials. In fact it is straightforward to see that

P
(l)
jk =

∫ 1

−1
xlφj(θ)φk(θ)

dθ

c(θ)
.

The idea of this simple example can be extended to considerably more com-
plex Markov chains and the machinery of orthogonal polynomials can be used
to this effect. ♠

Fourier transform or series, and in particular the fact that they con-
vert convolutions to products, have many applications. Here we discuss an
application to random walks. Although the following presentation, strictly
speaking, can be made independent of Fourier transforms, yet in spirit we
are making use of harmonic analysis.

Let δa be the delta function at a ∈ R. δa is not a function but its Fourier
transform is e−iλa. Therefore although δa is not a function, convolution of a
function φ with δa is meaningfully defined as the inverse Fourier transform of
e−iλaφ̂(λ). One way of thinking about it is to take a sequence of Gaussians
distributions φn with mean a and standard deviation 1

n
and take the limit

n→∞. Of particular interest is δ◦ whose Fourier transform is the function
which is identically 1. Therefore δ◦ ?φ = φ or δ◦ is identity relative to convo-
lutions. The introduction of δ-function allows us to introduce an exponential
function relative to the convolution operation. More precisely, we define the
exponential of a function φ as the inverse Fourier transform of

1 + φ̂+
φ̂2

2!
+
φ̂3

3!
+ . . .

Although the inverse Fourier transform of the above expression is not a func-
tion, by subtracting δ◦ from it we get a function. At any rate, we denote
the exponential of φ, thus defined, by εφ or E(φ). Similarly we define the log
function as the inverse Fourier transform of

φ̂+
φ̂2

2
+
φ̂3

3
+ . . .
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and denote it by −L(δ◦ − φ). To make sure that no convergence problem
occurs and the logarithm is meaningfully defined, we assume that∫ ∞

−∞
|φ(x)|dx < 1. (1.1.2)

This assumption is made whenever we make use of L even if not explicitly
stated. It is readily verified that L and E are inverses to each other in the
sense that

E
(
L(δ◦ − φ)

)
= δ◦ − φ, L(E(−ψ)) = −ψ. (1.1.3)

Of course in the second identity we write E(−ψ) as δ◦−(δ◦−E(−ψ)) to make
the definition of L applicable. For a function φ on R we define

φ+(x) =
{
φ(x), if x ≥ 0;
0, otherwise.

From the fact that if φ+ and ψ+ vanish for x < 0, then φ+ ? ψ+ vanishes for
x < 0

Following Dym and McKean-Fourier Series and Integrals, we introduce
lemma 1.1.1 below which expresses the key mathematical fact for application
to random walks:

Lemma 1.1.1 ((Spitzer’s Identity) With the above notation and assumption
(1.1.2), the Fourier transform of φ+ + (φ ? φ+)+ + (φ ? (φ ? φ+)+)+ + . . . is
equal to

−1 + exp
[ ∞∑

n=1

1

n

∫ ∞

◦
e−iλx(φ ? . . . ? φ)(x)dx

]
.

Equivalently it is the Fourier transform of

E [−(L(δ◦ − φ))+]− δ◦.

One can more simply state the the Spitzer identity as

δ◦ + φ+ + (φ ? φ+)+ + (φ ? (φ ? φ+)+)+ + . . . = E [−(L(δ◦ − φ))+],

but the form given in the lemma is more useful for our purpose. Before giving
the proof of lemma 1.1.1, we discuss an implication of it.
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Let φ be a density function on R and assume that φ is symmetric, i.e.,
f(x) = f(−x). Let X1, X2, . . . be a sequence of iid random variables with
density φ, and set S◦ = 0, Sl = Sl−1 + Xl. Then S◦, S‘, S2, . . . is a random
walk on R and the probability P [X1 ≥ 0, S2 ≥ 0, . . . , Sn ≥ 0, a ≤ Sl ≤ b] is
given by∫ b

a
(φ+ ? (φ+ ? . . . (φ ? φ+)+ . . .)+dx =

∫
. . .
∫
φ(x1) . . . φ(xl)dx1 . . . dxl,

where the domain of the multiple integral is

{x1 ≥ 0, x1 + x2 ≥ 0, . . . , x1 + . . .+ xl ≥ 0, a ≤ x1 + . . .+ xL ≤ b}.

For ε > 0 sufficiently small, the Spitzer identity is applicable to the
function εφ. Noting that the integral of a function is equal to its Fourier
transform at 0, we obtain

∞∑
l=1

εlP [S1 ≥ 0, . . . , Sl ≥ 0] = −1 + exp
[ ∞∑

l=1

εl

l

∫ ∞

◦
φ?l
]

= −1 + exp
[
εl

l
P [Sl ≥ 0]

]
.

Notice that the right hand side is much easier to calculate and in effect we
have removed the joint condition [S1 ≥ 0, . . . , Sl ≥ 0] and reduced to a single
condition [Sl ≥ 0]. Let T be the first hitting time of the negative axis, then

pl = P [T > l] = P [S1 ≥ 0, . . . , Sl ≥ 0].

Therefore
∞∑
l=1

εlpl = −1 + exp
[∑ εl

l
P [Sl ≥ 0]

]
. (1.1.4)

Since each P [Sl ≥ 0] = 1
2

by the symmetry assumption on the density φ,
(1.1.4) is a significant reduction of the problem. We obtain

∞∑
l=1

plε
l = −1 + exp

[ ∞∑
l=1

εl

2l

]

= −1 + exp[−1

2
log(1− ε)]

= −1 +
1√

1− ε
.
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From the Taylor expansion of 1√
1−ε

we see that

P [T > l] = 4−l

(
2l

l

)
. (1.1.5)

One remarkable feature of this equation is its independence from the choice
of the symmetric density φ. It is also similar to (??) derived in connection
with the simple symmetric random walk on Z.

It remains to prove Spitzer’s identity which requires a preliminary result.
It is straightforward that the quantity Q = δ◦ +φ+ + (φ ?φ+)+ + . . . satisfies
the identity

Q = δ◦ +
(
φ ? Q

)
+
. (1.1.6)

On the other hand we have

Lemma 1.1.2 For φ satisfying (1.1.2), the quantity Q′ = E(−(L(δ◦−φ))+)
satisfies the identity (1.1.6) with Q′ replacing Q.

Proof - We have

εf+ − δ◦ =
[
εf+ ? (δ◦ − ε−f )

]
+

since both sides vanish for x < 0, εf+−f vanishes for x > 0, and the validity
of the identity is easily verified for x ≥ 0. Now substitute

φ = δ◦ − ε−f

and use f = −L(δ◦ − φ) to obtain (1.1.6) with Q′ replacing Q. ♣
Proof of Spitzer’s identity - Let ψ = Q−Q′, then ψ satisfies

ψ = (φ ? ψ)+.

Since ||φ||1 =
∫
|φ(x)|dx < 1, we necessarily have ψ = 0. Therefore

δ◦ + φ+ + (φ ? φ+)+ + (φ ? (φ ? φ+)+)+ + . . . = E(−[L(1− φ)]+).

To complete the proof of Spitzer’s identity we look at both sides of the
identity in terms of of their definition via Fourier transforms. The required
result follows immediately. ♣
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EXERCISES

Exercise 1.1.1 Use the fact that if φ and ψ vanish for x < 0, then φ ? ψ
vanishes for x < 0 to deduce that E(φ+) (resp. E(φ+−φ)) vanishes for x < 0
(resp. for x > 0).

Exercise 1.1.2 Assuming φ satisfies (1.1.2) show that

−L(1− φ) = − log(1− φ̂).
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1.2 Laplace transforms

Laplace and Fourier transforms are quite useful mathematical tools in proba-
bility theory. In this subection we discuss some of the the basic properties of
Laplace transforms and will gradually give several applications to probability
theory. It is not our purpose to give a thorough treatment of the foundations
of the theory of Laplace transforms, rather we will mention the basic prop-
erties and partially justify them to give some credibility and coherence to
their applications. Let f be a continuous function on [0,∞) with polynomial
growth at infinity which means there is ρ < ∞ such that for x sufficiently
large

|f(x)| ≤ xρ.

Then the Laplace transform of f is defined as

f̂(α) =
∫ ∞

◦
e−αxf(x)dx,

where α ∈ [0,∞). The growth condition on f makes the quantity f̂(α) well-
defined since the function e−αxf(x) is rapidly decreasing at infinity. The
requirement of continuity is not necessary as long as we make some assump-
tion such as such as f is integrable on compact intervals in addition to the
growth condition. If F is the probability distribution function of a random
variable X taking values in R+, then we can also define f̂ as

f̂(α) = E[e−αX ].

However we will also be interested in Laplace transforms of non-negative
functions which are not necessarily distributions or density functions of ran-
dom variables.

Example 1.2.1 Let X be a random variable with values in Z+ and fX its
density function. Although X takes values in Z+ we may regard it a random
variable with values in R+ and accordingly define the distribution function

FX(x) = P [X < x]

The distribution function FX is no longer a continuous function. In fact it
will have a jump discontinuity at a positive integer n equal to P [X = n] and
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is constant on each intrval [n, n+1). The Laplace transform of of FX is given
by ∫ ∞

◦
e−αxdF (x) =

∞∑
j=0

e−αnP [X = n]. (1.2.1)

The validity of the second equality is a simple and instructive exercise using
either of the definitions of

∫∞
◦ e−αxdF (x) given in §3.4. It is clear that for

ξ = e−α, the Laplace transform f̂(α) is simply the probability generating
function for X. Therefore it is not surprising that Laplace transforms will
be quite useful in investigating random processes. ♠

It is clear that Laplace transforms of non-negative functions are positive
for all α (unless f ≡ 0). Furthermore, differentiation under the integral sign
shows that f̂ is infinitely differentiable and satisfies the strong monotonicity
condition:

(−1)n d
nf̂

dαn
≥ 0. (1.2.2)

For applications to stochastic processes it is sometimes necessary to give
meaning to

∫∞
◦ e−αxdF (x), where F is a non-negative function. Integration

by parts allows us to define this as∫ ∞

◦
e−αxdF (x) = F (0) + α

∫ ∞

◦
e−αxF (x)dx.

We denote this quantity as f̂(α) in spite of the fact that the natural candidate
for f , namely dF

dx
may not even exist as a function. It is clear that f̂ still

satisfies the strong monotonicity condition (1.2.2).
By a normalized function F we mean a function F such that its its left

and right limits exist at every point and

F (0) = 0, F (x) =
F (x−) + F (x+)

2
.

The second condition means that at points of discontinuity, the value of the
function is the average of its limiting values. Let F be a normalized function
of bounded variation (or for simplicity assume F is discontinuous only at a
discrete set of points). Assume that the Laplace transform

f̂(α) =
∫ ∞

◦
e−αxdF (x) (1.2.3)
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exists. Then its Laplace transform determines F uniquely. A formula for the
inversion of the Laplace transform is given in theorem 1.2.1 (4) below.

In our applications of Laplace transform it is necessary to relate the
asymptotic behavior of the function F (t) as t → ∞ to that f̂(α) as α → 0.
Theorems deducing the asymptotic behavior of f̂ from that of F are often
called PAbelian theorems. The converse implication where the asymptotic
behavior of F is deduced from that f̂ is called generally called Tauberian
theorem(s). The latter results are generally more difficult to establish. Parts
(5) and (6) of theorem 1.2.1 below are examples of Abelian and Tauberian
theorems for which we have immediate application.

A good reference for the theory of Laplace transforms is the classic mono-
graph by D. V. Widder entitled The Laplace Transform. The basic properties
of Laplace transforms which we will make use of are summarized in the fol-
lowing theorem:

Theorem 1.2.1 Let F be a non-negative function on [0,∞) with polynomial
growth at infinity and integrable on bounded intervals. Then

1. The Laplace transform of f̂(α) exists and is a completely monotone
function.

2. A completely monotone (and therefore infinitely differentiable) function
ϕ is the Laplace transform of some non-negative function1 in the sense
ϕ(α) =

∫∞
◦ e−αxdF (x).

3. F is a probability distribution function if and only if f̂(0) = 1.

4. The function F is uniquely determined by its Laplace transform f̂ and
at points of continuity of F the inversion is given by

F (x) = lim
a→∞

∑
n≤ax

(−a)n

n!

dnf̂

dαn
(a).

5. Assume F (t) grows like Atγ

Γ(γ+1)
as t→∞ where γ ≥ 0. Then

f̂(α) =
∫ ∞

◦
e−αtdF (t)

1The precise statement is that such ϕ is the Laplace transform of a measure. We are
only trying to avoid the use of the dreaded word measure.
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grows like A
αγ as α→ 0+.

6. Conversely, if f̂ grow like A
αγ as α → 0+, then F (t) grows like Atγ

Γ(γ+1)

as t→∞.

Laplace transform has the remarkable property of transforming convolu-
tions into products. More precisely, let f and h be continuous functions on
R+ and assume for convenience that they vanish outside a bounded interval.
Then

̂f ? h(α) =
∫ ∞

◦

∫ ∞

−∞
e−αxf(x− y)h(y)dydx.

Making the change of variable x = y + z and noting that f(z) = 0 for z ≤ 0
we obtain ̂f ? h(α) = f̂(α)ĥ(α). (1.2.4)

For convenience we made this calculation by assuming f and h vanish outside
a bounded interval. The result is valid considerably more generally. In our
applications the validity of this transformation will not be an issue.

Let us apply (1.2.4) to a renewal-type equation

z(t) = h(t) +
∫ t

◦
z(t− s)dF (s), (1.2.5)

where z and h are functions on [0,∞) and F is a probability distribution
vanishing on the negative axis. Taking Laplace transform of this equation
and solving the resulting linear equation we obtain

ẑ =
ĥ

1− f̂
.

Expanding the fraction 1
1−f̂

formally as the geometric series
∑
f̂n we obtain

the expression
ẑ = ĥ+ ĥf̂ + ĥf̂ 2 + ĥf̂ 3 + · · · (1.2.6)

Thus we have an algebraic way of solving the renewal type equation (1.2.5).
Our interest in really in z not ẑ and therefore it is necessary to invert the
Laplace transform to obtain an expression for z. By making use of theo-
rem 1.2.1 (5) and (6), sometimes we can obtain useful information without
actually inverting the Laplace transform.
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INSERT EXAMPLES OF APPLICATIONS OF LAPLACE TRANS-
FORMS, ABELIAN AND TAUBERIAN THEOREMS, AND EASY PART
OF RENEWAL THEOREM

Rather than discussing the validity of these formal manipulations, we use
this expression to guess and verify that the solution to the integral equation
(1.2.5) is given by

Proposition 1.2.1 For a bounded function h the eqaution (1.2.5) has a
unique bounded solution which is given by

z(t) = h(t) +
∫ t

◦
h(t− s)dm(s).

Proof - Defining z(t) as in the proposition and using the fact that

m(t) = F (t) =
∫ t

◦
m(t− s)dF (s)

we see that z(t) satisfies (1.2.5). Now suppose zi, i = 1, 2 are two solutions
to (1.2.5), then y(t) = z1(t)− z2(t) satisfies the equation

y(t) =
∫ t

◦
y(t− s)dF (s),

which we write in the form y = y ? F . Therefore by iteration y = y ? Fn for
all n ≥ 1 where F1 = F and Fn = Fn−1 ?F . Now Fn(t) is the probability the
nth event (or arrival) has taken place within time t and therefore for t fixed
it tends to 0 as n→∞. Now

|y(t)| ≤ Fn(t) sup
0≤s≤t

|y(s)|.

From bounded assumption on solutions and limn→∞ Fn(t) = 0 it follows that
y(t) = 0. ♣

THIS SUBSECTION IS INCOMPLETE
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EXERCISES

Exercise 1.2.1 Let X be a Poisson random variable with parameter λt.
Show that

P [X ≤ λx] = e−λt
∑

k≤λx

(λt)k

k!
λ→∞−→

{
0, if t > x;
1, if t < x.

Let F be a probability distribution on [0,∞), and

f̂(λ) =
∫ ∞

◦
e−λtdF (t)

be its Laplace transform. Show that

∑
k≤λx

(−1)kλk

k!

dkf̂

dλk
(λ) −→ F (x)

as λ→∞.

Exercise 1.2.2 Assume the distribution F on [0,∞) has moments µ1, · · · , µ2n.
Show that the Laplace transform f̂ satisfies

2n−1∑
k=◦

(−1)kµkλ
k

k!
≤ f̂ ≤

2n∑
k=◦

(−1)kµkλ
k

k!
.

(Hint - Use the infinite series expansion for e−t and compare the sums of
2n− 1 and 2n terms. Deduce that if all momemnts of F exist, then

f̂(λ) =
∞∑

k=◦

(−1)kµkλ
k

k!

on any interval [0, a) where the series converges. (Note that this exercise
gives a sufficient condition for moments to determine a distribution uniquely.
In general moments may not uniquely determine the distribution.)
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1.3 Discrete Laplace Transforms

In this subsection we see how the ideas developed in connection with the
Laplace transform can be adopted to the case of discrete time Markov chains.
As an application we prove theorem ??. The terminology of discrete Laplace
transform is not standard and it will be used in a manner somewhat different
from the continuous case, nevertheless it seems appropriate. For a function
φ on Z+ we define its discrete Laplace transform as the function on (0,∞)
defined as

φ̃(α) =
∞∑
l=◦

e−αlφ(l).

For φ a bounded function, the sum converges for α ∈ (0,∞). The value at 0
may or may not be finite and should be dealt with separately.

Let X◦, X1, X2, · · · be a Markov chain with P the matrix of transition
probabilities. The Laplace transform of P is naturally defined as

P̃α =
∞∑
l=◦

e−αlP l,

so that P̃α is a matrix. Let f a function on the state space S. In analogy
with the continuous case we define the Laplace transform of f as

f̃α(i) = Ei[
∞∑
l=◦

e−αlf(Xl)],

where Ei means conditional expectation relative to X◦ = i. We often identify
S with Z+ and f with a column vector whose ith entry is f(i). With this
provision it is clear that

f̃α(i) =
∑
j∈S

P̃α
ijf(j) =

∑
j∈S

∞∑
l=◦

e−αlP
(l)
ij f(j). (1.3.1)

In this representation f̃α is also a column vector.
Although there is no analogue of the infinitesimal generator A in the

discrete case, yet the following result which emulates proposition ?? is valid
in this case:
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Lemma 1.3.1 Let f be a bounded function on the state space S, α ∈ (0,∞),
then u = f̃α(i) is the unique solution to the linear system

(I − e−αP )u = f.

Proof - Since the entries of P are bounded we can expand (I − e−αP )−1 in
a geometric series

(I − e−αP )−1 = I + e−αP + e−2αP 2 + e−3αP 3 + · · ·

The fact that u = f̃α(i) is a solution follows from (1.3.1). Uniqueness is an
immediate consequence of the fact all eigenvalues of P are bounded above
by 1 and therefore I − e−αP is invertible. Equivalently, if u1 and u2 are
solutions, then v = u1−u2 is a solution of (I−e−αP )v = 0 and consequently

v = e−αPv = e−2αP 2v = · · · = e−lαP lv = · · ·

Now let l→∞ to obtain v = 0. ♣
In the application of the discrete Laplace transforms it is essential to

obtain the analogue of lemma 1.4.1 which in this case becomes

Lemma 1.3.2 Let T be a stopping time for the Markov chain X◦, X1, · · ·
Then

f̃α(i) = Ei[
T−1∑
l=0

e−αlf(Xl)] + Ei[e
−αT f̃α(XT )].

Proof - The statement of the lemma is equivalent to

Ei[e
−αT f̃α(XT )] = Ei[

∞∑
l=T

e−αlf(Xl)]. (1.3.2)

The quantity inside Ei[.] on the right hand side of (1.3.2) can be written as

∞∑
l=T

e−αlf(Xl) = e−αT
∞∑
l=◦

e−αlf(XT+l).

Therefore
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Ei[
∞∑

l=T

e−αlf(Xl)] = Ei[E[e−αT
∞∑
◦
e−αlf(XT+l) | Xj, j ≤ T, T ]]

= Ei[e
−αT E[

∞∑
◦
e−αlf(XT+l) | Xu, u ≤ T, T ]]

(T is a stopping time) = Ei[e
−αT E[

∞∑
◦
e−αlf(XT+l) | Xj, j ≤ T ]]

(Strong Markov property) = Ei[e
−αT E[

∞∑
l=◦

e−αlf(XT+l) | XT ]]

= Ei[e
−αT f̃α(XT )],

proving the lemma. ♣
It is convenient to introduce some definitions. A function f on the state

space of the Markov chain X◦, X1, · · · is called α-excessive where 0 < α ≤ ∞
if

1. f(i) ≥ 0 for all i ∈ S;

2. f − e−αPf ≥ 0.

The case α = 0 is called excessive.

Lemma 1.3.3 For α > 0 a bounded α-excessive function f can be written
as f = h̃α for a non-negative bounded function h.

Proof - For an α-excessive function f with α > 0 we have f−e−αPf = h ≥ 0
and consequently such functions can be written as

f =
∞∑
l=◦

e−αlP lh = (1− e−αP )−1h = h̃α.

proving the claim. ♣
α-excessive functions are well-behaved relative to stopping times in the

sense that

Lemma 1.3.4 Let T be a stopping time for the Markov chain X◦, X1, · · ·,
and f an α-excessive function. Then

f(i) ≥ Ei[e
−αTf(XT )].
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Proof - Let γ > 0 be any real number ≥ α. Then it follows from (1.3.3) that

f(i) =
T−1∑
l=◦

Ei[e
−γlh(Xl)] + Ei[e

−γTf(XT )] ≥ Ei[e
−γTf(XT )],

which proves the lemma (for α = 0 we let γ → 0). ♣

Lemma 1.3.5 Let f be an α-excessive function and T ≤ T ′ stopping times.
Then

Ei[e
−αTf(XT )] ≥ Ei[e

−αT ′
f(XT ′)]

Proof - Let γ > 0 be any real number ≥ α. Then, for some h ≥ 0,

Ei[e
−γTf(XT )] = f(i)− Ei[

T−1∑
l=◦

e−γlh(Xl)]

≥ f(i)− Ei[
T ′−1∑
l=◦

e−γlh(Xl)]

By (1.3.3) = Ei[e
−γT ′

f(XT ′)].

Taking lim γ → α if α = 0 we obtain the desired result. ♣
An important application of the concept of excessive function is to the

determination of the value V (i) of the game described in §2.4. Recall that
the value of the game is defined as

V (i) = sup
T

Ei[e
−αTf(XT )−

T−1∑
l=0

e−αlg(Xl)]. (1.3.3)

The first step is to reduce the calculation to the case where the cost function
g ≡ 0. For this purpose we set

f ′ = f + g̃α, V ′ = V + g̃α.

Then equation (1.3.3) is equivalent to

V ′(i) = sup
T

Ei[e
−αTf ′(XT )], (1.3.4)
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and therefore our problem is mathematically equivalent to the special case
where g ≡ 0. To understand this point clearly, consider

Ei[e
−αTf ′(XT )] = Ei[e

−αTf(XT ) + e−αT g̃α(XT )]

(By lemma 1.3.2) = Ei[e
−αTf(XT )−

T−1∑
j=◦

e−αjg(Xj)] + g̃α(i).

Taking supT , the first term gives V (i) which together with g̃α(i) gives V ′(i).
For this reason from now on we asume g ≡ 0.

Lemma 1.3.6 With the above notation (and under the assumption g ≡ 0),
the value of the game is an excessive function.

Proof - Let ε > 0 and for each state k let Tk be a stopping time such that

Ek[e
−αTkf(XTk

)] ≥ V (k)− ε.

Let T be the stopping time which on a path ω ∈ Ω is 1+Tk(ω) if X1(ω) = k.
Then

Ei[e
−αTf(XT )] =

∑
k

e−αPikEk[e
−αTkf(XTk

]

≥
∑
k

e−αPik(V (k)− ε)

= e−αPV (i)− e−αε.

Since V is obtained by taking supT , we have

V (i) ≥ e−αPV (i)− e−αε

and V (i) is an α-excessive function. ♣

Lemma 1.3.7 With the above notation and hypotheses, V is the minimal
excessive function ≥ f .

Proof - Since T = 0 is a stopping time we have

V (i) ≥ Ei[e
−αTf(XT )] = f(i)
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proving V ≥ f . Now if g is any excessive function then by lemma 1.3.4
(taking T = 0)

g(i) ≥ Ei[e
−αTg(XT )]

for any stopping time T . If g ≥ f then Ei[e
−αTg(XT )] ≥ Ei[e

−αTf(XT )].
Consequently

g(i) ≥ sup
T

Ei[e
−αTf(XT )] = V (i)

proving the lemma. ♣
Notice that a priori it is not even clear that a minimal excessive function

≥ f exists. Lemma 1.3.7 establishes its existence and as noted in theorem
?? it gives an algorithmic way of calculating it. To complete the proof of
theorem ?? it remains to show that the exhibited stopping time realizes the
desired optimum. We begin with a lemma of a general nature.

Lemma 1.3.8 Let AıS be a subset of the state space, T the first hitting time
of A and h be an α-excessive function. Then h′(i) = Ei[e

−αTh(XT )] is also
an α-excessive function.

Proof - Noting that T (ω) = 0 if ω(0) ∈ A we define the stopping time T ′ by

T ′(ω) = min{l ≥ 1 | Xl(ω) ∈ A}.

Since T ′ ≥ T we have

h′(i) ≥ Ei[e
−αT ′

h(XT ′)]

where = holds if i 6∈ A and for i ∈ A we ≥ in view of lemma 1.3.5. Condi-
tioning on X1 we obtain

h′(i) ≥ Ei[E[e−αT ′
h(XT ′)|X1]]

=
∑
j

e−αPijh
′(j)

which proves that h′ is α-excessive. ♣
To complete the proof of theorem ?? of chapter 2 it is necessary to show

that under the assumption of finiteness of the state space S and for A = {j ∈
S | f(j) = V (j)}, the first hitting time T of A is the optimal strategy. To this
end we have to prove that for h(i) = Ei[e

−αTf(XT )] we have h(i) = V (i).
It follows from the definition of V that h ≤ V . The reverse inequality is
established in two steps
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1. h is an α-excessive function;

2. h ≥ f .

Since f(XT ) = V (XT ) and V is an α-excessive function, the first statement
follows2 from lemma 1.3.8. To prove the second statement first note that if
i ∈ A then T = 0 and so h(i) = Ei[e

−αTf(XT )] = f(i). For i 6∈ A assume
f(i) > h(i) and let

a = max
j 6∈A

(f(j)− h(j)),

which exists by finiteness of S. Let the maximum be attained at k 6∈ A Then
a + h ≥ f and and a + h is an excessive function. since V is the minimal
excessive function ≥ f we have a+ h ≥ V . Hence

V (k) ≤ a+ h(k) = f(k)− h(k) + h(k) = f(k)

which implies V (k) = f(k) contradicting the assumption k 6∈ A. This com-
pletes the proof. ♣

2This requires the assumption that P [T < ∞] = 1. However, by a general argument
involving the introduction of a state φ with X∞ = φ and extending f and v to φ by setting
f(φ) = 0 = V (φ) we circumvent this problem.
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EXERCISES

Exercise 1.3.1 Let f and h be α-excessive functions, show that min(f, h) is
α-excessive.

Exercise 1.3.2 Let X◦, X1, X2, . . . be a Markov chain with state space S,
A ⊂ S, f a function on A vanishing on A, and T be the first hitting time of
A. Show that the function

u(i) = Ei[
T−1∑
l=0

e−αlf(Xl)]

satisfies the equation (I − e−αP )u(i) = f(i), for i ∈ A′ where α ∈ [0,∞) and
A′ denotes the complement of A in S. This problem is the like the discrete
analogue of solving a boundary value problem.

Exercise 1.3.3 Show that for an irreducible and recurrent Markov chain an
excessive function is a constant.(Hint - Use the inequality f(i) ≥ Ei[f(XT )]
and let T be the first hitting time of state j to deduce f(i) ≥ f(j).)

Exercise 1.3.4 Show that an excessive function f can be written in the form

f = h+
∞∑
l=◦

P lg,

where h ≥ 0, g ≥ 0 and h = Ph. Assume the underlying Markov chain is
finite and all recurrent states communicate. What can you say about h?

Exercise 1.3.5 (Continuation of exercise 1.3.4) Let Rψ =
∑∞

l=◦ P
lψ where

ψ is a non-negative function on the state space. Let f be an excessive function
and g = Rψ for some non-negative function ψ. Show that min(f, g) is of
the form Rϕ for some non-negative function ϕ. (Hint - Use the fact that
min(f, g) is excessive and apply exercise 1.3.4.
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1.4 The Linear Equation (αI − A)u = f

In accordance with our general definition, the the Laplace transforms of the
transition probabilities P

(t)
ij are

P̃α
ij =

∫ ∞

◦
e−αtP

(t)
ij dt.

Let f be a bounded function on the state space S of the continuous Markov
chain Xt. Then f(Xt) is a function of the Markov chain and its Laplace
transform is a function on the state space S and is defined by

f̃α(i) = Ei[
∫ ∞

◦
e−αtf(Xt)dt],

where as noted earlier Ei means conditional expectation conditioned on X◦ =
i. Representing f as a column vector we have

Ei[f(Xt)] =
∑
j∈S

P
(t)
ij f(j) = (Ptf)i, where f =


...

f(j)
...

 .
It follows that the Laplace transform of f(Xt) can be written as

f̃α(i) =
(∑

j∈S

[ ∫ ∞

◦
e−αtPtdt

]
f
)

i
=
∑
j∈S

P̃α
ijf(j). (1.4.1)

More generally we define the Laplace transform of f at a Markov time T as

f̃α(XT ) = EXT
[
∫ ∞

◦
e−αtf(Xt)dt], (1.4.2)

where we recall that EXT
means conditional expectation conditioned on XT .

The following lemma is an important technical tool in the application of
Laplace transforms and relates Laplace transforms to Markov times:

Lemma 1.4.1 Let T be a Markov time and f be a bounded function on the
state space S of a continuous time Markov chain Xt. Then

f̃α(i) = Ei

[ ∫ T

◦
e−αtf(Xt)dt

]
+ Ei[e

−αT f̃α(XT )
]
,

for all i ∈ S and α ≥ 0.
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Proof - The statement of the lemma is equivalent to

Ei[
∫ ∞

T
e−αtf(Xt)dt] = Ei[e

−αT f̃α(XT )]. (1.4.3)

After making the change of variable t = s + T , the quantity inside Ei[.] on
left hand side of (1.4.3) can be written as∫ ∞

T
e−αtf(Xt)dt = e−αT

∫ ∞

◦
e−αsf(XT+s)ds.

Therefore,

Ei[
∫ ∞

T
e−αtf(Xt)dt] = Ei[E[e−αT

∫ ∞

◦
e−αsf(XT+s)ds | Xu, u ≤ T, T ]]

= Ei[e
−αT E[

∫ ∞

◦
e−αsf(XT+s)ds | Xu, u ≤ T, T ]]

(T is a stopping time) = Ei[e
−αT E[

∫ ∞

◦
e−αsf(XT+s)ds | Xu, u ≤ T ]]

(StrongMarkov property) = Ei[e
−αT E[

∫ ∞

◦
e−αsf(XT+s)ds | XT ]]

= Ei[e
−αT f̃α(XT )],

proving the lemma. ♣
The following application of lemma 1.4.1 relates the Laplace transform

to the infinitesimal generator of the continuous time Markov chain:

Proposition 1.4.1 For a bounded function f on the state space S, f̃α is the
unique solution to the linear equation

(αI − A)f̃ = f.

Proof - Set T = T1 the first transition time in lemma 1.4.1. Then Xt = X◦
for t < T and the first term on right hand side of the formula for f̃(i) becomes

Ei[
∫ T
◦ e

−αtf(Xt)dt] = f(i)Ei[
∫ T
◦ e

−αtdt]

= Ei[
1−e−αT

α
]

= f(i)
α

[
1−

∫∞
◦ λie

−λite−αtdt
]

= f(i)
α+λi

.
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The second term on the right hand side of the formula for f̃(i) in lemma ??
gives

Ei[e
−αT f̃α(XT )] =

∑
j∈S λiQij f̃

α(j)
∫∞
◦ e−λite−αtdt

= λi

α+λi
Qf̃α.

Putting these together we get after a little algebra

(α+ λi)f̃
α(i)− λi(Qf̃

α)(i) = f(i).

Comparing with the expression for the infinitesimal generator of a continuous
time Markov chain given in corollary ?? we see that f̃α is a solution of
the equation in question. To prove uniqueness assume (αI − A)g = 0 for
a bounded function g on the state space. Then in view of Kolmogorov’s
forward equation we have

d

dt
(e−αtPtg) = e−αtPt(αI − A)g = 0.

Integrating we obtain

0 =
∫ u

◦

d

dt
(e−αtPtg)dt = e−αuPug − g.

Since g is a bounded function, Pug is uniformly (in u) bounded and taking
limu→∞ we obtain g = 0 proving uniqueness. ♣

Propositions of the type 1.4.1 are the continuous time analogues of lemma
1.3.1 and have far-reaching implications. For example, if we replace the dis-
crete state space S with Rn, then the continuous time Markov chain should
be replaced with a diffusion process and the infinitesimal generator A gener-
ally becomes a second order partial differential operator. Then the analogue
of proposition ?? gives an explicit expression for the solution of the lin-
ear partial differential equation in terms of integration on path spaces (the
appearance of expectation Ei). By realizing the Schrödinger’s operator as
the infinitesimal generator of a diffusion process one obtains the celebrated
Feynman-Kac formula.

28



1.5 Don’t be Afraid of Measure Theory

We have already encountered examples of measures. While measure theory
does not solve problems arising in random processes, it does provide a several
useful theorems and points of view which play important roles in the devel-
opment of the theory. For example, theorems on convergence of functions
or random variables are essential for probability theory. We present here
the general outline of measure theory in relation to random processes which
are of interest to us. This will not be a systematic treatment, however, it
may serve as a bridge between sophisticated treatments of random processes
based on measure theory and informal approaches where the word measure
is entirely avoided.

We have already encountered examples of measures. The probability
spaces Ω of interest to us have been generally spaces of paths. To certain
subsets of Ω which have been specified by the values of paths at specific
points in time we assigned probabilities. For instance, we considered the
infinite coin tossing experiment where 0’s appear with probability p and 1’s
with with probability q = 1− p in which case Ω is the set of all sequences 0’s
and 1’s. Let Ωi1,···,in;j1,···,jm ıΩ be the subset consisting of all sequences {ω(l)}
where

ω(i1) = · · · = ω(in) = 0, and ωj1 = · · · = ωjm = 1.

Then to Ωi1,···,in;j1,···,jm we assigned probability P [Ωi1,···,in;j1,···,jm ] = pnqm. Sets
of this form often called cylinder sets. In practice it was essential to extend
assignement of probability to subsets which had a more complex description.
For instance, we considered the set of paths which visited a transient state
in a Markov chain infinitely often. By exhibiting this set through countable
unions and intersections of simple cylinder sets we were able to conclude
that the probability of visiting a transient state infinitely often is 0. Since
measure is a generalization of the notion of probability it thus reasonable to
begin by defining a measure (or measure space) as a triple (Ω,A, µ) where
Ω is a set (e.g. a set of paths), A a family of subsets of Ω (e.g. cylinder
sets, their complements, their countable unions and intersections) and µ a
function which to every set A ∈ A assigns a non-negative real number µ(A).
Since the probability of union of mutually exclusive events is the sum of their
probabilities, we also require

µ(
⋃
An) =

∑
µ(An),
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where An’s are pairwise disjoint sets in A. We always assume Ω and the
emptyset ∅ are elements of A. It is also clear that we should require comple-
ments, countable unions and intersections of sets in A are also in A in order
to ensure that µ(.) is such sets is defined. A probability space is thuerefore
a measure space (Ω,A, µ) such that µ(Ω) = 1. In practice it is important to
consider measure spaces where µ(Ω) = ∞. In such situations we require that
Ω = ∪Ωi with µ(Ωi) < ∞ for otherwise measure spaces will become rather
unwieldy. Since such pathological situations do not occur in our context
and because we will not provide complete proofs of basic results in measure
theory, there is no need to dwell on this condition. It is implicitly assumed
to hold in this text. A function fΩ → R is called measurable if for every
interval I (which may be open, closed half closed) the set

f−1(I)
def≡ {ω ∈ Ω | f(ω) ∈ I} ∈ A

A random variable in this context is simply a measurable function on a
probability space. In the special case where the random variables in question
are discrete valued, the sets f−1(I), as I runs over sufficiently small intervals
define a partition of the space Ω. Therefore the family A, in the context of
discrete random variables, can be replaced by a partition of the space Ω and
the condition of measurability becomes A-admissibility.

Given a measure space (Ω,A, µ) and an A-measurable function f on Ω,
then it is possible to define

∫
Ω fdµ. In the special case where A is a partition

of Ω, then A-measurability means f is constant on pieces of the partition.
Then we define ∫

Ω
fdµ =

∑
j

fjµ(Ωj)

where Ω = ∪Ωj (disjoint union) and the constant fj is the value of f on
Ωj. This definition can be extended by approximation to general measure
spaces, but overcoming the technical points is rather lengthy and by a leap
of faith we simply assume that via approximation and imitating the ideas
of Riemann integral the definition can be extended to the general case. A
function f is called p-integrable or p-summable if∫

Ω
|f |dµ <∞
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The space of p-summable functions is denoted by Lp. We are only interested
in the case 1 ≤ p < ∞, and we do not distinguish between functions which
are equal outside a set of measure 0. The cases p = 1 and p = 2 are called
integrable and square integrable functions.

It is useful to clarify the meaning of some of the notions of convergence
which are commonly used in probability and understand their relationship.
Let X1, X2, · · · be a sequence of random variables (defined on a probability
space Ω).

1. (Lp Convergence) - Xn converges to a random variable X (defined on
Ω) in Lp, 1 ≤ p <∞, if

lim
n→∞

E[|Xn −X|p] = 0.

We will be mainly interested in p = 1, 2. The Cauchy-Schwartz in-
equality in this context can be stated as

|E[WZ]| ≤
√

E[W 2]E[Z2],

where W and Z are real-valued random variables. Substituting W =
|Xn −X| and Z = 1 we deduce that convergence in L2 implies conver-
gence in L1. In general if Xn → X in Lp and 1 ≤ q ≤ p < ∞ then
Xn → X is Lq. Note that if Xn → X in L1 then E[Xn] converges to
E[X].

2. (Pointwise Convergence) - Xn converges to X pointwise if for every
ω ∈ Ω the sequence of numbers Xn(ω) converges to X(ω). Pointwise
convergence does not imply convergence in L1 and E[Xn] may not con-
verge to E[X] as shown in example ??. It is often more convenient to
relax the notion of pointwise convergence to that of almost pointwise
convergence or almost sure convergence. This means there is a subset
Ω◦ ⊂ Ω such that P [Ω◦] = 1 and Xn → X pointwise on Ω◦. We have
already seen how deleting a set of probability zero makes it possible to
make precise statements about the behavior of a sequence of random
variables. For example, with probability 1 (i,e,, in the complement of a
set of paths of probability zero) a transient state is visited only finitely
many times, or with probability any given pattern appears infinitely
often. Or the (strong) law of large numbers states that for an iid se-
quence of random variables X1, X2, · · · with mean µ = E[Xj], we have
almost pointwise convergence of the sequence X1+···+Xn

n
to µ.

31



3. Convergence in Probability - Related to almost pointwise convergence
is the weaker notion of convergence probability. A sequence Xn → X
in probability if for every ε > 0 we have

lim
n→∞

P [{ω | |Xn(ω)−X(ω)| ≥ ε}] = 0.

This notion is strictly weaker than almost sure convergence in the sense
that there are sequences which converge in probability but do not con-
verge almost surely. In fact, example ?? gives an example where the
sequence does not converge anywhere pointwise! The Weak Law of
Large Numbers is the statement that Sn

n
converges to µ in probability.

4. (Convergence in Distribution) - Let Fn be the distribution function of
Xn and F that of X. Assume F is a continuous function. Xn converges
to X in distribution means for every x ∈ R we have

P [Xn ≤ x] = Fn(x) −→ F (x) = P [X ≤ x].

The standard statement of the Central Limit Theorem is about con-
vergence in distribution. Convergence in distribution does not imply
almost pointwise convergence, but almost pointwise convergence im-
plies convergence in distribution.

The relationship between these four modes of convergence is summarized
as follows (1 ≤ q ≤ p <∞):

Conv. in Lp =⇒ Conv. in Lq

⇓
Conv. in Prob. =⇒ Conv. in Dist.

⇑
Almost Sure Conv.

Example 1.5.1 Consider the sequence of functions {fn} defined on [0, 1]
defined as (draw a picture to see a sequence of spike functions)

fn(x) =


22nx if 0 ≤ x ≤ 2−n

−22nx+ 2n+1 if 2−n < x ≤ 2−n+1

0 otherwise.
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It is clear that ∫ 1

◦
fn(x)dx = 1,

and the sequence fn converges to the zero function everywhere on [0, 1].
Therefore

lim
n→∞

∫ 1

◦
fn(x)dx 6=

∫ 1

◦
lim

n→∞
fn(x)dx.

This is obviously an undesirable situation which should be avoided since
when dealing with limiting values we want the integrals (e.g. expectations)
to converge to the right values. The assumption of uniform integrability
(described below) eliminates cases like this when we cannot interchange limit
and integral. It will be immediate that the uniform integrability condition is
not satisfied for the sequence {fn}. ♠

Let Xl on Ω be a sequence of random variables on Ω. For every c let Ωl;c

be the set points where |Xl| > c and χl;c be the indicator function of the set
Ωl;c. The sequence Ωl is called uniformly integrable if

lim
c→∞

sup
l

E[Xlχl;c] = 0.

It is clear that the sequence in example 1.5.1 is not uniformly integrable.

Example 1.5.2 We construct an example of a sequence of functions {fn}
proves that convergene in probability is strictly weaker than convergence
almost surely, and convergence in Lp does not imply convergence almost
surely. We let Ω = [0, 1]. We describe the definition of fn algorithmically
rather by a formula since it is easier to understand them in this manner.
Let f◦ ≡ 1. Define f1 and f2 by subdividing [0, 1] into [0, 1

2
) and [1

2
, 1] and

defining

f1(x) =

{
1, if x ∈ [0, 1

2
);

0, otherwise.
, f2(x) =

{
1, if x ∈ [1

2
, 1];

0, otherwise.

Next we consider the subdivision

[0, 1] = [0,
1

3
) ∪ [

1

3
,
2

3
) ∪ [

2

3
, 1],
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and define f3, f4 and f5 to be 1 on [0, 1
3
), [1

3
, 2

3
) and [2

3
, 1] and 0 elsewhere.

Thus having defined fj for j < n(n+1
2

we look at the subdivision

[0, 1] = [0,
1

n+ 1
) ∪ [

1

n+ 1
,

2

n+ 1
) ∪ · · · ∪ [

n

n+ 1
, 1]

and define f
k+

n(n+1
2

, for k = 0, 1, · · · , n, to be 1 on [k, k+1
n+1

) and 0 elsewhere. It

is immediate that the sequence fn converges to the 0 function in probability
and in L1, however, it does not converge to 0 anywhere! Therefore conver-
gence in probability is strictly weaker than almost sure convergence. While
fn does not converge to 0 anywhere, a subsequence of it will converge almost
surely to the 0 function. This is a general phenomenon, i.e., convergence in
L1 implies that a subsequence converges almost surely. ♠

The most important facts about convergence of sequences of functions
can be summarized as follows:

Theorem 1.5.1 Let fn be a sequence of integrable functions

1. If fn are non-negative, then∫
Ω

lim inf fn ≤ lim inf
∫
Ω
fn.

2. If the sequence fn is monotone in the sense that fn(ω) ≤ fn+1(ω) (al-
most surely) for all ω ∈ Ω and all n, then

lim
n

∫
Ω
fndµ =

∫
Ω
(lim fn)dµ,

where both sides of the equation are allowed to be ∞.

3. Assume there is an integrable function g such that |fn(ω)| ≤ g(ω) (al-
most surely) for all ω ∈ Ω. Then

lim
n

∫
Ω
fndµ =

∫
Ω
(lim fn)dµ.

The same conclusion hold if the sequence is uniformly integrable.
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We had noted earlier that even when the distribution function F of a
random variable is not differentiable, it is possible to make sense out of dF
by for example assigning the value F (b) − F (a) to an interval I = [a, b] or
more precisely by defining∫

χI(x)dF (x) = F (b)− F (a).

This means that while dF may not make sense as a function, it is meaningful
as a measure µ assigning the value µ(I) = F (b) − F (a) to the interval I =
[a, b]. For this measure space (R,A, µ), A is the family of subsets of R
which can be written as countable unions and/or intersections of intervals
(open,closed or half closed). It is customary to refer to this A as the family
of Borel sets in R.

It is useful to cast our previous considerations on infinite visits to a tran-
sient state and infinite appearance of a pattern in a more measure theoretic
framework. This requires no new ideas and we will repeat the same argu-
ments. The general question can be formulated as follows: Suppose we have
an infinite sequence of events Al, then what is the probability that infinitely
many of Al’s occur? The event that infinitely many of Al’s occur is repre-
sented as

A =
⋂
l

∞⋃
m=l

Am. (1.5.1)

Lemma 1.5.1 With the above notation and hypotheses

1. P [A] = 0 if
∑
P [Al] <∞.

2. P [A] = 1 if
∑
P [Al]1∞ and A1, A2, . . . are independent.

Proof - Since A ⊂ ∪∞m=lAm

P [A] ≤
∞∑

l=m

P [Am] −→ 0

which proves the first assertion. To prove the second assertion let A′ =
∪l ∩∞m=l A

′
m denote the complement of A. Then

P [∩∞m=lA
′
m] = lim

N→∞
P [∩∞m=lA

′
m]

(by independence) =
∏

(1− P [Am])

≤
∏
e−P [Am]

= exp(−
∑

P [Am]) = 0,
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proving the lemma. ♣
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EXERCISES

Exercise 1.5.1 A computer is generating )’s and 1’s with probabilities p and
1− p. Let Al be the event that there is sequence of length l of 0’s in the time
period 2l, 2l + 1, . . . , 2l+1. Show that

P [Al infinitely often] =

{
1, if p ≥ 1

2
;

0, otherwise.

(Hint - Let B
(l)
i be the event that there is a sequence of l consecutive 0’s

beginning at time 2l + (i− 1)l.)
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