
SOFTWARE IMPLEMENTATION OF ARITHMETIC IN F3m

OMRAN AHMADI, DARREL HANKERSON, AND ALFRED MENEZES

Abstract. Fast arithmetic for characteristic three finite fields F3
m is desirable

in pairing-based cryptography because there is a suitable family of elliptic curves
over F3m having embedding degree 6. In this paper we present some structure
results for Gaussian normal bases of F3

m , and use the results to devise faster mul-
tiplication algorithms. We carefully compare multiplication in F3

m using polyno-
mial bases and Gaussian normal bases. Finally, we compare the speed of encryp-
tion and decryption for the Boneh-Franklin and Sakai-Kasahara identity-based
encryption schemes at the 128-bit security level, in the case where supersingular
elliptic curves with embedding degrees 2, 4 and 6 are employed.

1. Introduction

Pairing-based cryptographic protocols are realized using algebraic curves of low-
embedding degree. Several families of low-embedding degree elliptic curves have
been considered, including supersingular curves with embedding degrees 2, 4, and 6,
and ordinary curves with embedding degrees 2 [29], 6 [23], and 12 [5]. The family of
supersingular elliptic curves with embedding degree 6 is defined over characteristic
three finite fields F3m . Consequently, the software and hardware implementation of
arithmetic in these fields has been intensively studied in recent years [16, 25, 13, 20,
14].

The elements of F3m can be represented using a polynomial basis or a normal
basis. We present some new structure results for Gaussian normal bases of F3m , and
use these results to devise faster multiplication algorithms. Our implementation on
a Pentium 4 machine shows that our fastest algorithm for normal basis multiplica-
tion in F3239 is about 50% faster than standard Ning-Yin multiplication [24], and
about 4.4 times faster than the Ning-Yin implementation reported by Granger, Page
and Stam [14]. Our experiments also suggest that the comb method for polynomial
basis multiplication [22] (perhaps combined with shallow-depth Karatsuba-like tech-
niques) is faster than Karatsuba multiplication. In particular, our implementation
for polynomial basis multiplication in F3239 is about 4.6 times faster than that re-
ported in [14]. We conclude, as in [14], that polynomial bases are preferred over
normal bases for the software implementation of characteristic three field arithmetic.

A recent IETF draft standard [8] for identity-based encryption (IBE) mandates
use of supersingular elliptic curves over prime fields — these curves have embed-
ding degree 2. We compare the speed of encryption and decryption for the Boneh-
Franklin [7] and Sakai-Kasahara [27] identity-based encryption schemes, when the

Key words and phrases. Gaussian normal bases, finite field arithmetic, pairings.

1



underlying elliptic curves are supersingular and defined over a prime field (embed-
ding degree 2), a characteristic two finite field (embedding degree 4), and a charac-
teristic three finite field (embedding degree 6). We focus our attention on 1536-bit
prime fields Fp, the characteristic two field F21223 , and the characteristic three field
F3509 . Each of these choices achieves the 128-bit security level in the sense that the
best attacks known on the discrete logarithm problem in the extension fields Fp2,
F24·1223 , and F36·509 have running time approximately 2128 [21].

We acknowledge that the Barreto-Naehrig (BN) ordinary elliptic curves [5] over
256-bit fields Fp with embedding degree 12 are ideally suited for pairing applica-
tions at the 128-security level, and can be expected to yield faster implementations
than supersingular elliptic curves especially when the Ate pairing algorithm [18] is
employed. However, some people are reluctant to use the BN curves because recent
work by Schirokauer [28] has raised the possibility that the special number field sieve
may be effective for computing discrete logarithms in Fp12 . Furthermore, in some
cases expensive hashing or the absence of an efficiently-computable isomorphism ψ
(cf. [12]) may be a concern. Thus it is worthwhile to consider the relative merits of
supersingular elliptic curves in pairing-based cryptography.

The remainder of the paper is organized as follows. Methods for performing
arithmetic in F3m using a polynomial basis representation are reviewed in §2. Our
structure results for Gaussian normal bases are developed in §3. In §4, we present our
implementation results for F3m. Estimates for Boneh-Franklin and Sakai-Kasahara
IBE are given in §5. Summary conclusions appear in §6.

2. Polynomial bases for F3
m

Elements a ∈ F3m can be regarded as polynomials a = am−1x
m−1 + · · ·+a0 where

ai ∈ F3 and arithmetic is performed modulo an irreducible polynomial f of degree
m. We associate a with the vector of coefficients (am−1, . . . , a0).

Harrison, Page, and Smart [16] considered two coefficient representations suitable
for implementation. Their “Type II” representation is closer to common techniques
used for binary fields. Each coefficient ai ∈ F3 is represented uniquely in {0, 1,−1}
using a pair (a0

i , a
1
i ) of bits, where ai = a0

i − a
1
i and not both bits are 1. Elements

a are represented by vectors aj = (aj
m−1, . . . , a

j
0), j ∈ {0, 1}. Addition c = a+ b is

t← (a0 ∨ b1)⊕ (a1 ∨ b0), c0 ← (a1 ∨ b1)⊕ t, c1 ← (a0 ∨ b0)⊕ t.

The seven operations involve only bitwise “or” (∨) and “exclusive-or” (⊕), and it
is easy to order the instructions to cooperate with processor pipelining. Negation is
−a = (a1, a0).

The analysis and experimental data in [16] strongly favour the Type II approach.
This also has the advantage that representations are unique, and common techniques
employed for multiplication in binary fields have direct analogues. Hence, as in [14],
we consider only this representation.

2.1. Field multiplication. Techniques for binary field multiplication that extend
directly to the representation a = (a0, a1) include table lookup and “comb” methods

2



[22], possibly combined with Karatsuba-like techniques to reduce the number of
word-level multiplications at the expense of more additions.

Briefly, a common case of the comb [22] calculates ab with a single table of
precomputation containing ub for polynomials u of degree less than w for some small
w (e.g., w = 4). The words of a are then “combed” w bits at a time to select the
appropriate precomputed value to add at the desired location of the accumulator.

In binary fields, our experience and analysis suggests the comb method will be
among the fastest on common processors. We also found this to be the case for
characteristic three finite fields, contrary to the findings in [14] where the Karatsuba-
Ofman style approach was the fastest choice. Indeed, the times in Table 1 (see §4)
show that a comb method is dramatically faster on the processor used in [14] (an
Intel Pentium 4).

The comb method, while not difficult to implement, requires attention to pro-
cessor and compiler characteristics [15, Chapter 5]. It appears necessary to code a
multiplication for each field size (in number of words to hold an element). With
fields of interest in methods for elliptic curves, Karatsuba-Ofman can be used at
shallow depth to reduce the multiplication to a few comb sizes, so code expansion
can be controlled.

2.2. Cubing and cube roots. Since a3 = (
∑

aix
i)3 =

∑

aix
3i, cubing is an inex-

pensive operation when performed using an expansion table to “thin” the coefficients
followed by a reduction. This is analogous to squaring in binary fields. The cost
of cube roots depends on the reduction polynomial. Since the operation is linear,
write

a1/3 =

⌈m/3⌉−1
∑

i=0

a3ix
i + x1/3

(⌈m/3⌉−1
∑

i=0

a3i+1x
i

)

+ x2/3

(⌈m/3⌉−1
∑

i=0

a3i+2x
i

)

.

If x1/3 and x2/3 are precomputed, then a1/3 can be found using a table-lookup
method to extract coefficients from a followed by two multiplications where each
has an operand that has all nonzero coefficients in the lower third of the vector
representation. If the reduction polynomial can be chosen so that x1/3 has only a
few nonzero terms, then roots are especially inexpensive.

Example 1. Consider F3[x]/(f) where f(x) = xm + fkx
k + f0 is irreducible. If

m ≡ k (mod 3), then x1/3 has 4 − (m mod 3) nonzero terms [3]. For m = 239
(of interest in [14], for example), the polynomial f(x) = xm − xk + 1 for k = 5
is irreducible and has m ≡ k ≡ 2 so that x1/3 = −x80 + x2 has just two terms.
However, [14] selected f(x) = x239 + x24 − 1, and [1] shows that x1/3 will have
⌈2m−1

3k ⌉ + ⌈2m−1−k
3k ⌉ + ⌈2m−1−2k

3k ⌉ + j = 20 + j nonzero terms where 0 ≤ j ≤ 3 (in

fact, there are 23 nonzero terms in x1/3 and 9 nonzero terms in x2/3).
There are m where no irreducible trinomial yields sparse x1/3; an almost worst

case is illustrated by m = 163 where x1/3 has m − 1 nonzero terms. However,
there is an irreducible tetranomial where x1/3 has five terms, and an irreducible
pentanomial where x1/3 has 3 terms. The case m = 509 also has no trinomial giving
a low-weight x1/3. There is a tetranomial giving a 17-term x1/3 and a pentanomial

3



where x1/3 has 5 terms. To minimize the combined hamming weight of x1/3 and
x2/3, a pentanomial can be chosen (e.g., x509 +x294−x215 +x79− 1) where x1/3 has

6 terms and x2/3 has 3 terms.

2.3. Inversion. Euclidean algorithm variants for inversion in binary fields adapt
fairly directly to the representation a = (a0, a1). As an alternative, the inverse can
be found by exponentiation. Although [14] remark that “one cannot use Itoh-Tsujii
type methods to reduce the cost”, in fact such methods apply. To see this, note that

a3k−1 =

{

a2(a3k−1−1)3, k odd,

(a3k/2−1)3
k/2+1 = c · c3

k/2

, k even,

where c = a3k/2−1. Then a−1 = a3m−2 = a(a3m−1−1)3. Since a2 can be calculated
once, the cost of inversion by a recursive approach is ⌊log(m− 1)⌋+ wt(m− 1) + 1
field multiplications (where wt is Hamming weight) along with many cubings. The
technique is most applicable when m− 1 has low weight and cubings are extremely
cheap (as in normal basis representations). In a polynomial basis, it is expected to
be more expensive than inversion based on the Euclidean algorithm, although it has
the advantage that it requires very little additional code over multiplication (and is
thus especially suitable for hardware).

3. Normal bases

Let α generate a normal basis N for Fqm over Fq, and let αi = αqi
for 0 ≤ i ≤

m − 1. Let αiαj =
∑m−1

k=0 t
(k)
ij αk, where t

(k)
ij ∈ Fq. For a ∈ Fqm let ai ∈ Fq be

defined by a =
∑m−1

i=0 aiαi and let A = (a0, . . . , am−1). Then c = ab is given by

ck =
∑

i,j aibjt
(k)
ij = ATkB

′ where the collection of matrices {Tk = (t
(k)
ij )} is known

as a multiplication table for Fqm over Fq. It is known that t
(k)
ij = t

(0)
i−k,j−k and

hence ck = A(k)T0B
(k)′ where A(k) denotes the left cyclic shift of the vector A by k

positions.

Let ααi =
∑m−1

j=0 tijαj , for 0 ≤ i ≤ m − 1. Then t
(k)
ij = ti−j,k−j, and T = (tij)

and T0 have the same number of nonzero entries, known as the complexity CN of
the normal basis N . It is known that CN ≥ 2m− 1, and N is said to be optimal if
CN = 2m− 1.

3.1. Gauss periods. Let k,m be such that r = mk+ 1 is prime and gcd(r, q) = 1.
Let β be a primitive r-th root of unity in an extension of Fq, and let γ be a primitive

k-th root of unity in Zr. The element α =
∑k−1

j=0 β
γj

is a Gauss period of type (m,k)

for Fq. In fact, α ∈ Fqm and is normal if and only if 〈qiγj〉 = Z∗
r. In this case, every

element of Z∗
r can be written uniquely as qiγj where 0 ≤ i ≤ m−1 and 0 ≤ j ≤ k−1

[2]. In the following, Tr : a 7→
∑m−1

i=0 a3i
is the trace function of F3m over F3.

Lemma 1. If α is a Gauss period and is normal, then Tr(α) = −1.

4



Proof. In the notation of this section,

Tr(α) =
m−1
∑

i=0

(k−1
∑

j=0

βγj

)qi

=
m−1
∑

i=0

k−1
∑

j=0

βγjqi
=

r−1
∑

ℓ=1

βℓ

since 〈qiγj〉 = Z∗
r. The last sum is (βr − 1)/(β − 1)− 1 = −1. �

Since Tr(α) =
∑m−1

i=0 αi = −1, the normal basis representation of the identity
element in F3m is the vector all of whose entries are −1.

3.2. Complexity and structure for T when q = 3. Fix q = 3 and assume that
α is a Gauss period of type (m,k) and that α is normal. Note that m odd implies
that k is even. Since our main interest is prime m > 2, we shall henceforth assume
k is even. The normal basis N generated by α is called a Gaussian normal basis
(GNB) for F3m , and is said to be of type k.

We are interested in the complexity of the multiplication and in the “structure”
of the multiplication matrix T , in particular, the number of entries that are −1.
As a direct consequence, we will obtain results for T that are of practical interest,
including a decomposition that accelerates the multiplication significantly when k
is 2 or 4.

We define the complexity Ci of the ith row of the matrix T to be its number of
nonzero entries. Notice that by definition CN =

∑m−1
i=0 Ci. Now we may write

(1)
m−1
∑

j=0

tijαj = ααi = αα3i
=

k−1
∑

s=0

k−1
∑

ℓ=0

βγℓ(1+γs3i) =
k−1
∑

s=0

f(i, s),

where f(i, s) is defined to be
∑k−1

ℓ=0 β
γℓ(1+γs3i). Since α is a Gauss period which is

normal, there is a unique pair (i, s) such that 1 + γs3i = 0, namely (i = 0, s = k/2),
and then f(0, k/2) = k. If (i, s) 6= (0, k/2), then 1 + γs3i = γt3j for some t and j,
and then f(i, s) = αj . Hence, if i ≥ 1, then Ci ≤ k. These observations lead to
well-known upper bounds on CN .

Theorem 2 ([6, Theorem 5.5]). CN ≤ (m − 1)k + m = (k + 1)m − k and CN ≤
(m− 1)k + k − 1 = mk − 1 if k ≡ 0 (mod 3). If k = 2, then CN = 3m− 2.

The next result establishes some lower bounds on CN . Further, the number of
−1 entries in the multiplication matrix is given for some cases; this number is of
practical interest because it can affect implementation optimizations.

Theorem 3. Suppose that α is a Gauss period of type (m,k) for F3, k is an even
number, and α is normal. Let f be defined by (1). Then a lower bound on the
complexity of the Gaussian normal basis generated by α is

CN ≥







mk − 1− (k/2 − 1)(k − 1), if k ≡ 0 (mod 3),
(k + 1)m− k − 1− (k/2− 1)(k − 2), if k ≡ 1 (mod 3),
(k + 1)m− k − (k/2 − 1)(k − 1), if k ≡ 2 (mod 3).

Furthermore, the lower bound is achieved if and only if
5



(i) there are no i ≥ 1 and distinct s1, s2, s3, s4 such that f(i, s1) = · · · =
f(i, s4);

(ii) if k ≡ 0 (mod 3), then there are no distinct s1, s2, s3, s4 such that f(0, s1) =
· · · = f(0, s4); and

(iii) if k 6≡ 0 (mod 3), then there are no distinct s1, s2, s3 such that f(0, s1) =
f(0, s2) = f(0, s3).

Also if there are no i, 0 ≤ i ≤ m− 1, and distinct s1, s2, s3 such that f(i, s1) =
f(i, s2) = f(i, s3), then the number of −1 entries in the matrix T is







(k/2 − 1)(k − 1), if k ≡ 0 (mod 3),
m+ (k/2 − 1)(k − 1)− k + 1, if k ≡ 1 (mod 3),
(k/2 − 1)(k − 2) + 1, if k ≡ 2 (mod 3).

Proof. For i = 0, . . . ,m− 1, let Ei denote the number of triples (i, s′, s′′) such that
s′ 6= s′′ and f(i, s′) = f(i, s′′). We have Ci ≥ k − Ei/2 for i ≥ 1. This is because
each f(i, s) is a basis element for every s and i ≥ 1. Moreover, if there exist distinct
s1, . . . , sℓ such that f(i, s1) = · · · = f(i, sℓ) and ℓ ≥ 2, then the complexity of row i
is decreased by 1 if ℓ = 2 and at most by ℓ if ℓ ≥ 3 while Ei is increased by ℓ(ℓ− 1).
Also it is easy to see that Ci = k−Ei/2 if and only if there are no distinct s1, s2, s3,
s4 such that f(i, s1) = · · · = f(i, s4). In the following we obtain some inequalities
involving C0 which, together with the inequalities obtained for Ci, i = 1, . . . ,m− 1,
will allow us to establish a lower bound for CN .

Let i = 0. Now, if 1 ≤ s < k/2 and f(0, s) = αj, then 1 + γs = γt3j for

some t. Hence 1 + γk−s = 1 + γ−s = γ−s(γs + 1) = γt−s3j , and so f(0, k −
s) = f(0, s). Furthermore, f(0, k/2) = k and f(0, 0) is a basis element, whence
f(0, 0) 6= f(0, k/2). We have the following three cases:

(A) If k ≡ 0 (mod 3), then we claim that C0 + E0/2 ≥ k − 1. As we mentioned
above the sum (1) for i = 0 produces

f(0, 1) = f(0, k − 1), . . . , f(0, k/2− 1) = f(0, k/2 + 1), f(0, 0), f(0, k/2) = k.

If f(0, 0), f(0, 1), . . . , f(0, k/2 − 1) are pairwise distinct, then we have C0 + E0/2 =
k − 1, and if they are not pairwise distinct then C0 will decrease while there wll be
an increase in E0. It is easy to see that the increment in E0/2 will be greater than
or equal to the decrement in C0. From this the claim follows. Also it is easy to see
that C0 + E0/2 = k − 1 if and only if there are no distinct s1, s2, s3, s4 such that
f(0, s1) = · · · = f(0, s4).

(B) If k ≡ 1 (mod 3), then Tr(α) = −1 ≡ −k (mod 3). From the fact that the
trace is the sum of the basis elements and an argument similar to above we obtain
C0 +E0/2 ≥ m+ k/2− 2. Furthermore we see that C0 +E0/2 = m+ k/2− 2 if and
only if there are no distinct s1, s2, s3 such that f(0, s1) = f(0, s2) = f(0, s3).

(C) If k ≡ 2 (mod 3), then Tr(α) = −1 ≡ k (mod 3). Similar arguments as above
lead to C0 + E0/2 ≥ m. Again it is easily seen that C0 + E0/2 = m if and only if
there are no distinct s1, s2, s3 such that f(0, s1) = f(0, s2) = f(0, s3).

Using the inequalities we have obtained for C0, C1, . . . , Cm−1, it suffices to com-

pute E0 + E1 + · · · + Em−1 in order to obtain a lower bound for CN =
∑m−1

i=0 Ci.
This is done in the following through a double counting argument.

6



A triple (i, s′, s′′) for Ei exists if and only if there is some j with

1 + γs′3i ≡ γj(1 + γs′′3i) (mod r) or γs′′3i(γs′−s′′ − γj) ≡ γj − 1 (mod r).

Now γj − 1 and γs′−s′′ − γj cannot both be zero because otherwise s′ = s′′. For
a given j and s′ − s′′, there is either no solution or exactly one solution (i, s′′).
Solutions are obtained for 0 < j < k and s′−s′′ 6∈ {0, j}, giving (k−1)(k−2) triples
(i, s′, s′′).

The claim about the count of −1 entries follows from the fact that
∑m−1

i=0 Ei =
(k − 1)(k − 2) and by examining the first row of the matrix T . �

Corollary 4. If k = 4, then CN = 5m− 7.

Proof. We verify that conditions (i) and (iii) of Theorem 3 are satisfied. Since
k = 4, we have f(0, 1) = f(0, 3) and E0 + · · ·+ Em−1 = 6. Thus there are no i ≥ 1
and distinct s1, s2, s3 such that f(i, s1) = f(i, s2) = f(i, s3). Suppose now that
f(0, 0) = f(0, 1). Then 1 + γ0 = γℓ(1 + γ) for some ℓ. Squaring both sides gives
4 = ±2γ, and hence 2 = ±γ. Squaring again yields 4 = γ2 = −1 which is impossible
if m > 1. Hence f(0, 0) 6= f(0, 1) and the result follows. �

The lower bound of Theorem 3 is not always met with equality when k ≥ 6. A
computer search found that the values (m,k) for which k ≤ 26 is even, m ∈ [k, 1000]
is prime, a type k GNB for F3m exists, but the lower bound of Theorem 3 is not
met with equality are (17, 14), (53, 20), (31, 22), and (103, 24).

The proof of Theorem 3 yields “structure” results concerning the matrix T0 that
can lead to significant computational savings when k is 2 or 4. The basic idea is that
T0 can be written as P +Q where the total number of nonzero entries is essentially
unchanged, but the multiplication A(ℓ)PB(ℓ)′ is independent of ℓ. The complexity
of the multiplication is then essentially the number of nonzero terms in Q.

This type of decomposition was shown in F2m for optimal normal bases of type 1
by Hasan, Wang, and Bhargava [17]. For their case, the corresponding T0 has 2m−1
nonzero entries, and Q has m − 1 nonzero entries. Exploiting the decomposition
gives significant speed (and possibly storage) improvements [26, 10]. However, this
decomposition is for type 1 bases, and so m is necessarily even.

The following decomposition result is obtained for characteristic 3. For k = 2,
the multiplication complexity is essentially reduced from 3m to 2m. This result can
be applied, for example, to the Ning-Yin multiplication presented in [14]. For k = 4,
the multiplication complexity is essentially reduced from 5m to 4m.

Theorem 5. Let T0 correspond to a GNB of type k for F3m with m > k. If k = 2,
then T0 = I +Q where Q has 2m− 1 nonzero entries, each of which is 1. If k = 4,
then T0 = −I +Q where Q has 4m− 4 nonzero entries, three of which are −1.

Proof. The entries of T0 are obtained from T via t
(0)
i,j = ti−j,−j and hence the diagonal

entries of T0 are t
(0)
j,j = t0,−j.

For k = 2, we have f(0, 0) = αℓ for some ℓ, and f(0, 1) = 2. Hence m− 1 of the
t0,−j entries are 1 and one entry is −1. We can thus write T0 = I + Q where Q

7



receives a “correction term” corresponding to the −1 entry. It is easy to see that Q
will then have 2m− 1 nonzero entries.

For k = 4, in the proof of Corollary 4 we showed that there cannot be an i with
f(i, s) constant for three distinct s. Thus from f(0, 1) = f(0, 3) and f(0, 2) = 4, we
have C0 = m − 1 where m − 2 entries are −1 and one entry is 1. The result then
follows in a fashion similar to k = 2 using the fact that CN = 5m− 7. �

A consequence of Theorem 5 is that a GNB of type 2 over F3m is essentially
optimal in the sense that the complexity of the multiplication is effectively 2m− 1
(since A(ℓ)IB(ℓ)′ = A ·B is independent of ℓ and essentially cost-free).

4. Implementation notes and timings

In this section, we provide details on the implementation along with timings on a
Pentium 4, a common platform chosen for such comparisons. This processor is briefly
described as 32-bit with extensions for wider operations in special registers, and
has relatively few general-purpose registers. Compared to the preceding generation
Pentium III processors, the instruction pipeline is deeper and penalties are larger
for branch misprediction [19].

The implementation language was C, and only general-purpose registers were
employed. Cooperating with processor characteristics and compiler optimizing pe-
culiarities can be a difficult task, and our efforts in this area were modest. In
particular, the GNU C compiler can be weaker on register allocation strategies, and
favours scalars over structures and arrays (even when array indices are known at
compile-time). Limited effort was applied to cooperate with such weaknesses, but
the timings in Table 1 show that significant differences between compiler perfor-
mance remain.

4.1. Field multiplication. For polynomial multiplication, we employed a “comb”
multiplier [22] suitably modified for characteristic 3. We used width w = 3, which
extracts 3 bits each of a0 and a1 at each step. Only 27 (rather than 26 = 64) distinct
values are possible due to the representation. A lookup was performed on the 6 bits
in order to select from the table of (data-dependent) precomputation. Since half
the elements are obtained by simple negation, precomputation is less expensive
than it may appear. For fields of sufficient size, a shallow-depth Karatsuba split
was used. At smaller field sizes this need not be faster; the results vary by platform,
but typically the times are competitive with a “full comb” and the split has the
advantage of less code size and dynamic memory consumption. For example, on
the test platform, a full comb on eight 32-bit word pairs (e.g., F3239) is 8-18% faster
than a depth-1 split (giving three 4-word-pair multiplications).

Normal basis multiplication uses the precomputation strategy of Ning and Yin
[24]. The basic idea is to calculate rotations required in a (data-dependent) pre-
computation phase to reduce costs in the main evaluation. For low-complexity
Gaussian normal bases, the multiplication matrix is sparse and of regular structure,
and the corresponding algorithm is relatively simple to code. Granger et al. [14]
adapt the Ning and Yin algorithm directly. Our implementation apparently differs

8



Table 1. Timings (in µs) for field arithmetic on a 2.4GHz Pentium 4.a

Polynomial Basis Type 2 Normal Basis

add mult a3 a1/3 invert
by exp

invert
by EEA

mult
mult

Thm 5
mult

ring mapb

a3 or
a1/3

invert
by exp

F3
239 = F3[x]/(x

239 + x24 − 1)

gcc .05 5.0 .32 1.6c 137d 55 21.0 16.2 13.9 .04 195d

icc .04 4.2 .30 1.2c 122d 46 17.2 14.2 11.5 .02 171d

GPSe .69 23.0 1.59 19.3 159 60.9 .60 14182

F3
509 = F3[x]/(x

509 − x477 + x445 + x32 − 1)

gcc .09 15.5 .70 2.5f 575g 213 98.7 74.5 58.1 .07 1034g

icc .07 12.8 .66 1.7f 508g 190 74.3 58.8 52.0 .04 829g

F2
1223 = F2[x]/(x

1223 + x255 + 1)

gcc .06 17.9
icc .06 15.6

aCompilers are GNU C (gcc) 3.3 and Intel C (icc) 6.0. Timings done under Linux/x86.
bMap to F3[x]/((xmk+1

−1)/(x−1)) and use a modified comb polynomial multiplication [10]. Fields
here have k = 2 (the type of the Gaussian normal basis).
cSparse multiplication; x1/3 has 23 nonzero terms and x2/3 has 9 nonzero terms.
dAddition-chain with 12 multiplications.
eTimings in [14] are given for a 2.8 GHz Pentium 4 running Linux with gcc 3.3; times here are
obtained by scaling linearly to 2.4 GHz.
fSparse multiplication; x1/3 has 6 nonzero terms and x2/3 has 3 nonzero terms.
gAddition-chain with 14 multiplications.

in the order of evaluation in that our outer loop is on the rows of the multiplica-
tion matrix, which reduces the number of lookups. We also give timings for the
reduced-complexity version given by Theorem 5.

The “ring mapping” approach is detailed in [10]; only an outline is given here.
For a field Fpm with a type k normal basis, there is a fast mapping φ from Fpm

to the ring Fp[x]/((x
mk+1 − 1)/(x − 1)). The basic idea is to perform normal basis

multiplication by mapping into the ring and applying fast polynomial-basis methods
and then map back. A downside in this approach is the expansion by a factor k.
However, the last mk/2 coefficients for elements in φ(Fpm) are a mirror reflection of
the first mk/2 [34]. Hence, it suffices to find half the coefficients in the ring product.

Each coefficient in φ(·) or φ−1(·) can be obtained with a shift and mask.1 The
comb multiplier is defined for only a subset of the ring. However, the expansion
in the mapping means that the method will be significantly more expensive than
polynomial multiplication in the field. In particular, precomputation is for ring
elements, and an entire ring element is “combed.” On the positive side, only half
the product in the ring is calculated, and reduction is especially simple.

1More precisely, in our representation for characteristic 3, a shift and mask is applied to a pair
of words to obtain an output coefficient. For the mapping into the ring, only half the coefficients
are found this way—the remainder are obtained at low cost by symmetry.

9



4.2. Cubing and cube roots. For cubing in polynomial representations, we used
an 8-to-24-bit lookup table to “thin” coefficients and then reduced the result. This
is analogous to the common method for squaring in binary fields, and cubing is
similarly inexpensive. Cube roots were obtained by the method described in §2.2,
with a 64-word lookup table to extract coefficients. The cost depends on the number
of nonzero terms in x1/3 and x2/3.

For m = 239, we used the reduction polynomial x239 + x24 − 1 so that direct
comparisons could be made to [14]. This choice gives 23 terms in x1/3 and 9 terms

in x2/3. As noted in Example 1, this is not optimal, but nonetheless leads to fairly
fast cube roots via sparse multiplication. For m = 509, there is no trinomial giving
sparse x1/3. We searched for irreducible tetranomial or pentanomial x509 + p(x)

giving the lowest combined weight for x1/3 and x2/3 subject to deg p ≤ 509 − 32.
There are multiple candidate pentanomials, but x509 − x477 + x445 + x32 − 1 was
chosen for the fortuitous spacing between powers that permits optimizations. The
choice gives x1/3 with 6 terms and x2/3 with 3. A possible implementation downside
is the high degree of p(x), although this is not a significant issue here.

In a normal basis representation, cubing and cube roots are rotations. In our
specific representation, this is rotation of a pair, an inexpensive operation.

4.3. Inversion. Inversion is performed via a Euclidean algorithm variant and also
using exponentiation. Although Euclidean algorithm variants can be faster, coding
for speed typically involves code expansion (to efficiently track lengths of operands,
etc.). The method using exponentiation is short and easy to code once field multi-
plication is done.

For the Euclidean algorithm approach in characteristic 3, [16] and [14] employ
the “binary” Euclidean algorithm. We adapted the “usual” Euclidean algorithm
[15, Algorithm 2.48]. Unlike the binary Euclidean algorithm, explicit degree calcu-
lations are required. Some processors have hardware support that can aid in these
calculations. The Intel Pentium family has “bit scan” instructions to find the left-
or right-most 1 bit in a word, and we used an assembly language fragment to exploit
this capability. A binary search can be used on processors without such support,2

and in fact “bit scan” on the Pentium is less effective for our code here than in [11]
for characteristic 2, in part because of the difference in characteristic and also that
the characteristic 2 code uses more optimization via code expansion.

For inversion via exponentiation, we used Itoh-Tsujii methods (see §2.3). Rather
than the direct recursive approach, a few multiplications can sometimes be saved
by choosing short addition chains. We used the following chains:

F3
239 : 1, 2, 3, 6, 8, 14, 28, 56, 112, 224, 238

F3
509 : 1, 2, 4, 8, 12, 24, 28, 56, 112, 224, 252, 504, 508

These give inversion via 12 and 14 multiplications, respectively, saving a multiplica-
tion in each case over the direct recursive approach. (The corresponding inversion
code using these chains has low resource requirements.)

2Sun recommends using a “population count” (popc) instruction to build a seven-instruction
bit-scan on SPARC [33]. However, popc is implemented via a trap, and bit-scan will be faster via
binary search.

10



4.4. Analysis. Table 1 shows that the times in [14, Table 4] are unnecessarily pes-
simistic (on this platform) for both polynomial basis and normal basis field arith-
metic in characteristic 3. For the example field F3239 , multiplication times in a
polynomial basis are approximately a factor 5 faster than reported in [14], in part
due to algorithm differences.

For normal basis representations, significant improvement can be obtained for the
type 2 case exhibited by F3239 by exploiting Theorem 5 to reduce the complexity.
Further improvement is obtained by the “ring mapping” approach. Our results
are consistent with [14] in the sense that normal basis multiplication is sufficiently
expensive relative to multiplication in a polynomial basis to discourage the use of
normal basis representations in this environment.

Nonetheless, normal bases continue to be of interest in some environments, and
choosing between the Ning-Yin approach and the ring mapping method will depend,
in part, on the type k of the Gaussian basis. Type 2 bases are of course advantageous
in both methods, but larger type may be the only choice if supersingular curves
with low cofactor are demanded. For example, in the range 239 < m < 487, only
m = 317 and m = 353 give supersingular curves over F3m with small cofactor, and
the corresponding types are 26 and 14, resp.

The Ning-Yin precomputation requires 4m words of data-dependent storage, and
this amount is not affected by the type of the basis. The method is especially easy to
code, and (roughly speaking) the running time increases linearly with k, although
the number and location of −1 entries in the multiplication matrix complicates
performance tuning. In contrast, the ring mapping approach has an expansion by a
factor k, although symmetry lessens the impact. For the test platform, there will be
a threshold k where multiplication will be fastest via conversion to polynomial basis
representation (at cost equivalent to a few multiplications provided the conversion
matrix is known). Of less practical importance, [14] note the “exceptionally high
cost of inversion in normal bases;” however, in fact the methods of Itoh and Tsujii
apply and inversion cost is relatively modest.

For curve arithmetic, [16] provide comparisons for a supersingular curve over
F397 against a curve over F2241 , which offer similar security in the context of pairing-
based cryptography (the corresponding embedding degrees are 6 and 4, respectively).
In [16, Table 4], the best times for point multiplication favour the characteristic
three case by roughly a factor 2. However, the scalar recodings selected are binary,
ternary, and nonary, and this favours the characteristic three curve; in fact, the
ternary and nonary methods are not useful for the characteristic two case. Since
the nonary method is permitted storage for a few points of precomputation, a more
meaningful comparison would involve a similar-storage width-w NAF method in the
characteristic two case. In fact, the calculation of the usual width-w NAF adapts
directly to the base 3 case, and so we’d recommend that the nonary method be
replaced by a method employing a (base 3) width-3 NAF (which uses the same
amount of storage).

11



5. Identity-based encryption

In this section we compare the speed of encryption and decryption for the Boneh-
Franklin (BF) [7] and Sakai-Kasahara (SK) [27] identity-based encryption schemes
at the 128-bit security level.

5.1. Symmetric pairings. Let E be a supersingular elliptic curve defined over Fq.
Let n be a prime divisor of #E(Fq), and suppose that n2 ∤ #E(Fq). The embedding
degree of E (with respect to n) is the smallest positive integer k such that n | qk−1.
Let P ∈ E(Fq) be a point of order n, and let µn denote the order-n cyclic subgroup
of F∗

qk . The (reduced) Tate pairing is a bilinear map ê : 〈P 〉 × 〈P 〉 → µn.
The three pairings we consider are described next. We let m, s, c denote the

cost of multiplication, squaring, and cubing in the base field Fq, and let M , S, C
denote the cost of multiplication, squaring and cubing in the extension field Fqk .
Also, we let A, D, T denote the cost of point addition (using mixed affine-projective
coordinates), point doubling (using projective coordinates), and point tripling (using
projective coordinates) in E(Fq).

5.1.1. Type I pairing. Let q = p be a 1536-bit prime such that p ≡ 3 (mod 4) and
p+ 1 has a 256-bit low Hamming weight prime divisor n. Then the elliptic curve

E1/Fp : Y 2 = X3 − 3X

is supersingular and n | #E1(Fp). The embedding degree of E1 is k = 2. The
extension field Fp2 is represented as Fp2 = Fp[i]/(i

2 + 1), and a distortion map is
(x, y) 7→ (−x, iy). We have m ≈ s, M ≈ 3m, S ≈ 2m, A ≈ 3s + 8m ≈ 11m, and
D ≈ 4s + 4m ≈ 8m. The Tate pairing, computed using the algorithm described by
Scott [29], costs 4s+8m+S+M per bit of n (for the Miller operation) plus 5s+5m
per bit of n (for the final exponentiation by (p2 − 1)/n). If one of the two input
points is fixed then, as observed in [29], precomputing 768 Fp-elements can reduce
the cost of the Miller operation to m+ S +M per bit of n.

5.1.2. Type II pairing. Let q = 21223, F21223 = F2[x]/(x
1223 + x255 + 1), and

E2/F21223 : Y 2 + Y = X3 +X.

Then E2 is supersingular, and #E2(F21223) = 5n where n is a 1221-bit prime. The
embedding degree of E2 is k = 4. The extension field Fq4 is represented using tower
extensions Fq2 = Fq[u]/(u

2 +u+1) and Fq4 = Fq2[v]/(v2 +v+u). We have M ≈ 9m
and A ≈ 9m, while s, S and D are essentially free. Inversion of an element α ∈ µn

is also essentially free since α−1 = αq2

. The BGhS [4] algorithm for computing the
Tate pairing costs approximately 612× 7m.

5.1.3. Type III pairing. Let q = 3509, F3509 = F3[x]/(x
509 − x477 + x445 + x32 − 1),

and

E3/F3509 : Y 2 = X3 −X + 1.

Then E3 is supersingular, and #E3(F3509) = 7n where n is a 804-bit prime. The
embedding degree of E2 is k = 6. The extension field Fq6 is represented using tower
extensions Fq3 [u] = Fq[u]/(u

3−u−1) and Fq6 = Fq3[v]/(v2 +1). We have M ≈ 18m
12



and A ≈ 9m, while c, C and T are essentially free. Inversion of an element α ∈ µn

is also essentially free since α−1 = αq3

. The BGhS [4] algorithm for computing the
Tate pairing costs approximately 255× 15m.

5.2. Boneh-Franklin and Sakai-Kasahara IBE. Let P ∈ E(Fq) be a point
of order n, and let ê : 〈P 〉 × 〈P 〉 → µn be a (symmetric) bilinear pairing. Let
H1 : {0, 1}∗ → 〈P 〉, H2 : {0, 1}λ × {0, 1}λ → [1, n − 1], H3 : µn → {0, 1}

λ, H4 :
{0, 1}λ → {0, 1}λ, H5 : {0, 1}∗ → [1, n− 1] be hash functions. The Key Generator’s
private key is t ∈R [1, n − 1], while its public key is T = tP .

5.2.1. Boneh-Franklin IBE.. Party A’s private key is d = tQ, where Q = H1(IDA).
To encrypt a message m ∈ {0, 1}λ for A, a party B does the following: Select σ ∈R

{0, 1}λ, and compute Q = H1(IDA), r = H2(σ,m), R = rP , V = σ ⊕H3(ê(T,Q)r),
and c = m⊕H4(σ). B sends (R,V, c) to A.

To decrypt, A computes σ = V ⊕H3(ê(d,R)), m = c⊕H4(σ), and r = H2(σ,m).
Finally, A accepts m provided that R = rP .

The BF scheme requires a hash function H1 : {0, 1}∗ → 〈P 〉. For Type I pair-
ings, H1 can be implemented by first hashing to a point Q′ in E(Fp), and then
multiplying Q′ by the cofactor h = #E(Fp)/n. As noted by Scott [29], the cofactor
multiplication can be avoided; thus the essential cost of hashing is a square-root
computation in Fp. Square roots in Fp can be obtained by an exponentiation to the
power (p + 1)/4, an operation which requires about 1806 Fp-multiplications using
width-5 sliding windows. The hash function H1 for the Type II pairing (and the
Type III pairing) is relatively inexpensive since square roots (resp. cube roots) can
be efficiently computed, and since the cofactor h is small.

The dominant operations in BF encryption are the point multiplication rP where
P is fixed, and the computation of γ = ê(T,Q)r (plus a square-root computation for
Type I pairings). For Type I pairings, the fastest way to compute γ is to first evaluate
the Tate pairing ê(T,Q) (where T is fixed), and then perform the exponentiation to
the power r (where the base element ê(T,Q) is unknown in advance). For Type II
and III pairings, γ should be computed by first computing rT (where T is fixed),
and then evaluating ê(rT,Q). The dominant operations in BF decryption are the
Tate pairing evaluation ê(d,R) and the point multiplication rP where the points d
and P are fixed.

5.2.2. Sakai-Kasahara IBE.. Party A’s private key is d = (1/(H5(IDA) + t)P .
To encrypt a message m ∈ {0, 1}λ for A, a party B does the following: Select

σ ∈R {0, 1}
λ, and compute Q = H5(IDA)P + T , r = H2(σ,m), R = rQ, V =

σ ⊕H3(ê(P,P )r), and c = m⊕H4(σ). B sends (R,V, c) to A.
To decrypt, A computes σ = V ⊕H3(ê(d,R)), m = c⊕H4(σ), and r = H2(σ,m).

Finally, A accepts m provided that R = rQ.
The dominant operations in SK encryption are the point multiplication

H5(IDA)P where the base point P is fixed, the point multiplication rQ where the
base point Q is unknown in advance, and the exponentiation ê(P,P )r where the
base element ê(P,P ) is fixed. The dominant operations in SK decryption are the
same as for BF decryption.

13



Table 2. Cost (number of Fq-multiplications) of the Tate pairing, point

multiplication rP in E(Fq), and exponentiation αr in µn. The bitlength of

n is denoted by ℓ.

Pairing
type

Fq ℓ
Tate

pairing
rP

P unknown
rP

P fixed
Exp in µn

α uknown
Exp in µn

α fixed

I 1536-bit p 256 6912/4096a 2602b 745c 512d 199c

II F2
1223 1221 4284 1895b/447e 1832b/384e 1895b/447e 1832b/384e

III F3
509 804 3825 1259f/498g 1016f/324g 2518f/996g 2032f/648g

aApplicable when one of the input points is fixed; requires 144 Kbytes for precomputed values.
b5-NAF point multiplication/exponentiation (see Algorithm 3.36 of [15]) with ℓ-bit multiplier r.
cWidth-5 two-table comb method (see Algorithm 3.45 of [15]) with ℓ-bit multiplier r.
dLucas-method of exponentiation [29].
e5-NAF point multiplication/exponentiation with 256-bit multiplier r.
f4-NAF point multiplication/exponentiation with ℓ-bit multiplier r.
g3-NAF point multiplication/exponentiation with 256-bit multiplier r.

5.3. Costs. Table 2 lists the approximate number of Fq-multiplications needed to
compute the Tate pairing, and to perform point multiplication and exponentia-
tion in µn for the Type I, II and III pairings. We acknowledge that these raw
multiplication counts do not include the cost of other field operations such as ad-
ditions, square roots, cube roots, and inversions that are either relatively cheap or
few in number. Nonetheless, these multiplication counts are reasonably accurate
estimates of the actual running times of the operations listed in Table 2. For ex-
ample, the timings for our implementation of the Tate pairing, point multiplication,
and µn-exponentiation for the Type II pairing are 4578, 2163, and 2037 F21223 -
multiplications, which are close to the estimated costs of 4284, 1895, and 1895 in
Table 2. Similarly, the timings for our implementation of the Tate pairing, point
multiplication, and µn-exponentiation for the Type III pairing are 4359, 1602, and
2695 F3509-multiplications, which are close to the estimated costs of 3825, 1259, and
2518 in Table 2.

Table 3 lists the multiplication costs of the dominant operations in encryption
and decryption for the BF and SK IBE schemes. The costs have been normalized
to Fp-multiplications (where p is a 1536-bit prime), using our timings of 12.8µs for
multiplication in F3509 , 15.6µs for multiplication in F21223 , and 26.5µs for a mul-
tiplication in Fp (the latter obtained using Mike Scott’s MIRACL multiprecision
library [30]).3 The first set of (I,II,III) timings in Table 3 use full-length multipliers
r for the Type II and III pairings, and do not include any precomputation of the

3Timings were obtained on a 2.4 GHz Pentium 4 running Linux/x86. Compilers were GNU C
(gcc) 3.3 for Fp and the Intel compiler (icc) 6.0 for the others. The expensive portions in the Fp

multiplication are written in assembly, and times for these fragments are not affected by compiler
selection.

MIRACL has optimized code for several operations on the Pentium 4, the processor used in this
comparison. In particular, the timing was obtained using general-purpose registers and a multiplier
that uses Karatsuba down to a specified operand-size threshold. The threshold t is specified in terms
of words and so that the modulus size is t · 2n words for some n. Code size grows quadratically

14



Table 3. Normalized cost (in terms of Fp-multiplications) of encryption

and decryption for BF and SK IBE using the Type I, II and III pairings.

Ia IIb IIIb Ic IId IIId

BF encrypt 9975 4679 2829 7159 2974 2161
BF decrypt 7657 3600 2338 4841 2748 2004
SK encrypt 3546 3272 2080 3546 715 710
SK decrypt 7657 3600 2338 4841 2748 2004

aNo precomputation for Tate pairing computations.
bFull length multipliers r.
c144 Kbytes of precomputed values for the Tate pairing computation.
d256-bit multipliers r.

Type I Tate pairing computation. The second set of (I,II,III) timings, on the other
hand, use 256-bit multipliers r for the Type II and II pairings, and allow for the
144 Kbytes of precomputed values that accelerate the Tate pairing computation for
Type I pairings. Short 2t-bit multipliers (where t is the security level) instead of
ℓ-bit multipliers (where ℓ is the bitlength of n) have been used in some previous
papers (e.g., [31] and [32]). The drawback of using short multipliers is that the BF
[7] and SK [9] security proofs are no longer applicable.

6. Conclusions

We devised faster multiplication algorithms for characteristic three finite fields
when elements are represented using a Gaussian normal bases. Despite our struc-
ture results and fast implementations, our analysis confirms the conclusions of pre-
vious papers that multiplication is faster when a polynomial basis representation is
employed. We also compared the relative speed of the BF and SK IBE schemes at
the 128-bit security levels when a pairing based on a supersingular elliptic curve is
used. The Type III pairing (over F3509) yields the fastest encryption and decryption
operations, which are several times faster than with a Type I pairing (over a 1536-
bit prime field). Moreover, when using a Type III pairing, SK encryption is about
3 times as fast as BF encryption, while SK and BF decryption have similar running
times.

References

[1] O. Ahmadi, D. Hankerson and A. Menezes, “Formulas for cube roots in F3m”, Discrete Applied
Mathematics, 155 (2007), 260-270.

with t, and t between 8 and 16 is reasonable on this platform. Hence, for 1536-bit primes, we chose
t = 12.

The Pentium 4 has special-purpose “multi-media” (SSE2) registers that can be employed for
field multiplication. Roughly speaking, the basic advantage for prime fields is additional registers
that participate in multiplications and accumulation can be on 64 bits, and the advantage for
characteristic 2 and 3 is wider operations. Multiplication in MIRACL for prime fields is nearly a
factor 2 faster with these registers, and [15] reports similar acceleration for characteristic 2 fields
(on a Pentium III via the SSE subset); similar techniques apply to characteristic 3.

15



[2] D. Ash, I. Blake and S. Vanstone, “Low complexity normal bases”, Discrete Applied Mathe-
matics, 25 (1989), 191-210.

[3] P. Barreto, “A note on efficient computation of cube roots in characteristic 3”, Technical
Report 2004/305, Cryptology ePrint Archive, 2004.

[4] P. Barreto, S. Galbraith, C. hÉigeartaigh and M. Scott, “Efficient pairing computation on
supersingular abelian varieties”, Designs, Codes and Cryptography, 42 (2007), 239-271.

[5] P. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime order”, Selected Areas in
Cryptography (SAC 2005), LNCS 3897 (2006), 319-331.

[6] I. Blake, X. Gao, A. Menezes, R. Mullin, S. Vanstone and T. Yaghoobian, Applications of
Finite Fields, Kluwer, 1993.

[7] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, SIAM Journal
on Computing, 32 (2003), 586-615.

[8] X. Boyen and L. Martin, “Identity-based cryptography standard (IBCS) #1: Supersingular
curve implementations of the BF and BB1 cryptosystems”, IETF Internet Draft, December
2006.

[9] L. Chen and Z. Cheng, “Security proof of Sakai-Kasahara’s identity-based encryption scheme”,
Cryptography and Coding, LNCS 3796 (2005), 442-459.

[10] R. Dahab, D. Hankerson, F. Hu, M. Long, J. López and A. Menezes, “Software multiplication
using Gaussian normal bases”, IEEE Transactions on Computers, 55 (2006), 974-984.

[11] K. Fong, D. Hankerson, J. López and A. Menezes, “Field inversion and point halving revisited”,
IEEE Transactions on Computers, 53 (2004), 1047-1059.

[12] S. Galbraith, K. Paterson and N. Smart, “Pairings for cryptographers”, Technical Report
2006/165, Cryptology ePrint Archive, 2006.

[13] P. Grabher and D. Page, “Hardware acceleration of the Tate pairing in characteristic three”,
Cryptographic Hardware and Embedded Systems – CHES 2005, LNCS 3659 (2005), 398-411.

[14] R. Granger, D. Page and M. Stam, “Hardware and software normal basis arithmetic for pairing
based cryptography in characteristic three”, IEEE Transactions on Computers, 54 (2005), 852-
860.

[15] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer-
Verlag, 2004.

[16] K. Harrison, D. Page and N. Smart, “Software implementation of finite fields of characteristic
three, for use in pairing-based cryptosystems”, LMS Journal of Computation and Mathematics,
5 (2002), 181-193.

[17] M. Hasan, M. Wang and V. Bhargava, “A modified Massey-Omura parallel multiplier for a
class of finite fields”, IEEE Transactions on Computers, 42 (1993), 1278-1280.

[18] F. Hess, N. Smart and F. Vercauteren, “The eta pairing revisited”, IEEE Transactions on
Information Theory, 52 (2006), 4595-4602.

[19] Intel Corporation, IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic
Architecture, 2002. Number 245470-007, available from http://developer.intel.com.

[20] T. Kerins, W. Marnane, E. Popovici and P. Barreto, “Efficient hardware for the Tate pairing
calculation in characteristic three”, Cryptographic Hardware and Embedded Systems – CHES
2005, LNCS 3659 (2005), 412-426.

[21] A. Lenstra, “Unbelievable security: Matching AES security using public key systems”, Ad-
vances in Cryptology–Asiacrypt 2001, LNCS 2248 (2001), 67-86.

[22] J. López and R. Dahab, “High-speed software multiplication in F2m”, Progress in Cryptology–
Indocrypt 2000, LNCS 1977 (2000), 203-212.

[23] A. Miyaji, M. Nakabayashi and S. Takano, “New explicit conditions of elliptic curve traces
for FR-reduction”, IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, E84-A (2001), 1234-1243.

[24] P. Ning and Y. Yin, “Efficient software implementation for finite field multiplication in normal
basis”, Information and Communications Security 2001, LNCS 2229 (2001), 177-189.

[25] D. Page and N. Smart, “Hardware implementation of finite fields of characteristic three”,
Cryptographic Hardware and Embedded Systems – CHES 2002, LNCS 2523 (2003), 529-539.

16



[26] A. Reyhani-Masoleh, “Efficient algorithms and architectures for field multiplication using
Gaussian normal bases”, IEEE Transactions on Computers, 55 (2006), 34-47.

[27] R. Sakai and M. Kasahara, “ID based cryptosystems with pairing on elliptic curve”, Technical
Report 2003/054, Cryptology ePrint Archive, 2003.

[28] O. Schirokauer, “The number field sieve for integers of low weight”, Technical Report 2006/107,
Cryptology ePrint Archive, 2006.

[29] M. Scott, “Computing the Tate pairing”, Topics in Cryptology–CT-RSA 2005, LNCS 3376
(2005), 293-304.

[30] M. Scott, MIRACL – Multiprecision Integer and Rational Arithmetic C Library, http://www.
computing.dcu.ie/∼mike/miracl.html.

[31] M. Scott, “Implementing cryptographic pairings”, preprint, 2006.
[32] M. Scott, N. Costigan and W. Abdulwahab, “Implementing cryptographic pairings on smart-

cards”, Cryptographic Hardware and Embedded Systems – CHES 2006, LNCS 4249 (2006),
134-147.

[33] D. Weaver and T. Germond, editors, The SPARC Architecture Manual, Version 9, Prentice
Hall, 1994.

[34] H. Wu, A. Hasan, I. Blake and S. Gao, “Finite field multiplier using redundant representation”,
IEEE Transactions on Computers, 51 (2002), 1306-1316.

Department of Electrical and Computer Engineering, University of Toronto

E-mail address: oahmadid@comm.utoronto.ca

Department of Mathematics and Statistics, Auburn University

E-mail address: hankedr@auburn.edu

Department of Combinatorics & Optimization, University of Waterloo

E-mail address: ajmeneze@uwaterloo.ca

17


