IRREDUCIBLE POLYNOMIALS OF MAXIMUM WEIGHT

OMRAN AHMADI AND ALFRED MENEZES

Abstract

We establish some necessary conditions for the existence of irreducible polynomials of degree n and weight n over \mathbb{F}_{2}. Such polynomials can be used to efficiently implement multiplication in $\mathbb{F}_{2^{n}}$. We also provide a simple proof of a result of Bluher concerning the reducibility of a certain family of polynomials.

1. Introduction

Let q be a prime power, and let $I_{q}(n)$ denote the number of monic irreducible polynomials of degree n over \mathbb{F}_{q}. It is well known that $I_{q}(n)=$ $\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}$ where μ is the Möbius function, and that $I_{q}(n) \approx \frac{q^{n}}{n}$. Many researchers have studied the distribution of irreducible polynomials having certain properties. In particular, much work has been done on the existence and distribution of irreducible trinomials over \mathbb{F}_{2}; for example see $[15,3,4]$ and the references therein. The following theorem, due to Swan, is an important result about the non-existence of irreducible trinomials over \mathbb{F}_{2}.

Theorem 1. [15] Let $n>m>0$ and assume that exactly one of n, m is odd. Then $x^{n}+x^{m}+1$ has an even number of irreducible factors over \mathbb{F}_{2} if and only if
(i) n is even, m is odd, $n \neq 2 m$, and $n m / 2 \equiv 0,1(\bmod 4)$.
(ii) n is odd, m is even, $m \nmid 2 n$, and $n \equiv \pm 3(\bmod 8)$.
(iii) n is odd, m is even, $m \mid 2 n$, and $n \equiv \pm 1(\bmod 8)$.

The case where n and m are both odd can be reduced to the case m even by considering $x^{n}+x^{n-m}+1$.

For example, if $n \equiv 0(\bmod 8)$ then Theorem 1(i) says that $x^{n}+x^{m}+1$ has an even number of irreducible factors. Thus there does not exist an irreducible trinomial of degree n over \mathbb{F}_{2} when $n \equiv 0(\bmod 8)$.

There is overwhelming evidence in support of the conjecture that there exists an irreducible pentanomial of degree n over \mathbb{F}_{2} for each $n \geq 4$ [11]; however existence has not yet been proven.

More generally, one can ask about the existence of an irreducible polynomial of degree n and weight t over \mathbb{F}_{2} for each odd $t \in[3, n+1]$. (The weight of a polynomial is the number of its coefficients that are nonzero.)

Date: January 12, 2005.
Key words and phrases. Finite Fields, Irreducible Polynomials.

Shparlinski [12] and Ahmadi [1] respectively proved the existence of irreducible degree- n polynomials of weight $\frac{n}{4}+o(n)$ and $\frac{n}{2}+o(n)$ over \mathbb{F}_{2}. It is well known that there exists an irreducible degree- n polynomial of weight $n+1$ over \mathbb{F}_{2} if and only if $n+1$ is prime (and hence n is even) and 2 is a generator of the multiplicative group of integers modulo $n+1$. In this paper, we consider the existence of irreducible degree- n polynomials of weight n (where n is odd) over \mathbb{F}_{2}.

The remainder of this paper is organized as follows. In Section 2 we show that irreducible polynomials of weight n can be used to implement fast multiplication in the field $\mathbb{F}_{2^{n}}$. In Section 3 we prove an analogue of Swan's theorem for weight- n polynomials over \mathbb{F}_{2}. The results of a computer search for irreducible polynomials of weight n are summarized in Section 4. In Section 5, we use the techniques of Section 3 to provide a simple proof of a theorem of Bluher about the reducibility of a certain family of polynomials over \mathbb{F}_{2}.

2. Fast multiplication in $\mathbb{F}_{2^{n}}$

Let $f(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{2}. Then $\mathbb{F}_{2^{n}}=$ $\mathbb{F}_{2}[x] /(f)$ is a finite field of order 2^{n}, and $f(x)$ is called the reduction polynomial. Elements of $\mathbb{F}_{2^{n}}$ are canonically represented as polynomials in $\mathbb{F}_{2}[x]$ of degree less than n. Multiplication of $a(x), b(x) \in \mathbb{F}_{2^{n}}$ can be performed by first computing the polynomial product $c(x)$ of $a(x)$ and $b(x)$, and then reducing $c(x)$ modulo $f(x)$. The reduction operation is considerably faster if $f(x)$ has small weight and if its middle terms (the nonzero terms not including the end terms x^{n} and 1) are close to each other and preferably all have small degree (see [9, Section 2.3.5]).

Another strategy for fast reduction is to select $f(x)$ so that it has a lowweight multiple $g(x)$ of degree slightly greater than n. Multiplication is then performed modulo $g(x)$, followed by a reduction by $f(x)$ whenever a representation in canonical form is desired. This strategy of using a redundant representation has been pursued by several authors; e.g., see [13, 6, 16]. For the case of weight- n polynomials, we have $f(x)=F_{n, m}(x)$ where

$$
\begin{align*}
F_{n, m}(x) & =x^{n}+x^{n-1}+\cdots+x^{m+1}+x^{m-1}+\cdots+x+1 \tag{1}\\
& =\frac{x^{n+1}+1}{x+1}+x^{m}
\end{align*}
$$

and we can take

$$
g(x)=(x+1) f(x)=x^{n+1}+x^{m+1}+x^{m}+1 .
$$

The weight of $g(x)$ is 4 , and its middle terms are consecutive. If m is small, then the middle terms also have small degree. Reduction using $g(x)$ instead of $F_{n, m}(x)$ can be as efficient as if the reduction polynomial were a trinomial or a pentanomial.

We illustrate the reduction operation with an example. The polynomial $F_{223,10}(x)$ is irreducible over \mathbb{F}_{2} and therefore can be used as the reduction
polynomial for $\mathbb{F}_{2^{223}}$. We have $g(x)=x^{224}+x^{11}+x^{10}+1$. Let $c(x)=$ $\sum_{i=0}^{446} c_{i} x^{i}$ be the product of two polynomials each of degree less than 224. On a 32 -bit machine, $c(x)$ may be stored in an array ($C[13], C[12], \ldots, C[0])$ of 32 -bit words, where the rightmost bit of $C[0]$ is c_{0}, the second leftmost bit of $C[13]$ is c_{446}, and the leftmost bit of $C[13]$ is unused (always set to 0). The high-order bits of $c(x)$ can be reduced modulo $g(x)$ one word at a time starting with $C[13]$. The pseudocode for the reduction operation is short and simple:

For i from 13 downto 7 to:

$$
\begin{aligned}
& T \leftarrow C[i] . \\
& C[i-7] \leftarrow C[i-7] \oplus T \oplus(T \ll 10) \oplus(T \ll 11) . \\
& C[i-6] \leftarrow C[i-6] \oplus(T \gg 22) \oplus(T \gg 21) .
\end{aligned}
$$

The result is $(C[6], C[5], \ldots, C[0])$. Here, \oplus denotes bitwise exclusive-or, $U \gg j$ is the right shift of U by j positions, and $U \ll j$ is the left shift of U by j positions.

3. Non-existence results

Let K be a field, and let $F(x) \in K[x]$ be a polynomial of degree n with leading coefficient a. The discriminant of $F(x)$ is

$$
\operatorname{Disc}(F)=a^{2 n-2} \prod_{i<j}\left(x_{i}-x_{j}\right)^{2},
$$

where $x_{0}, x_{1}, \ldots, x_{n-1}$ are the roots of $F(x)$ in some extension of K. We have $\operatorname{Disc}(F) \in K$. The following result, which is sometimes called the Stickelberger-Swan theorem, is our main tool for determining reducibility of a polynomial in $\mathbb{F}_{2}[x]$.

Theorem 2. $[14,15]$ Suppose that the degree-n polynomial $f(x) \in \mathbb{F}_{2}[x]$ is the product of r pairwise distinct irreducible polynomials over \mathbb{F}_{2}. Then $r \equiv n(\bmod 2)$ if and only if $\operatorname{Disc}(F) \equiv 1(\bmod 8)$ where $F(x) \in \mathbb{Z}[x]$ is any monic lift of $f(x)$ to the integers.

If n is odd and $\operatorname{Disc}(F) \not \equiv 1(\bmod 8)$, then Theorem 2 asserts that $f(x)$ has an even number of irreducible factors and therefore is reducible over \mathbb{F}_{2}. Thus one can find necessary conditions for the irreducibility of $f(x)$ by computing $\operatorname{Disc}(F)$ modulo 8.

Let $f(x), g(x) \in K[x]$. Let $f(x)=a \prod_{i=0}^{s-1}\left(x-x_{i}\right)$ and $g(x)=b \prod_{j=0}^{t-1}(x-$ y_{j}), where $a, b \in K$ and $x_{0}, x_{1}, \ldots, x_{s-1}, y_{0}, y_{1}, \ldots, y_{t-1}$ are in some extension of K. The resultant of $f(x)$ and $g(x)$ is

$$
\begin{equation*}
\operatorname{Res}(f, g)=(-1)^{s t} b^{s} \prod_{j=0}^{t-1} f\left(y_{j}\right)=a^{t} \prod_{i=0}^{s-1} g\left(x_{i}\right) \tag{2}
\end{equation*}
$$

We will use Lemma 3 to compute the discriminant of F.

Lemma 3. [7] Let K be a field, and let $F(x) \in K[x]$ have degree n. Suppose also that F is monic and $F(0)=1$. Then

$$
\operatorname{Disc}(F)=(-1)^{n(n-1) / 2} \operatorname{Res}\left(F, n F-x F^{\prime}\right),
$$

where F^{\prime} denotes the derivative of F with respect to x.
Let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \in K[x]$, and let $x_{0}, x_{1}, \ldots, x_{n-1}$ be the roots of $f(x)$ in some extension of K. Then it is well known that the coefficients a_{k} are the elementary symmetric polynomials of x_{i} :

$$
a_{k}=(-1)^{k} \sum_{0 \leq i_{1}<i_{2}<\cdots<i_{k}<n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

for $1 \leq k \leq n$. Since each $a_{k} \in K$, it follows that $S\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in K$ for any symmetric polynomial $S \in K\left[X_{0}, X_{1}, \ldots, X_{n-1}\right]$. Now for any integers k, p, q, let

$$
\begin{equation*}
s_{k}=\sum_{i=0}^{n-1} x_{i}^{k} \quad \text { and } \quad s_{p, q}=\sum_{\substack{i, j=0 \\ i \neq j}}^{n-1} x_{i}^{p} x_{j}^{q} . \tag{3}
\end{equation*}
$$

Then $s_{0}=n$ and

$$
\begin{equation*}
s_{p, q}=s_{p} s_{q}-s_{p+q} . \tag{4}
\end{equation*}
$$

Note also that if $f(0) \neq 0$, then the power sum s_{-p} of $f(x)$ is equal to the p th power sum of its reciprocal, $x^{n} f\left(x^{-1}\right)$. Newton's identity relates the coefficients a_{k} and power sums s_{k}.

Theorem 4. [10, Theorem 1.75] Let $f(x)$ and $x_{0}, x_{1}, \ldots, x_{n-1}$ be as above. Then for $1 \leq k \leq n$ we have

$$
\begin{equation*}
s_{k}+s_{k-1} a_{1}+s_{k-2} a_{2}+\cdots+s_{1} a_{k-1}+k a_{k}=0 . \tag{5}
\end{equation*}
$$

A polynomial $f(x) \in \mathbb{F}_{2}[x]$ having the property that $(x+1) f(x)$ has weight 4 is said to be of "tetranomial type." Note that polynomials of degree n and weight n are of tetranomial type. Hales and Newhart [7] obtained a Swanlike theorem for a certain subset of polynomials of "tetranomial type" ${ }^{1}$. Our main result is an analogue of Swan's theorem for all weight- n polynomials.
Theorem 5. Let $n>m>0$ and assume that n is odd. Then $F_{n, m}(x)=$ $\left(x^{n+1}+1\right) /(x+1)+x^{m}$ has an odd number of irreducible factors over \mathbb{F}_{2} if and only if one of the following conditions hold:
(i) $n \equiv 1(\bmod 8)$ and either (a) $m \in\{2, n-2\}$; or (b) $m \equiv 0,1(\bmod 4)$ and $m \notin\left\{1, n-1, \frac{n-1}{2}, \frac{n+1}{2}\right\}$.
(ii) $n \equiv 3(\bmod 8)$ and $m \in\{2, n-2\}$.
(iii) $n \equiv 5(\bmod 8)$ and either (a) $m \in\{1, n-1\}$; or (b) $m \equiv 2,3(\bmod 4)$ and $m \notin\left\{2, n-2, \frac{n-1}{2}, \frac{n+1}{2}\right\}$ if $n>5$.

[^0](iv) $n \equiv 7(\bmod 8)$ and $m \notin\{2, n-2\}$.

Proof. Since $F_{n, m}(0) \neq 0$, we have $\operatorname{gcd}\left(F_{n, m}, F_{n, m}^{\prime}\right)=1$ and hence $F_{n, m}$ has no repeated factors. Let $g(x)=(x+1) F_{n, m}(x)$. Then $g(x)$ has degree $n+1$ and $G(x)=x^{n+1}+x^{m+1}+x^{m}+1$ is a monic lift of $g(x)$ to $\mathbb{Z}[x]$.

Suppose now that $F_{n, m}(x)$ is the product of r pairwise distinct irreducible polynomials over \mathbb{F}_{2}. Then $g(x)$ is the product of $r+1$ pairwise distinct irreducible polynomials over \mathbb{F}_{2}. Hence, by Theorem $2, n+1 \equiv r+1(\bmod 2)$ or, equivalently, $n \equiv r(\bmod 2)$, if and only if $\operatorname{Disc}(G) \equiv 1(\bmod 8)$. Thus the theorem can be proved by computing $\operatorname{Disc}(G)$.

First we apply Lemma 3 to $G(x)$. We see that

$$
(n+1) G(x)-x G^{\prime}(x)=(n-m) x^{m+1}+(n-m+1) x^{m}+(n+1) .
$$

Now setting $u=n-m, v=n-m+1$ and $w=n+1$, we have

$$
\begin{equation*}
\operatorname{Disc}(G)=(-1)^{n(n+1) / 2} \operatorname{Res}\left(G, u x^{m+1}+v x^{m}+w\right) . \tag{6}
\end{equation*}
$$

Let $x_{0}, x_{1}, \ldots, x_{n}$ be the roots of $G(x)$ in some extension of the rational numbers. Using (6) and (2) we have

$$
\begin{equation*}
\operatorname{Disc}(G)=(-1)^{n(n+1) / 2} \prod_{i=0}^{n}\left(u x_{i}^{m+1}+v x_{i}^{m}+w\right) . \tag{7}
\end{equation*}
$$

Let $D=(-1)^{(n+1) n / 2} \operatorname{Disc}(G)$. Upon expanding the right hand side of (7) and using the fact that $\prod_{i=0}^{n} x_{i}=1$, we have

$$
\begin{align*}
D= & u^{n+1}+v^{n+1}+u^{n} v \sum_{i=0}^{n} x_{i}^{-1}+u v^{n} \sum_{i=0}^{n} x_{i}+u^{n-1} v^{2} \sum_{i<j} x_{i}^{-1} x_{j}^{-1} \\
& +u^{2} v^{n-1} \sum_{i<j} x_{i} x_{j}+u^{n} w \sum_{i=0}^{n}\left(x_{i}^{-1}\right)^{m+1}+v^{n} w \sum_{i=0}^{n}\left(x_{i}^{-1}\right)^{m} \\
& +u^{n-1} w^{2} \sum_{i<j}\left(x_{i}^{-1} x_{j}^{-1}\right)^{m+1}+v^{n-1} w^{2} \sum_{i<j}\left(x_{i}^{-1} x_{j}^{-1}\right)^{m} \\
& +u^{n-1} v w \sum_{i \neq j} x_{i}^{-1} x_{j}^{-m-1}+u v^{n-1} w \sum_{i \neq j} x_{i} x_{j}^{-m}+S\left(x_{0}, x_{1}, \ldots, x_{n}\right), \tag{8}
\end{align*}
$$

where $S\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. Since $\operatorname{Disc}(G)$ is a symmetric polynomial in $x_{0}, x_{1}, \ldots, x_{n}$ and all the terms given explicitly in the right hand side of equation (8) are symmetric polynomials, $S\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is also a symmetric polynomial in $x_{0}, x_{1}, \ldots, x_{n}$. The coefficients of the monomials of S have one of the following forms: (a) $u^{i} v^{n+1-i}$ with $3 \leq i \leq n-2$; (b) $u^{i} v^{n-i} w$ with $2 \leq i \leq n-2$; (c) $u^{i} v^{j} w^{2}$ with $i \geq 1$ and $j \geq 1$; or (d) $u^{i} v^{j} w^{k}$ with $k \geq 3$. Since n is odd and u, v are consecutive integers, we have $w \equiv u v \equiv 0(\bmod 2)$ and so the coefficients of all monomials in $S\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ are divisible by 8 . Therefore $S\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is an integer divisible by 8 . Also for any integer p we have $2 \sum_{i<j} x_{i}^{p} x_{j}^{p}=\sum_{i \neq j} x_{i}^{p} x_{j}^{p}=$
$s_{p, p}$. Hence

$$
\begin{aligned}
D \equiv & u^{n+1}+v^{n+1}+u^{n} v s_{-1}+u v^{n} s_{1} \\
& +\frac{1}{2}\left(u^{n-1} v^{2} s_{-1,-1}+u^{2} v^{n-1} s_{1,1}\right)+u^{n} w s_{-m-1}+v^{n} w s_{-m} \\
& +\frac{1}{2}\left(u^{n-1} w^{2} s_{-m-1,-m-1}+v^{n-1} w^{2} s_{-m,-m}\right)+u^{n-1} v w s_{-1,-m-1} \\
& +u v^{n-1} w s_{1,-m} \quad(\bmod 8) .
\end{aligned}
$$

Applying Newton's identity (5) to the polynomial $G(x)$ and its reciprocal, $x^{n+1} G\left(x^{-1}\right)$, we can compute all the unknown terms in the above equation and thus evaluate $D \bmod 8$ for all permissible values of m and n.

For example, suppose that $n \equiv 7(\bmod 8)$. Then $w \equiv 0(\bmod 8)$ and

$$
\begin{aligned}
D \equiv & u^{n+1}+v^{n+1}+u^{n} v s_{-1}+u v^{n} s_{1}+\frac{1}{2} u^{n-1} v^{2} s_{-1,-1} \\
& +\frac{1}{2} u^{2} v^{n-1} s_{1,1} \quad(\bmod 8) .
\end{aligned}
$$

We consider three cases.
(a) If $m \notin\{1,2, n-2, n-1\}$, then (5) implies that $s_{-1}=s_{-2}=s_{1}=s_{2}=$ 0 . Since $s_{1,1}=s_{1}^{2}-s_{2}$, we have $s_{1,1}=0$ and similarly $s_{-1,-1}=0$. Hence $D \equiv u^{n+1}+v^{n+1}(\bmod 8)$. Now since $n+1$ is even and one of u, v is even and the other is odd, we have $D \equiv 1(\bmod 8)$.
(b) If $m=n-1$, then $s_{1}=s_{2}=-1$ and $s_{-1}=s_{-2}=0$, so $s_{1,1}=$ $s_{1}^{2}-s_{2}=2$ and $s_{-1,-1}=s_{-1}^{2}-s_{-2}=0$. Hence $D \equiv u^{n+1}+v^{n+1}-$ $u v^{n}+u^{2} v^{n-1}(\bmod 8)$. Since $m=n-1$, we have $u=1, v=2$ and $D \equiv u^{n+1} \equiv 1(\bmod 8)$. Similarly we have $D \equiv 1(\bmod 8)$ if $m=1$.
(c) If $m=n-2$, then $s_{1}=s_{-1}=s_{-2}=0$ and $s_{2}=-2$ whence $s_{1,1}=2$, $s_{-1,-1}=0$, and $D \equiv u^{n+1}+v^{n+1}+u^{2} v^{n-1}(\bmod 8)$. In this case since $u=2, v$ is odd, and $n-1$ is even, we have $D \equiv 5(\bmod 8)$. Similarly we have $D \equiv 5(\bmod 8)$ if $m=2$.
Part (iv) of the theorem now follows $\operatorname{since} \operatorname{Disc}(G)=D$ when $n \equiv 7$ $(\bmod 8)$.

The cases $n \equiv 1,3,5(\bmod 8)$ are more tedious but can be handled in a similar way.

Corollary 6. Let $n>m>0$ and assume that n is odd. Suppose that $F_{n, m}(x)=\left(x^{n+1}+1\right) /(x+1)+x^{m}$ is irreducible over \mathbb{F}_{2}.
(i) If $n \equiv 1(\bmod 8)$ then either $m \in\{2, n-2\}$ or $m \equiv 0,1(\bmod 4)$. Moreover, $m \notin\left\{1, n-1, \frac{n-1}{2}, \frac{n+1}{2}\right\}$.
(ii) If $n \equiv 3(\bmod 8)$ then $m \in\{2, n-2\}$.
(iii) If $n \equiv 5(\bmod 8)$ then either $m \in\{1, n-1\}$ or $m \equiv 2,3(\bmod 4)$. Moreover, if $n>5$ then $m \notin\left\{2, n-2, \frac{n-1}{2}, \frac{n+1}{2}\right\}$.
(iv) If $n \equiv 7(\bmod 8)$ then $m \notin\{2, n-2\}$.

4. Existence

Corollary 6 states that if $n \equiv 3(\bmod 8)$ then $F_{n, m}(x)$ can only be irreducible if $m=2$ or $m=n-2$. A computer search shows that the only integers $n \in[3,100000]$ congruent to $3(\bmod 8)$ for which $F_{n, 2}(x)$ is irreducible are $n \in\{3,11,35,107,195,483,1019,2643\}$.

One would expect there to be more irreducibles $F_{n, m}(x)$ for $n \equiv 7(\bmod 8)$ than for $n \equiv 1,5(\bmod 8)$ since Corollary 6 rules out only two values of m in the former case, and about half of all possible m in the latter case. This is reflected in Table 1 which lists all irreducible polynomials $F_{n, m}$ for $n \in[5,340]$ and $n \equiv 1,5,7(\bmod 8)$. Irreducibles $F_{n, m}(x)$ are more abundant than expected in the case $n \equiv 7(\bmod 8)$. A computer search shows that the only $n \in[7,5000]$ congruent to $7(\bmod 8)$ for which no irreducible polynomial $F_{n, m}(x)$ exists are

$$
\begin{aligned}
n \in & \{575,823,1543,2063,2103,2335,3439,3607,3847,3895,4167, \\
& 4375,4567,4911\} .
\end{aligned}
$$

Blake, Gao and Lambert [4] observed experimentally that the number of irreducible trinomials of degree $\leq n$ is approximately $3 n$. Similarly, we have noticed that the number of irreducible polynomials $F_{n, m}$ of degree $\leq n$ is approximately $2 n$. Table 2 lists the total number of such polynomials for n belonging to consecutive intervals of length 200 . There are approximately 400 irreducible polynomials in each interval, giving an average of approximately 2 irreducible weight- n polynomials for each degree n. An explanation for this phenomenon would be of interest.

5. A family of Reducible polynomials over \mathbb{F}_{2}

Experimental evidence was provided in $[2]$ that if $n \equiv \pm 3(\bmod 8)$ and $f(x)=x^{n}+x^{m_{1}}+x^{m_{2}}+x^{m_{3}}+1$ is an irreducible pentanomial over \mathbb{F}_{2}, where $m_{1}>m_{2}>m_{3}>0$ and m_{1}, m_{2}, m_{3} are odd, then $m_{1} \geq n / 3$. (Such polynomials have the property that the corresponding polynomial basis has exactly one element of trace one.) Motivated by this observation Bluher [5] proved the following.

Theorem 7. [5] Let $n \equiv \pm 3(\bmod 8)$. Let $I=\{i: i$ even, $2 n / 3<i<n\}$ and $J=\{j: j \equiv 0(\bmod 4), 0<j<n\} \backslash I$. Then the polynomial

$$
f(x)=x^{n}+\sum_{i \in I} a_{i} x^{n-i}+\sum_{j \in J} a_{j} x^{n-j}+1 \quad \in \mathbb{F}_{2}[x]
$$

is reducible over \mathbb{F}_{2}.
Bluher's proof involves computing $\operatorname{Disc}(F)$ mod 8 using properties of determinants. Here we use Newton's identity to give a simpler proof similar to the one for Theorem 5 .

n	m	n	m	n	m
5	12	7	13	9	2
13	13	15	147	17	45
21	-	23	16810	25	49
29	611	31	36713	33	-
37	1361015	39	471119	41	51216
45	7	47	13816171819	49	4
53	6	55	912161924	57	816
61	22	63	151131	65	162128
69	-	71	91420	73	-
77	3034	79	162227	81	225
85	1	87	428	89	5173233
93	2235	95	47284446	97	4123645
101	618	103	73743	105	1732
109	-	111	193443	113	16363741
117	1419	119	9131524	121	-
125	6313846	127	17153063	129	-
133	223146	135	28586264	137	20334144
141	67	143	404168	145	123357
149	6435570	151	46	153	5256
157	346	159	571737	161	6573
165	-	167	6173243565772	169	-
173	43	175	18	177	41
181	677578	183	13556	185	1253
189	346271	191	2342697677	193	2161
197	1127	199	360	201	3288
205	-	207	115383	209	58248196
213	2667	215	718445978	217	-
221	3574	223	102260106	225	1637
229	3963	231	829497	233	36100
237	598694	239	9111529495177	241	48
245	387102	247	1042	249	-
253	4270	255	525682	257	687284
261	34	263	23516281128	265	24129
269	795123	271	36849199108	273	68
277	90130135	279	$\begin{aligned} & 37475256597980 \\ & 100101 \quad 109130131 \end{aligned}$	281	$\begin{aligned} & 202136105 \\ & 113133 \end{aligned}$
285	127	287	659699395104131	289	100
293	47131	295	658102	297	28112133
301	666	303	50133	305	72121184233
309	-	311	256266	313	28285
317	5890134	319	727682105	321	44277
325	-	327	19110217308	329	53276
333	6286103107	335	5396117	337	21316

Table 1. Irreducible $F_{n, m}(x)=\left(x^{n+1}+1\right) /(x+1)+x^{m}$
with $m \leq n / 2$, for $5 \leq n \leq 340$ and $n \equiv 1,5,7(\bmod 8)$. The
three tables list n that are congruent to 5, 7, $1(\bmod 8)$.

n	1	3	5	7	Total	Cumulative
$3-200$	92	10	92	182	376	376
$201-400$	96	0	112	220	428	804
$401-600$	94	2	106	226	428	1232
$601-800$	100	0	114	212	426	1658
$801-1000$	114	0	72	204	390	2048
$1001-1200$	86	2	120	202	410	2458
$1201-1400$	84	0	86	212	382	2840
$1401-1600$	114	0	90	206	410	3250
$1601-1800$	90	0	84	214	388	3638
$1801-2000$	116	0	94	192	402	4040
$2001-2200$	90	0	112	204	406	4446
$2201-2400$	116	0	112	194	422	4868
$2401-2600$	94	0	96	212	402	5270
$2601-2800$	96	2	88	200	386	5656
$2801-3000$	88	0	98	214	400	6056
$3001-3200$	84	0	112	202	398	6454
$3201-3400$	110	0	96	194	400	6854
$3401-3600$	112	0	116	176	404	7258
$3601-3800$	90	0	136	228	454	7712
$3801-4000$	108	0	130	204	442	8154
$4001-4200$	96	0	80	234	410	8564
$4201-4400$	104	0	102	210	416	8980
$4401-4600$	86	0	100	198	384	9364
$4601-4800$	96	0	112	214	422	9786
$4801-5000$	126	0	100	218	444	10230
$5001-5200$	114	0	140	156	410	10640
$5201-5400$	110	0	110	174	394	11034
$5401-5600$	94	0	94	216	404	11438
$5601-5800$	92	0	120	178	390	11828
$5801-6000$	104	0	100	222	426	12254
$6001-6200$	82	0	98	250	430	12684
$6201-6400$	104	0	110	178	392	13076
$6401-6600$	106	0	78	238	422	13498
$6601-6800$	78	0	120	216	414	13912
$6801-7000$	114	0	82	214	410	14322
$7001-7200$	102	0	64	168	334	14656
$7201-7400$	88	0	132	190	410	15066
$7401-7600$	92	0	142	188	422	15488
$7601-7800$	124	0	84	204	412	15900
$7801-8000$	114	0	102	180	396	16296

Table 2. The total number of irreducible polynomials $F_{n, m}(x)=\left(x^{n+1}+1\right) /(x+1)+x^{m}$. The ranges for n are indicated in the first column. The second, third, fourth and fifth columns give the total number for $n \equiv 1,3,5,7(\bmod 8)$, respectively.

Proof. Let $F(x) \in \mathbb{Z}[x]$ be any monic lift of $f(x)$ with $F(0)=1$, and let $x_{0}, x_{1}, \ldots, x_{n-1}$ be the roots of $F(x)$ in some extension of the rational numbers. Then

$$
n F-x F^{\prime}=\sum_{i \in I} i a_{i} x^{n-i}+\sum_{j \in J} j a_{j} x^{n-j}+n
$$

Setting $D=(-1)^{n(n-1) / 2} \operatorname{Disc}(F)$ and using (2) and Lemma 3 we obtain

$$
\begin{equation*}
D=\prod_{k=0}^{n-1}\left(\sum_{i \in I} i a_{i} x_{k}^{n-i}+\sum_{j \in J} j a_{j} x_{k}^{n-j}+n\right) \tag{9}
\end{equation*}
$$

Expanding the right hand side of (9) yields

$$
\begin{aligned}
D= & n^{n}+n^{n-1} \sum_{i \in I} \sum_{k=0}^{n-1} i a_{i} x_{k}^{n-i}+n^{n-1} \sum_{j \in J} \sum_{k=0}^{n-1} j a_{j} x_{k}^{n-j} \\
& +n^{n-2} \sum_{\substack{i_{1}, i_{2} \in I \\
i_{1}<i_{2}}} \sum_{\substack{k_{1}, k_{2}=0 \\
k_{1} \neq k_{2}}}^{n-1} i_{1} i_{2} a_{i_{1}} a_{i_{2}} x_{k_{1}}^{n-i_{1}} x_{k_{2}}^{n-i_{2}} \\
& +n^{n-2} \sum_{i \in I} \sum_{\substack{k_{1}, k_{2}=0 \\
k_{1}<k_{2}}}^{n-1} i^{2} a_{i}^{2} x_{k_{1}}^{n-i} x_{k_{2}}^{n-i}+S\left(x_{0}, x_{1}, \ldots, x_{n-1}\right),
\end{aligned}
$$

where $S\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ is a symmetric polynomial. It can easily be verified that the coefficients of each monomial in S is divisible by 8 , and hence $S\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ is an integer divisible by 8 . Using the notation introduced in (3) for power sums of the x_{i} 's, we have

$$
\begin{align*}
& D \equiv n^{n}+n^{n-1} \sum_{i \in I} i a_{i} s_{n-i}+n^{n-1} \sum_{j \in J} j a_{j} s_{n-j} \\
& (10)+n^{n-2} \sum_{\substack{i_{1}, i_{2} \in I \\
i_{1}<i_{2}}} i_{1} i_{2} a_{i_{1}} a_{i_{2}} s_{n-i_{1}, n-i_{2}}+\frac{1}{2} n^{n-2} \sum_{i \in I} i^{2} a_{i}^{2} s_{n-i, n-i} \quad(\bmod 8) . \tag{10}
\end{align*}
$$

Now, if $a_{k} \neq 0$ for some $1 \leq k \leq 2 n / 3$, then $4 \mid k$. Hence Newton's identity (5) simplifies to

$$
s_{k}+s_{k-1} a_{1}+s_{k-2} a_{2}+\cdots+s_{1} a_{k-1} \equiv 0 \quad(\bmod 4)
$$

for $1 \leq k \leq 2 n / 3$. It follows that $s_{k} \equiv 0(\bmod 4)$ for $1 \leq k \leq 2 n / 3$. Similarly, since $2 \mid k$ for all k satisfying $a_{k} \neq 0$ and $2 n / 3<k \leq n-1$, one can conclude that $s_{k} \equiv 0(\bmod 2)$ for $2 n / 3<k \leq n-1$. Also, if $p, q \geq 1$ and $p+q \leq 2 n / 3$, then $s_{p} \equiv s_{q} \equiv s_{p+q} \equiv 0(\bmod 4)$ and (4)implies that $s_{p, q} \equiv 0(\bmod 4)$.

Thus (10) simplifies to $D \equiv n^{n}(\bmod 8)$, and so $\operatorname{Disc}(F) \equiv 5(\bmod 8)$ if $n \equiv \pm 3(\bmod 8)$. Since $\operatorname{Disc}(f) \equiv \operatorname{Disc}(F)(\bmod 2)$, this implies that $f(x)$ has nonzero discriminant and hence no repeated factors. The reducibility of $f(x)$ is now a consequence of Theorem 2.

References

[1] O. Ahmadi, "The trace spectra of polynomial bases for $\mathbb{F}_{2}{ }^{n}$ ", preprint, 2004.
[2] O. Ahmadi and A. Menezes, "On the number of trace-one elements in polynomial bases for $\mathbb{F}_{2^{n}} "$, Designs, Codes and Cryptography, to appear.
[3] I. Blake, S. Gao and R. Lambert, "Constructive problems for irreducible polynomials over finite fields", Information Theory and Applications, Lecture Notes in Computer Science 793 (1994), 1-23.
[4] I. Blake, S. Gao and R. Lambert, "Construction and distribution problems for irreducible polynomials over finite fields", Applications of Finite Field (D. Gollmann, Ed.), Clarendon Press, 1996, 19-32.
[5] A. Bluher, "A Swan-like theorem", preprint, 2004.
[6] W. Geiselmann and H. Lukhaub, "Redundant representation of finite fields" Public Key Cryptography - PKC 2001, Lecture Notes in Computer Science 1992 (2001), 339-352.
[7] A. Hales and D. Newhart, "Irreducibles of tetranomial type", in Mathematical Properties of Sequences and Other Combinatorial Structures, Kluwer, 2003.
[8] A. Hales and D. Newhart, "Swan's theorem for binary tetranomials", preprint, 2004.
[9] D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2003.
[10] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1984.
[11] G. Seroussi, "Table of low-weight binary irreducible polynomials", Hewlett-Packard Technical Report HPL-98-135, 1998.
[12] I. Shparlinski, "On primitive polynomials", Problemy Peredachi Inform., 23, (1987), 100-103 (in Russian).
[13] J. Silverman, "Fast multiplication in finite fields $G F\left(2^{N}\right)$ ", Cryptographic Hardware and Embedded Systems - CHES '99, Lecture Notes in Computer Science 1717 (1999), 122-134.
[14] L. Stickelberger, "Über eine neue Eigenschaft der Diskriminanten algebraischer Zahlkörper", Verh. 1 Internat. Math. Kongresses, Zurich 1897, 182-193.
[15] R. Swan, "Factorization of polynomials over finite fields", Pacific Journal of Mathematics, 12 (1962), 1099-1106.
[16] H. Wu, M. Anwar Hasan, I. Blake and S. Gao, "Finite field multiplier using redundant representation", IEEE Transactions on Computers, 51 (2002), 1306-1316.

Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

E-mail address: oahmadid@uwaterloo.ca ajmeneze@uwaterloo.ca

[^0]: ${ }^{1}$ After completing this paper, we were informed that Hales and Newhart [8] have obtained a Swan-like theorem for all polynomials of tetranomial type. Theorem 2 of their paper implies our Theorem 5 .

