
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 5, MAY 2006 2033
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Abstract—In this paper, we will investigate the performance of
Raptor codes on arbitrary binary input memoryless symmetric
channels (BIMSCs). In doing so, we generalize some of the results
that were proved before for the erasure channel. We will generalize
the stability condition to the class of Raptor codes. This generaliza-
tion gives a lower bound on the fraction of output nodes of degree 2
of a Raptor code if the error probability of the belief-propagation
decoder converges to zero. Using information-theoretic arguments,
we will show that if a sequence of output degree distributions is to
achieve the capacity of the underlying channel, then the fraction of
nodes of degree 2 in these degree distributions has to converge to a
certain quantity depending on the channel. For the class of erasure
channels this quantity is independent of the erasure probability of
the channel, but for many other classes of BIMSCs, this fraction
depends on the particular channel chosen. This result has implica-
tions on the “universality” of Raptor codes for classes other than
the class of erasure channels, in a sense that will be made more
precise in the paper. We will also investigate the performance of
specific Raptor codes which are optimized using a more exact ver-
sion of the Gaussian approximation technique.

Index Terms—Belief-propagation, graphical codes, LT-codes,
raptor codes.

I. INTRODUCTION

I TERATIVE decoding algorithms have received much atten-
tion in the past few years. They are among the most efficient

decoding algorithms to date, and perform very well even at rates
extremely close to the capacity of many known symmetric chan-
nels.

One of the most prominent classes of codes for which iterative
decoding methods have been quite successful is the class of low-
density parity-check (LDPC) codes. These codes were invented
by Gallager [1] in the early 1960s but did not receive proper at-
tention by the information theory community until years later,
when their excellent decoding qualities were rediscovered in-
dependently by the information theory and the theoretical com-
puter science communities [2]–[7].

Gallager’s LDPC codes are formed from sparse bi-regular bi-
partite graphs, consisting of two disjoint sets of variable and
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check nodes. The code is defined as the set of all binary set-
tings of the variable nodes such that for each check node the
sum (over GF ) of the values of its incident variable nodes
is zero. The most powerful efficient decoding algorithm for this
class of codes is the iterative belief-propagation (BP) algorithm.
At each iteration, this algorithm updates the probability that a
given variable node is , given all the observations obtained in
previous rounds. The complexity of the update in every iteration
is proportional to the number of edges in the graph. Therefore,
for a constant number of iterations, the running time of the BP
algorithm is proportional to the number of edges in the graph,
and hence, to the number of variable nodes if the underlying
graph is sparse.

Luby et al. [8], [2], [3] were the first to prove that an appro-
priately chosen but highly irregular graph structure can yield to
superior performance of the BP decoder as compared to case
when regular graphs are used. Since then the concept of irreg-
ular LDPC codes has occupied center stage in the design of
LDPC codes whose decoding performance is extremely close
to the Shannon bounds. This performance is often calculated
using the method of density evolution. This method was intro-
duced by Luby et al. [9] under the name of tree analysis, and
used to analyze hard-decision decoding algorithms for the bi-
nary-symmetric channel in Luby et al. [3]. The method was
vastly generalized by Richardson and Urbanke [10] to any sym-
metric channel, and it was renamed to density evolution.

Classical LDPC codes do not possess a fast encoding algo-
rithm, since the code is defined as the kernel of a sparse ma-
trix, rather than as the image of such a matrix. There are var-
ious methods to either solve or circumvent this problem. Some
of these methods circumvent the problem by considering mod-
ified codes which automatically possess fast encoders [8], [11].
Others, such as the method described in [12], stay faithful to
LDPC codes and design efficient encoding algorithms that often
run in linear time.

These and similar advances in the field seem to suggest that
it is very difficult to substantially improve upon existing codes
and their decoding algorithms. However, there are real commu-
nication scenarios in which block (or even convolutional) codes
do not yield adequate results, no matter how close their perfor-
mance is to the capacity of the underlying channel. For example,
consider the code design problem for transmission of packets
on a computer network. This transmission channel is well mod-
eled by a binary erasure channel (BEC) [8]. However, in almost
all applications, the loss rate of the channel is unknown to the
sender or to the receiver. Using a block code, it is necessary to
obtain a good estimate of the loss rate, and use a code with a
redundancy which is as close as possible to the loss rate, and
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which has a reliable decoding algorithm. Tornado codes [8], [2]
were developed for exactly this purpose. But these codes are al-
most useless if the loss rate is subject to frequent and transient
changes, and hence cannot be reliably estimated. Here, the best
option would be to design a code for the worst case. This leads to
unnecessary overheads if the actual loss rate is smaller than the
worst case assumption, and it leads to unreliable communication
if the actual loss rate is larger than the worst case assumption.

Fountain codes are a new class of codes designed and ideally
suited for reliable transmission of data over an erasure channel
with unknown erasure probability. A Fountain code produces for
a given set of input symbols a potentially limit-
less stream of output symbols . The input and output
symbols can be bits, or more generally, they can be binary vec-
tors of arbitrary length. The output symbols are produced in-
dependently and randomly, according to a given distribution on

. A decoding algorithm for a Fountain code is an algorithm
which can recover the original input symbols from any set
of output symbols with high probability. For good fountain
codes over the erasure channel, the value of is very close to

, and the decoding time is close to linear in .
LT-codes [13]–[15] were the first class of efficient Fountain

codes. In this class, the distribution used to generate the output
symbols is induced by a “degree distribution,” which is a distri-
bution on the numbers . For every output symbol, this
distribution is sampled to obtain a degree , and then randomly
chosen input symbols are selected and their values added to ob-
tain the value of the output symbol.

A simple probabilistic analysis shows that for maximum-like-
lihoos (ML) decoding to have a vanishing error probability for
an LT-code, the average degree of an output symbol has to grow
at least logarithmically with the number of input symbols. This
makes it very difficult to obtain a linear time encoder and de-
coder for an LT-code. Raptor codes [16] are an extension of
LT-codes which solve this problem and yield easy linear time
encoders and decoders. The main idea behind Raptor codes is to
pre-code the input symbols using a block code with a linear time
encoder and decoder. The output symbols are produced using
the original input symbols together with the redundant symbols
of the pre-code. Raptor codes solve the transmission problem
over an unknown erasure channel in an almost optimal manner,
as described in [16].

The success of Fountain codes for the erasure channel sug-
gests that similar results may also be possible for other binary-
symmetric channels. In this paper, we will investigate this ques-
tion. As we will show, some of the properties of LT- and Raptor
codes over the erasure channel can be carried over to any binary
input memoryless symmetric channels (BIMSC), while some
other properties cannot.

In practice, a Raptor code over a BIMSC can be used in
the following way: the receiver collects output bits from the
channel, and with each bit, it records the reliability of the bit.
This reliability translates into an amount of information of the
bit. The receiver collects bits until the sum of the informations
of the individual bits is , where is an appropriate con-
stant, called the reception overhead, or simply overhead. Once
reception is complete, the receiver applies BP decoding (or any
low-complexity flavor or it) to recover the input bits.

The main design problem for Raptor codes is to achieve a
reception overhead arbitrarily close to zero, while maintaining
the reliability and efficiency of the decoding algorithm. This
problem has been solved for the erasure channel [16]. For gen-
eral BIMSCs this problem is unsolved in full generality. In this
paper, we will present some partial results in this paper.

The paper is organized as follows. In Sections II and III, we
will introduce the main concepts behind Raptor codes and BP
decoding. Then we will consider in Section IV degree distribu-
tions optimized for the erasure channel and study the residual
bit-error rate (BER) of the decoder after a fixed number of iter-
ations of the BP algorithm, as a function of the overhead chosen.
It turns out that these degree distributions perform very well.

Then, we will show in Section V that the method of Gaussian
approximation [17], [18] can be adapted to the case of Raptor
codes. Using this method, and under some additional (and
wrong) assumptions, we will derive a simple criterion for the
output degree distribution to yield a good code. Surprisingly,
even though this method is based on wrong assumptions, it
gives a lower bound for the fraction of output bits of degree ,
which will turn out to be the correct lower bound necessary for
the BP algorithm to achieve good performance. This will be
proved in Section VI. Since the condition involves the output
bits of degree , it is reminiscent of the stability condition for
LDPC codes [10].

For a BIMSC , the new stability condition gives a lower
bound for the fraction of output bits of degree in terms of
a certain parameter of the channel. This parameter in-
volves the capacity of the channel, as well as the expected log
likelihood of the channel output. For the case of the erasure
channel, this parameter turns out to be equal to , independent
of the erasure probability of the channel. This makes it pos-
sible to design “universal” codes for the class of erasure chan-
nels. Loosely speaking, universal Raptor codes for a given class
of channels are Raptor codes that simultaneously approach ca-
pacity for any channel in that class when decoded by the BP al-
gorithm. For channels other than the erasure channel, such as the
binary input additive white Gaussian noise (BIAWGN) channel
and the binary-symmetric channel (BSC) this quantity depends
on the noise level of the particular channel, and is not a universal
constant depending only on the channel class. This means that
there are no universal Raptor codes for these important classes
of channels.

In Section VII, we will prove that for a sequence of Raptor
codes whose performance comes arbitrarily close to the capacity
of the underlying channel, the fraction of output bits of degree

has to converge to . On the negative side, the result
suggests that on channels other than the BEC it is not possible
to exhibit “universal” Raptor codes for a given class of commu-
nication channels, i.e., Raptor codes whose performance comes
arbitrarily close to the capacity regardless of the noise of the
channel. On the positive side, this result exhibits the limit value
of the fraction of output bits of degree in a capacity-achieving
degree distribution for Raptor code, and shows that a weak form
of the flatness condition [19] can be generalized to arbitrary
BSCs, at least in the case of Raptor codes. This leaves some
hope for the proof of a similar result for LDPC codes.
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Fig. 1. (a) Raptor codes: the source symbols are appended by redundant symbols (black squares) in the case of a systematic pre-code to yield the input symbols.
An appropriate LT-code is used to generate output symbols from the input symbols. (b) Decoding graph of a Raptor code. The output nodes are divided into the
two categories of static and dynamic output nodes. (a) Raptor code. (b) Decoding nodes.

Since there is no hope of having universal Raptor codes for
channels other than the BEC, the question arises whether one
can bound the performance of Raptor codes designed for one
channel when using the code for a different channel. Partial
results in this direction are provided in Appendix VII. In par-
ticular, we will show that Raptor codes designed for the BEC
will not perform too badly on other BSCs. More precisely, we
will show that asymptotically, the overhead of universal Raptor
codes for the erasure channel is at most , if the codes are
used on any BIMSC using the BP algorithm. This result shows
that universal Raptor codes for the erasure channel simultane-
ously beat the cutoff rate for any BIMSC without knowing the
channel beforehand.

In Section VIII, we investigate a more realistic Gaussian ap-
proximation technique, modeled after [20], and we derive some
good degree distributions using random sampling and linear op-
timization methods.

II. RAPTOR CODES

Let be a positive integer, and let be a distribution on
, the space of linear forms on (also called the dual

of ). Since and its dual are (noncanonically) isomorphic,
can be viewed as a distribution on as well (after fixing

standard bases). We will therefore view as a distribution on
and its dual at the same time.

Formally, the ensemble of Fountain codes with parameter
is an infinite vector in which the

are independent random variables on with distribution .
Such an ensemble induces a probability distribution on the space
of linear maps from to . A Fountain code with parameter

is a mapping sampled from this distribution. The block
length of a Fountain code is potentially infinite, but in appli-
cations we will solely consider truncated Fountain codes, i.e.,
Fountain codes with finitely many coordinates, and make fre-
quent and implicit use of the fact that unlike block codes the
length of a Fountain code is not fixed a priori.

The symbols produced by a Fountain code are called output
symbols, and the symbols from which these output symbols
are calculated are called input symbols. The input and output
symbols could be elements of , or more generally, the ele-
ments of any finite-dimensional vector space over or any
other field. In this paper, we will be primarily interested in Foun-
tain codes over the field . For this reason, we will often use
“input bits” instead of input symbols, and “output bits” instead
of output symbols.

A special class of Fountain codes is furnished by LT-codes. In
this class, the distribution has a special form. Let
be a distribution on so that denotes the probability
that the value is chosen. Often we will denote this distribution
by its generator polynomial . The distribu-
tion induces a distribution on (and hence on its dual)
in the following way: For any vector , the probability of

is , where is the weight of . Abusing notation, we
will denote this distribution in the following by again. An
LT-code is a Fountain code with parameters .

Let be a linear code of block length and dimension ,
and let be a degree distribution. A Raptor code with pa-
rameters is an LT-code with distribution on
symbols which are the coordinates of codewords in . The code

is called the pre-code of the Raptor code. The source sym-
bols of a Raptor code are the symbols used to construct the
codeword in consisting of input symbols. The output sym-
bols are the symbols generated by the LT-code from the input
symbols. The notation reflects the fact that the LT-code is ap-
plied to the encoded version of the source symbols (called input
symbols), rather than the source symbols themselves. Of course,
for an LT-code, the source and the input symbols are the same.
A graphical presentation of a Raptor code is given in Fig. 1(a).
Typically, we assume that is equipped with a systematic en-
coding, but this is not necessary.

The complete decoding graph of length of a Raptor code
with parameters is a bipartite graph with nodes
on the one side (called the input nodes or the input bits) and

nodes on the other (called the output nodes or the
output bits), where is the block length of . The output nodes
of this graph belong to two categories. One set of the output
nodes corresponds to collected output symbols, and there is
an edge from such an output node to all those input nodes whose
sum equals the value of the output node (before transmission
over the channel). We call these output nodes dynamic output
nodes. The notation reflects the fact that this part of the graph is
not fixed, and depends on the particular output nodes collected.
The second set of output nodes, called the static output nodes,
corresponds to the parity-check equations, and such an
output node is connected to all those input nodes for which the
sum is equal to zero. While the graph induced by the dynamic
output nodes is generally sparse, the graph induced by the static
output nodes is sparse only if an LDPC code (or any of its fla-
vors, such as an IRA code) is used as a pre-code. In this paper,
we will often assume that this is the case, so that the complete
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decoding graph becomes a sparse graph. An example of a de-
coding graph for a Raptor code is given in Fig. 1(b).

The complete decoding graph is comprised of the dynamic
and the static decoding graphs. The dynamic decoding graph of
a Raptor code is the subgraph of the complete decoding graph
which is induced by the dynamic nodes. Similarly, the static de-
coding graph of the code is the subgraph of the complete de-
coding graph induced by the static nodes. Typically, our de-
coding algorithms proceed by processing the dynamic decoding
graph first, and and then continue decoding by processing the
static decoding graph. Since we will mostly be dealing with the
decoding on the dynamic decoding graph, we will in the fol-
lowing refer to this graph as the “decoding graph,” without fur-
ther qualification.

For the analysis of Raptor codes, we need to use the degree
distribution in a decoding graph of the code from the perspective
of the edges rather than the nodes. We denote by the prob-
ability that a randomly chosen edge in the dynamic decoding
graph of the code is connected to an input node of degree ; sim-
ilarly, denotes the probability that a randomly chosen input
node is of degree . We denote by and the generating
functions and , respectively. By we denote
the probability that a randomly chosen edge in the dynamic de-
coding graph is connected to an output node of degree . Recall
that is the probability that a randomly chosen output node
is of degree , and note that and are independent of the
number of output symbols, whereas and may depend on
the number of output symbols. We define as .
Then we have

where denotes the formal derivative of with respect
to . The following proposition shows that when the number of
output nodes is large, then and ,
where is the expected average node degree of the input nodes.
It can be shown using standard Chernoff bounds that the average
node degree is sharply concentrated around . We will therefore
often omit the qualifier “expected” and will talk of as the
average degree of the input nodes.

Proposition 1: Let denote the number of input and output
symbols of an LT-code, respectively, denote the average de-
gree of an input symbol, and and be defined as above.
Then we have the following.

1) We have

2) Assume that . Then we have for all

We will prove this proposition in Appendix I.
In all the cases considered in this paper, the degree is a

constant. In this case approximating and with
leads to an error term of . Since our analytical results
will hold asymptotically, i.e., for very large , this error term
does not affect the approximation of by .

III. THE COMMUNICATION CHANNEL AND THE BP ALGORITHM

In this paper we will study BIMSCs. Three examples of such
channels are furnished by the BEC with erasure probability
, denoted BEC , the BSC with error probability , denoted

BSC , and the BIAWGN channel with variance , denoted
BIAWGN .

We consider transmission with binary antipodal signaling.
Strictly speaking, with this kind of signaling, we cannot speak
of XORing bits. However, we will abuse notation slightly and de-
note the real product of the input values as the “XOR” of the bits.

The output of a BIMSC with binary input can be
identified with a pair , where , and is a
real number between and . The value is interpreted as
a guess of the input value before transmission over the channel,
and can be interpreted as the probability that the guess is incor-
rect. The channel can be identified with the probability density
function (pdf) of the error probability . For example, BEC is
identified with the probability distribution ,
and the channel BSC is identified with the distribution ,
where denotes the Dirac delta function at . In this notation,
if denotes the pdf of the error probability of the channel ,
then the capacity of the channel is given as

(1)

where is the binary entropy function. A different way of pre-
senting a channel is by means of the distribution of its log-like-
lihood ratio (LLR). The LLR of a received symbol is defined
as

where is the bit sent over the channel. The LLR of a BIMSC is
often presented under the assumption that the all-zero codeword
was sent over the channel. In this representation, the channel
BEC is given by , while the channel BSC
is given by the distribution . The

channel capacity can be given via the pdf of the LLR as

(2)

For example, we have

BEC

BSC

and

BIAWGN
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All these (and a lot more) facts can be found in the upcoming
book by Richardson and Urbanke [21].

The remainder of this section will give a description of the
BP algorithm that is used in the decoding process of Raptor
codes over BIMSCs. The algorithm proceeds in rounds. In every
round, messages are passed from input bits to output bits, and
then from output bits back to input bits along the edges of a
decoding graph for the Raptor code. The message sent from the
input bit to the output bit in the th round of the algorithm is
denoted by , and similarly the message sent from an output

bit to an input bit is denoted by . These messages are
elements in . We will perform additions in this
set according to the following rules: for all

, and for all . The values of
and are undefined. Moreover, and

.
In the following, for every output bit , we denote by the

corresponding LLR. In round of the BP algorithm the input
bits send to all their adjacent output bits the value . There-
after, the following update rules are used to obtain the messages
passed at each round :

(3)

(4)

where the product is over all input bits adjacent to other than
, and the sum is over all output bits adjacent to other than .

After running the BP algorithm for rounds, the LLR of each
input bit can be calculated as the sum , where the sum
is over all the output bits adjacent to . We then gather these
LLRs, and run a decoding algorithm for the pre-code on the
static decoding graph of the Raptor code, where in this phase we
set the prior LLRs of the input bits to be equal to the calculated
LLRs according to the preceding formula.

The neighborhood of depth of an input (output) bit con-
sists of all the input (output) bits which are connected to
by a path of length at most , together with all their adjacent
output (input) bits. Under the assumption that this neighborhood
is a tree, the BP algorithm correctly calculates the LLR of an
input or output bit, given the observations of all the output bits
in this tree. It is well known that for any fixed , the number of
output or input bits for which the neighborhood of depth is not
a tree is , where is the number of input bits, and hence,
for all but at most output bits the BP algorithm correctly
calculates the LLR. We will call the assumption that the neigh-
borhood of depth of an input (or an output) bit is a tree, the
tree assumption.

The messages passed during the BP algorithm are random
variables. Under the tree assumption the messages passed at
round from input bits to output bits have the same density func-
tion. Similarly, the messages passed at round from output bits
to input bits have the same density function. In the following,
we let denote a representative random variable which has
the same density as the messages passed at round from input
to output bits, and similarly, we let denote a representative

random variable with the same density as the messages passed
from output bits to input bits at round . Furthermore, we let
denote the random variable describing the channel LLR. Then
we have the following simple result.

Proposition 2: Let , , and be defined as above, let
and denote the output node and edge degree distri-

butions of a Raptor code, and let denote the average degree of
the input bits in the dynamic decoding graph of the code. Fur-
ther, let denote the number of output symbols collected by
the decoder. Then, under the tree assumption, we have

(5)

and

(6)

Proof: As before, let denote the
edge degree distribution of the input bits in the dynamic de-
coding graph. If we are observing the message on a random
edge in the dynamic decoding graph, then the probability that
the edge is connected to an input bit of degree is , in which
case the mean of this message will be . Multi-
plying this value with the probability that the edge is con-
nected to an input bit of degree , we see that

The edge degree distribution of the input nodes in this graph
is given by , where is the
average degree of the output symbols in the dynamic decoding
graph, and is the number of input symbols, see Proposition 1.
Hence, . Note that since this is
the number of edges in the dynamic decoding graph (counted
from the point of view of the input and the output symbols,
respectively. This proves (5).

The proof of (6) follows the same line. The tree assumption
and (4) immediately imply that

where is . Therefore,

This completes the proof.

We denote by the expectation . If
denotes the pdf of the LLR of the channel, we have

(7)

For example, as remarked above for BEC , the distribution of
the LLR is equal to , so the distribution of

is given as and hence,

BEC (8)
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Fig. 2. Overhead versus error probability for LT- and Raptor code of length 65536 with output distribution given in (14) and with a right-Poisson, left-regular
pre-code of left degree 4 and rate 0:98. The different graphs correspond to different values of the standard deviation � of the channel BIAWGN (�).

Similarly, for BSC the distribution of the LLR is given by
, so the distribution of

is given by , and so

BSC (9)

If is BIAWGN , then

BIAWGN

(10)
where . For future reference, we will mention the fol-
lowing well-known estimates: as , BIAWGN
behaves as for BIAWGN as

(11)

while BIAWGN behaves as

(12)

These estimates can be found, for example, in [21]. However, for
the reader’s convenience, we will give a proof in Appendix II.

One of the main parameters of the channel that we will inter-
ested in is denoted by and defined as

(13)

The following equalities can be easily verified:

BEC

BSC

For BIAWGN , we have the following equivalent for-
mula:

where .

A random variable on is called symmetric if its pdf sat-
isfies [10]. It is easy to show that the random
variable describing the LLR of a symmetric channel is binary
symmetric. Moreover, as was shown in [10], the random vari-
ables describing the messages passed during any round of the
BP algorithm are symmetric (irrespective of the tree assump-
tion).

Finally, we give a formal definition of the reception over-
head of a decoder: For each received bit, let be the proba-
bility that the bit was zero before transmission, and let

, where is the number of collected output
bits to which the decoding algorithm is to be applied. We say
that the decoding algorithm has a reception overhead of if

. In other words, the algorithm works with a
number of output bits that is only away from the optimal
number.

IV. SIMULATIONS OF GOOD DISTRIBUTIONS FOR THE BEC

In this section, we will report on simulations we performed
for degree distributions that were optimized for the BEC, as re-
ported in [16]. Our results are analogous to those of Palanki and
Yedidia [22].

Our experiments used the output distribution

(14)

We chose a Raptor code with parameters ,
where is a right-Poisson, left-regular LDPC code of rate

, as described in [16]. The communication channel is
BIAWGN , and the simulations were done for various values
of the standard deviation . The results of these simulations are
summarized in Fig. 2.
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We performed our experiments in the following way: each
time we ran enough experiments to see 200 bit errors, or 2000
decoding runs, whichever was first, and we also ran at least 200
decoding runs. Then we calculated the average fraction of bit
errors at the end of the decoding process. During the decoding
process, we ran the BP algorithm for at most 300 rounds.

Since the degree distribution was optimized for the BEC, the
smallest overhead to ensure a good error probability is expected
to occur for the case ; this is also what the simulations
suggest. Moreover, as is increased, the corresponding over-
head needs to be increased as well.

The graphs in Fig. 2 clearly show the advantage of Raptor
codes over LT-codes. It is clear that for a small average degree
the LT-codes exhibit a bad error floor behavior. This is due to
the fact that not all the input bits will be covered by the output
bits, as shown in [15] and [16].

The experiments seem to suggest that, although degree dis-
tributions optimized for the erasure channel do not perform bad
on the AWGN, there is room for improvement. This will be the
topic of Section V.

V. GAUSSIAN APPROXIMATION

In [17], the authors have presented a simple method called
Gaussian approximation which approximates message densities
as a Gaussian (for regular LDPCs) or a mixture of Gaussians (for
irregular LDPCs). As will be discussed below, using such an ap-
proximation it is possible to collapse the density of the messages
passed at each round of the BP algorithm to a recursion for the
mean of a Gaussian, and hence to a single-variable recursion.

We are going to apply similar Gaussian approximation tech-
niques to Raptor codes. We will assume in this section that the
edge degree distribution of the dynamic decoding graph of the
Raptor code from the point of view of the output nodes and
the input nodes is given by and

, respectively. Note that we can approximate by
, where is the average degree of an input node (see

Proposition 1).
A Gaussian distribution is completely specified by two quan-

tities, its mean and its variance . It is possible to express
a symmetric Gaussian by one parameter only (either its mean
or its variance), since in this case . Note that if is a
symmetric Gaussian with mean (and variance ), then

As in [17], we define for as

for . has limit at , and so we define .
For example, we have

BIAWGN

It can be verified that is continuous, monotonically de-
creasing, and convex in the interval . As a result, the in-
verse function exists on this interval, and is also con-
tinuous, monotonically decreasing, and convex. Moreover, (12)
shows that , hence,

(15)

We will make use of the nonvanishing of the derivative of at
later in this section.
Now we assume that the individual message sent from an

input or an output node is Gaussian. The mean of a message
sent from an input node of degree at iteration is given
by

where is the mean of at the th iteration. Therefore,
considering the Gaussian mixture density of the message sent
from an input node to an output node, we will have

Next, considering the update rule for the output nodes, we can
compute the mean of the Gaussian message sent from an output
node with degree . To save space, we denote by the expecta-
tion . Then

We just need to keep track of the mean of the messages sent to
input nodes, which we can do by

This finally gives us the update rule for .
For successful decoding under the Gaussian assumption, we

need to guarantee that

This inequality cannot hold for all values of . In fact, the mono-
tonicity of shows that the inequality cannot be valid for

. However, the inequality needs to be valid
around . So, the derivative of the left-hand side is majorized
by the derivative of the right-hand side at zero. This shows that

is larger than , where is the derivative of the inverse
function of at , i.e., the reciprocal of the derivative of at
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. Since by (15), we have .
Moreover, in the preceding sum, the contribution of the terms
for is zero, since . This shows
that

Note that , where is the average degree of the
output nodes. Therefore, we obtain

Since the quantity is the “code rate,” the maximum value
for is the capacity of the channel. Hence, for a capacity-
achieving degree distribution, this would imply

BIAWGN
BIAWGN

This inequality is an analogue of the stability condition in [10].
Although its derivation is based on the incorrect Gaussian as-
sumption, it turns out that it can be proved rigorously. We will
give a rigorous proof of this inequality in Section VI.

We have used the formulas above and linear programming to
design degree distributions for the Gaussian channels. Unfortu-
nately, the designs obtained this way perform rather poorly in
practice. One possible reason for this is that the assumption that
the messages passed from output bits to input bits are Gaussian
is a very unrealistic one. Later, in Section VIII, we will intro-
duce a different, more realistic version of this technique which
will yield more practical codes.

VI. A BOUND ON THE FRACTION OF OUTPUT SYMBOLS OF

DEGREE OF AN LT-CODE

The stability condition for LDPC codes derives an upper
bound on the fraction of message nodes of degree , such
that if the fraction is smaller than this bound, then the BP
algorithm converges to the correct solution if it is started at a
neighborhood of the correct solution. Hence, the correct solu-
tion is a stable fixed point of the density evolution. Therefore,
the stability condition for LDPC codes spells a condition for
successful termination of the algorithm, given that it is close
to termination. In this section, we will prove an equivalent
but different condition for LT-codes. Unlike LDPC codes, our
bound is a lower bound (rather than an upper bound). Moreover,
this bound gives a condition for the successful “start” of the
algorithm, rather than the end of it.

We use the following notation throughout.

• The decoding graph of the LT-code with input parameters
has output bits, where

is the output node degree distribution.
• is the average degree of the output symbols

and is the edge degree distribution
of the output symbols.

• is the average degree of an input node, and
is the edge degree distribution of the input

nodes. By Proposition 1, this distribution is approximately
equal to .

• is the nominal rate of the code (the
assertion can be proved by counting the
number of edges in the decoding graph in two different
ways).

• is the log likelihood sent through a random edge from
an output node to an input node at round of the BP
algorithm, .

• is the expectation of .
• is the log likelihood sent through a random edge from

an input node to an output node at round of the BP
algorithm, .

• is the expectation of .
The proof of the following two results are provided in Ap-

pendices III and IV.

Proposition 3: For a random variable on let denote
. Suppose that and are symmetric random vari-

ables on . Then is also symmetric, and we have

and

Lemma 4: Let .

a) .
b) .

The stability condition gives an upper bound on the fraction
of variable nodes of degree for an LDPC code to reduce the
error probability below any constant. There is an analogue of
this property for LT-codes. In this case, the stability condition
is a lower bound on the fraction of output nodes of degree . The
following theorem explains this condition, and a partial con-
verse thereof.

Theorem 5:

1) For all there exist positive , depending only on
, , such that if and ,

then for all we have .
2) For all there exists a positive and

depending only on such that if and
, then .

Proof:
1) If , then a small calculation reveals that

for , and hence,

(by Lemma 4(a))

The input edge degree distribution of the code is
by Proposition 1. By Lemma 4(b),

we have
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(Here we use the inequality valid for all
and all .) Since , we see that

.
2) By Lemma 4(b) and the fact the above formula for we

have

Using the well-known inequality , we obtain

Trivially, by Lemma 4(a), we have , hence, by
our assumption, we have . This shows that

Let be such that . (Such a exists as
can be seen from the Taylor expansion of around

.) Suppose that . Then

So, we see that cannot hold for all , and we
are done.

The results of the previous theorem can be translated into
assertions on the error probability of the BP decoder. For that,
we need the following lemma, the proof of which can be found
in Appendix V.

Lemma 6: Suppose that is a symmetric random variable
on , and let be a positive real number.

a) If , then for all we have

b) If , then .

From this lemma and the previous theorem we can immedi-
ately deduce the following

Corollary 7: For all , there exist , depending
only on , such that if and , then the
error probability of the BP decoder is at least .

Proof: Theorem 5 part 1) shows that
for some . Let , and set

Lemma 6 part a) shows that . Since

is the error probability of the decoder at round , and since

the result follows.

The preceding corollary is analogous to the classical stability
condition for LDPC codes [10]: if the fraction of nodes of degree

in the decoding graph of the LT-code is too small, then the BP
decoder will not be successful. Note that this type of result is
opposite to the case of LDPC codes: in that case, decoding is not
successful when the fraction of nodes of degree is larger than
dictated by the stability condition, while in our case decoding is
not successful.

In Section VII, we will connect a lower bound on the expecta-
tion of the with an upper bound on some mutual informa-
tion. This will enable us to show that the value is critical
for the fraction of output bits of degree .

VII. FRACTION OF OUTPUT SYMBOLS OF

DEGREES ONE AND TWO

In this section, we will derive exact formulas for the fraction
of output symbols of degrees one and two for Raptor codes that
are to achieve capacity. For these codes, the residual error prob-
ability of the BP decoder applied to the LT-code has to be very
small. This residual error is then decoded using the pre-coder.
For this reason, our investigation will be solely concerned with
the LT part of the decoding process, and would like to study
under what circumstances the residual error probability of the
BP decoder applied to the LT-code is small.

Let be a fixed integer, and let be the input
bits of an LT-code with distribution . We denote by the
vector . Further, let be output bits of
this LT-code, which are supposed to have been received after
transmission through a BIMSC . Analogously, we denote by

the vector . Assume that the neighborhood of
depth of of the output bits is not a tree. Further, let and

be prototype random variables denoting the messages of the
BP algorithm passed at round from the input bits to the output
bits, and from the output bits to the input bits, respectively.

In this section, we will use the following result whose proof
is given in Appendix VI.

Theorem 8: Assume that there is some such that
. Then there exists a constant de-

pending only on , on the degree , and on the channel , such
that
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Theorem 8 is, in fact, a weak generalization of the “Flatness
Condition” [19]. Indeed, the theorem shows that if a sequence
of Raptor codes is to achieve capacity, then asymptotically the
outgoing error probability needs to be equal to the incoming
error probability for BP applied to the LT-code.

A sequence of Raptor codes with parameters
, , is called capacity-achieving for

a channel if the following conditions hold: a) goes to
as grows, and b) the error probability of the BP algorithm
applied to output symbols of the th
code in the sequence approaches zero as approaches infinity.

The following lemma states an obvious fact: for a Raptor code
that operates at a rate very close to the capacity of the channel,
the mutual information between the input bits and the output
bits has to be the maximum possible value up to terms of the
form .

Lemma 9: Suppose that , , is a
capacity-achieving sequence of Raptor codes for the BIMSC .
Then, for any set of output symbols of the th
code in the sequence, we have

where are the input bits of the Raptor code.
Proof: Suppose that there is some such that for

infinitely many there exist output bits such that

Clearly, has to be smaller than since
the sequence of Raptor codes is capacity-achieving. Add to

an additional number
of further output bits . Then
is at least since the sequence of Raptor codes is
capacity-achieving. On the other hand

which is a contradiction.

Theorem 10: Suppose that , , is a
capacity-achieving sequence of Raptor codes for the channel
and suppose that . Then we have

and (16)

Proof: First, we prove that has to be larger than zero
for the BP algorithm to start. Assume that . Then
all the messages going from output nodes to input nodes in the
decoding graph in the first round are zero (in the LLR domain),
and hence, the messages will be zero throughout the decoding
process.

Using Theorem 8 we now give a proof that for a capacity-
achieving sequence, we need to have . An alter-
native proof is given in Appendix VIII.

Suppose that for infinitely many . Consider the
graph formed between the input symbols and the output symbols
of degree one. Since all the output symbols are of degree one,
this graph is a forest, i.e., a disjoint union of trees. We therefore
refer to it as the “degree-one forest” in the following. If de-
notes the number of output symbols in the original Raptor code,
then the number of output symbols of degree one is sharply con-
centrated around its expectation , where .

Let denote the input symbol degree of the degree-one
forest. In other words, if denotes the probability that a ran-
domly chosen input symbol in the degree-one forest is of degree
, then . An argument similar to Proposition

1 shows that .
We will now estimate the expectation of the messages passed

from input symbols to output symbols in the first round of the
BP algorithm on the degree-one forest. In the first round, output
symbols of degree one send the channel LLR to their adja-
cent input symbols. The expectation of these messages is .
Thereafter, input symbols that are connected to output sym-
bols in the degree-one forest send a message whose expectation
is . It follows that the expectation of the of the mes-
sages passed from input to output symbols in the first round of
the BP algorithm is . Since

we see that this expectation equals .
Hence, for large enough , this expectation is strictly positive,
since . It follows from Theorem 8 that there exists a
positive such that the mutual information between the input
symbols of the Raptor code and the output symbols of degree
one is at most , which contradicts the fact that
the sequence is capacity-achieving.

Theorem 11: Suppose that , , is a
capacity-achieving sequence of Raptor codes for the BIMSC
and suppose that . Then we have

(17)

Proof: Suppose that for infinitely
many . Since by Theorem 10, Theorem 5 part
2) implies that the expectation of the messages
passed at the th round of BP is larger than , for some ,
if is large enough. Let denote the output bits of
degree , and set . By Theorem 8, there exists
a constant depending on and the channel, such that

, where is the number
of output symbols if degree whose neighborhood of depth is
not a tree. (The theorem also assumes that the constant depends
on the degree of the output symbols; but since this degree is fixed
to two in our application, we can disregard this dependency.) A
standard argument shows that . (See, for example,
[2] or [23].) Hence, , which
contradicts Lemma 9.

On the other hand, suppose that for in-
finitely many . Let and be the constants given in The-
orem 5 part 1). Since as by Theorem 10,
there exists some such that for . Then
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Fig. 3. 
 (C) as a function of the error probability of the channel for the
BIAWGN and the BSC.

Theorem 5 part 1) implies that there is some such that
for all . This shows that the error proba-

bility of BP cannot converge to zero.

In the following we define

By virtue of the previous result, this quantity is the asymp-
totic fraction of output symbols of degree for a Raptor code
achieving the capacity of the BIMSC . We have the following
results.

Proposition 12: Suppose that the BIMSC is either BEC ,
or BSC , or BIAWGN , where . Then we have

1) ;
2) if and only if BEC ;
3) if is BSC or is BIAWGN , then

;
4) BSC BIAWGN

.
Proof: Results 1) and 2) are proved by simple exami-

nation for which we refer to Fig. 3. It is also not hard to see
that the function BSC is a monotonically decreasing
function of , and that BIAWGN is a monotoni-
cally decreasing function of . We therefore concentrate on
proving 4) which would also prove 3). We first show that

BSC . To see this, note that by
l’Hospital’s rule, this limit equals

To prove that BIAWGN , we use
the estimates (11) and (12) from Section III, which gives us

BIAWGN

The result follows, since approaches as approaches in-
finity.

The preceding result seems to suggest that converges
to when is a BIMSC whose error probability
converges to . In fact, it has been proved independently by
Pakzad [24] and Sasson [25] that this is true for a large class of
BSCs. In Appendix IX, we will reproduce Pakzad’s proof.

We finish this section with an important remark on the nonex-
istence of universal Raptor codes for important classes of chan-
nels such as the BIAWGN and the BSC. Let be a class of
BIMSCs. We call a sequence of Raptor codes with parameters

, universal for the class , if the se-
quence is capacity-achieving simultaneously for all . For
example, [16] exhibits a sequence of universal Raptor codes for
the class of erasure channels. The results of this section imply
the following.

Corollary 13: Let be a class of BIMSCs. If there exists a
universal sequence of Raptor codes for , then there exists
such that for all we have . In particular, there
are no universal Raptor codes for the classes of BIAWGN and
BSC channels.

Proof: For any given we need to have

This shows that has to be constant on . For the classes
of BIAWGN and BSC channels the value depends on the
particular noise parameter of the channel, so universal Raptor
codes cannot exist for these channel classes.

VIII. A MORE REFINED GAUSSIAN APPROXIMATION

In this section, we will assume that the communication
channel is a BIAWGN with variance . Requiring all the
messages passed at every iteration of the BP algorithm to be
Gaussian is very strong, and often wrong. Simulations and
computations suggest that the messages passed from output
bits of small degree are very far from being Gaussian random
variables. On the other hand, the messages passed from input
bits at every round are close to Gaussian. The rationale for this
is simple: these messages are obtained as a sum of independent
random variables of finite mean and variance from the same
distribution. If the number of these additions is large, then, by
the central limit theorem, the resulting density function is close
to a Gaussian.

This is of course a heuristic assumption, but it seems that it
is much closer to the truth than the “all-Gaussian”-assumption
of Section V. In this section, we will assume that at any given
round, the messages from input bits are symmetric Gaussian
random variables with the same distribution, and we will derive
a recursion for their means. Under the assumption that the code-
word sent over the channel is the all-zero codeword (which we
can do by the symmetry of the channel), we want the mean to in-
crease from iteration to iteration. This condition implies linear
inequalities for the unknown coefficients of the output degree
distribution, and leads to a linear programming problem which
can be easily solved using any of the standard algorithms for
this task. Our solution is an adaptation of a method of Ardakani
and Kschischang [20] to the case of Raptor codes.
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Fig. 4. (a) Mean of the messages going out of input nodes versus their difference to the mean of the messages going out of output nodes for the above degree
distribution. (b) Outgoing mean of messages passed from input bits to check bits as a function of the means of the incoming messages under the assumption that
the incoming messages are symmetric Gaussians. The different graphs correspond to different degrees of the output symbol, starting from one and going to 10.
The standard deviation of the underlying AWGN channel is 0:9786.

Let denote the mean of the symmetric Gaussian distribu-
tion representing the messages passed from input bits to output
bits at some round . The message passed from an output bit of
degree to an input bit in the same round has an expectation
equal to

where are independent symmetric Gaussian
random variables of mean , and is the LLR of the channel.
If denotes the average input bit degree, then the mean of the
messages passed from input bits to output bits at round of
the algorithm equals

where is the output edge degree distribu-
tion of a decoding graph for the Raptor code.

The objective is to keep the average degree of the output bits
as close as possible to , while respecting the condition

(18)

for all . In other words, we want to be
as close to as possible, while ensuring the inequality (18).

If only a finite number of the ’s are nonzero, then it is im-
possible to satisfy (18) for all . But it is also not necessary
to do so. If we assume that (18) holds only for a range of , say

, then this would mean that at the time the BP de-
coder stops on the LT-code, the reliability of the output bits is
large enough so that a pre-code of high rate would be sufficient
to finish off the decoding process.

In practice, it is possible to transform (18) to a linear pro-
gramming problem in the following way. We fix , , ,
and integers and . Further, we choose equidistant points

in the interval , and
minimize

subject to the three constraints

1)

2)

3)

This linear program can be solved by standard means, e.g., the
simplex algorithm.

It remains to show how to calculate for a given . This
can be done either by means of calculating the distribution of

or by simply sampling from this distribution many times and
calculating an empirical mean. The latter is very fast, and can be
implemented very easily. Fig. 4 (a) shows the graphs of
for , , and . In this
example, we used 100 000 samples per value, and discretized
the interval of the means using a step size of .

These graphs were obtained by progressive sampling. As can
be seen, the accuracy of this method decreases with increasing
mean (and hence variance, since the densities are assumed to be
symmetric). Nevertheless, these approximations provide a fast
and robust means of designing good output degree distributions.
We include one example of our optimization technique for the
value . The corresponding output degree distribution
is given by

The average output degree equals . Fig. 4 (b) shows the
graph of the difference between the outgoing means minus the
incoming means at an input node, versus the incoming mean at
the input node. The rather “blurry” picture is an artifact of the
fact that we used random sampling rather than density evolution
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Fig. 5. Overhead versus the error probability for the above degree distribution for various input lengths, and � = 0:5 and � = 0:977.

to calculate the outgoing means. Nevertheless, this method has
the advantage of taking into account some of the variance in the
decoding process, and hence the degree distributions produced
from these data should perform well in practice.

Fig. 5 gives a plot of the error probability of the decoder
versus the overhead of the Raptor code. In this example, we
did not use any pre-code, so that the code used is actually an
LT-code. As can be seen, for a fixed residual BER, the overhead
decreases with the length of the code.

APPENDIX I
PROOF OF PROPOSITION 1

Fix an input symbol. For every generated output symbol, the
probability that this input symbol is a neighbor of the output
symbol is , where is the number of input symbols, and
is the average degree of the output symbols. Set . Note
that as well. The probability that an input symbol is
of degree is

It turns out that and
. This proves part 1).

For part 2), we will concentrate on proving the assertion of
Proposition 1 for ; the assertion for is done completely
analogously.

We have

Noting that , we obtain

where , and the last equality follows from the Taylor
expansion of around zero. Similarly, we have

The one before last equality follows from and
for . Altogether we obtain

since for (note that ). This con-
cludes the proof.

APPENDIX II
ESTIMATES FOR THE CAPACITY OF THE BIAWGN CHANNEL

In this appendix, we will prove (11) and (12). Let .
Both proofs are based on the following observation: Let
be a kernel function which has a Taylor expansion at zero, say

. Then

where is a symmetric Gaussian random variable with mean
. The higher moments for the Gaussian distribution can be

calculated by means of the following integral:
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where . The first moments can be calculated as

...
...

To calculate a series expansion of the capacity of the BIAWGN
around , we use the series expansion of

This gives us

BIAWGN

which proves assertion (11).
To prove (12), we calculate a series expansion for

This yields

BIAWGN

which proves (12).

APPENDIX III
PROOF OF PROPOSITION 3

Let be the pdf given by

where is the Dirac delta function with peak at . The corre-
sponding random variable will be denoted by . By we
denote the quantity .

Lemma 14: For we have

Proof: It is easily checked that

Let denote the pdf of . The pdf of is given by

Therefore,

This shows that

Since , , we have

and

which proves the assertion.

Proof: (Of Proposition 3) It is easily proved that if and
are symmetric, then so is .
Let and denote the pdfs of and , respectively. Then

we have

Using the upper bound of the previous lemma we obtain the
following upper bound for :

The lower bound in the assertion of the proposition follows in a
similar manner from the lower bound of the previous lemma.
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APPENDIX IV
PROOF OF LEMMA 4

For let , be independent copies of
, and set

.

a) This equation follows directly from the density evolution
equations.

b) By Proposition 3 we have for all we have

This shows that

Since , we conclude that

since . The other inequality is proved
similarly: Proposition 3 implies that

and we proceed the same way as with the lower bound.

APPENDIX V
PROOF OF LEMMA 6

Let be the pdf of . Since is symmetric we have

The proofs of both assertions are accomplished by appropriate
decompositions of the integral and by using the fact that the
function is increasing.

a) We have

The assertion is obtained by a simple manipulation of the
last inequality.

b) The proof is similar to that of the last part

Using the symmetry of , this shows that

Adding to both sides of the inequality gives

which proves the assertion.

APPENDIX VI
PROOF OF THEOREM 8

For the proof of this theorem we will proceed in several steps.

Lemma 15: Assumptions being as in the previous theorem,
suppose that the neighborhood of depth of is a tree, and let

denote the set of output bits that appear in this tree. Then,
there exists a constant depending on , the degree of ,
and the channel , such that

Proof: Let denote that degree of the output bit , and
let denote the LLR of given . Since the neighborhood of

is a tree, we have

If denotes the value of the received bit prior to the trans-
mission, then Lemma 6 part b) implies that

so that for some . (Note that is a bi-
nary random variable, hence, the upper bound on the conditional
probability gives an upper bound on the conditional entropy.)
Note that depends on , which itself depends on , , and .
By definition, we have ,
which translates to

This completes the proof.

The next lemma shows that the previous condition is valid
even if we condition on fewer output bits in the neighborhood
of .

Lemma 16: Assumptions being as in the previous lemma, for
any with there exists depending on such
that if denotes the neighborhood of depth of in which
the output bits are removed with probability , then
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Proof: Let denote the channel obtained by concate-
nating the channel with a BEC of probability . Let
be a prototype random variable describing the messages passed
from input bits to output bits at round of the BP algorithm ap-
plied to a decoding graph of the LT-code on this channel. Then
it is clear that is a continuous function of .
Moreover, when , this expectation is zero, whereas for

, this expectation is at least , by assumption. There-
fore, for any with there exists a such that

, and is a continuous function of .
As far as the BP algorithm is concerned, the neighborhood of
depth of equals , since the erased output bits do not
contribute to the BP algorithm. Therefore, by Lemma 6 part b),
we have . From this, we deduce
that for some which is a continuous
function of . As a result,

The result follows from the Mean Value Theorem by using the
continuity of as a function of .

We need one more result, the proof of which is well known
[26].

Lemma 17: Suppose that , , and are random variables
such that and are independent given . Then

Note that the assumption that and are independent given
is crucial as the following example shows: suppose that and

are independent binary random variables, and set
be their XOR. Then , but . Now we
are ready to prove the main theorem.

Proof: (Of Theorem 8) Let be as in the statement of
Lemma 15; choose some with . Then, by Lemma
16 there exists some such that

for all

for which the neighborhood of depth is a tree. Let be the
number of for which this neighborhood is not a tree, and let

. We then have

Using Lemma 17, the first summand can be estimated from
above by . Similarly, the second
summand is at most . By Lemmas 17 and 16 we have

Therefore, we have altogether

Note that and depends on , which in turn depends on , the
degree of , and the channel . Setting , this proves the
assertion.

APPENDIX VII
RELATING BIMSCS WITH THE BEC

In this section, we state an upper bound and a lower bound
on the decoding threshold of the BP algorithm over an arbi-
trary BIMSC in terms of its decoding threshold over the erasure
channel.

The upper and the lower bound both only depend on the
density evolution analysis of the BP algorithm. Therefore,
the bounds hold for BP over all classes of graphical codes
where density evolution is valid, e.g., LDPC codes, irregular
repeat–accumulate (IRA) codes, bounded-degree LT-codes,
and Raptor codes.

A. Lower Bound

Assume that is an arbitrary BIMSC. The Bhattacharya pa-
rameter of , written , is defined as
where is the LLR of the bit obtained from the channel under
the assumption that the all-zero codeword is transmitted. For ex-
ample, we have

BEC and BSC

The following theorem [27, Ch. 4] gives a lower bound on the
performance of BP decoding over binary symmetric channels.

Theorem 18: Let be the Bhattacharya parameter of an
arbitrary channel . If BP can decode an ensemble of codes on
BEC , then BP can decode the same ensemble of codes
with the same length on channel .

Corollary 19: If the overhead of a Raptor code on an erasure
channel is , then its overhead over any BIMSC is at most

.
Proof: Assume that we can decode bits from

correct output bits. Then we can also obtain bits from
bits received from BEC . By Theorem 18, to

obtain bits, it is enough to get bits from .
Thus, the overhead of the code over is

For a sequence of Raptor codes that achieves the capacity
of BEC, Corollary 19 shows that these codes simultaneously
beat the so-called “cutoff” rate on all BIMSCs [27]. The rate
was considered to be a limit for “practical communication” be-
fore the advent of graphical codes and iterative decoding. The
interesting point about this result is that this performance is
achieved while the encoder is totally oblivious of the underlying
channel

Corollary 20: For arbitrary small , the reception
overhead of Raptor codes optimized for the BEC is at most

on any BIMSC.
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Proof: Let be a BIMSC. Let be the density function
of the probability that a symbol received from the channel is
incorrect with probability . We have

By l’Hospital’s rule

The result follows from Corollary 19.

B. Upper Bound

Recall the parameter defined for a BIMSC in (7).
The following theorem establishes an upper bound on the per-

formance of BP over BIMSCs in terms of its performance on the
BEC.

Theorem 21: For any BIMSC , if BP can decode an en-
semble of codes on channel , then it can also decode the same
ensemble of codes with the same length on BEC .

Proof: We will use the notation at the beginning of Sec-
tion VI and track and for the BP algorithm over a BIMSC

. By Lemma 4 part b) we have

(19)

Let BEC . Clearly, .
When BP is run over the BEC, (resp., ) is the probability

that the message passed through a random edge from an input
node to an output node (resp., from an output node to an input
node) is not an erasure at round . Thus, inequality (19) is an
equality in the case of the BEC . Hence, by induction on ,
the values of and for BP on are no more than the corre-
sponding values for BP on .

In particular, if converges to as for BP on ,
then it also converges to for BP on . Finally, we note that

converges to if and only if the decoding error probability
converges to .

We now apply Theorem 21 to Raptor codes.

Theorem 22: If a sequence of Raptor codes achieves the ca-
pacity of a BIMSC, then the overhead of the sequence on the
BEC is exactly equal to .

Proof: Consider a sequence of Raptor codes that
achieves the capacity of the BIMSC . When the code
is used over channel , output bits
are sufficient to decode input bits. Using Theorem 21,

output bits are sufficient to decode in-
puts bits over BEC . Thus,
received output bits are sufficient on the BEC.

We now only need to show that the overhead of the code over
the BEC, say , is in the limit. Using Theorem
10, the asymptotic fraction of input bits of degree is

. Using Theorem 5, in the limit we have
. This implies that .

Using part 2) of Theorem 5, it is possible to construct a
sequence of degree distributions for Raptor codes such that

in the limit, where is the overhead of
the sequence of codes in the limit. Using part 1) of Theorem
5, the overhead of that sequence of codes over the BEC is

. This shows that in Theorem 21, the constant
(the erasure probability) cannot be improved.

APPENDIX VIII
ALTERNATIVE PROOF OF THEOREM 10

In this appendix, we will give an alternative proof of Theorem
10; we wish to thank Bixio Rimoldi and Emre Telatar for their
help with this proof.

The intuition of the proof is the following: if a noisy version
of a bit with is observed more than once,
then the mutual information between and its observations
is less than the number of observations times the capacity of
the channel. A standard argument can then be used to deduce
that the mutual information between the input symbols and the
output symbols of degree one is too small if there is a constant
fraction of output symbols of degree one.

To put the intuition on firm ground, we again look at the de-
gree-one forest formed by the input symbols and the output
symbols of degree one. Let us denote the input symbols by

and the output symbols by .
Suppose that input symbol is connected to output symbols

. Then

since the other ’s are independent of . Let
. Then

The last equality follows from the fact that is a binary random
variable with . Since the for different
are not independent, the inequality in the second step above is
sharp if . As a result, if , then there exists
such that

Hence, we have

where is the number of such that .
Now we proceed as in the original proof of Theorem 10. The

fraction of input symbols connected to two output symbols of
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degree one is a constant, if the fraction of the output symbols of
degree one is a constant (measured with respect to the number of
input symbols). Therefore, for some constant , and we
have , which shows that the sequence
cannot be capacity-achieving.

APPENDIX IX
THE LIMITING BEHAVIOR OF

In this appendix, due to Payam Pakzad, we will prove that
Proposition 12 part 4) holds in a much more general setting.

For a symmetric density , we define the error probability
associated with as

(20)

where the last equality follows from the symmetry of . It is
easy to see that . We also define

(21)

Note that if is the density of the LLR of the channel , then
.

Theorem 23: Let be a family of symmetric proba-
bility densities such that each comprises of countably many
point masses and a piecewise smooth function with countably
many discontinuity points, and such that .
Then

Proof: First we will show that for large enough ,
must have all its mass in close vicinity of . More precisely,
if we define , then we claim that

To see this, first note that for all , we have

where is a positive real. Now suppose there is an
such that for infinitely many ’s. Then for infinitely
many ’s we have

which is a contradiction, since .
We deduce that there is a sequence such that

and also goes to zero, say

(the reason for this particular choice of will be apparent
below).

Now suppose that each density function can be decom-
posed as the sum of a smooth function and a pair of delta func-
tions in , i.e.,

where for , and
. Then, from the symmetry of , we must have

and

We will now write the small-order expansions of the numerator
and the denominator of (21). The numerator of the expression
has the expansion

whereas the denominator has the expansion

Therefore, using the fact that , we can write the
desired limit as

It is easy to see that the proof can be extended if each
comprises of countable point-masses and a piecewise smooth
function with countable discontinuity points.
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