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Abstract. A Santha–Vazirani (SV) source is a sequence of random bits where the conditional
distribution of each bit, given the previous bits, can be partially controlled by an adversary. Santha
and Vazirani show that deterministic randomness extraction from these sources is impossible. In
this paper, we study the generalization of SV sources for nonbinary sequences. We show that unlike
the binary setup of Santha and Vazirani, deterministic randomness extraction in the generalized
case is sometimes possible. In particular, if the adversary has access to s “nondegenerate” dice that
are c-sided and can choose one die to throw based on the previous realizations of the dice, then
deterministic randomness extraction is possible if s < c. We present a necessary condition and a
sufficient condition for the possibility of deterministic randomness extraction. These two conditions
complement each other in the nondegenerate cases. Next, we turn to a distributed setting. In
this setting the SV source consists of a random sequence of pairs (a1, b1), (a2, b2), . . . distributed
between two parties, where the first party receives ai’s and the second one receives bi’s. The goal
of the two parties is to extract common randomness without communication. Using the notion of
maximal correlation, we prove a necessary condition and a sufficient condition for the possibility of
common randomness extraction from these sources. Based on these two conditions, the problem of
common randomness extraction essentially reduces to the problem of randomness extraction from
(nondistributed) SV sources. This result generalizes results of Gács and Körner, and Witsenhausen
about common randomness extraction from independently and identically distributed sources to
adversarial sources.
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1. Introduction. Randomized algorithms are simpler and more efficient than
their deterministic counterparts in many applications. In some settings such as com-
munication complexity and distributed computing, it is even possible to prove un-
conditionally that allowing randomness improves the efficiency of algorithms (see,
e.g., [29, 18, 12]). However, access to sources of randomness (especially common ran-
domness) may be limited, or the quality of randomness in the source may be far from
perfect. Having such an imperfect source of randomness, one may be able to extract
(almost) unbiased and independent random bits using randomness extractors. A ran-
domness extractor is a function applied to an imperfect source of randomness whose
outcome is an almost perfect source of randomness.

The problem of randomness extraction from imperfect sources of randomness was
perhaps first considered by Von Neumann [26]. A later important work in this area is
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2 S. BEIGI, O. ETESAMI, AND A. GOHARI

[21] where Santha and Vazirani introduced the imperfect sources of randomness now
often called Santha–Vazirani (SV) sources, also known as “unpredictable-bit sources,”
e.g., in [22]. These sources can easily be defined in terms of an adversary with two
coins. Consider an adversary who has two different coins, one of which is biased
towards heads (e.g., Pr(heads) = 2/3) and the other one is biased towards tails (e.g.,
Pr(heads) = 1/3). The adversary, in each time step, chooses one of the two coins and
tosses it. Adversary’s choice of coin may depend (probabilistically) on the previous
outcomes of the tosses. The sequence of random outcomes of these coin tosses is called
an SV source.

For a family of sequences of random variables (C1, C2, . . . ) on alphabet C (such
as the family of SV sources), we say that randomness can be extracted from the family
if there are functions (extractors) Γn : Cn → {0, 1}, n ≥ 1, such that the bias of
Γn(C1, . . . , Cn) is at most ε(n) for every sequence (C1, C2, . . . ) in the family, where
ε(n) tends to zero as n→∞.

Santha and Vazirani [21] show that randomness extraction from the above SV
sources through a deterministic method is impossible. More precisely, they show that
for every deterministic way of extracting one random bit, there is a strategy for the
adversary such that the extracted bit is biased or, more specifically, the extracted bit
is 0 with probability either ≥ 2/3 or ≤ 1/3. Subsequently, other proofs for this result
have been found (see, e.g., [20, 1]).

1.1. Main result 1: Existence of deterministic extractors for general-
ized SV sources. Although [21] proves the impossibility of deterministic randomness
extraction from SV sources, this impossibility is shown only for binary sources. In
this paper we show that if we consider a generalization of SV sources over nonbi-
nary alphabets, deterministic randomness extraction is indeed possible under certain
conditions.

To generalize SV sources over nonbinary alphabets, we assume that the adversary,
instead of coins, has some multifaceted (say 6-sided) dice. The numbers written on
the faces of different dice are the same, but each die may have a different probability
for a given face value. The adversary throws these dice n times, each time choosing
a die to throw depending on the results of the previous throws. Again, the outcome
is an imperfect source of randomness, for which we may ask whether deterministic
randomness extraction is possible or not.

When the dice are nondegenerate, i.e., all faces of all dice have nonzero probability,
we give a necessary and sufficient condition for the existence of a deterministic strategy
for extracting one bit with arbitrarily small constant bias. The following (informal)
theorem summarizes our results.

Theorems 4 and 9 (informal). Given a generalized SV source defined by a set of
nondegenerate dice, we can extract one bit of randomness with arbitrarily small con-
stant bias if and only if the convex hull of the set of probability distributions associated
with the set of dice does not have full dimension in the probability simplex.

For example, when the dice are 6-sided, the necessary and sufficient condition im-
plies that we can deterministically extract an almost unbiased bit when the adversary
has access to any arbitrary set of five nondegenerate dice, but randomness extraction
is not possible in general when the adversary has access to six nondegenerate 6-sided
dice. Furthermore, we emphasize that when we prove the possibility of deterministic
extraction, we also provide an explicit extractor.

1.2. Main result 2: Common randomness extractors for distributed SV
sources. Common random bits, shared by distinct parties, constitute an important
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 3

resource for distributed algorithms; common random bits can be used by the parties
to synchronize the randomness of their local actions. We may ask the question of
randomness extraction in this setting too. Assuming that the parties are provided
with an imperfect source of common randomness, the question is whether perfect
common randomness can be extracted from this source or not.

Gács and Körner [14] and Witsenhausen [27] have looked at the problem of extrac-
tion of common random bits from a very special class of imperfect sources, namely,
independently and identically distributed (i.i.d.) sources. In this case, the bipartite
source available to the parties is generated as follows. In time step i, a pair (Ai, Bi)
with some predetermined distribution p(a, b) and independent of the past is gener-
ated; Ai is revealed to the first party and Bi is revealed to the second party. In other
words, the two parties receive i.i.d. repetitions of a pair of random variables (A,B).

After receiving arbitrarily many repetitions of random variables, i.e., (A1, . . . , An)
and (B1, . . . , Bn) for some large n, the two parties aim to extract a common random
bit. It is known that in this case, the two parties (who are not allowed to commu-
nicate) can generate a common random bit if and only if A and B have common
data [27]. This means that common randomness generation is possible if A and B
can be expressed as A = (A′, C) and B = (B′, C) for a nonconstant common part C,
i.e., there are nonconstant functions f, g such that C = f(A) = g(B). Observe that
when a common part exists, common randomness can be extracted by the parties
by applying the same (deterministic) extractor on the sequence of C’s. That is, the
problem of common randomness extraction in the i.i.d. case is reduced to the problem
of ordinary randomness extraction.

In this paper we consider the problem of common randomness extraction from
distributed SV sources defined as follows. In a distributed SV source, the adversary
again has some multifaceted dice, but here, instead of a single number, a pair of
numbers (A,B) is written on each face. As before, the set of values written on the
faces of the dice is the same, but the probabilities of face values may differ in different
dice. In other words, if we index the dice with variable s ∈ S, we have a probability
distribution ps(ab) for each die s ∈ S. In each time step, the adversary, based on the
results of the previous throws, picks a die and throws it. In other words, if Si denotes
the index of the die chosen by the adversary for the ith throw, and (Ai, Bi) is the
result of the ith throw, the following holds: Si is chosen by the adversary based on
the history (S1:i−1, A1:i−1, B1:i−1). Also, random variables (Ai, Bi) are distributed
according to pSi

(ab). Given (Ai, Bi) (the result of the ith throw), Ai is given to the
first party and Bi to the second party. Thus, the two parties will observe random
variables (A1, A2, . . . ) and (B1, B2, . . . ) whose joint distribution depends on the choice
of die by the adversary.

Now the question is whether common randomness can be extracted from such a
family of distributed sources.

Example 1. A concrete example of a distributed SV source is as follows. Let
us start with the original source considered by Santha and Vazirani with two coins.
Assume that the adversary at time step i, chooses coin Si ∈ {1, 2}, where coin 1 is
biased towards heads and coin 2 is biased towards tails, and let the outcome of the
throw of the coin be denoted by random variable Ci.

The first party, Alice, is assumed to observe both the identity of the coin chosen
by the adversary, i.e., Si, and the outcome of the coin, which is Ci. The second
party, Bob, observes the outcome of the coin Ci, but only gets to see the choice of
the adversary with probability 0.99. That is, Bob gets Bi = (Ci, S̃i), where S̃i is the
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4 S. BEIGI, O. ETESAMI, AND A. GOHARI

result of passing Si through a binary erasure channel with erasure probability 0.01.
Here the common part of Ai = (Ci, Si) and Bi = (Ci, S̃i) is Ci.

We will elaborate on the definition of common data for an SV source in subsec-
tions 3.2 and 3.3. Roughly speaking, C is a common part of a given set of dice ps(ab)
if there are functions f and g such that C = f(A) = g(B) when (A,B) ∼ ps(ab) for
any s ∈ S. We note that in the above example Ci is the maximal common part of
(Ai, Bi) that can be computed from any of Ai and Bi individually. We observe that
as in the i.i.d. case, this maximal common part is unique. We then call (C1, C2, . . . )
the common data of the distributed SV source. We also note that (C1, C2, . . . ) itself is
a generalized SV source, and the set of all sequences of random variables (C1, C2, . . .)
derived in this way is a family of generalized SV sources.

Theorem 25 (informal). Let (Ai, Bi) be the outcome of the ith throw in a
distributed SV source. Let Ci be the (unique maximal) common data of Ai and Bi,
common over all different dice. When the family of generalized SV sources (C1, C2, . . .)
is nondegenerate, i.e., each possibility for Ci has positive probability over all different
dice, we can extract a common random bit from the distributed SV source if and only
if it is possible to extract randomness from the generalized SV sources (C1, C2, . . . ).
Note that in the degenerate cases, extracting randomness from (C1, C2, . . . ) is clearly
still sufficient for common randomness extraction.

In the nondegenerate case, similar to the i.i.d. setting, the problem of common ran-
domness extraction from distributed SV sources is reduced to the problem of random-
ness extraction from nonbinary generalized SV sources. Thus, as for nondistributed
SV sources, we have an almost complete answer to the problem in the distributed
case. For instance, in Example 1, our result (Theorem 25) implies that Alice and
Bob cannot benefit from their knowledge of the actions of the adversary, and should
only consider the C sequence. But then from the result of [21], we can conclude that
common random bit extraction is impossible in this example.

1.3. Proof techniques. We briefly explain the techniques used in the proof of
the above results.

To show the possibility of deterministic extraction, we use a nonzero real function
of the die face values that has zero expectation under all distributions induced by the
different dice of the adversary. Then as we throw the dice several times, we consider
the sum of the value of this function applied to the outcome of the dice throws. This
sum forms a martingale. We stop the martingale once its absolute value exceeds
a particular large bound. Since the function used was nonzero, the martingale has
large variance after a few throws, and therefore the martingale will be stopped with
high probability. By the theorem of stopping times, the martingale has zero mean
whenever we stop it. Then, the extracted bit, determined by whether the stopped
martingale is positive or is negative, would be nearly unbiased because

• the two values beyond or below which we stop the martingale are symmetric
around the origin;

• we stop the martingale before the absolute value of the martingale passes the
bound too much: the bound is much larger than the changes in the value of
the martingale at each step.

To show the impossibility of deterministic extraction, we view a deterministic
extractor that extracts one bit from a generalized SV source as labeling the leaves
of a rooted tree with zeros and ones. Each sequence of dice throws corresponds to a
path from the root to one of the leaves, and at each node, the adversary has some
limited control of which branch to take while moving from the root towards the leaves.

D
ow

nl
oa

de
d 

01
/2

2/
17

 to
 1

93
.1

40
.2

16
.7

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 5

We need to show that either the minimum or the maximum of the probability of the
output bit being zero, over all adversary’s strategies, is far from 1/2. Our idea is to
track these maximum and minimum probabilities in a recursive way, i.e., to find these
probabilities for any node of the tree in terms of these values for its children. We then
by induction show that for each node of the tree either the minimum probability or
the maximum probability is far from 1/2.

To be more precise, given a deterministic extractor, let α be the minimum proba-
bility of the output bit being zero (over all strategies of the adversary). Similarly, let
β be the maximum probability of the output bit being zero (over all strategies of the
adversary). Then we show that under certain conditions, there exists a continuous
function g(·) on the interval [0, 1], such that β ≥ g(α) and furthermore g(1/2) > 1/2.
We prove β ≥ g(α) inductively using the tree structure discussed above. This implies
the desired impossibility result, as by the continuity of g(·), both α and β cannot be
close to 1/2. For instance, for the binary SV source with two coins having probability
of heads, respectively, equal to 1/3 and 2/3, Figure 1 shows a curve where (α, β)
always lies on or above it. This curve is clearly isolated from (1/2, 1/2).

We follow similar ideas for proving our impossibility result for common random-
ness extraction from a distributed SV source; again we construct a continuous func-
tion, which somehow captures not only the minimum and maximum of the probability
of the extracted common bit being zero, but also the probability that the two parties
agree on their extracted bits. The construction of this function is more involved in the
distributed case; it has two terms one of which is similar to the function in the nondis-
tributed case, and the other is a quadratic term inspired by the definition of maximal
correlation. Maximal correlation is a measure of correlation which is also used by
Witsenhausen [27] in his impossibility proof of common randomness generation from
i.i.d. sources explained above.

1.4. Related works. As shown by Vazirani and Vazirani [24, 25], randomized
polynomial-time algorithms that use perfect random bits can be simulated using SV
sources. This fact can also be verified using the fact that the min-entropy [7] of SV
sources is linear in the size of the source. Indeed, by the later theory of randomness
extraction (e.g., see [30]), it is possible to efficiently extract polynomially many almost
random bits from such sources with high min-entropy if we are, in addition to the
imperfect source, endowed with a perfectly random seed of logarithmic length. (In
fact, for the special case of SV sources, a seed of constant length is enough [22,
Problem 6.6]). For the application of randomized polynomial-time algorithms, we can
enumerate in polynomial time over all possible seeds.

Enumerating over all seeds may be inefficient for some applications, or does not
work at all, e.g., in interactive proofs and one-shot scenarios such as cryptography.
Therefore, it is natural to ask whether deterministic randomness extraction from
imperfect sources of randomness is possible. For most applications, it is also necessary
to require that the extractor be explicit, i.e., extraction can be done efficiently (in
polynomial time). Previous to this work, explicit deterministic extractors had been
constructed for many different classes of sources, including i.i.d. bits with unknown
bias [26], Markov chains [4], affine sources [6, 13], polynomial sources [11, 10], and
sources consisting of independent blocks [5].

The generalized SV sources considered in this paper are also a generalization of
“block sources” defined by Chor and Goldreich [7], where the source is divided into
several blocks such that each block has min-entropy at least k conditioned on the
value of the previous blocks. Such a block source can be thought as a generalized SV
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6 S. BEIGI, O. ETESAMI, AND A. GOHARI

source where the adversary can generate each block (given previous blocks) using any
“flat” distribution with support 2k. Being a special case of generalized SV sources
(defined here), block sources have another difference as well: Since it is impossible
to extract from a single block source deterministically, the common results regarding
extraction from block sources are about either seeded extractors (see, e.g., [16]) or
extraction from at least two independent block sources (see, e.g., [19]).

As mentioned above, the problem of common randomness extraction from i.i.d.
sources has been studied in the information theory community. Then our work pro-
vides a generalization and an alternative proof of known results in the i.i.d. case. In
particular, we give a new proof of Witsenhausen’s result [27] on the impossibility of
common randomness extraction from certain i.i.d. sources.

We also would like to point out that a generalized SV source as we define, is indeed
an arbitrarily varying source [8, 9] with a causal adversary. These sources are studied
in the information theory literature from the point of view of source coding [3].

1.5. Notation. Random variables are denoted by capital letters, and their val-
ues by lowercase letters (such as s, c, y, y, etc). Deterministic constants or values are
also shown by lowercase letters. Sets are denoted by calligraphic letters, e.g., C, T .
Total variation distance (or the statistical distance) between two distributions p(x)
and q(x) is equal to 1

2

∑
x |p(x)− q(x)|.

When discussing a generalized SV source, we use C as the alphabet of the source.
The sequence of realizations is denoted by (c1, c2, . . . , cn). When viewed as random
variables, we use capital letters (C1, C2, . . . , Cn). For simplicity of notation a sequence
(C1, . . . , Cn) of (not necessarily i.i.d.) random variables is denoted by Cn. Similarly
for c1, . . . , cn ∈ C we use cn = (c1, . . . , cn). We also use the notation c[k:k+`] =
(ck, ck+1, . . . , ck+`).

We sometimes have several distributions over the same set C which are indexed
by elements s ∈ S; these are denoted by ps(c). In this case to avoid confusion, the
expected value and variance are specified by a subscript s, as E(s)[·] and Var(s)[·],
respectively.

In the section on SV sources, we consider functions X : C → R. When a dis-
tribution is imposed on C, such a function can be thought of as a random variable
X = X(C). Just like random variables, capital letters are used for functions. We
sometimes, for simplicity, use the notation X(c) = xc. Consistent with the no-
tation set above, when the distribution on C is ps(c), we use E(s)[X] to denote∑
c ps(c)X(c) =

∑
c ps(c)xc. The variance Var(s)[X] is defined similarly.

We use expressions like E∗[X] and Var∗[·] to denote expected value and variance
when the underlying distribution is assumed to be uniform, e.g., for a function X :
C 7→ R, we define E∗[X] = 1

|C|
∑
cX(c). Similarly, we define

‖X‖2∗ =
1

|C|
∑
c

X(c)2.

For two functions X,X ′ : C 7→ R, we define

〈X,X ′〉∗ =
1

|C|
∑
c

X(c)X ′(c).

We use 1C to denote the unity function C → R, that is, 1C(c) = 1 for all c ∈ C.
In the section on distributed SV sources, we use A and B for alphabets, and

random variables A and B for the random realization of the distributed sources. We

D
ow

nl
oa

de
d 

01
/2

2/
17

 to
 1

93
.1

40
.2

16
.7

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 7

sometimes have several distributions over the same set A × B which are indexed by
elements s ∈ S; these are denoted by ps(ab). In the section on distributed SV sources,
random variable C generally serves as the common part of A and B in the sense that
will be defined later.

2. Randomness extraction from generalized SV sources.

Definition 2 (generalized SV source). Let C be a finite alphabet set. Consider
a finite set of distributions over C indexed by a set S. That is, assume that for any
s ∈ S we have a distribution over C determined by numbers ps(c) for all c ∈ C. A
sequence (C1, C2, . . .) of random variables, each over alphabet set C, is said to be a
generalized SV source with respect to distributions ps(c), if the sequence is generated
as follows: Assume that C1, . . . , Ci−1 are already generated. In order to determine
Ci, an adversary chooses si ∈ S, depending only1 on c1, . . . , ci−1. Then Ci is sampled
from the distribution psi(c).

We can think of specifying s as choosing a particular multifaceted die, and c as
the facet that results from throwing the die. The joint probability distribution of
random variables C1, . . . , Cn and S1, . . . , Sn in a generalized SV source factorizes as
follows:

p(c1,c2, · · · , cn, s1, s2, · · · , sn)

= q(s1)ps1(c1)q(s2|c1)ps2(c2) · · · q(sn|c1 · · · cn−1)psn(cn),

where q(si|c1 · · · ci−1) describes the action of the adversary at time i. Here, first the
adversary chooses s1 with probability q(s1), and then c1 is generated with probabil-
ity ps1(c1). Then the adversary chooses s2 with probability q(s2|c1) and then c2 is
generated with probability ps2(c2), and so on.

Generalized SV sources can be alternatively characterized as follows: (C1, C2, . . . )
belongs to the family of generalized SV sources determined by ps(c)’s if for every
given i and C1 = c1, . . . , Ci−1 = ci−1, the conditional distribution of Ci is a convex
combination of the set of |S| distributions {ps(·) : s ∈ S}.

We emphasize that even after fixing distributions ps(c), the generalized SV source
(similar to ordinary SV sources) is not a fixed source, but rather a class of sources.
This is because in each step si is chosen arbitrarily by the adversary as a (proba-
bilistic) function of C1, . . . , Ci−1. Nevertheless, once we fix adversary’s strategy, the
generalized SV source is fixed in that class of sources.

Definition 3 (deterministic extraction). We say that deterministic randomness
extraction from the generalized SV source determined by distributions ps(c) is possible
if for every ε > 0 there exist n and Γn : Cn → {0, 1} such that for every strategy
of the adversary, the distribution of Γn(Cn) is ε-close, in total variation distance, to
the uniform distribution. That is, independent of adversary’s strategy, Γn(Cn) is an
almost uniform bit.

In the following we present a necessary condition and separately a sufficient con-
dition for the existence of deterministic extractors for generalized SV sources. In the

1We can allow for the adversary to choose si depending both on c1, . . . , ci−1 and on s1, . . . , si−1,
but this relaxation is not important, since it is only the marginal distribution p(c1, c2, · · · , cn) that
matters to us. In other words, when extraction is not possible, the adversary only needs to remember
c1, . . . , ci−1 to choose si (does not need to remember s1, . . . , si−1). And when extraction is possible,
it is so even if adversary gets both of c1, . . . , ci−1 and s1, . . . , si−1.
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8 S. BEIGI, O. ETESAMI, AND A. GOHARI

nondegenerate case, i.e., when ps(c) > 0 for all s, c, these two conditions complement
each other. Thus we fully characterize the possibility of deterministic randomness
extraction from generalized SV sources in the nondegenerate case.

2.1. A sufficient condition for the existence of randomness extractors.
In this subsection we prove the following theorem.

Theorem 4. Consider a generalized SV source with alphabet C, set of dice S,
and probability distributions ps(c). Suppose that there exists ψ : C → R such that for
every s ∈ S we have E(s)[ψ(C)] = 0 and Var(s)[ψ(C)] > 0, where E(s) and Var(s)

are expectation and variance with respect to the distribution ps(·), i.e., E(s)[ψ(C)] =∑
c ps(c)ψ(c). Then randomness can be extracted from this SV source.

Observe that if ps(c) > 0 for all s, c, then this theorem can equivalently be
stated as follows: Thinking of each distribution ps(·) as a point in the probability
simplex, if the convex hull of the set of points {ps(·) : s ∈ S} in the probability
simplex does not have full dimension, then deterministic randomness extraction is
possible. For instance, if |S| < |C| this condition is always satisfied and then we can
deterministically extract randomness.

Before providing the proof, it is useful to review some definitions and results from
martingale theory. A sequence (Z0, Z1, . . . ) of random variables is a martingale with
respect to another sequence (X0, X1, . . . ) if E(|Zn|) <∞ and E(Zn+1 | X1, . . . , Xn) =
Zn for all n. It is called a submartingale if we replace the second condition by
E(Zn+1 | X1, . . . , Xn) ≥ Zn. A stopping time for a sequence Z0, Z1, . . . is a random
variable τ taking values in {0, 1, 2, . . .} such that the occurrence or nonoccurrence of
the event τ = t is determined by Z0, Z1, . . . , Zt. The optional stopping theorem for
submartingales states that under certain conditions (such as the stopping time always
being bounded by some constant c), we have that E(Zτ ) ≥ E(Z0).

Proof of Theorem 4. Pick a sufficiently large (but constant) number m. Define
random variablesX1, . . . , Xn and Y0, . . . , Yn inductively as follows: Let Y0 = 0, and for
i = 1, . . . , n, define Yi = Yi−1 +Xi, where Xi = ψ(Ci) and Ci is the ith element of the
SV source sequence. Observe that by our assumption we have E[Xi|X1, . . . , Xi−1] = 0,
so Y0, . . . , Yn forms a martingale.

Let τ be the first time t ∈ {0, 1, 2, . . . , n} such that |Yt| ≥ m; if no such t exists,
define τ = n. Clearly, τ is a stopping time for the martingale. Now define the
extracted bit to be 1 if Yτ ≥ m; otherwise define it to be 0. We show that this is a
true random bit extractor.

Let v = mins Var(s)[ψ] > 0. Define Zi = Y 2
i − iv. We claim that Zi is a

submartingale with respect to X1, . . . , Xn. To show this we compute

E[Zi|X1, . . . , Xi−1] = E
[
(Xi + Yi−1)2 − iv

∣∣X1, . . . , Xi−1

]
= E

[
(Y 2
i−1 − (i− 1)v) + (X2

i − v) + 2XiYi−1

∣∣X1, . . . , Xi−1

]
≥ Zi−1.

Here we used Zi−1 = Y 2
i−1 − (i− 1)v, and

E[XiYi−1|X1, . . . , Xi−1] = Yi−1E[Xi|X1, . . . , Xi−1] = 0,

and that by the law of total variance

E[X2
i |X1, . . . , Xi−1] = Var[ψ(Ci)|X1, . . . , Xi−1] ≥ Var[ψ(Ci)|X1, . . . , Xi−1, Si] ≥ v.
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 9

Therefore by the optional stopping theorem for submartingales, we have

E[Zτ ] ≥ E[Z0] = 0

or, equivalently,
E[Y 2

τ ] ≥ vE[τ ].

Let m′ = maxc |ψ(c)|. Then, by the definition of τ we have |Yτ | ≤ m′ + m.
Therefore,

E[τ ] ≤ E[Y 2
τ ]

v
≤ (m′ +m)2

v
.

Hence by the Markov inequality we have

Pr[τ = n] ≤ (m′ +m)2

vn
= O

(
1

n

)
.

This means that

Pr
[
Yτ ∈ [m,m′ +m) ∪ (−m−m′,−m]

]
= 1−O

(
1

n

)
.

On the other hand, for the martingale Y0, Y1, . . . , we have E[Yτ ] = E[Y0] = 0. Together
with |Yτ | ≤ m+m′, this implies

m

2m+m′
−O

(
1

n

)
≤ Pr[Yτ ∈ [m,m+m′)] ≤ m+m′

2m+m′
+O

(
1

n

)
.

Therefore, the extracted bit has sufficiently small bias as m,n are chosen sufficiently
large. This is because m′ = maxc |ψ(c)| is a constant, independent of m and n.

Remark 5. Note that we could have chosen m = Θ(n1/3) in the above proof.
Then the analysis would have shown that the bias is polynomially small, namely, a
bias of Θ(n−1/3). (Notice that in the above asymptotic notation, the constants in the
big Θ may depend on the family of generalized SV sources.)

Remark 6. Note that the extractor constructed in the above proof is explicit, i.e.,
the extractor function can be computed deterministically and in polynomial time (in
terms of the length of the input n, and in terms of the size of the description of the
set of dice), and is not based on the so-called probabilistic method. Indeed, given the
set of dice S, one can easily compute ψ, v, and m′.

By Remark 5, the running time of the extractor is also polynomial in the er-
ror/bias.

Corollary 7. Given ` and ε, we can extract ` bits of randomness from any SV
source of length O(`ε−3) satisfying the properties of Theorem 4 such that each bit has
bias ≤ ε given the previous bits. (The constant in the big-Oh notation depends on the
set of dice.) In other words, the extracted bits themselves are a binary SV source with
bias ε and length `. In particular, the extracted bits have statistical distance at most
`ε from the uniform distribution on `-bit strings.

Proof. We partition the SV source sequence into ` blocks, each of length Θ(ε−3).
By Remark 5, one can, from each block, extract one bit of randomness that has bias
at most ε given the past blocks and, hence, given the past produced bits.

The statistical distance of an SV source of length ` and bias ε from the uniform
distribution is at most `ε: We can couple the SV source with the uniform distribu-
tion such that for each bit of SV source it is equal to the uniform distribution with
probability ≥ 1− ε.
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10 S. BEIGI, O. ETESAMI, AND A. GOHARI

Remark 8. Assume the adversary has an infinite number of dice. Then, the
extractor of Theorem 4 remains valid as long as Var(s)[ψ(C)] ≥ ε > 0 for some ε
independent of s. On the other hand, if there is a finite subset of the dice using which
the adversary can defeat any extractor (as is shown in the next subsection under
certain conditions), then clearly there is no extractor for an adversary using the full
infinite set of dice.

2.2. A necessary condition for the existence of randomness extractors.
The main result of this subsection is the following theorem.

Theorem 9. Consider a generalized SV source with alphabet C, set of dice S,
and probabilities ps(c). Suppose that there is no nonzero function ψ : C → R such
that for all s ∈ S we have E(s)[ψ(C)] = 0. Then deterministic randomness extraction
from this generalized SV source is impossible.

Again, let us consider the case where ps(c) > 0 for all s, c. In this case ψ being
nonzero is equivalent to Var(s)[ψ] > 0 for all s. Then comparing to Theorem 4 we
find that the necessary and sufficient condition for the possibility of deterministic
extraction is the existence of a nonzero ψ with E(s)[ψ] = 0.

In Appendix B we give a proof of this theorem based on ideas in [20]. Here we
present another proof whose ideas will be used in the distributed case too.

Proof of Theorem 9. Any deterministic randomness extraction algorithm corre-
sponds to a subset I ⊆ Cn such that the extracted bit is 0 if the observed cn is in I,
and is 1 otherwise. For any n, and any such I ⊆ Cn, let α(I) and β(I), respectively,
be the minimum and maximum of the probability of output 0 over all strategies of
the adversary, i.e.,

α(I) := min Pr[Cn ∈ I], β(I) := max Pr[Cn ∈ I],

where minimum and maximum are taken over adversary’s strategies. Observe that
we define α(I) and β(I) for any arbitrary n and any subset I ⊆ Cn.

Fix a deterministic algorithm for randomness extraction. To prove the theorem
we show that for every n and every I ⊆ Cn, either α(I) or β(I) is far from 1/2. We
now use the following lemma whose proof comes after the proof of Theorem 9.

Lemma 10. Suppose that g : [0, 1]→ R is a function that satisfies the following:
• g is continuous and monotonically nondecreasing;
• we have

g(0) = 0, g(1) = 1, g(1/2) > 1/2;(1)

• and for all X : C → [0, 1] we have

max
s

E(s)[g(X)] ≥ min
s′

g
(
E(s′)[X]

)
or, equivalently,

max
s,s′

E(s)[g(X)]− g
(
E(s′)[X]

)
≥ 0,(2)

where E(s)[g(X)] =
∑
c ps(c)g(X(c)) and E(s′)[X] =

∑
c ps′(c)X(c).

Then for any n and any set I ⊆ Cn, we have that β(I) ≥ g(α(I)).

If such a function g with the above properties exists, then α(I) and β(I) cannot
both be arbitrarily close to 1/2. To verify this, note that β(I) ≥ g(α(I)). If for every
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 11

ε > 0, one can find n and a set I ⊂ Cn such that α(I), β(I) are within ε distance
of 1/2, then by the continuity of g and letting ε converge to zero, we obtain that
1/2 ≥ g(1/2). This is a contradiction since g(1/2) > 1/2. As a result, we only need
to prove the existence of the function g.

Let f : [0, 1]→ R be a smooth function such that f(1/2) > 0 and f(0) = f(1) = 0.
We show that the function gε defined by

gε(x) := x+ εf(x)(3)

for sufficiently small ε > 0, satisfies the desired properties. Verification of (1) is easy.
For the monotonicity of gε, note that since f is smooth and defined on the closed
interval [0, 1], there is a uniform upper bound on the derivative of f as follows:

|f ′(x)| ≤ m ∀x ∈ [0, 1].

Then for ε < 1/m, the function gε is monotone. It remains to show (2).
Define

T :=
{
T : C → [0, 1] : ‖T‖∗ = 1, E∗[T ] = 0

}
,

where ‖T‖∗ and E∗[T ] are computed with respect to the uniform distribution on C,
i.e.,

‖T‖2∗ =
∑
c

1

|C|T (c)2

and

E∗[T ] =
∑
c

1

|C|T (c).

For every T ∈ T we have

max
s,s′

E(s)[T ]− E(s′)[T ] > 0,

because otherwise maxs,s′ E(s)[T ]−E(s′)[T ] = 0 implies that E(s)[T ] = E(s′)[T ] for all
s, s′, and ψ(c) = T (c)−E(s)[T ] will be a nonconstant function satisfying E(s′)[ψ(C)] =
0 for all s′, which is in contradiction with our assumption in the statement of the
theorem. Therefore, using the compactness of T , there is ∆ > 0 such that

max
s,s′

E(s)[T ]− E(s′)[T ] > ∆ ∀T ∈ T .(4)

Let X : C → [0, 1] be an arbitrary function. Then, letting x̄ = E∗[X(C)] and
r =

√
Var∗[X(C)] ≥ 0 we get that

X = x̄1C + rT = x̄+ rT

for some T ∈ T . Here, if r = 0, T ∈ T can be chosen arbitrarily, and otherwise we let
T = (X − x̄)/r. Observe that in the latter case E∗[T ] = 0 and ‖T‖2∗ = Var∗[T ] = 1,
so T ∈ T .
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12 S. BEIGI, O. ETESAMI, AND A. GOHARI

From gε(x) = x+ εf(x) we have

max
s,s′

E(s)[gε(X)]− gε
(
E(s′)[X]

)
= max

s,s′
E(s)[X + εf(X)]− E(s′)[X]− εf(E(s′)[X])

= max
s,s′

(
E(s)[X]− E(s′)[X]

)
+ ε
(
E(s)[f(X)]− f(E(s′)[X])

)
= max

s,s′

(
x̄+ rE(s)[T ]− x̄− rE(s′)[T ]

)
+ ε
(
E(s)[f(x̄+ rT )]− f(E(s′)[x̄+ rT ])

)
= max

s,s′
r
(
E(s)[T ]− E(s′)[T ]

)
+ ε
(
E(s)[f(x̄+ rT )]− f

(
x̄+ rE(s′)[T ]

))
.

Since f is a smooth function, for every 0 ≤ x, y ≤ 1 there is some z (between x
and y) such that f(y) = f(x) + (y − x)f ′(z). Remember that since we assumed that
f is a smooth function defined on the closed interval [0, 1], the absolute value of its
derivative can be uniformly bounded from above by a constant m. We then obtain,

f(x̄)−m|y − x̄| ≤ f(y) ≤ f(x̄) +m|y − x̄|.

Therefore, using the fact that |T (c)| ≤
√
|C| ≤ |C| (implied by ‖T‖∗ = 1), we have

E(s)[f(x̄+ rT )] ≥ f(x̄)−mrE(s)[|T |] ≥ f(x̄)−mr|C|,(
x̄+ rE(s′)[T ]

)
≤ f(x̄) + rm|E(s′)[T ]| ≤ f(x̄) +mr|C|.

Therefore,

max
s,s′

E(s)[gε(X)]− gε
(
E(s′)[X]

)
= max

s,s′
r
(
E(s)[T ]− E(s′)[T ]

)
+ ε
(
E(s)[f(x̄+ rT )]− f

(
x̄+ rE(s′)[T ]

))
≥ max

s,s′
r
(
E(s)[T ]− E(s′)[T ]

)
+ ε
(
f(x̄)−mr|C| − f(x̄)−mr|C|

))
= max

s,s′
r
(
E(s)[T ]− E(s′)[T ]

)
− 2εmr|C|

≥ r(∆− 2εm|C|),(5)

where in (5), we used (4). Observe that the expression in (5) is strictly positive if
ε < ∆/(2m|C|). Then the function gε for

ε < min{1/m,∆/(2m|C|)},

has all the desired properties.

In the above proof we show that for any deterministic strategy for randomness
extraction (specified by a subset I ⊆ Cn) either α(I) or β(I) which, respectively, are
the minimum and maximum probability of output 0 over adversary’s strategies, is
away from 1/2. In the original binary SV sources, the set of such pairs (α(I), β(I))
can be characterized exactly. For details we refer the reader to Appendix A. Also see
Figure 1 for an example.

Proof of Lemma 10. The numbers α(I), β(I) can be computed recursively as fol-
lows. For every c ∈ C, let Ic := {c[2:n] : (c, c[2:n]) ∈ I}. Note that Ic is a subset of
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Fig. 1. Given any deterministic extractor, the pair (α, β) is on or above the curve specified in
this figure, where α and β are the minimum and maximum value of the probability of the output being
zero that the adversary can achieve by choosing its strategy. The plot is for the binary SV source with
two coins with probability of heads respectively equal to 1/3 and 2/3. The point (1/2, 1/2), specified
by a star, is below the curve, so randomness extraction from this binary SV source is impossible. It
can be shown that the curve has fractal-like self-similarity: It can be split at point (1/3, 2/3) into two
curves each of which is a normalized version of the whole curve. In other words, if f : [0, 1]→ [0, 1]
is the equation for the curve, f(x) = 2

3
f(3x) for x ∈ [0, 1/3] and f(x) = 2/3 + 1

3
f( 3

2
(x − 1/3)) for

x ∈ [1/3, 2/3]. We relegate the reason why the curve has this property to Corollary 35 in Appendix A.

Cn−1 for which α(Ic) is defined. (Remember that α is defined for sequences of any
length). We claim that

α(I) = min
s

∑
c

ps(c)α(Ic).(6)

To verify this, suppose that the adversary in the first step chooses s1 = s. Then
C1 = c occurs with probability ps(c). Assuming C1 = c, the final extracted bit is
equal to 0 if (C2, . . . , Cn) ∈ Ic. Since, by definition, the minimum of the probability
of this latter event is α(Ic), the (unconditional) probability of the extracted bit being
0 is equal to

∑
c ps(c)α(Ic). Taking the minimum of this expression over all s1 = s

gives α(I). To simplify the notation, we can rewrite (6) by defining a random variable
C on alphabet C with pmf ps(c) as follows:

α(I) = min
s

E(s)[α(IC)],

where E(s) is the expected value with respect to ps(c). We similarly have

β(I) = max
s

E(s)[β(IC)].

By the above discussion to compute α(I) and β(I) for I ⊆ Cn it suffices to
compute these numbers for subsets of Cn−1. Thus the functions α(·) and β(·) can be
computed recursively. The above recursive procedure can be understood as assigning
two values to each node of the tree associated with the extractor, as described in the
“proof techniques” subsection of the introduction.
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14 S. BEIGI, O. ETESAMI, AND A. GOHARI

Let Φn be the set of pairs (α(I), β(I)) for all subsets I ⊆ Cn. In other words, for
n ≥ 1 define

Φn :=
{

(α(I), β(I)) : I ⊆ Cn
}
.

Also let

Φ0 = {(0, 0), (1, 1)}.
Observe that Φ0 corresponds to the case when there is no SV source to look at, and
the deterministic extractor outputs a constant bit. Now by the above discussion,
Φn is indeed the set of pairs (x, y) for which there exist X,Y : C → R such that
(X(c), Y (c)) ∈ Φn−1 for every c ∈ C, and that

x = min
s

E(s)[X] = min
s

∑
c

p(c|s)X(c),

y = max
s

E(s)[Y ] = max
s

∑
c

p(c|s)Y (c).(7)

A full characterization of the set Φn for the original binary SV source is given in
Appendix A.

To complete the proof of the lemma, it suffices to show that for all (x, y) ∈ Φn
we have y ≥ g(x). The latter statement can be proved by induction on n. The base
of induction, n = 0, follows from g(0) = 0 and g(1) = 1. Assume that (x, y) ∈ Φn is
obtained from (7) for (X(c), Y (c)) ∈ Φn−1 for c ∈ C. By the induction hypothesis we
have Y (c) ≥ g(X(c)) for all c. In other words, Y ≥ g(X), and then

g(x) = g
(

min
s

E(s)[X]
)

= min
s
g
(
E(s)[X]

)
≤ max

s
E(s)[g(X)]

≤ max
s

E(s)[Y ]

= y.

Here in the second line we use the monotonicity of g, and in the fourth line we use
the induction hypothesis.

Corollary 11. Consider a generalized SV source with alphabet C, set of dice
S, and probabilities ps(c). Let S ′ be a subset of S and let C′ be the set of all c for
which there exists some s ∈ S ′ such that ps(c) > 0. Suppose that there is no nonzero
function ψ : C → R such that (i) ψ is zero on C − C′, and (ii) for all s ∈ S ′ we have
E(s)[ψ(C)] = 0. Then deterministic randomness extraction from this generalized SV
source is impossible.

Proof. We show that the adversary can defeat the extractor even when it is re-
stricted to the smaller set of dice S ′. When restricted to the set of dice S ′, the faces
labeled by C −C′ show up with probability 0. So, we can pretend as if these faces did
not exist. Now the condition that no such function ψ exists is exactly the condition
in Theorem 9 for the set of dice S ′ having faces labeled from C − C′.

3. Distributed SV sources. Distributed SV sources can be defined similarly
to generalized SV sources except that, in this case, the outcome in each time step is
a pair that is distributed between two parties.
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 15

Definition 12. Fix finite sets A,B, S. Let ps(ab) be a probability distribution
over A×B for any s ∈ S. A distributed SV source with respect to distributions ps(ab)
is defined as follows. The adversary in each time step i, depending on the previous
outcomes (a1, b1), . . . , (ai−1, bi−1) chooses some si. Then (Ai, Bi) is sampled from
the distribution psi(aibi). The sequence of random variables (A1, B1), (A2, B2), . . . , is
called a distributed SV source.

Here we assume that the outcomes of this SV source are distributed between two
parties, say Alice and Bob. That is, in each time step i, Ai is revealed to Alice and
Bi is revealed to Bob. So Alice receives the sequence (A1, A2, . . . ), and Bob receive
the sequence (B1, B2, . . . ).

In this section we are interested in whether two parties can generate a common
random bit from distributed SV sources. To be more precise, let us first define the
problem more formally.

Definition 13. We say that common randomness can be extracted from the fam-
ily of distributed SV sources determined by {ps(ab) : s ∈ S} if for every ε > 0 there
is n and functions Γn : An → {0, 1} and Λn : Bn → {0, 1} such that for every
(A1, B1), (A2, B2), . . . determined by a strategy of adversary as above, the distribu-
tions of K1 = Γn(An) and K2 = Λn(Bn) are ε-close (in total variation distance) to
the uniform distribution, and that Pr[K1 6= K2] < ε.

In the above definition we considered only deterministic protocols for extracting
a common random bit. We could also consider probabilistic protocols where Γn and
Λn are random functions depending on the private randomnesses of Alice and Bob,
respectively. More precisely, we could take K1 = Γn(An, R1) and K2 = Λn(Bn, R2)
with the above conditions on K1,K2, where R1 and R2 are the private randomnesses
of Alice and Bob, respectively, which are independent of the SV source and of each
other. Nevertheless, if a common random bit can be extracted with probabilistic
protocols, then common randomness extraction with deterministic protocols is also
possible.

Lemma 14. In the problem of common random bit extraction, with no loss of
generality, we may assume that the parties do not have private randomness.

Proof. Given a distributed SV source (An, Bn), assume that Alice and Bob pro-
duce binary random variables K1 = Γn(An, R1) and K2 = Λn(Bn, R2), where R1 and
R2 are the private randomnesses of Alice and Bob respectively, which are independent
of the SV source and of each other. The bits K1 and K2 are ε-close to the uniform
distribution over {0, 1} and that Pr[K1 6= K2] < ε. Define

K ′1 = Γ′n(An) = argmaxk Pr[K1 = k|An]

and
K ′2 = Λ′n(Bn) = argmaxk Pr[K2 = k|Bn].

Then K ′1 and K ′2 are (deterministic) functions of An and Bn, respectively. We claim
that

Pr[K ′1 6= K ′2] ≤ 3ε

and ∣∣∣∣Pr[K ′1 = 0]− 1

2

∣∣∣∣ , ∣∣∣∣Pr[K ′2 = 0]− 1

2

∣∣∣∣ ≤ 2ε.

Proving these inequalities would complete the proof.
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16 S. BEIGI, O. ETESAMI, AND A. GOHARI

Observe that for every An = an we have

Pr[K ′1 6= K1|An = an] = min{Pr[K1 = 0|an],Pr[K1 = 1|an]}.

On the other hand,

Pr[K2 6= K1|an] = Pr[K2 = 1|an] Pr[K1 = 0|an] + Pr[K2 = 0|an] Pr[K1 = 1|an]

≥ min{Pr[K1 = 0|an],Pr[K1 = 1|an]}
= Pr[K ′1 6= K1|An = an].

As a result, we have
Pr[K ′1 6= K1] ≤ Pr[K2 6= K1] ≤ ε,

which gives ∣∣∣∣Pr[K ′1 = 0]− 1

2

∣∣∣∣ ≤ 2ε.

This inequality for K ′2 is proved similarly.
Next we have

Pr[K ′1 6= K ′2] ≤ Pr[K ′1 6= K1] + Pr[K1 6= K2] + Pr[K2 6= K ′2]

≤ ε+ ε+ ε.

3.1. Maximal correlation. Let us first consider the problem of common ran-
domness extraction in a simpler case where there is no adversary (in the i.i.d. case).
That is, let us assume that we have only one distribution p(ab), and Alice and Bob
in each time i receive samples Ai and Bi from this distribution. The question of the
possibility of common randomness extraction can be raised in this case too. Wit-
senhausen [27] used a measure of correlation called maximal correlation to prove a
necessary and sufficient condition for the possibility of common randomness extraction
from i.i.d. sources.

Definition 15 (maximal correlation). The maximal correlation of random vari-
ables A and B with joint distribution p(ab) defined on A and B, respectively, is denoted
by ρ(A;B) and defined as follows:

ρ(A;B) := max E[XY ],(8)

subject to: E[X] = E[Y ] = 0,

E[X2] = E[Y 2] = 1,

where the maximum is taken over all functions X : A → R, Y : B → R. Here the
expected values are with respect to p(ab), e.g., E[XY ] =

∑
a,b p(ab)X(a)Y (b).

Maximal correlation has the intriguing property that if (An, Bn) is n i.i.d. copies
of (A,B), then ρ(An;Bn) = ρ(A;B). Moreover, maximal correlation does not increase
under local stochastic maps [27].

From the definition and using the Cauchy–Schwarz inequality it is not hard to
verify that 0 ≤ ρ(A;B) ≤ 1. Further, ρ(A;B) = 0 if and only if A,B are independent.
To characterize the other extreme case ρ(A;B) = 1 we need the notion of common
data.

Definition 16. We say that A,B have common data if there are nonconstant
functions Γ(A) and Λ(B) with arbitrary but the same images, such that Γ(A) = Λ(B)
with probability one.
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 17

Thus A and B have common data if Alice and Bob, having access to A and B,
respectively, can compute the same nonconstant data (i.e., Γ(A) = Λ(B)) without
communication. We have ρ(A;B) = 1 if and only if A,B have common data.

Theorem 17 (see [27]). A common random bit can be extracted from i.i.d. copies
of A,B if and only if ρ(A;B) = 1.

Here, we give an alternative proof of this theorem whose ideas will be used later.
This proof of Witsenhausen’s theorem can also be of independent interest.

To motivate our proof technique, and to elaborate on the difficulty we should
overcome, assume that A and B have no common part (ρ(A;B) < 1), but Alice and
Bob can extract common randomness by applying functions Γ and Λ on their obser-
vations, i.e., Γ(An) and Λ(Bn) are almost uniform, and Γ(An) = Λ(Bn) with high
probability. Since Γ(An) = Λ(Bn) with high probability, there is some (a1, . . . , an−1)
and (b1, . . . , bn−1) such that conditioned on An−1 = an−1 and Bn−1 = bn−1 we still
have Γ(An) = Λ(Bn) with high probability. Now we observe that after conditioning
on An−1 = an−1 and Bn−1 = bn−1, the functions Γ(An) and Λ(Bn) depend only on
An and Bn. So we have found functions of A and B, respectively, that are equal with
high probability. This may seem to be a contradiction with our assumption that A,B
do not have common data. However, the random variables Γ(An) or Λ(Bn) may no
longer be uniform when we condition on An−1 = an−1 and Bn−1 = bn−1. In fact,
Γ(An) or Λ(Bn) may even become constant after conditioning.

To overcome the difficulty discussed above, we consider three conditional proba-
bilities after conditioning on An−1 = an−1 and Bn−1 = bn−1. That is, we keep track
of the conditional probability of Γ(An) = Λ(Bn), as well as the marginal distributions
of Γ(An) and Λ(Bn); our proof works by simultaneously keeping track of the values
of these three conditional probabilities.

Proof. If ρ(A;B) = 1, then A,B have common data as defined above, and a
common random bit can be extracted from that common data by standard randomness
extractors for i.i.d. sources.

For the other direction, suppose that ρ(A;B) = ρ < 1, and that we can extract
one bit of common randomness from A,B. By Lemma 14 we may assume that Alice
and Bob’s strategies for extracting common randomness are deterministic. That is, we
may assume that there are subsets I ⊆ An and J ⊆ Bn such that Alice’s extracted
bit is K1 = 0 if An ∈ I and Bob’s extracted bit K2 = 0 if Bn ∈ J , and that
K1,K2 are equal with high probability, and their distributions are close to the uniform
distribution over {0, 1}.

Let us define

α(I) := Pr[An ∈ I],

β(J ) := Pr[Bn ∈ J ],

γ(I,J ) := Pr[An ∈ I & Bn ∈ J ].

By the assumption about the existence of randomness extractors the three numbers
α(I), β(J ), and γ(I,J ) are all close to 1/2.

For every a ∈ A and b ∈ B define Ia = {a[2:n] : (a, a[2:n]) ∈ I} and Jb :=
{b[2:n] : (b, b[2:n]) ∈ J }. Then as in the proof of Theorem 9 the numbers α(I), β(J ),
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18 S. BEIGI, O. ETESAMI, AND A. GOHARI

and γ(I,J ) can be computed recursively:

α(I) =
∑
a

p(a)α(Ia) = E[α(IA)],

β(J ) =
∑
b

p(b)β(Jb) = E[β(JB)],

γ(I,J ) =
∑
a,b

p(a, b)γ(Ia,Jb) = E[γ(IA,JB)].

For n ≥ 1, let Φn be the set of triples (α(I), β(J ), γ(I,J )) for all I ⊆ An and
J ⊆ Bn. Also let

Φ0 =
{
e0 = (1, 1, 1), e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 0)

}
.(9)

Observe that Φ0 corresponds to deterministic strategies of Alice and Bob that deter-
mine K1,K2 without looking at any random source. If, for instance, Alice always out-
puts K1 = 0 and Bob always outputs K2 = 1, then Pr[K1 = 0] = 1, Pr[K2 = 0] = 0,
and Pr[K1 = K2 = 0] = 0. This gives the triple e1 = (1, 0, 0) in Φ0.

Now since by the above discussions the numbers α(I), β(J ), and γ(I,J ) can
be computed recursively, the sets Φn can be analyzed recursively too. Indeed, Φn
for n ≥ 1 is contained in the set of triples (x, y, z) for which there exist functions
X : A 7→ R, Y : B 7→ R, Z : A × B 7→ R such that for every pair (a, b), the triple
(X(a), Y (b), Z(a, b)) ∈ Φn−1, and that

x = E[X], y = E[Y ], z = E[Z],(10)

where the expected values are with respect to p(ab), e.g., E[X] =
∑
a p(a)X(a),E[Z] =∑

a,b p(ab)Z(a, b).

Let us define the function f : [0, 1]2 → R by

f(x, y, z) := (x+ y)ρ− 2z + 2xy − (x2 + y2)ρ,(11)

where ρ = ρ(A;B) < 1.
We claim that f(α(I), β(J ), γ(I,J )) ≥ 0. Assuming this, we conclude that

α(I), β(J ), and γ(I,J ) cannot all be close to 1/2 because f is continuous and

f(1/2, 1/2, 1/2) = −1− ρ
2

< 0.

To prove our claim it suffices to show that f(x, y, z) ≥ 0 for all (x, y, z) ∈ Φn, which
itself can be proved by induction on n. The base of induction, n = 0, follows from
f(e`) ≥ 0 for 0 ≤ ` ≤ 3, where e` is defined in (9). Now suppose that (x, y, z) ∈ Φn is
obtained from functions X,Y, Z as above that satisfy (10). By the induction hypoth-
esis for every (a, b) we have f(X(a), Y (b), Z(ab)) ≥ 0. Then to prove f(x, y, z) ≥ 0, it
suffices to show that

f(x, y, z) ≥ E[f(X,Y, Z)].

Using (10), we need to show that

f(E[X],E[Y ],E[Z]) ≥ E[f(X,Y, Z)].

Using the definition of the function f(·) in (11), and by expanding both sides and
canceling the linear terms, we need to show that

2E[X]E[Y ]− ρ(E[X]2 + E[Y ]2) ≥ 2E[XY ]− ρ(E[X2] + E[Y 2]).
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 19

Let us define X ′ = X − E[X] and Y ′ = Y − E[Y ]. Then, expressing the above
inequality in terms of X ′, Y ′ we need to show that

2E[X ′Y ′] ≤ ρ(E[X ′2] + E[Y ′2]).

This inequality is a consequence of the definition of ρ = ρ(A;B) because E[X ′] =
E[Y ′] = 0 and then

E[X ′Y ′] ≤ ρ
√
E[X ′2]E[Y ′2] ≤ 1

2
ρ(E[X ′2] + E[Y ′2]).

This completes the proof.

Remark 18. To understand our choice of quadratic function f(x, y, z) in (11),
observe that f(x, y, z) ≥ 0 is equivalent with

ρ ≥ z − xy
1
2 (x− x2) + 1

2 (y − y2)
.

Let us take binary random variables K1 and K2, and let x = p(K1 = 0),
y = p(K2 = 0), and z = p(K1 = 0,K2 = 0). Then,

z − xy
1
2 (x− x2) + 1

2 (y − y2)
=

Cov(K1,K2)
1
2Var(K1) + 1

2Var(K2)

≤ Cov(K1,K2)√
Var(K1)Var(K2)

≤ ρ(K1;K2).

Therefore the inequality

ρ = ρ(A,B) ≥ z − xy
1
2 (x− x2) + 1

2 (y − y2)

is in some sense comparing ρ(A;B) with a lower bound on ρ(K1;K2).

3.2. Common data. In the previous subsection we briefly discussed the notion
of common data and recalled that ρ(A;B) = 1 if and only if common data exist. To
state our result, however, we need a more precise characterization of common data.
(A similar discussion of common data in terms of bipartite graphs can be found in
[28].)

Suppose that A,B have common data, meaning that there are nonconstant func-
tions Γ(A) and Λ(B) such that Γ(A) = Λ(B). Let C be the images of these functions.
For any c ∈ C define Ac = Γ−1(c) and Bc = Λ−1(c). Given the fact that Γ(A) = Λ(B)
always holds, then for every c 6= c′ and (a, b) ∈ Ac × Bc′ we must have p(ab) = 0.

To understand this more precisely consider a bipartite graph G on the vertex set
A ∪ B with an edge between (a, b) if p(ab) 6= 0. Then by the above observation, the
existence of common data implies that the graph G is disconnected (and also at least
two of the connected compoenents are not singletons); if c 6= c′ then there is no edge
between vertices in Ac ∪ Bc and Ac′ ∪ Bc′ .

Conversely, if G is disconnected (and also at least two of the connected compo-
nents are not singletons) then common data exist; letting C be the sets of connected
components, and defining Γ(a),Λ(b) to be the index of the connected component to
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1

2

3

4

1

2

3

4

A B

Fig. 2. The graph associated with the probability distribution given in Example 20. This graph
has two nonsingleton connected components, so A and B have common data.

which a, b belong, we have Γ(A) = Λ(B). As a result, ρ(A;B) = 1 if and only if G is
disconnected (and at least two of the connected components are not singletons).

We summarize the above discussion in the following lemma.

Lemma 19. Let C be the random variable associated with the index of the con-
nected component of G to which (A,B) belong. Then C can be computed as a function
of A or B individually. Moreover, any common data of A,B is a function of C, and
ρ(A;B) = 1 if and only if C is nonconstant (i.e., G has at least two nonsingleton
connected components).

Example 20. Consider the following joint distribution on A× B where A = B =
{1, 2, 3, 4}:

B
1 2 3 4

1 0.1 0 0 0
A 2 0.1 0.2 0 0

3 0 0 0.1 0.1
4 0 0 0.2 0.2

The graph associated with this distribution is given in Figure 2. This graph is dis-
connected. The common data of A,B is a binary random variable, determined by
whether A and B are both in {1, 2} or in {3, 4}.

Let c ∈ C be a connected component of G. Then p(ab|c), the distribution of A,B
conditioned on C = c, does not have common data. This is because the bipartite
graph associated with this conditional distribution is nothing but the cth connected
component of G, which by definition is connected. Denoting the maximal correlation
of this conditional distribution by ρ(A;B|C = c) we find that

ρ(A;B|C = c) < 1.(12)

Definition 21 (conditional maximal correlation [2]). Let p(abc) be a tripartite
distribution. We define

ρ(A;B|C) := max
c: p(c)>0

ρ(A;B|C = c),

where ρ(A;B|C = c) is the maximal correlation of the conditional bipartite distribution
p(ab|c).
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 21

With this definition, for all bipartite distributions p(ab), if we define C to be the
common part of A and B, (12) then implies that

ρ(A;B|C) < 1.(13)

3.3. Common data of a distributed SV source. Given a family of dis-
tributed SV sources specified by distributions ps(ab), our goal is to determine whether
a common random bit can be extracted from this source or not. Suppose that for
some s ∈ S, the maximal correlation of ps(ab), which we denote by ρs(A;B), is less
than 1. Then, by Theorem 17 common randomness extraction is impossible because
the adversary can in all time steps choose Si = s to obtain an i.i.d. source. So we
may assume that ρs(A;B) = 1 for all s.

Let Gs be the bipartite graph associated with the bipartite distribution ps(ab). By
the above observation we let ρs(A;B) = 1 and then Gs has at least two nonsingleton
connected components. We claim that even the graph

⋃
s Gs, obtained by the union of

edges of individual graphs Gs, should also have at least two nonsingleton components.
To see this, assume that the adversary in each time step chooses si ∈ S uniformly at
random and independent of the past. Then we obtain an i.i.d. source with distribution

q(ab) =
1

|S|
∑
s

ps(ab).

Then common randomness can be extracted from this i.i.d. source, only if the bipartite
graph associated with q(ab) is disconnected. It is easy to verify that this bipartite
graph is nothing but

⋃
s Gs. So without loss of generality we may assume that

⋃
s Gs

has at least two nonsingleton connected components.
The following lemma summarizes the above discussion.

Lemma 22. For a family of distributed SV sources determined by distributions
ps(ab), s ∈ S, we let Gs be the bipartite graph associated with ps(ab), and define
Ḡ =

⋃
s Gs. Then a common bit can be extracted from the distributed SV source only

if Ḡ has at least two nonsingleton connected components.

Definition 23. Let Ḡ be the bipartite graph defined in Lemma 22 associated with
the family of distributed SV sources determined by ps(ab) for s ∈ S. Let C be the set
of connected components of Ḡ. Then we define the distributions ps(abc) on A×B×C
as follows: if ps(ab) > 0 and c ∈ C is the connected component containing the edge
{a, b} in Ḡ we let ps(abc) = ps(ab); otherwise we let ps(abc) = 0.

Let Γ : A → C be the function that assigns a ∈ A to the connected component
containing it. Similarly, let Λ : B → C be the function that assigns b ∈ B to the con-
nected component containing b. Then letting (A1, B1), (A2, B2), . . . be a distributed
SV source for a fixed strategy of the adversary, we have Ci = Γ(Ai) = Λ(Bi). In-
deed, (C1, C2, . . . ) itself is a generalized SV source which can be computed by any
of the parties individually. Thus, (C1, C2, . . . ) is a common part of the distributed
SV source. Moreover, by the above discussion, if the adversary always outputs s ∈ S
uniformly at random, Ci is the maximal common part that can be computed by both
the parties given Ai and Bi.

Example 24. Consider the following two joint distributions on A and B. The
graph corresponding to both of these distributions has three connected components.
But if we superimpose these two distributions over each other (by choosing each
with probability half), the graph of the resulting distribution has only two connected
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22 S. BEIGI, O. ETESAMI, AND A. GOHARI

components:

B
1 2 3 4

1 0.1 0 0 0
A 2 0 0.2 0 0

3 0 0 0.1 0.1
4 0 0 0.3 0.2

B
1 2 3 4

1 0.2 0 0 0
A 2 0.1 0.1 0 0

3 0 0 0.3 0
4 0 0 0 0.3

3.4. Common random bit extraction from distributed SV sources. We
now have all the required tools to state and prove our main result about common
randomness extraction from distributed SV sources.

Theorem 25. Consider a distributed SV source (as in Definition 12) with corre-
sponding sets S, A, and B and corresponding distributions ps(ab). Let ps(abc), s ∈ S,
be the distributions given in Definition 23. Suppose that there is no nonzero function
ψ : C → R such that E(s)[ψ(C)] = 0 for all s, where the expectation value is com-
puted with respect to ps(abc). Then common randomness cannot be extracted from
this distributed SV source.

A possible algorithm to extract common random bits is one that would focus on
the common part that can be computed by both Alice and Bob. Indeed, (C1, C2, . . . )
itself can be thought of as a generalized SV source. If deterministic randomness
extraction from this source is possible, then Alice and Bob can obtain a common
random bit by individually applying the randomness extraction protocol. Comparing
with Theorems 4 and 9, and assuming ps(c) > 0 for all s, c, the above theorem states
that a common random bit can be extracted if and only if deterministic randomness
extraction from (C1, C2, . . . ) is possible.

The proof of this theorem is essentially obtained by combining the ideas developed
in the proofs of Theorems 9 and 17. We present the proof in the following section.

4. Proof of Theorem 25. First we show that it suffices to prove Theorem 25
in the following special case.

Lemma 26. If Theorem 25 holds in the special case where distributions ps(ab)
satisfy

ps(a), ps(b) > 0 ∀s, a, b(14)

and

ρ(A;B|CS) := max
s
ρs(A;B|C) < 1,(15)

where ρs(A;B|C) denotes the conditional maximal correlation of A and B given C
with respect to the distribution ps(abc), then the theorem holds in general.

Proof. For any s ∈ S define qs(a, b) as follows:

qs(a, b) :=
2

3
ps(a, b) +

1

3|S|
∑
s′∈S

ps′(a, b).(16)

Observe that qs(·) is in the convex hull of distributions ps′(·) for different values of
s′. Thus in each step, the adversary can enforce that the pair (a, b) generated by
the source has distribution qs(a, b) via a randomized strategy. As a result, it suffices
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 23

to show the impossibility of common randomness extraction from the distributed SV
source with distributions qs(·) instead of ps(·). Now we only need to show that qs(·)
satisfies (14) and (15) as well as the assumption of Theorem 25.

First, by the definitions of qs(·) given in (16) the support of qs(·) does not depend
on s, and, if qs(a) = 0 for some a, implies that ps(a) = 0 for all s. In this case A = a
can never occur regardless of s. Therefore, it can be removed from A. Thus, without
loss of generality, we may assume that for any a ∈ A we have qs(a) > 0. Similarly,
we may assume that for any b ∈ B we have qs(b) > 0.

Second, it is not hard to see that the graph G′s associated with distributions qs(·)
is the same for all s and is equal to the graph Ḡ = ∪sGs associated with the original
distributions ps(·). This, in particular, implies that Ḡ′ = Ḡ and the common part
remains the same. Moreover, for any s, c, we have ρ(A;B|c, s) < 1 for distribution
qs(·) because the connected components of the graph Ḡ are nothing but elements of
C.

We finally verify that there is no nonzero ψ : C → R such that the expected value
of ψ(C) with respect to qs(·) is zero for all s. Suppose such a function ψ exists. Then,
from the definition of qs(·) in (16), we have

2

3
E(s)[ψ] +

1

3|S|
∑
s′

E(s′)[ψ] = 0,(17)

where E(s)[·] denotes expectation with respect to ps(·). Summing the above equations
for all s ∈ S, we find that ∑

s

E(s)[ψ] = 0,

and then using (17) again we obtain

2

3
E(s)[ψ]− 1

3|S|E(s)[ψ] = 0.

This implies that E(s)[ψ] = 0. Therefore by the assumption of Theorem 25 the
function ψ should be zero.

By the above lemma, from now on we assume that the distributions ps(·) satisfy
the extra assumptions (14) and (15).

Suppose that common random bit extraction is possible. By Lemma 14 we may
assume that Alice and Bob’s protocol is deterministic and is described by subsets
I ⊆ An and J ⊆ Bn. That is, Alice’s output is K1 = 0 if an ∈ I and Bob’s output is
K2 = 0 if bn ∈ J .

Let us define

α(I) := max Pr[An ∈ I],

β(J ) := max Pr[Bn ∈ J ],

γ(I,J ) := min Pr[An ∈ I, Bn ∈ J ],

where An denotes the sequence (A1, A2, . . . , An) which is not necessarily i.i.d. due to
the adversarial nature of the SV source; similarly Bn denotes the sequence
(B1, B2, . . . , Bn) of the SV source.

The maximizations and the minimization are computed over all strategies of the
adversary. If common randomness extraction is possible, then there are n and I ⊆ An
and J ⊆ Bn such that all three numbers α(I), β(J ), and γ(I,J ) are close to 1/2.
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24 S. BEIGI, O. ETESAMI, AND A. GOHARI

For n ≥ 1 let Φn be the set of triples (α(I), β(J ), γ(I,J )) for all subsets I ⊆ An
and J ⊆ Bn. We also define

Φ0 =
{
e0 = (1, 1, 1), e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 0)

}
.

As discussed in the proof of Theorem 17 the set Φ0 corresponds to deterministic
strategies where the parties do not look at the source at all. By the above discussion
we need to show that (1/2, 1/2, 1/2) is far from ∪nΦn.

By the same ideas as in the proofs of Theorems 9 and 17 the sets Φn can be
analyzed recursively. For every a, b and I ⊆ An and J ⊆ Bn define

Ia := {a[2:n] : (a, a[2:n]) ∈ I}, Jb := {b[2:n] : (b, b[2:n]) ∈ J }.
Then we have

α(I) = max
s

E(s)[α(IA)],

β(J ) = max
s

E(s)[β(JB)],

γ(I,J ) = min
s

E(s)[γ(IA,JB)],

where, as before,

E(s)[α(IA)] =
∑
a

ps(a)α(Ia)

and
E(s)[γ(IA,JB)] =

∑
a,b

ps(ab)γ(Ia,Jb).

As a result, the sets Φn can be analyzed recursively as follows. Φn is indeed
contained in the set of triples (x, y, z) for which there are functions X : A 7→ R, Y :
B 7→ R, Z : A× B 7→ R such that for every pair (a, b), the triple (xa, yb, zab) ∈ Φn−1,
where xa = X(a), yb = Y (b), and zab = Z(ab) and, furthermore,

x = max
s

E(s)[X], y = max
s

E(s)[Y ], z = min
s

E(s)[Z].(18)

We now prove that Φn for every n is far from (1/2, 1/2, 1/2).

Theorem 27. Let

0 < ε ≤ ∆′(1− ρ)

1 + ∆′

and κ ≥ 24|A||B|/∆ + 2, where ∆ and ∆′ are two positive constants that are specified
later (in Lemmas 29 and 30). Define

f(x, y, z) = κ(x+ y)− 2(κ+ ε)z + 2xy − (1− ε)(x2 + y2).

Then with the assumption of Theorem 25 and (14) and (15), for all functions X :
A 7→ R, Y : B 7→ R, Z : A× B 7→ R, we have

f(x, y, z) ≥ min
s

E(s)[f(X,Y, Z)],

where
x = max

s
E(s)[X], y = max

s
E(s)[Y ], z = min

s
E(s)[Z].

Given this theorem we can finish the proof of Theorem 25. Observe that f(ei) ≥ 0
for 0 ≤ i ≤ 3. Then by the above theorem and a simple induction, for any (x, y, z) ∈ Φn
we have f(x, y, z) ≥ 0. We, however, have f(1/2, 1/2, 1/2) = −ε/2 < 0. Then by the
continuity of f , the point (1/2, 1/2, 1/2) is far from Φn for any n.

The proof of Theorem 27 is the most technical part of this paper; its proof is
given after stating some definitions and lemmas.
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 25

4.1. Some preliminary definitions and lemmas. In this section, we let
E(cs)[·] be the expectation with respect to the conditional probability distribution
ps(ab|c).

A characterization of conditional maximal correlation.

Lemma 28. Assume that ρ(A;B|CS) is strictly less than one for the collection of
distributions ps(ab|c) given in Definition 23. Then,

E(s)[XY ] ≤ ρ(A;B|CS)
√
E(s)[X2]E(s)[Y 2](19)

holds for all s and functions X : A → R, Y : B → R such that

E(cs)[X] = E(cs)[Y ] = 0 ∀c

where we use the notation set up before, e.g., E(cs)[X] =
∑
ab ps(ab|c)X(a).

Proof of Lemma 28. Assume that ρ = ρ(A;B|CS) < 1. Fix a value of s and take
two arbitrary functions X : A → R and Y : B → R such that

E(cs)[X] = E(cs)[Y ] = 0 ∀c.

Here E(cs)[X] =
∑
ab ps(ab|c)xa =

∑
a ps(a|c)xa, where xa = X(a) for any a ∈ A.

Similarly E(cs)[Y ] =
∑
b ps(b|c)yb. Then, from the definition of ρ = ρ(A;B|CS) we

must have

E(cs)[XY ] ≤ ρ
√
E(cs)[X2]E(cs)[Y 2](20)

for all c. Using the joint convexity of f(x, y) =
√
xy we have that

E(s)[XY ] ≤
∑
c

ps(c)ρ
√

E(cs)[X2]E(cs)[Y 2]

≤ ρ

√√√√(∑
c

ps(c)E(cs)[X2]

)(∑
c

ps(c)E(cs)[Y 2]

)

= ρ
√

E(s)[X2]E(s)[Y 2].(21)

On the other hand, (21) implies (20) by choosing X and Y to be zero whenever C
is not equal to some given c. Therefore (19) is a complete characterization of the
conditional maximal correlation.

Definitions of LA, LB, L⊥
A and L⊥

B. Let LA be the linear space of functions
X : A → R such that E(s)[X] is independent of s, i.e.,

LA := {X : A → R : E(s)[X] = E(s′)[X], ∀s, s′}.(22)

Let L⊥A be the orthogonal complement of LA with respect to the inner product
〈·, ·〉∗, which is the inner product with respect to the uniform distribution, i.e.,

L⊥A :=

{
X : A → R : 〈X,X ′〉∗ =

∑
a

1

|A|X(a)X ′(a) = 0, ∀X ′ ∈ LA
}
.

We define LB and L⊥B similarly.
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26 S. BEIGI, O. ETESAMI, AND A. GOHARI

Lemma 29. There is ∆ > 0 such that for all vectors X ∈ L⊥A and Y ∈ L⊥B we
have

max
s,s′

E(s)[X]− E(s′)[X] ≥ ∆‖X‖∗
and

max
s,s′

E(s)[Y ]− E(s′)[Y ] ≥ ∆‖Y ‖∗.

Proof. It suffices to show that

max
s,s′

E(s)[X]− E(s′)[X] > 0

for any X ∈ L⊥A with ‖X‖∗ = 1. The proof then follows from the compactness of the
unit ball in L⊥A. To show the above inequality note that the left-hand side is always
nonnegative, and that it is zero if and only if X ∈ LA. But since 0 6= X ∈ L⊥A, it
cannot be in LA. We are done.

Definitions of L′
A and L′

B. In Theorem 25 we assume that there is no non-
constant ψ : C → R such that E(s)[ψ] is independent of s. To state this property in
terms of our notations, let us define KA be the set of functions U : A → R such that
U is determined by C, i.e.,

KA := {U : A → R : U(a) = U(a′), ∀a, a′ s.t. C(a) = C(a′)}.
With abuse of notation for a function U ∈ KA we may use U(c) since U is indeed a
function of C.

Then the assumption of Theorem 25 equivalently means that LA ∩ KA contains
only constant functions, i.e.,

LA ∩ KA = {r1A : r ∈ R}.
Let us define

L′A := LA ∩ (1A)⊥,(23)

where (1A)⊥ is computed with respect to the inner product 〈·, ·〉∗ (inner product with
respect to the uniform distribution). Then the above condition implies that

L′A ∩ KA = {0}.(24)

We similarly define KB and L′B and have L′B ∩ KB = {0}.
Definitions of K⊥s

A and K⊥s

B . Let K⊥s

A and K⊥s

B be the orthogonal complements
of KA and KB , respectively, with respect to the inner product 〈·, ·〉(s). We define

K⊥s

A = {U ′ : A → R : E(s)[U
′X] = 0, ∀X ∈ KA},

and similarly we define K⊥s

B . Note that 〈·, ·〉(s) is indeed an inner product because of
assumption (14). Then the above orthogonal complement is well-defined. Observe
that

K⊥s

A = {U ′ : A → R : E(cs)[U
′] = 0, ∀c}.

We can write any function X : A → R as X = U + U ′, where U ∈ KA and
U ′ ∈ K⊥s

A . Indeed, let
U = E(C(a)s)[X].

Then we have
E(cs)[U

′] = E(cs)[X − U ] = E(cs)[X]− U(c) = 0.

Therefore, by definition U ′ ∈ K⊥s

A .
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Lemma 30. There is ∆′ > 0 such that for any X ∈ L′A, Y ∈ L′B, and s ∈ S we
have

‖U ′‖(s) ≥ ∆′‖U‖(s), ‖V ′‖(s) ≥ ∆′‖V ‖(s),

where U ∈ KA and U ′ ∈ K⊥s

A are such that X = U + U ′. Functions V ∈ KB and

V ′ ∈ K⊥s

B are defined similarly.

Proof. Without loss of generality, we can restrict to X ∈ L′A, where ‖X‖(s) = 1.
Using (24) we have U ′ 6= 0 for any such X. Thus ‖U‖(s)/‖U ′‖(s) is well-defined and
continuous as a function on the unit sphere of L′A. Therefore, it achieves its maximum.
Let κs <∞ be the maximum of ‖U‖(s)/‖U ′‖(s) and ‖V ‖(s)/‖V ′‖(s) over the unit balls
of L′A and L′B . Then the the choice of ∆′ = mins(1/κs) works.

Now we have all the required tools to prove Theorem 27.

4.2. Proof of Theorem 27. First note that f(x, y, z) is monotonically increas-
ing in its first and second arguments on [0, 1] and monotonically decreasing in its third
argument. For instance, the derivative with respect to y is κ+ 2z − 2(1− ε)x which
is nonnegative for x, z ∈ [0, 1] since κ ≥ 2. Therefore, we have

f(x, y, z) = f

(
max
s1

E(s1)[X],max
s2

E(s2)[Y ],min
s3

E(s3)[Z]

)
= max
s1,s2,s3

f
(
E(s1)[X],E(s2)[Y ],E(s3)[Z]

)
,

where to recall our notation, for instance, E(s1)[X] =
∑
a ps1(a)X(a). To prove the

theorem, we thus need to show that for any arbitrary functions X : A 7→ R, Y : B 7→
R, Z : A× B 7→ R, we have

g(X,Y, Z) := max
s,s1,s2,s3

(
f
(
E(s1)[X],E(s2)[Y ],E(s3)[Z]

)
− E(s)[f(X,Y, Z)]

)
≥ 0.

Let X = X ′ +X ′′, where X ′ ∈ LA and X ′′ ∈ L⊥A. Therefore using (22) we have

E(s)[X
′] = E(s1)[X

′] ∀s, s1.(25)

Similarly let Y = Y ′ + Y ′′ where Y ′ ∈ LB and Y ′′ ∈ L⊥B . Assume without loss of
generality that

‖X ′′‖∗ ≥ ‖Y ′′‖∗.(26)
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We now compute

g(X,Y, Z) ≥ max
s,s1

f
(
E(s1)[X],E(s)[Y ],E(s)[Z]

)
− E(s)[f(X,Y, Z)]

= max
s,s1

(
κ(E(s1)[X] + E(s)[Y ])− 2(κ+ ε)E(s)[Z] + 2E(s1)[X]E(s)[Y ]

− (1− ε)(E(s1)[X]2 + E(s)[Y ]2)

− E(s)

[
κ(X + Y )− 2(κ+ ε)Z + 2XY − (1− ε)(X2 + Y 2)

])
= max

s,s1
κ
(
E(s1)[X]− E(s)[X]

)
+ 2
(
E(s1)[X]E(s)[Y ]− E(s)[XY ]

)
− (1− ε)

(
E(s1)[X]2 − E(s)[X

2] + E(s)[Y ]2 − E(s)[Y
2]
)

= max
s,s1

κ
(
E(s1)[X

′′]− E(s)[X
′′]
)

+ 2
(
E(s1)[X]E(s)[Y ]− E(s)[XY ]

)
− (1− ε)

(
E(s1)[X]2 − E(s)[X

2] + E(s)[Y ]2 − E(s)[Y
2]
)
,(27)

where in (27) we use (25) and the fact that X = X ′ + X ′′. By Lemma 29 there are
s, s1 such that

E(s1)[X
′′]− E(s)[X

′′] ≥ ∆‖X ′′‖∗.(28)

From now on we fix s, s1 to be the ones that achieve the above inequality. By this
choice we obtain a lower bound on the first term of (27):

g(X,Y, Z) ≥ κ∆‖X ′′‖∗ + 2
(
E(s1)[X]E(s)[Y ]− E(s)[XY ]

)
− (1− ε)

(
E(s1)[X]2 − E(s)[X

2] + E(s)[Y ]2 − E(s)[Y
2]
)
.

To bound the second term of (27), we use X = X ′ +X ′′ and Y = Y ′ + Y ′′ to write

E(s1)[X]E(s)[Y ] = E(s1)[X
′]E(s)[Y

′] + E(s1)[X
′]E(s)[Y

′′]

+ E(s1)[X
′′]E(s)[Y

′] + E(s1)[X
′′]E(s)[Y

′′]

≥ E(s1)[X
′]E(s)[Y

′]− x′maxy
′′
max − x′′maxy

′
max − x′′maxy

′′
max,(29)

where x′max = maxa |X ′(a)|, and x′′max, y
′
max and y′′max are defined similarly. Now note

that ‖X‖2∗ = ‖X ′‖2∗ + ‖X ′′‖2∗. Moreover, ‖X‖2∗ ≤ 1 since X(a) ∈ [0, 1] for all a.
Therefore, ‖X ′‖2∗ ≤ 1 and ‖X ′′‖2∗ ≤ 1. Using the fact that

‖X ′‖∗ =

√∑
a

1

|A|X
′(a)2 ≥ 1√

|A|
x′max

and similarly for other terms, we can conclude that x′max, x
′′
max ≤

√
|A|, y′max, y

′′
max ≤√

|B|, and

max

{
1√
|A|

x′′max,
1√
|B|

y′′max

}
≤ max{‖X ′′‖∗, ‖Y ′′‖∗} = ‖X ′′‖∗,

where here we use (26).
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We can then use these inequalities in (29) to obtain

E(s1)[X]E(s)[Y ] ≥ E(s1)[X
′]E(s)[Y

′]− 3
√
|A||B| · ‖X ′′‖∗.(30)

By the same analysis on E(s)[XY ] we get

E(s)[XY ] ≤ E(s)[X
′Y ′] + x′maxy

′′
max + x′′maxy

′
max + x′′maxy

′′
max

≤ E(s)[X
′Y ′] + 3

√
|A||B| · ‖X ′′‖∗.

As a result,

E(s1)[X]E(s)[Y ]− E(s)[XY ] ≥ E(s1)[X
′]E(s)[Y

′]− E(s)[X
′Y ′]− 6

√
|A||B| · ‖X ′′‖∗.

Applying the same lines of inequalities for the other terms we obtain

E(s1)[X]2 − E(s)[X
2] ≤ E(s1)[X

′]2 − E(s)[X
′2] + 6|A| · ‖X ′′‖∗(31)

and

E(s)[Y ]2 − E(s)[Y
2] ≤ E(s)[Y

′]2 − E(s)[Y
′2] + 6|B| · ‖X ′′‖∗.(32)

Putting (28), (30), (31), and (32) together we obtain

g(X,Y, Z)

≥ κ∆‖X ′′‖∗ + 2
(
E(s1)[X

′]E(s)[Y
′]− E(s)[X

′Y ′]− 6|A||B| · ‖X ′′‖∗
)

− (1− ε)
((

E(s1)[X
′]2 − E(s)[X

′2]
)

+
(
E(s)[Y

′]2 − E(s)[Y
′2]
)

+ 12|A||B| · ‖X ′′‖∗
)

≥ (κ∆− 24|A||B|)‖X ′′‖∗ + 2
(
E(s1)[X

′]E(s)[Y
′]− E(s)[X

′Y ′]
)

− (1− ε)
(
E(s1)[X

′]2 − E(s)[X
′2] + E(s)[Y

′]2 − E(s)[Y
′2]
)

≥ 2
(
E(s)[X

′]E(s)[Y
′]− E(s)[X

′Y ′]
)

− (1− ε)
(
E(s)[X

′]2 − E(s)[X
′2] + E(s)[Y

′]2 − E(s)[Y
′2]
)
,

where in the last line we use (25) and the fact that κ∆− 24|A||B| ≥ 0.
Let

h(X ′, Y ′) = 2
(
E(s)[X

′]E(s)[Y
′]− E(s)[X

′Y ′]
)

− (1− ε)
(
E(s)[X

′]2 − E(s)[X
′2] + E(s)[Y

′]2 − E(s)[Y
′2]
)
,(33a)

= 2
(

Cov(s)(X
′, Y ′)

)
+ (1− ε)

(
Var(s)[X

′] + Var(s)[Y
′]
)
.(33b)

Then it suffices to show that h(X ′, Y ′) ≥ 0 for every X ′ ∈ LA and Y ′ ∈ LB . Since
(33b) is in terms of variance and covariance, for every r, t ∈ R we have that

h(X ′ + r1A, Y
′ + t1B) = h(X ′, Y ′).

This means that with no loss of generality we may assume that X ′ ∈ L′A = LA∩(1A)⊥

and Y ′ ∈ L′B = LB ∩ (1A)⊥.
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Let U ∈ KA and U ′ ∈ K⊥s

A such that X ′ = U + U ′. Similarly let Y ′ = V + V ′,

where V ∈ KB and V ′ ∈ K⊥s

B . Since U ∈ KA, its values can be denoted by uc. We
similarly denote the values of V by vc. Therefore, we have

E(cs)[U
′] = E(cs)[V

′] = 0 ∀c.(34)

Thus by the characterization of ρ = ρ(A;B|CS) given in Lemma 28 we have

E(s)[U
′V ′] ≤ ρ

√
E(s)[U ′2]E(s)[V ′2] ≤ ρ

2

(
E(s)[U

′2] + E(s)[V
′2]
)
.(35)

Further (34) implies that E(s)[U
′] = E(s)[V

′] = 0 and then

E(s)[X
′] = E(s)[U ], E(s)[Y

′] = E(s)[V ].(36)

Moreover using (34) we find that

E(s)[X
′Y ′] = E(s)[UV ] + E(s)[UV

′] + E(s)[U
′V ] + E(s)[U

′V ′]

= E(s)[UV ] +
∑
c

ps(c)ucE(cs)[V
′] +

∑
c

ps(c)vcE(cs)[U
′] + E(s)[U

′V ′]

= E(s)[UV ] + E(s)[U
′V ′].(37)

A similar argument shows that

E(s)[X
′2] = E(s)[U

2] + E(s)[U
′2],(38)

E(s)[Y
′2] = E(s)[V

2] + E(s)[V
′2].(39)

Using (36)–(39), we compute a lower bound for h(X ′, Y ′):

h(X ′, Y ′)

≥ 2
(
E(s)[U ]E(s)[V ]− E(s)[UV ]− E(s)[U

′V ′]
)

− (1− ε)
(
E(s)[U ]2 − E(s)[U

2]− E(s)[U
′2] + E(s)[V ]2 − E(s)[V

2]− E(s)[V
′2]
)
.
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Using (35) we continue

h(X ′, Y ′)

≥
(

2E(s)[U ]E(s)[V ]− 2E(s)[UV ] + E(s)[U
2]− E(s)[U ]2 + E(s)[V

2]− E(s)[V ]2
)

+ ε
(
E(s)[U ]2 − E(s)[U

2] + E(s)[V ]2 − E(s)[V
2]
)
− 2E(s)[U

′V ′]

+ (1− ε)
(
E(s)[U

′2] + E(s)[V
′2]
)

≥
(

2E(s)[U ]E(s)[V ]− 2E(s)[UV ] + E(s)[U
2]− E(s)[U ]2 + E(s)[V

2]− E(s)[V ]2
)

+ ε
(
E(s)[U ]2 − E(s)[U

2] + E(s)[V ]2 − E(s)[V
2]
)

+ (1− ε− ρ)
(
E(s)[U

′2] + E(s)[V
′2]
)

= E(s)

[(
(U − E(s)[U ])− (V − E(s)[V ])

)2]
+ ε
(
E(s)[U ]2 − E(s)[U

2] + E(s)[V ]2 − E(s)[V
2]
)

+ (1− ε− ρ)
(
E(s)[U

′2] + E(s)[V
′2]
)

≥ ε
(
E(s)[U ]2 − E(s)[U

2] + E(s)[V ]2 − E(s)[V
2]
)

+ (1− ε− ρ)
(
E(s)[U

′2] + E(s)[V
′2]
)

≥ −ε
(
E(s)[U

2] + E(s)[V
2]
)

+ (1− ε− ρ)
(
E(s)[U

′2] + E(s)[V
′2]
)

= −ε
(
‖U‖2(s) + ‖V ‖2(s)

)
+ (1− ε− ρ)

(
‖U ′‖2(s) + ‖V ′‖2(s)

)
.

Now using Lemma 30 we have

‖U ′‖(s) ≥ ∆′‖U‖(s), ‖V ′‖(s) ≥ ∆′‖V ‖(s).

Hence,

h(X ′, Y ′) ≥ −ε
(
‖U‖2(s) + ‖V ‖2(s)

)
+ (1− ε− ρ)∆′

(
‖U‖2(s) + ‖V ‖2(s)

)
= (∆′(1− ρ)− (1 + ∆′)ε)

(
‖U ′‖2s + ‖V ′‖2(s)

)
≥ 0.

These inequalities hold since ε ≤ ∆′(1− ρ)/(1 + ∆′).

5. Future work. In this paper we completely characterized the randomness ex-
traction problem for nondegenerate cases. A future study could be to solve this prob-
lem for the degenerate cases. In the degenerate cases, for generalized nondistributed
sources, Corollary 11 gives a mildly stronger necessary condition than Theorem 9,
but there is still a gap between this necessary condition and the sufficient condition
of Theorem 4.

We note that our randomness extractor in Theorem 4 extracts a bit whose bias is
inversely polynomially small in the length of the source sequence. It is interesting to
see if this extractor could be improved to yield a bit with an exponentially small bias.
Furthermore, if we want to produce more than one bit of randomness, the trade-off
between the number of produced random bits and their quality is open.
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Another interesting problem is to look at efficient adversaries, similar to the work
of [1]. Our proofs only show existence of inefficient adversaries.

Another way to restrict the adversary is to put limitations on the number of times
the adversary can choose a strategy s ∈ S, i.e., there can be a cost associated with
each strategy s.

A different type of limitation can be on the adversary’s knowledge about the
sequence generated so far. More specifically, the adversary might have noisy or partial
access to the previous outcomes in the sequence (these sources are called “active
sources” [17]). These sources model adversaries with limited memory. Space bounded
sources have been studied in [15, 23].

Finally, the problem of common randomness extraction can be studied for three
or more parties instead of just two parties.

Appendix A. Exact bias of deterministic extractors for the SV source.
SV sources were originally defined in the binary case [21]. Such a source is specified
by two distributions, i.e., S = {0, 1} over C = {0, 1} with

p0(0) = δ and p1(0) = 1− δ,

where 0 < δ < 1/2. It is proved in [21] and can also be concluded from Theorem 9 that
randomness extraction from this SV source is impossible. Our goal in this appendix is
to exactly characterize the set ∪nΦn for this source, where Φn is defined in the proof
of Theorem 9.

Let us describe our problem here more precisely.

Definition 31. Fix an algorithm for extracting randomness from the binary SV
source with parameter δ. Let α be the minimum of the probability of the extracted bit
being 0, where the minimum is taken over all adversary’s strategies. Similarly let β
be the maximum of this probability over all strategies of the adversary. We call (α, β)
the pair associated with the extractor. Define Hδ as the set of all such pairs (α, β)
over all possible extractors.

Our goal is to determine the set Hδ.
To state the result we need some notation.

Definition 32. Fix 0 < δ < 1. For x1, x2, . . . , xn ∈ {0, 1}, define

(0.x1x2 . . . xn)δ =

n∑
i=1

xi(1− δ)i
(

δ

1− δ

)sx(i)

,

where

sx(i) =

i−1∑
j=1

xj .

Observe that when δ = 1/2, we get the standard binary expansion.

Definition 33. For two pairs (α1, β1) and (α2, β2) of real numbers we say that
(α1, β1) dominates (α2, β2) if α1 ≤ α2 and β1 ≥ β2.

The set Hδ can be characterized using the following proposition that implicitly
appears in the conference version of [21] (at the beginning of their sketch of the proof
of their Theorem 6).

As mentioned in the introduction, a deterministic extractor has a corresponding
depth-n binary tree, with leaves marked by either 0 or 1.
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RANDOMNESS EXTRACTION FROM GENERALIZED SV SOURCES 33

Proposition 34 (see [21]). Assume that the depth-n binary tree associated with
the deterministic extractor has exactly x leaves that are marked with bit 0. Let x =
(x1 . . . xn)2 be the binary expansion of x. Then the maximum probability y that the
extracted bit is 0 is at least (0.x1 . . . xn)δ, and the equality occurs when the x leaves of
value 0 form a left prefix of all leaves, i.e., they appear consecutively from the leftmost
leaf towards the right (or, in other words, the extractor assigns 0 to the sequence
(y1, . . . , yn) iff (y1, . . . , yn)2 < x).

The following corollary is used to plot Figure 1 for the binary SV source with
δ = 1/3.

(Notice that (0.x1, . . . , xn)δ = (1− δ)(0.x2, . . . , xn)δ when x1 = 0. Furthermore,
(0.x1, . . . , xn)δ = (1 − δ) + δ(0.x2, . . . , xn)δ when x1 = 1. This is the reason behind
the self-similarity of Figure 1.)

Corollary 35. Let

Fδ :=
{

((0.x1 . . . xn)1−δ, (0.x1 . . . xn)δ) : ∀n, ∀x1, . . . xn ∈ {0, 1}
}
∪
{

(1, 1)
}
.

Then Fδ ⊆ Hδ. Furthermore, any (α, β) ∈ Hδ is dominated by a pair in Fδ.

Proof. By symmetry, the maximum probability that the extracted bit be 1 is
minimized when all leaves with value 1 form a left prefix, hence, when the leaves with
value 0 form a right prefix. In other words (and again by symmetry), the minimum
probability that the extracted bit be 0 is maximized when all leaves with value 0 form
a left prefix. Thus, both the minimum of y and maximum of x occur when all 0-leaves
form a left prefix. Observe that the pair (x, y) associated with the tree having 0-leaves
as a left prefix is ((0.x1 . . . xn)1−δ, (0.x1 . . . xn)δ).

Santha and Vazirani argue that Proposition 34 follows from inequality (43), which
is not proved in their paper. Lemma 36 below gives a proof for the inequality and
hence the proposition.

Lemma 36. For 0 < δ < 1/2, if

(40) (0.x1 . . . xn)1/2 + (0.y1 . . . yn)1/2 = (0.z1 . . . zn)1/2

and

(41) (0.x1 . . . xn)1/2 ≥ (0.y1 . . . yn)1/2,

then

(42) (0.x1 . . . xn)δ +
δ

1− δ (0.y1 . . . yn)δ ≥ (0.z1 . . . zn)δ.

Remark 37. This lemma in particular shows that for 0 < δ < 1/2, if x =
(x1 . . . xn)2, y = (y1 . . . yn)2, z = (z1 . . . zn+1)2, x+ y = z, x ≥ y, then

(0.0x1 . . . xn)1/2 + (0.0y1 . . . yn)1/2 = (0.z1 . . . zn+1)1/2

and, hence,

(1− δ)(0.x1 . . . xn)δ + δ(0.y1 . . . yn)δ ≥ (0.z1 . . . zn+1)δ.(43)

This latter equation proves the induction step in the proof of [21].

Proof of Lemma 36. First, we show that, without loss of generality, we may as-
sume xi ≥ yi for all i. For the first i for which xi 6= yi, we have xi > yi. Consider the
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first i for which xi < yi. If for this i, we swap xj with yj for all j ≥ i, we still have
(40) but (0.x1 . . . xn)δ + δ

1−δ (0.y1 . . . yn)δ decreases by

(1− δ)i−1

((
δ

1− δ

)sx(i)

−
(

δ

1− δ

)sy(i)+1
)

((0.xi . . . xn)δ − (0.yi . . . yn)δ)

which is nonnegative because sx(i) ≥ sy(i) + 1 and (0.xi . . . xn)δ ≤ (0.yi . . . yn)δ. We
can successively do these swaps until xi ≥ yi for all i.

Now we prove the lemma by induction on n. Assume for the sake of contradiction
that inequality (42) does not hold.

If z1 = 0, then x1 = y1 = z1 = 0. Then we can remove x1, y1, z1, decrease n by
1, and prove the lemma using the induction hypothesis. Thus, assume that z1 = 1.
Now we can partition the indices {1, . . . , n} into blocks such that in the addition of
(0.x1 . . . xn)1/2 with (0.y1 . . . yn)1/2, no carry is passed from one block to the next
block, but within each block there is always a passed carry. Consider the leftmost
block that begins from index 1 and ends at index m.

If m = 1, then we should have x1 = 1, y1 = 0, z1 = 1. If we change x1 and z1

to 0, then we still have (40). Also, inequality (41) holds because xi ≥ yi for i ≥ 2.
Furthermore, both (0.x1 . . . xn)δ and (0.z1 . . . zn)δ are decreased by 1 − δ and then
multiplied by δ/(1−δ) ≤ 1, while (0.y1 . . . yn)δ does not change. Therefore, inequality
(42) holds if and only if it holds after changing x1 and z1 to 0. Since now z1 = 0, we
can use the induction hypothesis.

If m > 1, then we should have x1 = 0, x2 = x3 = · · · = xm = 1, y1 = 0, z1 =
1, y2 = z2, . . . , ym−1 = zm−1, ym = 1, zm = 0. Let i be an index ∈ [2,m− 1] such that
yi = 0 (if such an i exists.) If we change yi and zi both to 1, then (40) holds. Inequality
(41) also holds since xi ≥ yi for all i. Furthermore, δ

1−δ (0.y1 . . . yn)δ − (0.z1 . . . zn)δ
decreases by

δ

1− δ (1− δ)i−1

(
δ

1− δ

)sy(i)(
1− δ

1− δ

)
((0.yi . . . yn)δ)

− (1− δ)i−1

(
δ

1− δ

)sz(i)(
1− δ

1− δ

)
((0.zi . . . zn)δ)

=
δ

1− δ (1− δ)i−1

(
δ

1− δ

)sy(i)(
1− δ

1− δ

)
((0.yi . . . yn)δ − (0.zi . . . zn)δ)

because sy(i) = sz(i) − 1. This decrease is nonnegative because (0.yi+1 . . . yn)δ >
(0.zi+1 . . . yn)δ (since ym > zm). So, to prove the claim, without loss of generality,
we can assume x2 = · · · = xm = y2 = · · · = ym = z1 = · · · = zm−1 = 1. But now
if we make the values of xi, yi, zi equal to 0 for all i ∈ [1,m], we still have (40) and
inequality (41), while this does not change the difference of the two sides of inequality
(42). Given z1 = 0, we can use the induction hypothesis as above.

Appendix B. Another proof of Theorem 9. Consider the set of points
{ps(·) : s ∈ S} in the probability simplex. Then, by assumption, there is a point
q(·) in the interior of the convex hull of these points. Fix a deterministic extractor
specified by a subset I ⊆ Cn, i.e., if the observed cn is in I then the extracted bit
is 0, and otherwise it is 1. Consider the probability distribution qn(·) on Cn that is
the i.i.d. repetition of q(·). Without loss of generality, assume that qn(I) ≥ 1/2. Let
I0 ⊆ I be a minimal subset such that qn(I0) ≥ 1/2. That is, let I0 ⊆ I be such
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that qn(I0) ≥ 1/2 and no proper subset of I0 has this property. Observe that for
any cn ∈ Cn we have qn(cn) ≤ 2−Θ(n). Therefore, by the definition of I0 we have
qn(I0) = 1/2 + 2−Θ(n).

Let p̃(·) be a tweak of the distribution qn(·) obtained as follows. Let ε > 0 be a
small constant, and define p̃(cn) = (1 + ε)qn(cn) for cn ∈ I0; also, for cn /∈ I0, define
p̃(cn) = (1− ε− 2−Θ(n))qn(cn) to make p̃(·) a probability distribution.

We claim that p̃(·) is in the class of distributions associated with the generalized
SV source, i.e., the adversary can choose a strategy to generate this distribution.
Assuming this claim, observe that the probability that the extracted bit is 0 would
be equal to

p̃(I) ≥ p̃(I0) = (1 + ε)qn(I0) ≥ (1 + ε)/2.

Thus the adversary can force the bias of the extracted bit to be at least ε. This would
finish the proof.

What remains to show is that p̃(·) can be generated by the adversary. Observe
that for any J ⊆ Cn we have

p̃(J ) = (1 +O(ε))qn(J ),(44)

where as in standard big-Oh notation, O(ε) is not necessarily positive, and may be
positive or negative. In particular, for any c1, . . . , ci, we have

p̃(C1 = c1, . . . , Ci = ci) = (1 +O(ε))

i∏
j=1

q(cj).

Therefore,

p̃(Ci = ci|C1 = c1, . . . , Ci−1) =
1 +O(ε)

1 +O(ε)
q(ci) = (1 +O(ε))q(ci).

Since q(·) is in the interior of the convex hull of {ps(·) : s ∈ S}, then for sufficiently
small ε > 0, any probability distribution of the form ((1 +O(ε))q(·) is in this convex
hull too. Thus, by definition p̃(·) can be produced by the adversary.
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