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Abstract

In this paper it is shown that every m×n array in which each symbol

appears at most (mn− 1)/(m− 1) times has a latin transversal, when n

is large enough in comparison to m.

Introduction

An m × n array is a table of m rows and n columns and therefore mn

cells, where each cell contains exactly one symbol. A partial transversal in an

array is a set of cells in which no two cells are in the same row or column. A

transversal in an m×n array is a partial transversal of size min(m,n). A partial

latin transversal is a partial transversal in which no two cells contain the same

symbol. A latin transversal is a partial latin transversal of size min(m,n). We

define L(m,n) as the largest integer z such that every m × n array in which

no symbol appears more than z times has at least one latin transversal. A row

latin rectangle is an array in which no symbol occurs more than once in any

row. A column latin rectangle is defined in a similar way. A latin square is

an n × n row-column latin rectangle that contains exactly n different symbols.

Ryser [7] conjectured that every latin square of odd order has a latin transversal.

Moreover Brualdi [5] conjectured that every latin square of order n has a partial

latin transversal of size at least n−1. These conjectures have remained unsettled.

The problems on the existence of large partial latin transversals in latin

squares and rectangular arrays are among the most beautiful problems in com-
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binatorics. There are many theorems and conjectures in this area. The lower

bounds of n −
√

n [1, p.256] and n − 5.53(log n)2 [8] for the size of the largest

partial latin transversal in latin squares of order n are well-known. Drisko [6]

proved that if n ≥ 2m − 1, then any m × n column latin rectangle has a latin

transversal. Stein [10] showed that L(m,n) ≤ n − 1 for m ≤ n ≤ 2m − 2 by a

simple construction and conjectured that L(n − 1, n) = n − 1. Clearly, if this

conjecture is true, then Brualdi’s Conjecture is also true. A result due to Hall

[3] supports this conjecture: Any n − 1 × n row latin array constructed from

n − 1 (not necessarily distinct) rows of the group table of an abelian group of

order n, has a latin transversal. Stein [9] showed that in an n × n array where

each symbol appears exactly n times there is a partial latin transversal with

length at least approximately (0.63)n. Also Erdős and Spencer [2] proved that

L(n, n) ≤ (n− 1)/16.

Result

In [10] it is shown that L(m,n) ≤ (mn−1)/(m−1). To see this by contrary

suppose that L(m,n) > (mn−1)/(m−1). It implies that (m−1)L(m,n) ≥ mn,

and we could assign m − 1 different symbols to the cells of A such that each

symbol appears at most L(m,n) times. Obviously, m−1 symbols is not sufficient

for a latin transversal, showing that L(m,n) ≤ (mn − 1)/(m − 1). It is shown

that L(3, n) = b(3n− 1)/2c, for n ≥ 5, see [10].

In the following we will give a theorem which shows when n is large enough

in comparison to m, then the above upper bound on L(m,n) is tight.

Theorem. If m ≥ 2 and n ≥ 2m3 − 6m2 + 6m− 1, then L(m,n) = bmn−1
m−1 c.

Proof. Define f(m) = 2m3−6m2 +6m−1 and g(m,n) = b(mn−1)/(m−1)c.
By the above discussion, we have L(m,n) ≤ g(m,n). Hence we just need to

show that for n ≥ f(m), if each symbol appears at most g(m,n) times in an

m × n array A, then A has a latin transversal. We will prove this by applying

induction on m. For m = 2, it is clear that L(2, n) = 2n − 1 when n ≥ 3. We

may thus assume m > 2.

For 1 ≤ i ≤ m and 1 ≤ j ≤ n, we use (i, j) to denote the cell at the intersection of
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row i and column j, and we refer to the symbol contained in that cell by A(i, j).

Notice the distinction between cells (which are positions) and symbols (which

are values assigned to the positions). Without loss of generality, we assume that

symbols are positive integers. Consider the following three primary operations

that can be applied to array A, i) Interchanging two rows; ii) Interchanging two

columns; iii) Permutation on symbols. Each of the above operations preserves

the existence of latin transversals. We may hence apply each of them wherever

needed in the proof, and pretend that A has not been changed during the proof.

Let B be the (m − 1) × n array consisting of the first m − 1 rows of A.

We have n ≥ f(m) ≥ f(m − 1) for m ≥ 2, and each symbol appears at most

g(m,n) ≤ g(m − 1, n) times in B. Thus, by the induction hypothesis, B has

a latin transversal T of size m − 1. Without loss of generality and by using

the primary operations, we may assume that T is on the main diagonal of B,

and A(i, i) = i for 1 ≤ i ≤ m − 1. Let S = {(m, j) |m ≤ j ≤ n}. If a cell in

S has a symbol greater than m − 1, then adding that cell to T creates a latin

transversal, and we are done. Assume that k is the number of distinct symbols in

S. Using the primary operations, without loss of generality we can assume that

all symbols of S are less than or equal to k, k ≤ m− 1, and A(m,m + i− 1) = i

for 1 ≤ i ≤ k.

We will now show that by a suitable sequence of primary operations, we can

find sets T1, T2, . . . , Tm−1, each consisting of m − 1 cells, such that for every

1 ≤ i ≤ m− 1, the following conditions hold:

1. A(i, i) = i.

2. Ti represents a partial latin transversal.

3. Each row, except row i, has a cell in Ti.

4. For every i < j < m, cell (j, j) is included in Ti.

5. All of the symbols 1, 2, . . . , m− 1 appear in Ti.

We start by defining Ti = {(j, j) | 1 ≤ j ≤ m − 1, j 6= i} ∪ {(m,m + i − 1)}
for 1 ≤ i ≤ k. It is easy to verify that T1, T2, . . . , Tk satisfy Conditions 1–5.

Now suppose that we have constructed T1, T2, . . . , Tp for p ≥ k. We will show

how to construct Tp+1, when p < m− 1.
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Let X = {(i, j) | 1 ≤ i ≤ p and Ti has no cell in column j}. We claim that at

least one symbol of X is greater than p. If this does not hold, then all symbols

in X and S are less than or equal to p. We know that |X| = p(n−m + 1) and

|S| = n − m + 1. Hence, one symbol appears at least (n − m + 1)(p + 1)/p ≥
(n−m + 1)(m− 1)/(m− 2) times in A. An elementary calculation shows that

f(m) > m3−3m2+2m+1, which implies (n−m+1)(m−1)/(m−2) > g(m,n).

But this requires that a symbol appears more than g(m,n) times in A, which is

a contradiction. Consequently, there is (r, s) ∈ X such that A(r, s) = t > p.

None of the cells of Tr is in row r. Besides, Tr has no cell from column

s since (r, s) ∈ X. It follows that if t ≥ m, then Tr ∪ {(r, s)} represents a

latin transversal, and we are done. Thus one may assume that t < m. We

will show how to make A(r, s) = p + 1 in case t 6= p + 1: Cells (t, t) and

(p + 1, p + 1) have rows and columns different from (r, s). Therefore, one way

to ensure that A(r, s) = p + 1 is by first interchanging symbols t and p + 1,

next interchanging rows t and p + 1, and finally interchanging columns t and

p + 1. To see why this works, we note that the last two primary operations (i.e.

interchanges of rows and columns t and p + 1) swap the values of A(t, t) and

A(p + 1, p + 1). Furthermore the above primary operations preserve Conditions

1–5. This is because T1, . . . , Tp all have the entries A(i, i) = i for p < i < m,

and the above operations only act on rows, columns, and symbols p + 1, . . . ,

m − 1. Now that we have A(r, s) = p + 1, it is not hard to check that Tp+1 =

Tr ∪{(r, s)}\{(p+1, p+1)} does not violate any of the Conditions 1–5. By this

method, all T1, . . . , Tm−1 are constructed.

Assume that T1, . . . , Tk are as we introduced before. Let Ci = {j | 1 ≤ j < m

or column j intersects T1 ∪ · · · ∪ Ti}. By the above construction for T1, . . . ,

Tm−1, we have |Ck| = m − 1 + k. Furthermore we have |Ci+1| ≤ |Ci| + 1 for

k ≤ i < m − 1, since Ti+1 does not introduce more than one new cell (see

definition of Tp+1). Hence we have |Cm−1| ≤ (m−1+k)+(m−1−k) = 2m−2.

Let Q be the set of all cells residing in the columns of Cm−1, and let Q′ be

the complement of Q relative to A. Since each symbol appears at most g(m,n)

times, one of the following two cases always happens:

Case 1. There exists (x, y) ∈ Q′ such that A(x, y) ≥ m. It is clear that x 6= m

and since Tx does not intersect column y, Tx ∪ {(x, y)} is a latin transversal.
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Case 2. All symbols appearing in Q′ are less than m, and there exists (x, y) ∈ Q

such that A(x, y) ≥ m. Let Z be an (m−1)×(n−2m+2) array that is obtained

from Q′ by removing row x and 2m − 2 − |Cm−1| arbitrary columns. To show

that Z has a latin transversal by induction on m, we check that:

1. There are n− 2m + 2 ≥ f(m)− 2m + 2 ≥ f(m− 1) columns in Z.

2. Every symbol appears at most g(m − 1, n − 2m + 2) times in Z, because

n ≥ f(m) implies g(m,n) ≤ g(m− 1, n− 2m + 2).

Now since all symbols of Z are less than m, the latin transversal of Z can be

extended to a latin transversal for A by adding (x, y) and the proof is complete.

2

The above theorem shows that L(3, n) = b(3n−1)/2c, for n ≥ 17 and L(4, n) =

b(4n− 1)/3c, for n ≥ 55.
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