THE GOLOD PROPERTY FOR PRODUCTS AND HIGH SYMBOLIC POWERS OF MONOMIAL IDEALS

S. A. SEYED FAKHARI AND V. WELKER

Abstract. We show that for any two proper monomial ideals I and J in the polynomial ring $S = \mathbb{K}[x_1, \ldots, x_n]$ the ring S/IJ is Golod. We also show that if I is squarefree then for large enough k the quotient $S/I^{(k)}$ of S by the kth symbolic power of I is Golod. As an application we prove that the multiplication on the cohomology algebra of some classes of moment-angle complexes is trivial.

1. Introduction

For a graded ideal I in the polynomial ring $S = \mathbb{K}[x_1, \ldots, x_n]$ in n variables over the field \mathbb{K} the ring S/I is called Golod if all Massey operations on the Koszul complex of S/I with respect of $x = x_1, \ldots, x_n$ vanish. The naming gives credit to Golod [11] who showed that the vanishing of the Massey operations is equivalent to the equality case in the following coefficientwise inequality of power-series which was first derived by Serre:

$$\sum_{i \geq 0} \dim \mathbb{K} \Tor^{S/I}_{i}(\mathbb{K}, \mathbb{K}) t^i \leq \frac{(1 + t)^n}{1 - t \sum_{i \geq 1} \dim \mathbb{K} \Tor^S_{i}(S/I, \mathbb{K}) t^i}$$

We refer the reader to [1] and [8] for further information on the Golod property and to [5] and [12] for the basic concepts from commutative algebra underlying this paper. We prove the following two results.

Theorem 1.1. Let I, J be two monomial ideals in S different from S. Then S/IJ is Golod.

For our results on symbolic powers we have to restrict ourselves to squarefree monomial ideals I. This is due to the fact that in this case I has a primary decomposition of the form $I = p_1 \cap \cdots \cap p_r$, where every p_i is an ideal of S generated by a subset of the variables [12, Lem. 1.5.4]. Moreover, in this situation for a positive integer k the kth symbolic power $I^{(k)}$ of I coincides with $p_1^k \cap \cdots \cap p_r^k$ [12, Prop.1.4.4].

Theorem 1.2. Let I be a squarefree monomial ideal in S different from S. Then for $k \gg 0$ the kth symbolic power $I^{(k)}$ is Golod for $k \gg 0$.

2000 Mathematics Subject Classification. 13D40.

Key words and phrases. Monomial ideal, Golod ring, product ideal, symbolic power, strong gcd-condition, moment-angle complex.

The first author acknowledges support from DAAD as a visiting PhD student at Philipps-Universität Marburg.
Besides the strong algebraic implications of Golodness the case of squarefree monomial ideals relates to interesting topology. Let Δ be a simplicial complex on ground set $[n]$ and let $\mathbb{K}[\Delta]$ be its Stanley–Reisner ring (see § 4 for basic facts about Stanley-Reisner rings). By work of Buchstaber and Panov [6, Thm. 7.7], extending an additive isomorphism from [10], it is known that there is an algebra isomorphism of the Koszul homology $H^\ast(x, \mathbb{K}[\Delta])$ and the singular cohomology ring $H^\ast(M_\Delta; \mathbb{K})$ where $M_\Delta = \{(v_1, \ldots, v_n) \in (D^2)^n \mid \{i \mid v_i \notin S^1\} \in \Delta\}$. Here $D^2 = \{v \in \mathbb{R}^2 \mid ||v|| \leq 1\}$ is the unit disk in \mathbb{R}^2 and S^1 its bounding unit circle. Note that the isomorphism is not graded for the usual grading of $H^\ast(x, \mathbb{K}[\Delta])$ and $H^\ast(M_\Delta; \mathbb{K})$. The complex M_Δ is the moment-angle complex or polyhedral product of the pair (D^2, S^1) for Δ (we refer the reader to [6] and [7] for background information). Last we write $\Delta^\circ = \{A \subseteq [n] \mid [n] \setminus A \notin \Delta\}$ for the Alexander dual of the simplicial complex Δ.

Now we are in position to formulate the following consequence of Theorem 1.1.

Corollary 1.3. Let Δ be a simplicial complex such that $\Delta = (\Delta_1^\circ \ast \Delta_2^\circ)^\circ$ for two simplicial complexes Δ_1, Δ_2 on disjoint ground sets. Then the multiplication on $H^\ast(M_\Delta; \mathbb{K})$ is trivial.

The main tool for the proof of Theorem 1.1 and Theorem 1.2 is combinatorial. Let I be a monomial ideal and write $G(I)$ for the set of minimal monomial generators of I. In [19, Def. 3.8] the author introduces a combinatorial condition on $G(I)$ that in [3] was shown to imply the Golod property for S/I. The ideal I is said to satisfy the strong gcd-condition if there exists a linear order \prec on $G(I)$ such that for any two monomials $u, v \in G(I)$ with $\gcd(u, v) = 1$ there exists a monomial $w \in G(I)$ with $w \neq u, v$ such that $u \prec w$ and w divides $\text{lcm}(u, v) = uv$. The following result from [3] removes an unnecessary assumption from the statement of Theorem 7.5 in [19].

Theorem 1.4 (Thm. 5.5 [3]). Let I be a monomial ideal. If I satisfies the strong gcd-condition then S/I is Golod.

We refer the reader to [2] for the relation of the gcd-condition to standard combinatorial properties of simplicial complexes.

The paper is organized as follows. In § 2 we verify the strong gcd-condition for products of monomial ideals and in § 3 for high symbolic powers of squarefree monomial ideals. This yields Theorem 1.1 and Theorem 1.2. In § 4 we study the implications of Theorem 1.1 and Theorem 1.2 on moment–angle complexes. In particular, we derive Corollary 1.3.

2. PRODUCT OF MONOMIAL IDEALS

Since by Theorem 1.4 for any monomial ideal I satisfying the strong gcd-condition the ring S/I is Golod, the following result immediately implies Theorem 1.1.

Proposition 2.1. For any two monomial ideals I, J in S that are different from S the ideal IJ satisfies strong-gcd condition.

Proof. Fix a monomial order \prec on the set of monomials of S. We define a linear order \prec on $G(IJ)$ as follows: For two monomials $u, v \in G(IJ)$, we set $u \prec v$ if and only if $\deg(u) > \deg(v)$ or $\deg(u) = \deg(v)$ and $u < v$. Now the following claim states that $G(IJ)$ ordered by \prec satisfies the strong gcd-condition.
Claim: For any two monomials \(u, v \in G(IJ) \) with \(u \nless v \) and \(\gcd(u, v) = 1 \) there exists a monomial \(w \in G(IJ) \) different from \(u \) and \(v \) such that \(u \nless w \) and \(w \) divides \(\text{lcm}(u, v) = uv \).

Since \(u, v \in G(IJ) \), there exist monomials \(u_1, v_1 \in G(I) \) and \(u_2, v_2 \in G(J) \) such that \(u = u_1u_2 \) and \(v = v_1v_2 \). We consider two cases:

Case 1. \(\deg(u) = \deg(v) \).

By definition, \(u < v \). Therefore, \(u_1 < v_1 \) or \(u_2 < v_2 \), since otherwise \(u = u_1u_2 \geq v_1v_2 = v \), which is a contradiction. Without loss of generality we may assume that \(u_1 < v_1 \).

If \(\deg(u_1) \geq \deg(v_1) \), then define \(w' := v_1u_2 \). Now \(w' \in IJ \), \(\deg(w') \leq \deg(u) \) and \(u \nless w' \). If \(w' \in G(IJ) \), then we set \(w = w' \) and clearly \(u < w \) and \(w \) divides \(\text{lcm}(u, v) = uv \). By \(\gcd(u, v) = 1 \), it follows that \(u_2 \neq v_2 \) and therefore \(w \neq v \). If \(w' \notin G(IJ) \), then there exists a monomial \(w \in G(IJ) \), such that \(w | w' \). Now \(w \) divides \(\text{lcm}(u, v) = uv \) and since \(\deg(w) < \deg(w') \leq \deg(u) = \deg(v) \), we conclude that \(u < v < w \) and \(w \neq v \).

If \(\deg(u_1) < \deg(v_1) \), then define \((u_2) > \deg(v_2) \), since \(\deg(u) = \deg(v) \). We define \(w' := u_1v_2 \). Now \(w' \in IJ \) and therefore there exists a monomial, say \(w \in G(IJ) \), such that \(w | w' \). Then \(w \) divides \(\text{lcm}(u, v) = uv \) and since \(\deg(w) \leq \deg(w') < \deg(u) = \deg(v) \), we conclude that \(u < v < w \) and \(w \neq v \).

Case 2. \(\deg(u) \neq \deg(v) \).

By definition of \(\nless \) we must have \(\deg(u) > \deg(v) \). Hence either of \(\deg(v_1) < \deg(u_1) \) or \(\deg(v_2) < \deg(u_2) \) holds. Without loss of generality we assume that \(\deg(v_1) < \deg(u_1) \). We define \(w' = v_1u_2 \). Then \(w' \in IJ \) and therefore there exists a monomial, say \(w \in G(IJ) \), such that \(w | w' \). Thus \(w \) divides \(\text{lcm}(u, v) = uv \) and \(u \nless w \), since \(\deg(w) \leq \deg(w') < \deg(u) \). Also \(w \neq v \), because otherwise \(v \) divides \(v_1u_2 \) and since \(\gcd(u_1, v_1) = 1 \), it implies that \(v \) divides \(v_1 \), which is impossible. \(\square \)

In [18, Thm. 4.1] it is shown that for a homogeneous ideal \(I \neq S \) in the polynomial ring \(S \) the ring \(S/I^k \) is Golod for \(k \gg 0 \). For monomial ideals Theorem 1.1 allows a more precise statement of their result which follows immediately from Proposition 2.1 and Theorem 1.4.

Corollary 2.2. Let \(I \) be a monomial ideal in the polynomial ring \(S \) different from \(S \). Then for \(k \geq 2 \) the ideal \(I^k \) satisfies the strong gcd-condition and hence the ring \(R = S/I^k \) is Golod.

We note that after this paper appeared on the arxiv in [17] it was shown that the conclusion of Corollary 2.2 holds for arbitrary proper homogeneous ideals if the field has characteristic 0.

Since by [5, Thm. 3.4.5] the Koszul homology \(H_*(x, S/I) \) for a Gorenstein quotient \(S/I \) of \(S \) is a Poincaré duality algebra, \(S/I \) cannot be Golod unless \(I \) is a principal ideal. Thus Theorem 1.1 implies that a product of monomial ideal can be Gorenstein if and only if it is principal. This observation is not new and can be seen as a consequence of a very general result by Huneke [16] who showed that in any unramified regular local ring no Gorenstein ideal of height \(\geq 2 \) can be a product.
3. Symbolic powers of squarefree monomial ideals

Now we are ready to prove that the high symbolic powers of squarefree monomial ideals of S fulfill the strong-gcd condition.

Proposition 3.1. Let I be a squarefree monomial ideal in S different from S. Then for $k \gg 0$ the kth symbolic power $I^{(k)}$ satisfies the strong gcd–condition.

Proof. By [13, Thm 3.2] the ring $A = \bigoplus_{i=0}^{\infty} I^{(i)}$ is Noetherian and therefore is a finitely generated K-algebra. Assume that the set $\{y_1, \ldots, y_m\}$ is a set of generators for the K-algebra A. Using [13, Thm 2.1], we conclude that, there exists a natural number c such that $A_0 = \bigoplus_{i=0}^{\infty} I^{(ci)}$ is a standard K-algebra i.e. it is generated as K-algebra by $I^{(c)}$. Therefore A_0 is a Noetherian ring. Note that the set

$$\{y_1^{\ell_1} \cdots y_m^{\ell_m} \mid 0 \leq \ell_1, \ldots, \ell_m \leq c - 1\}$$

is a system of generators for A as an A_0-module. Assume that the degree of a generator of the A_0-module A is at most α. Since A_0 is a standard K-algebra for every integer $k > \max\{\alpha, c\}$ we have $I^{(k)} = I^{(c)}I^{(k-c)}$. Thus for every $k > \max\{\alpha, c\}$, the ideal $I^{(k)}$ is the product of two monomial ideals. Therefore, by Proposition 2.1 it satisfies the strong-gcd condition. □

The following corollary is an immediate consequence of Theorem 1.4 and Theorem 1.2.

Corollary 3.2. Let I be a squarefree monomial ideal in the polynomial ring S, which is not a principal ideal. Then for $k \gg 0$ the ring $S/I^{(k)}$ is not Gorenstein.

We do not know which k suffices. Indeed, we do not have an example of a monomial ideal $I \neq S$, squarefree or not, for which $S/I^{(2)}$ is not Golod. In the above mentioned paper by Herzog and Huneke [17] it is indeed shown that if the field has characteristic 0 then for any proper homogeneous ideal I the symbolic powers $S/I^{(k)}$ are Golod.

4. Moment–angle complexes

First, we recall some basics from the theory of Stanley-Reisner ideals. Let Δ be a simplicial complex on ground set $[n]$. A subset $N \subseteq [n]$ such that $N \notin \Delta$ and $N \setminus \{i\} \in \Delta$ for all $i \in N$ is called a minimal non-face of Δ. The Stanley-Reisner ideal I_Δ of Δ is the ideal in S generated by the monomial x_N for the minimal non-faces N of Δ and the quotient $K[\Delta] = S/I_\Delta$ is Stanley-Reisner ring of Δ. Indeed, the map sending Δ to I_Δ is a bijection between the simplicial complexes on ground set $[n]$ and the squarefree monomial ideals in S. To any monomial ideal I its polarization I^{pol} [12, p. 19] is a squarefree monomial ideal and it is known [9, Thm. 3.5] that I is Golod if and only if I^{pol} is Golod. In addition, it follows from the vanishing of the Massey operations that the multiplication on Koszul homology $H_*(x, S/I)$ is trivial for all Golod S/I – by trivial we here mean that products of two elements of positive degree are 0. Thus the algebra isomorphism of $H_*(x, K[\Delta])$ and $H^*(M_\Delta; K)$ [6, Thm. 7.7] together with Theorem 1.1 and Theorem 1.2 yields the following corollary. Note that even though the isomorphism of $H_*(x, K[\Delta])$ and $H^*(M_\Delta; K)$ is not graded in the usual grading it sends $H_0(x, K[\Delta])$ to $H^0(M_\Delta; K)$.
Corollary 4.1. Let I and J be monomial ideals. Then for the simplicial complexes Γ and $\Gamma^{(k)}$ such that $(IJ)^{\text{pol}} = I_{\Gamma}$ and $(I^{(k)})^{\text{pol}} = I_{\Gamma^{(k)}}$ we have:

(i) The multiplication on the cohomology algebra of M_{Γ} is trivial.

(ii) The multiplication on the cohomology algebra of $M_{\Gamma^{(k)}}$ is trivial for $k \gg 0$.

In general, the combinatorics and geometry of the simplicial complexes Γ and $\Gamma^{(k)}$ cannot be easily controlled even in the case I and J are squarefree monomial ideals. Therefore, the result is more useful in a situation when the ideals IJ and $I^{(k)}$ themselves are squarefree monomial ideals. Since this never happens for $I^{(k)}$ and $k \geq 2$ we confine ourselves to the case of products IJ. The following lemma shows that in this case I and J should be squarefree monomial ideals with generators in disjoint sets of variables. Even though the lemma must be a known basic fact from the theory of the monomial ideals we did not find a reference and hence for the sake of completeness we provide a proof. In the proof we denote for a monomial u by $\text{supp}(u)$ its support, which is the set of variables dividing u.

Lemma 4.2. Let I, J be monomial ideals. Then IJ is a squarefree monomial ideal if and only if I and J are squarefree monomial ideals such that $\text{gcd}(u, v) = 1$ for all $u \in G(I)$ and $v \in G(J)$.

Proof. The “if” part of the lemma is trivial. The other direction states that if IJ is a squarefree monomial ideal then for every $u \in G(I)$ and every $v \in G(J)$ the monomial uv is squarefree. Assume by contradiction that there exist monomials $u \in G(I)$ and $v \in G(J)$ such that uv is not squarefree. Among every v with this property we choose one such that the set $\text{supp}(v) \setminus \text{supp}(u)$ has minimal cardinality. Since IJ is a squarefree monomial ideal, there exist squarefree monomials $u' \in G(I)$ and $v' \in G(J)$ such that $\text{supp}(u') \cap \text{supp}(v') = \emptyset$ and $u'v'$ divides uv. We distinguish two cases:

Case: $\text{supp}(v) \setminus \text{supp}(u) = \emptyset$

The assumption is equivalent to $\text{supp}(v) \subseteq \text{supp}(u)$. We conclude that $\text{supp}(u') \subseteq \text{supp}(uv) = \text{supp}(u)$. But then u' divides u and hence $u = u'$. But then $\text{supp}(uv) = \text{supp}(u')$ and $v' = 1$. This implies $J = S$ and $IJ = I$ which in turn shows that I is a squarefree monomial ideal. Thus u is squarefree and $v = v' = 1$. But then uv is squarefree and we arrive at a contradiction.

Case: $\text{supp}(v) \setminus \text{supp}(u) = \{x_{i_1}, \ldots, x_{i_t}\}$ for some $t \geq 1$

If $\text{supp}(v') \subseteq \text{supp}(v)$ then v' divides v and hence $v = v'$. Then u' must divide u and hence $u = u'$. But this contradicts the fact that $uv = u'v'$ is not squarefree. Hence $\text{supp}(u) \cap \text{supp}(v') \neq \emptyset$ and therefore uv' is not squarefree. Now assume that $\{x_{i_1}, \ldots, x_{i_t}\} \subseteq \text{supp}(v')$. Then since $\text{supp}(u') \cap \text{supp}(v') = \emptyset$, it follows that $\text{supp}(u') \subseteq \text{supp}(u)$ and therefore u' divides u. As above this yields a contradiction. Thus $\{x_{i_1}, \ldots, x_{i_t}\} \not\subseteq \text{supp}(v')$ and the inclusion $\text{supp}(v') \subseteq \text{supp}(u) \cup \text{supp}(v)$ implies that the cardinality of $\text{supp}(v') \setminus \text{supp}(u)$ is strictly less than the cardinality of $\text{supp}(v) \setminus \text{supp}(u)$, which contradicts the choice of v.

Let us analyze the situation when IJ is a squarefree monomial ideal more carefully. By Lemma 4.2, we may assume that $I = I_{\Delta}$ and $J = I_{\Delta'}$ with simplicial complexes Δ and Δ' that have a join decomposition $\Delta = 2^V_{\Gamma} \ast \Delta_1$ and $\Delta' = 2^V_{\Gamma} \ast \Delta_2$ for simplicial complexes
Then I the ground set \(\Omega \), the maximal faces

Recall that by definition of the Alexander dual, for every simplicial complex \(\Delta \) on

Proof. Recall that by definition of the Alexander dual, for every simplicial complex \(\Delta \) on the ground set \(\Omega \), the maximal faces \(A \in \Delta^o \) are those subsets \(A \) of \(\Omega \) for which \(\Omega \setminus A \) is a minimal non-face of \(\Delta \).

The product \(I_{\Delta_1} I_{\Delta_2} \) is generated by \(x_{N_1} x_{N_2} \) for minimal non–faces \(N_1 \) and \(N_2 \) of \(\Delta_1 \) and \(\Delta_2 \) respectively. Hence it is generated by monomials corresponding to the union of \(F_1 = \Omega_1 \setminus N_1 \) and \(F_2 = \Omega_2 \setminus N_2 \) of maximal faces of \(\Delta_1^o \) and \(\Delta_2^o \). Since for any maximal face \(F \) of \(\Delta_1^o \ast \Delta_2^o \) there are maximal faces \(F_1 \) of \(\Delta_1^o \) and \(F_2 \) of \(\Delta_2^o \) such that \(F = F_1 \cup F_2 \) it follows that the monomials \(x_{N_1 \cup N_2} = x_{N_1} x_{N_2} \) for minimal non–faces \(N_1 \) of \(\Delta_1 \) and \(N_2 \) of \(\Delta_2 \) are the generators \(I_{(\Delta_1^o \ast \Delta_2^o)^o} \). Now the assertion follows. \(\square \)

Now combining Lemma 4.3 and Corollary 4.1 (i) yields Corollary 1.3.

We note, that for the deduction of Corollary 1.3 one could have also argued using [15, Satz 2] instead of Theorem 1.1.

Corollary 1.3 allows the construction of some illuminating examples of Golod simplicial complexes.

Example 4.4. Let \(\Delta_1 \) be a simplicial complex on \(\Omega_1 \) and \(\Delta_2 \) a simplicial complex on \(\Omega_2 \) for disjoint set \(\Omega_1 \) and \(\Omega_2 \). For a simplicial complex \(\Delta \) on ground set \(\Omega \) the Hochster formula says that for \(i \geq 1 \) the \(i \)-th Betti number \(\beta_i(S/I_\Delta) = \dim \text{Tor}^S_{S/I_\Delta}(S/I_\Delta, \mathbb{K}) \) of the minimal free resolution of \(S/I_\Delta \) over the polynomial ring is given as

\[
\sum_{W \subseteq \Omega} \tilde{H}_{\#W-i-1}(\Delta_W; \mathbb{K})
\]

where \(\Delta_W \) is the restriction \(\Delta \cap 2^W \) of \(\Delta \) to \(W \). For \(W = W_1 \cup W_2 \subseteq \Omega_1 \cup \Omega_2 \) with \(W_1 \subseteq \Omega_1 \), \(W_2 \subseteq \Omega_2 \) we set \(\tilde{W}_i = \Omega_i \setminus W_i \), \(i = 1, 2 \), and \(\tilde{W} = \tilde{W}_1 \cup \tilde{W}_2 \). The we get by Alexander duality that

\[
\tilde{H}_{\#W-i-1}(((\Delta_1^o \ast \Delta_2^o)^o)_W; \mathbb{K}) \cong \tilde{H}_{i-1}((\text{lk}_{\Delta_1^o \ast \Delta_2^o}(W); \mathbb{K})
\]

The definition of link implies that

\[
\text{lk}_{\Delta_1^o \ast \Delta_2^o}(W) = \text{lk}_{\Delta_1^o}(W_1) \ast \text{lk}_{\Delta_2^o}(W_1)
\]

By the Künneth formula we then get that

\[
\tilde{H}_{i-1}(\text{lk}_{\Delta_1^o}(W_1) \ast \text{lk}_{\Delta_2^o}(W_1); \mathbb{K}) \cong \bigoplus_{r+s=i-1} \tilde{H}_r(\text{lk}_{\Delta_1^o}(W_1), \mathbb{K}) \otimes \tilde{H}_s(\text{lk}_{\Delta_2^o}(W_2), \mathbb{K})
\]

Thus another application of Alexander duality shows that

\[
\tilde{H}_{\#W-i-1}(((\Delta_1^o \ast \Delta_2^o)^o)_W) \cong \bigoplus_{r+s=i-1} \tilde{H}_{\#W_1-r}(((\Delta_1)_W_1, \mathbb{K}) \otimes \tilde{H}_{\#W_2-r}(((\Delta_2)_W_2, \mathbb{K})
\]
Since one can choose simplicial complexes Δ_1 and Δ_2 with characteristic dependency in their homology and the homology of their restrictions, the formulas show that the Betti numbers of S/I for a monomial ideal I that satisfies strong gcd can depend heavily on the characteristic of the field. In particular, the combinatorial property that I_{Δ} satisfies strong gcd for a simplicial complex Δ does not imply that the corresponding moment angle complex has homology groups that are free over the integers.

Example 4.5. From [14] it is known that $k[\Delta]$ is Golod if Δ^o is sequentially Cohen-Macaulay over k. Indeed there it is shown that for componentwise linear ideals I the quotient S/I is Golod, but componentwise linear ideals I_{Δ} are exactly those for which Δ^o is sequentially Cohen-Macaulay over k.

For simplicial complexes Δ_1, Δ_2 on disjoint ground sets we show that the complex $\Delta := (\Delta_1^o \ast \Delta_2^o)$ only rarely has the property that Δ^o is sequentially Cohen-Macaulay. Thus Theorem 1.1 indeed yields a large new class of simplicial complexes Δ for which $k[\Delta]$ is Golod.

Indeed, by [4, Cor. 3.3] the join $\Delta_1^o \ast \Delta_2^o$ is sequentially Cohen-Macaulay over k if and only if both Δ_1^o and Δ_2^o are. Hence for any choice of Δ_1 such that Δ_1^o is not sequentially Cohen-Macaulay and arbitrary Δ_2 it follows that Δ^o is not sequentially Cohen-Macaulay.

References

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

E-mail address: fakhari@ipm.ir

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, 35032 Marburg, Germany

E-mail address: welker@mathematik.uni-marburg.de