Abstract. We continue our study of the class \(\mathcal{C}(D) \), where \(D \) is a uniform ultrafilter on a cardinal \(\kappa \) and \(\mathcal{C}(D) \) is the class of all pairs \((\theta_1, \theta_2) \), where \((\theta_1, \theta_2) \) is the cofinality of a cut in \(J^\kappa/D \) and \(J \) is some \((\theta_1 + \theta_2)^+ \)-saturated dense linear order. We give a combinatorial characterization of the class \(\mathcal{C}(D) \). We also show that if \((\theta_1, \theta_2) \in \mathcal{C}(D) \) and \(D \) is \(\aleph_1 \)-complete or \(\theta_1 + \theta_2 > 2^\kappa \), then \(\theta_1 = \theta_2 \).

1. Introduction

Assume \(\kappa \) is an infinite cardinal and \(D \) is an ultrafilter on \(\kappa \). Recall that \(\mathcal{C}(D) \) is defined to be the class of all pairs \((\theta_1, \theta_2) \), where \((\theta_1, \theta_2) \) is the cofinality of a cut in \(J^\kappa/D \) and \(J \) is some (equivalently any) \((\theta_1 + \theta_2)^+ \)-saturated dense linear order. Also \(\mathcal{C}_{>\lambda}(D) \) is defined to be the class of all pairs \((\theta_1, \theta_2) \in \mathcal{C}(D) \), such that \(\theta_1 + \theta_2 > \lambda \). The classes \(\mathcal{C}_{>\lambda}(D), \mathcal{C}_{<\lambda}(D) \) and \(\mathcal{C}_{\leq\lambda}(D) \) are defined similarly.

The works \cite{2}, \cite{3} and \cite{4} of Malliaris and Shelah have started the study of this class for the case \(\theta_1 + \theta_2 \leq 2^\kappa \) and \cite{1} started the study of the case \(\theta_1 + \theta_2 > 2^\kappa \). As it was observed in \cite{1}, the study of the class \(\mathcal{C}_{>2^\kappa}(D) \) is very different from the case \(\mathcal{C}_{\leq2^\kappa}(D) \), and to prove results about it, usually some extra set theoretic assumptions are needed. In this paper we continue \cite{1} and prove more results related to the class \(\mathcal{C}(D) \).

In the first part of the paper (Sections 2 and 3) we give a combinatorial characterization of \(\mathcal{C}(D) \). Using notions defined in section 2, we can state our first main theorem as follows.

Theorem 1.1. Assume \(D \) is an ultrafilter on \(\kappa \) and \(\lambda_1, \lambda_2 > \kappa \) are regular cardinals. The following are equivalent:

(a) There is \(\vec{a} \in \mathcal{S}_c \) which is not \(c \)-solvable, where \(c = \langle \kappa, D, \lambda_1, \lambda_2 \rangle \).
(b) \((\lambda_1, \lambda_2) \in C(D)\).

In the second part of the paper (Sections 4 and 5) we study the existence of non-symmetric pairs (i.e., pairs \((\lambda_1, \lambda_2)\) with \(\lambda_1 \neq \lambda_2\)) in \(C(D)\). By [5], we can find a regular ultrafilter \(D\) on \(\kappa\) such that

\[C(D) \supseteq \{ (\lambda_1, \lambda_2) : \aleph_0 < \lambda_1 < \lambda_2 \leq 2^\kappa, \lambda_1, \lambda_2 \text{ regular} \}.
\]

In particular, \(C(D)\) contains non-symmetric pairs. On the other hand, results of [1] show that if \((\lambda_1, \lambda_2) \in C_{>2^\kappa}(D)\), then we must have \(\lambda_1^\kappa = \lambda_2^\kappa\), in particular if SCH, the singular cardinals hypothesis, holds, then \(\lambda_1 = \lambda_2\), and so \(C_{>2^\kappa}(D)\) just contains symmetric pairs.

We then prove the following theorem (in ZFC):

Theorem 1.2. (a) Assume \(D\) is a uniform \(\aleph_1\)-complete ultrafilter on \(\kappa\) and \((\lambda_1, \lambda_2) \in C(D)\). Then \(\lambda_1 = \lambda_2\).

(b) Assume \(D\) is a uniform ultrafilter on \(\kappa\) and \((\lambda_1, \lambda_2) \in C_{>2^\kappa}(D)\). Then \(\lambda_1 = \lambda_2\).

The theorem shows some restrictions on the pairs \((\lambda_1, \lambda_2)\) that \(C(D)\) can have, in particular, it shows that in the result of [5] stated above, we can never take the ultrafilter \(D\) to be \(\aleph_1\)-complete and that \(C_{>2^\kappa}(D)\) can not have non-symmetric pairs.

The paper is organized as follows. In section 2 we give the required definitions, which lead us to the notion of \(c\)-solvability and in section 3 we complete the proof of Theorem 1.1. In section 4 we prove part (a) of Theorem 1.2 and in section 5 we complete the proof of part (b) of Theorem 1.2. We may note that parts one (Sections 2 and 3) and two (Sections 4 and 5) can be read independently of each other.

2. **On the notion of \(c\)-solvability**

In this section we give the required definitions which are used in Theorem 1.1.

Definition 2.1. (a) Let \(C\) be the class of tuples \(c = (\kappa_c, D_c, \lambda_{c,1}, \lambda_{c,2})\) where

(a-1) \(\lambda_{c,1}, \lambda_{c,2}\) are regular cardinals > \(\kappa_c\),

(a-2) \(D_c\) is a uniform ultrafilter on \(\kappa_c\).

Also let \(\lambda_c = 2^{<\lambda_{c,1}} + 2^{<\lambda_{c,2}}\) and \(\lambda_{c,0} = \min\{\lambda_{c,1}, \lambda_{c,2}\}\).
(b) For $c \in \mathcal{C}$ let $N_c = N_{c,1} + N_{c,2}$ be a linear order of size $\leq \lambda_c$ in such a way that $N_{c,1}$ has cofinality $\lambda_{c,1}$, $N_{c,2}$ has co-initiality $\lambda_{c,2}$ and both $N_{c,1}, N_{c,2}$ are $\lambda_{c,0}$-saturated dense linear orders \(^1\).

(c) For $c \in \mathcal{C}$ let S_c be the set of all sequences $\bar{a} = \langle a_{s,t} : s, t \in N_c \rangle$ such that

(c-1) Each $a_{s,t}$ is a subset of κ_c,
(c-2) $a_{s,s} = \emptyset$,
(c-3) For $s \neq t, a_{s,t} = \kappa \setminus a_{t,s}$,
(c-4) $s <_{N_c} t \Rightarrow a_{s,t} \in D_c$,
(c-5) If $s_1 <_{N_c} s_2 <_{N_c} s_3$, then

\[(a_{s_1,s_3} \supseteq a_{s_1,s_2} \cap a_{s_2,s_3}) \& (a_{s_3,s_1} \supseteq a_{s_3,s_2} \cap a_{s_2,s_1}).\]

(d) For $c \in \mathcal{C}$ let $N_c^+ = N_{c,1} + N_0 + N_{c,2}$, where N_0 is a singleton, say $N_0 = \{s_0\}$.

We now define the notion of c-solvability.

Definition 2.2. Let $c \in \mathcal{C}$. We say $\bar{a} \in S_c$ is c-solvable, if there exists a sequence $\bar{b} = \langle b_s : s \in N_c \rangle$, such that the sequence $\bar{a}^1 = \bar{a} * \bar{b}$ satisfies clauses (c-1)-(c-5) above, where the sequence $\bar{a}^1 = \langle a_{s,t}^1 : s, t \in N_c^+ \rangle$ is defined as follows:

1. If $s, t \in N_c$, then $a_{s,t}^1 = a_{s,t}$,
2. For $s \in N_{c,1}, a_{s,s}^1 = b_s$ and $a_{s,s}^1 = \kappa \setminus b_s$,
3. For $s \in N_{c,2}, a_{s,s}^1 = b_s$ and $a_{s,s}^1 = \kappa \setminus b_s$,
4. $a_{s,s}^1 = \emptyset$.

Then \bar{b} is called a c-solution for \bar{a}.

3. A combinatorial characterization of $\mathscr{C}(D)$

In this section we give a proof of Theorem 1.1.

Lemma 3.1. Assume $c \in \mathcal{C}$ and $\bar{a} \in S_c$. Then

(a) There are M, \bar{f} such that

(a-1) M is a $(\lambda_{c,1} + \lambda_{c,2})^+$-saturated dense linear order,

\(^{1\text{N}_c\text{ is some fixed linear order which we choose in advance. We may assume global choice and let } N_c \text{ be the least such order.}}\)
(a-2) \(\bar{f} = \langle f_s : s \in N_c \rangle \),

(a-3) Each \(f_s \in {}^\kappa M \),

(a-4) If \(s <^N c t \), then \(a_{s,t} = \{ i < \kappa_c : f_s(i) <_M f_t(i) \} \),

(b) If \(M, \bar{f} \) are as in (a), then

(b-1) \(\langle f_s / D_c : s \in N_c \rangle \) is an increasing sequence in \({}^\kappa M / D_c \),

(b-2) \(\bar{a} \) is \(c \)-solvable iff \({}^\kappa M / D_c \) realizes the type

\[q(x) = \{ f_s / D_c < x < f_t / D_c : s \in N_{c,1} and t \in N_{c,2} \}. \]

Proof. (a) Let \(A = \{(i,s) : i < \kappa_c, s \in N_c \} \), and define the order \(<_A \) on \(A \) by

\[(i_1, s_1) <_A (i_2, s_2) \iff (i_1 < i_2) or (i_1 = i_2 \in a_{s_1, s_2}). \]

Also let \(\leq_A \) be defined on \(A \) in the natural way from \(<_A \), so

\[(i_1, s_1) \leq_A (i_2, s_2) \iff (i_1, s_1) = (i_2, s_2) or (i_1, s_1) <_A (i_2, s_2). \]

It is easily seen that \(\leq_A \) is a linear order on \(A \). Now let \(M \) be a \((\lambda_{c,1} + \lambda_{c,2})^+\)-saturated dense linear order which contains \((A,<_A) \) as a sub-order. Also let \(\bar{f} = \langle f_s : s \in N_c \rangle \), where for \(s \in N_c f_s \in {}^\kappa M \) is defined by \(f_s(i) = (i, s) \). It is clear that \(M \), and \(\bar{f} \) satisfy clauses (a-1)-(a-3). For (a-4), assume \(s <^N c t \) are given. Then

\[a_{s,t} = \{ i < \kappa_c : i \in a_{s,t} \} = \{ i < \kappa_c : (i, s) <_A (i, t) \} = \{ i < \kappa_c : f_s(i) <_M f_t(i) \}. \]

Finally note that for \(s \neq t \) in \(N_c \),

\[\text{range}(f_s) \cap \text{range}(f_t) = \{ (i, s) : i < \kappa_c \} \cap \{ (i, t) : i < \kappa_c \} = \emptyset. \]

So \(M \) and \(\bar{f} \) are as required.

(b) (b-1) follows from (a-4) and the fact that for \(s <^N c t, a_{s,t} \in D_c \). Let’s prove (b-2).

First assume that \(\bar{a} \) is \(c \)-solvable and let \(\bar{b} \) be a solution for \(\bar{a} \). For each \(i < \kappa_c \) let \(p_i(x) \) be the following type over \(M \):

\[p_i(x) = \{ f_s(i) <_M x : s \in N_{c,1} and i \in b_s \} \cup \{ x <_M f_t(i) : t \in N_{c,2} and i \in \kappa_c \setminus b_t \}. \]

Claim 3.2. For each \(i < \kappa_c \), the type \(p_i(x) \) is finitely satisfiable in \(M \).
Proof. Let $s_0 <_{N_{c,1}} \cdots <_{N_{c,1}} s_{n-1}$ be in $N_{c,1}$ and $t_{m-1} <_{N_{c,2}} < \cdots <_{N_{c,2}} t_0$ be in $N_{c,2}$. Also suppose that $i \in \bigcap_{k<n} b_{s_k} \cap \bigcap_{l<m} (\kappa_c \setminus b_{t_l})$. Then for $k < n$ and $l < m$ we have

$$a_{s_k, t_l} \supseteq a^1_{s_k, s_\ast} \cap a^1_{s_\ast, t_l} = b_{s_k} \cap (\kappa_c \setminus b_{t_l}),$$

and so $i \in a_{s_k, t_l}$, which implies $f_{s_k}(i) < f_{t_l}(i)$. Take $x \in M$ so that

$$\forall k < n, \forall l < m, f_{s_k}(i) < x < f_{t_l}(i),$$

which exists as M is dense. It follows that $p_i(x)$ is finitely satisfiable in M. \hfill \Box

It follows that there exists $f \in \kappa_c M$ such that for each $i < \kappa_c$, $f(i)$ realizes the type $p_i(x)$ over M. Then f/D_c realizes $q(x)$ over $\kappa_c M/D_c$.

Conversely assume that $f \in \kappa_c M$ is such that f/D_c realizes the type $q(x)$ over $\kappa_c M/D_c$.

Claim 3.3. We can assume that range(f) is disjoint from A.

Proof. As $(\text{range}(f_s) : s \in N_c)$ is a sequence of pairwise disjoint sets and $\lambda_{c,1}, \lambda_{c,2} > \kappa_c$ are regular, there are $s_1 \in N_{c,1}$ and $s_2 \in N_{c,2}$ such that $s_1 <_{N_c} s <_{N_c} s_2$ implies range(f_s) \cap range(f) = \emptyset. As M is a $(\lambda_{c,1} + \lambda_{c,2})^+$-saturated dense linear order, there is f' such that

- $f' \in \kappa_c M$,
- range(f') \cap A = \emptyset,
- If $s_1 <_{N_c} s <_{N_c} s_2$ and $i < \kappa_c$, then $f_s(i) <_{N_c} f'(i)$ \Rightarrow $f_s(i) <_{N_c} f(i)$ and $f'(i) <_{N_c} f_s(i) \Rightarrow f(i) <_{N_c} f_s(i)$.

So we can replace f by f' and f' satisfies the requirements on f; i.e., f'/D_c realizes $q(x)$ over $\kappa_c M/D_c$ and further range(f') \cap A = \emptyset. \hfill \Box

Now define $\bar{b} = (b_s : s \in N_c)$ by

$$b_s = \begin{cases}
{i < \kappa_c : f_s(i) <_{N_c} f(i)} & \text{if } s \in N_{c,1}, \\
{i < \kappa_c : f(i) <_{N_c} f_s(i)} & \text{if } s \in N_{c,2}.
\end{cases}$$

Claim 3.4. \bar{b} is a c-solution for \bar{a}.

Definition 2.2). (c-1) and (c-2) are trivial and (c-3) follows from the fact that \(\forall i < \kappa_c, f_s(i) \neq f(i) \) (as \(\text{range}(f) \cap A = \emptyset \)).

For (c-4), suppose that \(s < N_c^+ t \). If both \(s, t \) are in \(N_c \), then we are done. So suppose otherwise. There are two cases to consider.

- If \(s = s_* \), then \(t \in N_{c,2} \) and as \(f/D_c \) realizes \(q(x) \), we have \(f/D_c < f_1/D_c \), which implies \(a_{s_*,s}^1 = b_s = \{i < \kappa_c : f(i) < N_c f_1(i)\} \in D_c \).
- If \(t = s_* \), then \(s \in N_{c,1} \) and as \(f/D_c \) realizes \(q(x) \), we have \(f_s < D_c f \), which implies \(a_{s,s_*}^1 = b_s = \{i < \kappa_c : f_s(i) < N_c f(i)\} \in D_c \).

For (c-5), assume \(s_1 < N_c^+ s_2 < N_c^+ s_3 \) are in \(N_c^+ \). If all \(s_1, s_2 \) and \(s_3 \) are in \(N_c \), then we are done. So assume otherwise. There are three cases to be considered:

- If \(s_1 = s_* \), then \(s_2, s_3 \in N_{c,2} \), and we have
 \[
 a_{s_*,s_2}^1 \cap a_{s_2,s_3}^1 = b_{s_2} \cap a_{s_2,s_3} = \{i < \kappa_c : (f(i) < N_c f_{s_2}(i)) \land (f_{s_2}(i) < N_c f_{s_3}(i))\} \\
 \subseteq \{i < \kappa_c : f(i) < N_c f_{s_3}(i)\} \\
 = b_{s_3} \\
 = a_{s_*,s_3}^1.
 \]
 Similarly,
 \[
 a_{s_3,s_2}^1 \cap a_{s_2,s_*}^1 = a_{s_3,s_2} \cap (\kappa_c \setminus b_{s_2}) = \{i < \kappa_c : (f_{s_2}(i) \geq N_c f_{s_3}(i)) \land (f(i) > N_c f_{s_2}(i))\} \\
 \subseteq \{i < \kappa_c : f(i) > N_c f_{s_3}(i)\} \\
 = \kappa_c \setminus b_{s_3} \\
 = a_{s_3,s_*}^1.
 \]

- If \(s_2 = s_* \), then \(s_1 \in N_{c,1}, s_3 \in N_{c,2} \) and we have
 \[
 a_{s_1,s_*}^1 \cap a_{s_*s_3}^1 = b_{s_1} \cap b_{s_3} = \{i < \kappa_c : (f_{s_1}(i) < N_c f(i)) \land (f(i) < N_c f_{s_3}(i))\} \\
 \subseteq \{i < \kappa_c : f_{s_1}(i) < N_c f_{s_3}(i)\} \\
 = a_{s_1,s_3} \\
 = a_{s_1,s_3}^1.
 \]

Also,
\[a_{s_3,s_*}^1 \cap a_{s_2,s_1}^1 = (\kappa_c \setminus b_{s_3}) \cap (\kappa_c \setminus b_{s_1})
\]
\[= \{i < \kappa_c : (f_{s_3}(i) <_{N_c} f(i)) \wedge (f(i) <_{N_c} f_{s_1}(i))\}
\]
\[\subseteq \{i < \kappa_c : f_{s_3}(i) \leq_{N_c} f_{s_1}(i)\}
\]
\[= a_{s_3,s_1}
\]
\[= a_{s_3,s_1}^1.
\]

- If \(s_3 = s_*\), then \(s_1, s_2 \in N_{c,1}\) and we have
 \[a_{s_1,s_2}^1 \cap a_{s_2,s_*}^1 = a_{s_1,s_2} \cap b_{s_2}
 \]
 \[= \{i < \kappa_c : (f_{s_1}(i) <_{N_c} f_{s_2}(i)) \wedge (f_{s_2}(i) <_{N_c} f(i))\}
 \]
 \[\subseteq \{i < \kappa_c : f_{s_1}(i) <_{N_c} f(i)\}
 \]
 \[= b_{s_1}
 \]
 \[= a_{s_1,s_*}^1.
 \]

Similarly, we have

\[a_{s_2,s_2}^1 \cap a_{s_2,s_1}^1 = (\kappa_c \setminus b_{s_2}) \cap a_{s_2,s_1}
\]
\[= \{i < \kappa_c : (f_{s_2}(i) >_{N_c} f(i)) \wedge (f_{s_1}(i) \geq_{N_c} f_{s_2}(i))\}
\]
\[\subseteq \{i < \kappa_c : f_{s_1}(i) >_{N_c} f(i)\}
\]
\[= \kappa_c \setminus b_{s_1}
\]
\[= a_{s_2,s_1}^1.
\]

Hence, \(\bar{b}\) is a \(c\)-solution for \(\bar{a}\), as required. \(\Box\)

The lemma follows. \(\Box\)

Given \(c \in C\), the next lemma gives a characterization, in terms of \(c\)-solubility, of when

\((\lambda_{c,1}, \lambda_{c,2})\) is in \(\mathcal{E}(D_c)\), which also completes the proof of Theorem 1.1.

Lemma 3.5. Assume \(c \in C\) and \(M\) is a \(\lambda_c^+\)-saturated dense linear order. The following are equivalent:

(a) There is \(\bar{a} \in S_c\) which is not \(c\)-solvable.

(b) \((\lambda_{c,1}, \lambda_{c,2}) \in \mathcal{E}(D_c)\).

Proof. First assume there exists \(\bar{a} \in S_c\) which is not \(c\)-solvable. By Lemma 3.1, there are

\(M, \bar{f}\) which satisfy clauses (1-a)-(1-e) of that lemma. But then as \(\bar{a}\) is not \(c\)-solvable, by
Lemma 2.3(b-2), the type
\[q(x) = \{ f_s/D_c < x < f_t/D_c : s \in N_{c,1} \text{ and } t \in N_{c,2} \}. \]
is not realized. It follows that \((\lambda_{c,1}, \lambda_{c,2}) \in \mathcal{C}(D_c)\).

Conversely assume that \(M\) and \(\bar{f} = \langle f_s : s \in N_c \rangle\) witness \((\lambda_{c,1}, \lambda_{c,2}) \in \mathcal{C}(D_c)\). Let \(A = \bigcup \{ \text{range}(f_s) : s \in N_c \}\), and let \(\langle I_d : d \in A \rangle\) be a sequence of pairwise disjoint intervals of \(M\) such that \(d \in I_d\). For \(s \in N_c\), let \(f'_s \in \kappa \cdot M\) be such that \(f'_s(i) \in I_{f_s(i)}\) and \(\langle f'_s(i) : s \in N_c, i < \kappa \rangle\) is with no repetitions. Define the sequence \(\bar{a} = \langle a_{s,t} : s, t \in N_c \rangle\), such that for \(s < N_c, t, a_{s,t} = \{ i < \kappa : f_s(i) < f_t(i) \}\) and \(a_{t,s} = \kappa_c \setminus a_{s,t}\). Also set \(a_{s,s} = \emptyset\). It is evident that \(\bar{a} \in \mathcal{S}_c\).

Claim 3.6. \(\bar{a}\) is not \(c\)-solvable.

Proof. Assume not. Then by Lemma 3.1(b-2), the type
\[q(x) = \{ f_s/D_c < x < f_t/D_c : s \in N_{c,1} \text{ and } t \in N_{c,2} \} \]
is realized in \(\kappa \cdot M/D_c\), which contradicts the choice of \(M, \bar{f}\).

The Lemma follows.

4. For \(\aleph_1\)-complete ultrafilter, \(\mathcal{C}(D)\) contains no non-symmetric pairs

In this section we prove part (a) of Theorem 1.2. In fact we will prove something stronger, that is of interest in its own sake.

Definition 4.1. Assume \(D\) is an ultrafilter on \(\kappa\), \(\langle I_i : i < \kappa \rangle\) is a sequence of linear orders and \(I = \prod_{i < \kappa} I_i/D\).

(a) a subset \(K\) of \(I\) is called internal if there are subsets \(K_i \subseteq I_i\) such that \(K = \prod_{i < \kappa} K_i/D\).

(b) The cut \((J^1, J^2)\) of \(I\) is called internal, if there are cuts \((J^1_i, J^2_i)\) of \(I_i, i < \kappa\), such that \(J^l = \prod_{i < \kappa} J^l_i/D \ (l = 1, 2)\).

\(^2\)The existence of the sequence \(\langle I_d : d \in A \rangle\) follows from the fact that \(|A| \leq \kappa \cdot |N_c| \leq \lambda_c\) and \(M\) is \(\lambda^+\)-saturated.
Remark 4.2. Assume J is an initial segment of I which is internal and suppose that $(J, I \setminus J)$ is a cut of I. Then $(J, I \setminus J)$ is in fact an internal cut of I. Similarly, if J is an end segment of I which is internal and if $(I \setminus J, J)$ is a cut of I, then $(I \setminus J, J)$ is an internal cut of I.

Theorem 4.3. Assume D is a uniform \aleph_1-complete ultrafilter on κ, $(I_i : i < \kappa)$ is a sequence of non-empty linear orders and $I = \prod_{i<\kappa} I_i / D$. Also assume (J_1, J_2) is a cut of I of cofinality (θ_1, θ_2), where $\theta_1 \neq \theta_2$. Then the cut (J_1, J_2) is internal.

Before giving the proof of Theorem 4.3, let us show that it implies Theorem 1.2(a).

Proof of Theorem 1.2(a) from Theorem 4.3. Suppose D is an \aleph_1-complete ultrafilter on κ, J is a $(\lambda_1 + \lambda_2)^+$-saturated dense linear order and (J_1, J_2) is a cut of I of cofinality (θ_1, θ_2), where $\theta_1 \neq \theta_2$. Then the cut (J_1, J_2) is internal.

We are now ready to complete the proof of Theorem 4.3.

Proof. We can assume that θ_1, θ_2 are infinite. Let $<^1_i = <^1_{I_i}$ ($i < \kappa$) and $<_1 = <_I$. Let $<_2$ be a well-ordering of I_i with a last element and let $<_2$ be such that $(I, <_2) = \prod_{i<\kappa} (I_i, <^2_i)/D$. Then $<_2$ is a linear ordering of I with a last element and since D is \aleph_1-complete, it is well-founded, so $<_2$ is in fact a well-ordering of I with a last element.

As $(J^1, <_1)$ has cofinality θ_1, we can find $f_\alpha \in \prod_{i<\kappa} I_i$, for $\alpha < \theta_1$, such that

1. $\forall \alpha < \theta_1, f_\alpha / D \in J^1$,
2. $(f_\alpha / D : \alpha < \theta_1)$ is $<_1$-increasing,
3. $(f_\alpha / D : \alpha < \theta_1)$ is a $<_1$-cofinal subset of J^1.

It follows that $\lambda_l = \prod_{i<\kappa} \lambda^l_i / D \geq (\lambda_1 + \lambda_2)^+$, which is a contradiction. \hfill \Box
Let $B = \{ t \in I : \{ s \in J^1 : s \prec_2 t \} \text{ is } \prec_1\text{-unbounded in } J^1 \}$. As θ_1 is infinite, the \prec_2-last element of I belongs to B, which implies $B \neq \emptyset$ and hence B has a \prec_2-minimal element; call it t_\ast. Let $g_* \in \prod_{i < \kappa} I_i$ be such that $t_\ast = g_*/D$.

Note that for each $\alpha < \theta_1$ there are $s \in J^1$ and $\beta > \alpha$ such that $s \prec_2 g_*/D$ and $f_\alpha/D < s < f_\beta/D$, so we can assume that for all $\alpha < \theta_1$, $f_\alpha/D < 2 g_*/D$. This implies

$$
\bigwedge_{\alpha < \theta_1} \{ [i < \kappa : f_\alpha(i) \prec_1^2 g_*(i)] \in D \}.
$$

Also note that

$$
\{ i < \kappa : g_*(i) \text{ is } \prec_1^< \text{-minimal or } \prec_1^> \text{-maximal} \} \notin D,
$$

so, without loss of generality, it is empty. Hence, without loss of generality

$$
\bigwedge_{\alpha < \theta_1} \bigwedge_{i < \kappa} [f_\alpha(i) \prec_1^2 g_*(i) \text{ and } f_\alpha(i) \text{ is not } \prec_1^< \text{-minimal}].
$$

Let $f_{\theta_1} = g_*$ and for $\alpha \leq \theta_1$ set $K_\alpha = \{ s \in I : s \prec_2 f_\alpha/D \}$. Thus K_α is a \prec_2-initial segment of I.

Claim 4.4. $K_\alpha \cap J^1$ is \prec_1-bounded in J^1.

Proof. As $f_\alpha/D <_1 t_\ast$, it follows from our choice of t_\ast that K_α is \prec_1 bounded in J^1. \qed

Claim 4.5. If $\alpha < \theta_1$, then K_α is an internal subset of I.

Proof. For each $i < \kappa$ set

$$
K_{\alpha,i} = \{ s \in I_i : s \prec_1^2 f_\alpha(i) \}.
$$

Then $K_\alpha = \prod K_{\alpha,i}/D$ and the result follows. \qed

Now consider the following statement:

(*) There is $\alpha < \theta_1$ such that $J^2 \cap K_\alpha$ is \prec_1-unbounded from below in J^2.

We split the proof into two cases.

Case 1. (*) holds: Fix α witnessing (*). It follows that $(J^1 \cap K_\alpha, J^2 \cap K_\alpha)$ is internal in K_α, so there are end segments L_i of $I_i \mid \{ s \in I_i : s \prec_1^2 f_\alpha(i) \}$, for $i < \kappa$, such that $J^2 \cap K_\alpha = \prod_{i < \kappa} L_i/D$, hence by the assumption, $J^2 = \prod_{i < \kappa} L_i'/D$, where $L_i' = \{ t \in I_i : \exists s \in L_i, s \leq_1^< t \}$, so J^2 is internal. It follows from Remark 4.2 that (J^1, J^2) is an internal cut of I and we are done.
Case 2. (⋆) fails: So for any $\alpha < \theta_1$, there is $s_\alpha \in J^2$ such that

$$\{s \in J^2 : s \preceq_1 s_\alpha\} \cap K_\alpha = \emptyset.$$

As $\theta_1 \neq \theta_2$ are regular cardinals, there is $s_* \in J^2$ such that

$$\sup\{\alpha < \theta_1 : s_* \preceq_1 s_\alpha\} = \theta_1,$$

hence

$$\{s \in J^2 : s \preceq_1 s_*\} \cap (\bigcup_{\alpha < \theta_1} K_\alpha) = \emptyset.$$

Claim 4.6. $\bigcup_{\alpha < \theta_1} K_\alpha = K_{\theta_1}$.

Proof. It is clear that $\bigcup_{\alpha < \theta_1} K_\alpha \subseteq K_{\theta_1}$. Now suppose $s \in K_{\theta_1}$, so $s <_2 g_*/D$. If $s \notin \bigcup_{\alpha < \theta_1} K_\alpha$, then for any $\alpha < \theta_1$, $f_\alpha/D <_2 s$. So by the minimal choice of t_* and the fact that $\langle f_\alpha/D : \alpha < \theta_1 \rangle$ is $<_1$-cofinal in J^1, we have $g_*/D \leq_2 s$ which is a contradiction. □

So we have $\{s \in J^2 : s \preceq_1 s_*\} \cap K_{\theta_1} = \emptyset$. Let $h_* \in \prod_{i<\kappa} I_i$ be such that $s_* = h_*/D$.

Claim 4.7.

(a) K_{θ_1} is internal.

(b) $J^1 \cap K_{\theta_1}$ is $<_1$-unbounded in J^1.

(c) $J^1 \cap K_{\theta_1}$ is internal.

Proof. (a) can be proved as in Claim 4.5 using f_{θ_1} instead of f_α. (b) is also clear as $J^1 \cap K_{\theta_1} \supseteq \{f_\alpha/D : \alpha < \theta_1\}$ and $\langle f_\alpha/D : \alpha < \theta_1 \rangle$ is $<_1$-unbounded in J^1. Let’s prove (c). As $\{s \in J^2 : s \preceq_1 s_*\} \cap K_{\theta_1} = \emptyset$ and $I = J^1 \cup J^2$, we can easily see that

$$J^1 \cap K_{\theta_1} = \{s \in K_{\theta_1} : s \preceq_1 s_*\}.$$

For each $i < \kappa$ set

$$L_i = \{s \in I_i : s <_{i}^2 f_{\theta_1}(i) \text{ and } s <_{i}^1 h_*(i)\}.$$

It follows that $J^1 \cap K_{\theta_1} = \prod_{i<\kappa} L_i/D$, and so $J^1 \cap K_{\theta_1}$ is internal. □

It follows from the above claim that $J^1 = \prod_{i<\kappa} L'_i/D$, where for $i < \kappa$, $L'_i = \{t \in I_i : \exists s \in L_i, t \preceq_i^1 s\}$. Hence J^1 is internal and so by Remark 4.2, (J^1, J^2) is an internal cut of I which completes the proof of Case 2. The theorem follows. □
5. $\mathcal{C}_{2^\kappa}(D)$ Contains No Non-Symmetric Pairs

In this section we show that if D is a uniform ultrafilter on κ, then $\mathcal{C}_{2^\kappa}(D)$ does not contain any non-symmetric pairs. Again, we prove a stronger result from which the above claim, and hence Theorem 1.2(b) follows.

Theorem 5.1. Assume D is a uniform ultrafilter on κ, $\langle I_i : i < \kappa \rangle$ is a sequence of linear orders and $I = \prod_{i<\kappa} I_i/D$. Also assume (J^1, J^2) is a cut of I of cofinality (θ_1, θ_2), where $\theta_1 \neq \theta_2$ are bigger than 2^κ. Then the cut (J^1, J^2) is internal.

Proof. Let $<^1_i = <_{I_i}$ ($i < \kappa$) and $<_1 = <_I$. Let $<^2_i$, for $i < \kappa$, be a well-ordering of I_i with a last element and let $<_2$ be such that $(I, <_2) = \prod_{i<\kappa} (I_i, <^2_i)/D$; so $<_2$ is a linear ordering of I with a last element.

We say a sequence $\bar{K} = \langle K_i : i < \kappa \rangle$ catches (J^1, J^2) if each $K_i \subseteq I_i$ is non-empty and for every $s_1 \in J^1$ and $s_2 \in J^2$, there is $t \in \prod_{i<\kappa} K_i/D$ such that $s_1 \leq_1 t \leq_1 s_2$. Set

$$S = \{ K : \bar{K} \text{ catches } (J^1, J^2) \},$$

and

$$C = \{ \bar{\mu} = \langle \mu_i : i < \kappa \rangle : \text{There exists } K \in S \text{ such that } \bigwedge_{i<\kappa} |K_i| = \mu_i \}. $$

We can define an order on C by

$$\bar{\mu}^1 = \langle \mu_i^1 : i < \kappa \rangle <_D \bar{\mu}^2 = \langle \mu_i^2 : i < \kappa \rangle \iff \{ i < \kappa : \mu_i^1 < \mu_i^2 \} \in D.$$

Now consider the following statement:

\((*)\) There is $\bar{\mu} \in C$ which is $<_D$-minimal.

We consider two cases.

Case 1. \((*)\) holds: Fix $\bar{\mu} = \langle \mu_i : i < \kappa \rangle$ witnessing (*), and let $\bar{K} \in S$ be such that for all $i < \kappa$, $|K_i| = \mu_i$. Let $<_3^1$ be a well-ordering of K_i of order type μ_i and let $<_3$ be such that $(K, <_3) = \prod_{i<\kappa} (K_i, <_3^i)/D$, where $K = \prod_{i<\kappa} K_i/D \subseteq I$. Let $\theta_3 = \text{cf}(\prod_{i<\kappa} \mu_i/D)$ and let $g_\alpha \in \prod_{i<\kappa} K_i$, $\alpha < \theta_3$, be such that $\langle g_\alpha/D : \alpha < \theta_3 \rangle$ is $<_3$-increasing and cofinal in $(K, <_3)$.

As $\theta_1 \neq \theta_2$, for some $l \in \{1, 2\}$, $\theta_3 \neq \theta_l$. Assume without loss of generality that $\theta_3 \neq \theta_1$.

For $\alpha < \theta_3$ and $i < \kappa$ set

$$K_{\alpha, i} = \{ s \in K_i : s <_3^i g_\alpha(i) \}.$$
and

\[K_\alpha = K \mid \{ s : s \prec_3 g_\alpha / D \} = \prod_{i<\kappa} K_{\alpha,i} / D. \]

Then the sequence \(\langle K_\alpha : \alpha < \theta_3 \rangle \) is \(\subseteq \)-increasing and \(K = \bigcup_{\alpha<\theta_3} K_\alpha \). The next claim is evident from our construction.

Claim 5.2. \(K \) is internal.

By our choice of \(\bar{\mu} \), the sequence \(\langle K_{\alpha,i} : i<\kappa \rangle \) does not catch \((J^1, J^2) \), and hence we can find \(s_\alpha \in J^1 \) and \(t_\alpha \in J^2 \) such that

\[K_\alpha \cap \{ s \in I : s_\alpha \prec_1 s < t_\alpha \} = \emptyset. \]

As \(\theta_3 \neq \theta_1 \), there is \(s_* \in J^1 \) such that

\[\sup \{ \alpha < \theta_3 : s_\alpha \leq_1 s_* \} = \theta_3. \]

It follows that \(K \cap \{ s \in J^1 : s_* \leq_1 s \} = \emptyset \). As \(K \) catches \((J^1, J^2) \), it follows that \(J^2 \cap K \) is \(<_1 \)-cofinal in \(J^2 \) from below, and since \(K \) is internal, the arguments of section 2 show that \(J^2 \) is also internal, and hence by Remark 4.2, \((J^1, J^2) \) is an internal cut of \(I \), as required.

Case 2. \(\ast \) fails: Clearly \(\prec_D \) is a linear order on \(C \), so it has a co-initiality, call it \(\theta_3 \). As \(\ast \) fails, \(\prec_D \) is not well-founded and so \(\theta_3 \geq \aleph_0 \).

Claim 5.3. \(\theta_3 \leq 2^\kappa \).

Proof. Suppose not. Let \(\langle \bar{\mu}_\xi : \xi < (2^\kappa)^+ \rangle \) be a \(\prec_D \)-decreasing chain of elements of \(C \). Define a partition \(F : [(2^\kappa)^+]^2 \to \kappa \) by

\[F(\xi, \zeta) = \min \{ i < \kappa : \mu_1^{\xi} < \mu_1^{\zeta} \}, \]

which is well-defined as \(\{ i < \kappa : \mu_1^{\xi} < \mu_1^{\zeta} \} \in D \), in particular it is non-empty. By the Erdős-Rado partition theorem, there are \(X \subseteq (2^\kappa)^+ \) of size \(\kappa^+ \) and some fixed \(i_* < \kappa \) such that for all \(\xi < \zeta \) in \(X \), \(F(\xi, \zeta) = i_* \). Thus

\[\xi < \zeta \in X \Rightarrow \mu_1^{\xi} < \mu_1^{\zeta}, \]

which is impossible. \(\square \)
Let $\langle \bar{\mu}_\xi = (\mu_{\xi,i} : i < \kappa) : \xi < \theta_3 \rangle$ be $<_D$-decreasing which is unbounded from below in $(C,<_D)$. For $\xi < \theta_3$ choose $K_\xi = \langle K_{\xi,i} : i < \kappa \rangle \in S$ such that for all $i < \kappa$, $|K_{\xi,i}| = \mu_{\xi,i}$.

Let $K_\xi = \prod_{i<\kappa} K_{\xi,i} / D \subseteq I$. We consider two subcases.

Subcase 2.1. For some $\xi < \theta_3$, $K_\xi \cap J^1$ is bounded in $(J^1,<_1)$: Fix such a $\xi < \theta_3$ and let $s_\kappa \in J^1$ be a bound. Then as K_ξ catches (J^1, J^2), it follows that $K_\xi \cap J^2$ is unbounded in J^2 from below. Since K_ξ is internal and $K_\xi \cap J^2$ is unbounded in J^2 from below, so J^2 is internal. In follows that the cut (J^1, J^2) is internal and we are done.

Subcase 2.2. For all $\xi < \theta_3$, $K_\xi \cap J^1$ is unbounded in $(J^1,<_1)$: Since $\text{cf}(J^1,<_1) = \theta_1$, there are functions $f_\alpha \in \prod_{i<\kappa} I_i$, for $\alpha < \theta_1$, such that

1. $\forall \alpha < \theta_1, f_\alpha / D \in J^1$,
2. $\langle f_\alpha / D : \alpha < \theta_1 \rangle$ is $<_1$-increasing,
3. $\langle f_\alpha / D : \alpha < \theta_1 \rangle$ is a $<_1$-cofinal subset of J^1.

For every $\alpha < \theta_1$ and $\xi < \theta_3$ there are β and g such that

4. $\alpha < \beta < \theta_1$,
5. $g \in \prod_{i<\kappa} K_{\xi,i}$,
6. $f_\alpha / D <_1 g / D <_1 f_\beta / D$.

For $\alpha < \beta < \theta_1$ set

$$\Lambda_{\alpha,\beta} = \{ (\xi,i) : f_\alpha(i) \leq^1 f_\beta(i) \text{ and there is } s \in K_{\xi,i} \text{ such that } f_\alpha(i) \leq^1 s \leq^1 f_\beta(i) \}.$$

For $i < \kappa$ set $\Lambda_{\alpha,\beta,i} = \{ \xi < \theta_3 : (\xi,i) \in \Lambda_{\alpha,\beta} \}$ and $\Xi_{\alpha,\beta} = \{ i < \kappa : \Lambda_{\alpha,\beta,i} \neq \emptyset \}$. Also let $F^1_{\alpha,\beta}, F^2_{\alpha,\beta}$ be functions with domain κ such that

- If $i \in \Xi_{\alpha,\beta}$, then
 $$F^1_{\alpha,\beta}(i) = \min \{ \mu_{\xi,i} : (\xi,i) \in \Lambda_{\alpha,\beta} \},$$

 and

 $$F^2_{\alpha,\beta}(i) = \min \{ \xi : \mu_{\xi,i} = F^1_{\alpha,\beta}(i) \}.$$

- If $i \in \kappa \setminus \Xi_{\alpha,\beta}$, then $F^1_{\alpha,\beta}(i) = F^2_{\alpha,\beta}(i) = 0$.

Claim 5.4. For each $\alpha < \theta_1$ there exist $A_\alpha \subseteq (\alpha, \theta_1)$, functions $F^1_{\alpha}, F^2_{\alpha}$ and a set Ξ_{α} such that
(1) $A_\alpha = \{ \beta \in (\alpha, \theta_1) : F^1_{\alpha,\beta} = F^1_\alpha, F^2_{\alpha,\beta} = F^2_\alpha \text{ and } \Xi_{\alpha,\beta} = \Xi_\alpha \}.$

(2) $\sup(A_\alpha) = \theta_1.$

Proof. As $\theta_3 \leq 2^\kappa$, we have

$$|\{(F^1_{\alpha,\beta}, F^2_{\alpha,\beta}, \Xi_{\alpha,\beta}) : \alpha < \beta < \theta_1\}| \leq \theta_3^\kappa = 2^\kappa < \theta_1.$$

So there is an unbounded subset A_α of θ_1 such that all tuples $(F^1_{\alpha,\beta}, F^2_{\alpha,\beta}, \Xi_{\alpha,\beta})$, $\beta \in A_\alpha$, are the same. The result follows immediately. □

The next claim can be proved in a similar way.

Claim 5.5. There are $A \subseteq \theta_1$, functions F_1, F_2 and a set Ξ such that

(1) $A = \{ \alpha < \theta_1 : F^1_\alpha = F_1, F^2_\alpha = F_2 \text{ and } \Xi_\alpha = \Xi \}.$

(2) $\sup(A) = \theta_1.$

Let $\bar{K}^* = \langle K^*_i : i < \kappa \rangle$ where $K^*_i = K_{F_2(i),i}$ and let $\bar{\mu}^* = \langle \mu^*_i : i < \kappa \rangle$ be defined by $\mu^*_i = |K^*_i|$. Note that

$$\mu^*_i = |K^*_i| = |K_{F_2(i),i}| = \mu_{F_2(i),i} = F_1(i).$$

Claim 5.6. For every $\xi < \theta_3$, $\bar{\mu}^* \leq_D \bar{\mu}_\xi$.

Proof. Choose $\alpha \in A$ and $\beta \in A_\alpha$. So we have $F_1 = F^1_{\alpha,\beta}, F_2 = F^2_{\alpha,\beta}$ and $\Xi = \Xi_{\alpha,\beta}$. By the construction, there is $t \in K_\xi$ such that $f_\alpha/D <_1 t <_1 f_\beta/D$. Let $t = g/D$, where $g \in \prod_{i<\kappa} K_{\xi,i}$. Then

$$f_\alpha(i) <_1 g(i) <_1 f_\beta(i) \Rightarrow (\xi, i) \in A_{\alpha,\beta} \Rightarrow \mu^*_i = F_1(i) = F^1_{\alpha,\beta}(i) \leq \mu_{\xi,i}.$$

So

$$\{i < \kappa : \mu^*_i \leq \mu_{\xi,i}\} \supseteq \{i < \kappa : f_\alpha(i) <_1 g(i) <_1 f_\beta(i)\} \in D,$$

and the result follows. □

Claim 5.7. $\bar{\mu}^* \in C.$
Proof. We show that \bar{K}^* catches (J^1, J^2), so that $\bar{K}^* \in S$ witnesses $\bar{\mu}^* \in C$. So let $s_1 \in J^1$ and $s_2 \in J^2$. Pick $\alpha \in A$ such that $s_1 <_1 f_\alpha / D$. Let $\beta \in A_\alpha$. By our construction there is $g \in \prod_{\iota < \kappa} K^*_\iota$ such that $f_\alpha / D <_1 g / D <_1 f_\beta / D$ and hence

$$s_1 <_1 f_\alpha / D <_1 g / D <_1 f_\beta / D <_1 s_2.$$

The claim follows. □

But Claims 5.6 and 5.7 give us a contradiction to the choice of the sequence $\langle \bar{\mu}_\xi : \xi < \theta_3 \rangle$. This contradiction finishes the proof. □

References

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran-Iran.

E-mail address: golshani.m@gmail.com

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA.

E-mail address: shelah@math.huji.ac.il