Singular Cardinals Problem

Mohammad Golshani

IPM, Tehran-Iran

February 25, 2015
Table of Contents

1 Introductory notes
2 Inner models: Consistency of GCH
3 Forcing
4 Power function on regular cardinals
5 Singular cardinals problem
6 Large cardinals
7 Forcing and large cardinals
8 Core model theory
9 Global failure of GCH
10 Coding into a real
11 PCF theory: getting ZFC results
The underlying theory we consider is \textit{ZFC}.
ZFC axioms

- The underlying theory we consider is ZFC.
- $ZFC = \text{Ordinary Mathematics}$.
The underlying theory we consider is \textit{ZFC}: \textit{ZFC} = Ordinary Mathematics.

But most of the talk goes much beyond ZFC!!!
The power set function

Consider Cantor’s continuum hypothesis.
The power set function

- Consider Cantor’s continuum hypothesis.
- It was introduced by Cantor in 1878.
The power set function

- Consider Cantor’s continuum hypothesis.
- It was introduced by Cantor in 1878.
- It asks: How many real numbers are there?
The power set function

- Consider **Cantor’s continuum hypothesis**.
- It was introduced by **Cantor** in 1878.
- It asks: How many real numbers are there?
- **Cantor** Proved:
The power set function

- Consider Cantor’s continuum hypothesis.
- It was introduced by Cantor in 1878.
- It asks: How many real numbers are there?
- Cantor Proved:
 - $\mathbb{R} = 2^{\aleph_0}$.
The power set function

- Consider Cantor’s continuum hypothesis.
- It was introduced by Cantor in 1878.
- It asks: How many real numbers are there?
- Cantor Proved:
 1. $|\mathbb{R}| = 2^{\aleph_0}$,
 2. $2^{\aleph_0} > \aleph_0$.

Cantor's continuum hypothesis was introduced by Cantor in 1878. It asks: How many real numbers are there? Cantor proved:

1. $|\mathbb{R}| = 2^{\aleph_0}$,
2. $2^{\aleph_0} > \aleph_0$.
The power set function

Consider **Cantor’s continuum hypothesis**.

It was introduced by **Cantor** in 1878.

It asks: How many real numbers are there?

Cantor proved:

1. $|\mathbb{R}| = 2^{\aleph_0}$,
2. $2^{\aleph_0} > \aleph_0$.

CH says there are no cardinals between \aleph_0 and 2^{\aleph_0}, i.e., $2^{\aleph_0} = \aleph_1$.
The power set function

- Consider Cantor’s continuum hypothesis.
- It was introduced by Cantor in 1878.
- It asks: How many real numbers are there?
- Cantor Proved:
 1. $|\mathbb{R}| = 2^{\aleph_0}$,
 2. $2^{\aleph_0} > \aleph_0$.
- CH says there are no cardinals between \aleph_0 and 2^{\aleph_0}, i.e., $2^{\aleph_0} = \aleph_1$.
- The continuum problem appeared as the first problem in Hilbert’s problem list in 1900.
There is no reason to restrict ourselves to \(\aleph_0 \).
The power set function

- There is no reason to restrict ourselves to \aleph_0.
- Given any infinite cardinal κ, we can ask the same question for 2^κ.
The power set function

- There is no reason to restrict ourselves to \aleph_0.
- Given any infinite cardinal κ, we can ask the same question for 2^κ.
- Then the generalized Continuum hypothesis (GCH) says that:
 \[\forall \kappa, 2^\kappa = \kappa^+. \]
The power set function

- There is no reason to restrict ourselves to \aleph_0.
- Given any infinite cardinal κ, we can ask the same question for 2^κ.
- Then the **generalized Continuum hypothesis (GCH)** says that:
 $$\forall \kappa, 2^\kappa = \kappa^+.$$
- **GCH** first appeared in some works of Peirce, Hausdorff, Tarski and Sierpinski.
The power set function

- The power set (or the continuum) function is defined by

\[\kappa \mapsto 2^\kappa. \]
The power set function

The power set (or the continuum) function is defined by $\kappa \mapsto 2^\kappa$.

The basic problem is to determine the behavior of the power function.
The power set function

- The power set (or the continuum) function is defined by \(\kappa \mapsto 2^\kappa \).
- The basic problem is to determine the behavior of the power function.
- Some related questions are:
 - (Continuum problem - Hilbert’s first problem): Is CH (the assertion \(2^{\aleph_0} = \aleph_1 \)) true?
The power set function

- The power set (or the continuum) function is defined by \(\kappa \mapsto 2^\kappa \).
- The basic problem is to determine the behavior of the power function.
- Some related questions are:
 1. (Continuum problem - Hilbert's first problem): Is CH (the assertion: \(2^{\aleph_0} = \aleph_1 \)) true?
 2. (Generalized continuum problem): Is GCH (the assertion: for all infinite cardinals \(\kappa, 2^\kappa = \kappa^+ \)) true?
Some topics that appear in this talk

Some topics that appear during the talk:
Some topics that appear in this talk

Some topics that appear during the talk:

1. Inner models,
Some topics that appear in this talk

Some topics that appear during the talk:

1. Inner models,
2. Forcing,
Some topics that appear in this talk

Some topics that appear during the talk:

1. Inner models,
2. Forcing,
3. Large cardinals,
Some topics that appear in this talk

Some topics that appear during the talk:

1. Inner models,
2. Forcing,
3. Large cardinals,
4. Core model theory
Some topics that appear in this talk

Some topics that appear during the talk:

1. Inner models,
2. Forcing,
3. Large cardinals,
4. Core model theory,
5. PCF theory
An **inner model** is a definable class M such that:
An inner model is a definable class M such that:

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M
An **inner model** is a definable class M such that:

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,
- M contains all ordinals,
Inner models

An inner model is a definable class M such that:

- M is transitive, i.e., $x \in M \Rightarrow x \subseteq M$,
- M contains all ordinals,
- $M \models ZFC$.
We are just interested in those inner models which are constructed by some law.
Inner models

- We are just interested in those inner models which are constructed by some **law**.
- It will allow us to construct the required inner model in a transfinite way.
Inner models

- We are just interested in those inner models which are constructed by some law.
- It will allow us to construct the required inner model in a transfinite way.
- Passing from one level to the next level, we do construct it in a control and unified way.
Inner models

- We are just interested in those inner models which are constructed by some law.
- It will allow us to construct the required inner model in a transfinite way.
- Passing from one level to the next level, we do construct it in a control and unified way.
- It will allow us to be able to control sets we are adding in each step, and so control the size of power sets.
Consistency of \textit{GCH}

- The theory of \textit{inner models} was introduced by \textit{Godel}.
Consistency of GCH

- The theory of inner models was introduced by Godel.
- He used the method to construct a model L of $\text{ZFC} + GCH$, thus showing that GCH is consistent with ZFC.
Consistency of *GCH*

- The theory of **inner models** was introduced by **Godel**.

- He used the method to construct a model L of $\textit{ZFC + GCH}$, thus showing that \textit{GCH} is consistent with \textit{ZFC}.

- Thus adding \textit{GCH} to mathematics does not lead to a contradiction.
Consistency of GCH

- The theory of **inner models** was introduced by **Godel**.
- He used the method to construct a model L of $\text{ZFC} + GCH$, thus showing that GCH is consistent with ZFC.
- Thus adding GCH to mathematics does not lead to a contradiction.
- But it does not say that GCH is provable in mathematics!
Forcing

The method of forcing was introduced by Paul Cohen in 1963.
The method of forcing was introduced by Paul Cohen in 1963.

He used the method to show that $2^{\aleph_0} = \aleph_2$, and hence $\neg CH$, is consistent with ZFC.
The method of **forcing** was introduced by Paul Cohen in 1963.

He used the method to show that $2^\aleph_0 = \aleph_2$, and hence $\neg CH$, is consistent with ZFC.

The method was extended by Robert Solovay (in the same year) to show that $2^\aleph_0 = \kappa$, for any cardinal κ with $\text{cf}(\kappa) > \aleph_0$, is consistent with ZFC.
How does forcing work

1. We start by picking a partially ordered set \mathbb{P},
How does forcing work

1. We start by picking a partially ordered set \(\mathbb{P} \),

2. We assign a subset \(G \) of it, called \(\mathbb{P} \)-generic filter over \(V \),
How does forcing work

1. We start by picking a partially ordered set \mathbb{P},
2. We assign a subset G of it, called \mathbb{P}-generic filter over V,
3. G is not necessarily in V!!!
How does forcing work

1. We start by picking a partially ordered set \mathbb{P},
2. We assign a subset G of it, called \mathbb{P}-generic filter over V,
3. G is not necessarily in V!!
4. We build an extension $V[G]$ of V which is still a transitive model of ZFC with the same ordinals as V.
How does forcing work

1. We start by picking a partially ordered set \mathbb{P},
2. We assign a subset G of it, called \mathbb{P}-generic filter over V,
3. G is not necessarily in V!!!
4. We build an extension $V[G]$ of V which is still a transitive model of ZFC with the same ordinals as V.
5. $V[G]$ includes V and has G as a new element.
How does forcing work

1. We start by picking a partially ordered set \mathbb{P},
2. We assign a subset G of it, called \mathbb{P}-generic filter over V,
3. G is not necessarily in V!!!
4. We build an extension $V[G]$ of V which is still a transitive model of ZFC with the same ordinals as V.
5. $V[G]$ includes V and has G as a new element.
6. $V[G]$ is the smallest transitive model of ZFC with the above properties.
Easton’s theorem

Recall that:
Easton’s theorem

Recall that:

\[\kappa < \lambda \Rightarrow 2^\kappa \leq 2^\lambda, \]
Easton’s theorem

Recall that:

1. $\kappa < \lambda \Rightarrow 2^\kappa \leq 2^\lambda$,
2. $\forall \kappa, \text{cf}(2^\kappa) > \kappa$.

Forcing
Easton’s theorem

Recall that:

- $\kappa < \lambda \Rightarrow 2^\kappa \leq 2^\lambda$,
- $\forall \kappa, cf(2^\kappa) > \kappa$.

Easton’s theorem (1970) says that these two properties are all things we can prove in ZFC about the power function on regular cardinals!
Easton’s theorem

Recall that:

\[\kappa \prec \lambda \Rightarrow 2^\kappa \leq 2^\lambda, \]
\[\forall \kappa, \text{cf}(2^\kappa) > \kappa. \]

Thus mathematics says nothing (except two trivial facts) about power of regular cardinals.
Easton’s theorem

Recall that:

- $\kappa < \lambda \Rightarrow 2^\kappa \leq 2^\lambda$,
- $\forall \kappa$, $cf(2^\kappa) > \kappa$.

To prove his theorem, Easton created the theory of class forcing, where the poset is not necessarily a set.
Easton’s theorem

Recall that:
\[\kappa < \lambda \Rightarrow 2^\kappa \leq 2^\lambda, \]
\[\forall \kappa, cf(2^\kappa) > \kappa. \]

The situation in this case is much more complicated, as it is not even clear if \(V[G] \models ZFC \).
Singular cardinals hypothesis \((SCH)\)

In Easton type models, the power function on singular cardinals is determined easily:
In Easton type models, the power function on singular cardinals is determined easily:

- For κ singular, 2^κ is the least cardinal such that:
Singular cardinals hypothesis (SCH)

- In Easton type models, the power function on singular cardinals is determined easily:

- For \(\kappa \) singular, \(2^\kappa \) is the least cardinal such that:
 \[
 \forall \lambda < \kappa, 2^\lambda \leq 2^\kappa,
 \]
Singular cardinals hypothesis (SCH)

- In Easton type models, the power function on singular cardinals is determined easily:
- For κ singular, 2^κ is the least cardinal such that:
 1. $\forall \lambda < \kappa, 2^\lambda \leq 2^\kappa$,
 2. $\text{cf}(2^\kappa) > \kappa$.
Singular cardinals hypothesis (SCH)

- In Easton type models, the power function on singular cardinals is determined easily:
- For κ singular, 2^κ is the least cardinal such that:
 1. $\forall \lambda < \kappa, 2^\lambda \leq 2^\kappa$,
 2. $\text{cf}(2^\kappa) > \kappa$.
- Call this assumption: **singular cardinals hypothesis (SCH).**
Singular cardinals hypothesis (SCH)

- In Easton type models, the power function on singular cardinals is determined easily:
- For κ singular, 2^κ is the least cardinal such that:
 1. $\forall \lambda < \kappa, 2^\lambda \leq 2^\kappa$,
 2. $\text{cf}(2^\kappa) > \kappa$.
- Call this assumption: singular cardinals hypothesis (SCH).
- Thus if SCH were a theorem of ZFC, then the power function would be determined by knowing its behavior on all regular cardinals and the cofinality function.
Singular cardinals hypothesis (SCH)

- **Gitik-Magidor**: Fortunately, for the career of the authors, but probably unfortunately for mathematics, the situation turned out to be much more complicated.
Singular cardinals hypothesis (SCH)

- **Gitik-Magidor**: Fortunately, for the career of the authors, but probably unfortunately for mathematics, the situation turned out to be much more complicated.
- In order to go further, we need to introduce large cardinals!
Large cardinals

A cardinal κ is **inaccessible** if
A cardinal κ is **inaccessible** if

1. κ is regular and uncountable,
A cardinal κ is **inaccessible** if

1. κ is regular and uncountable,
2. κ is a limit cardinals,
A cardinal κ is **inaccessible** if

1. κ is regular and uncountable,
2. κ is a limit cardinals,
3. $\lambda < \kappa \Rightarrow 2^\lambda < \kappa.$
A cardinal κ is **inaccessible** if

1. κ is regular and uncountable,
2. κ is a limit cardinal,
3. $\lambda < \kappa \Rightarrow 2^\lambda < \kappa$.

The existence of an inaccessible cardinal is not provable in ZFC!
A cardinal κ is **inaccessible** if

1. κ is regular and uncountable,
2. κ is a limit cardinals,
3. $\lambda < \kappa \Rightarrow 2^\lambda < \kappa$.

- The existence of an inaccessible cardinal is not provable in ZFC!
- Even we can not prove their existence is consistent with ZFC!!
Large cardinals

A cardinal κ is **inaccessible** if

1. κ is regular and uncountable,
2. κ is a limit cardinals,
3. $\lambda < \kappa \Rightarrow 2^\lambda < \kappa$.

- The existence of an inaccessible cardinal is not provable in ZFC!
- Even we can not prove their existence is consistent with ZFC!!
- But we use them in the arguments, and in fact we use much bigger large cardinals!!
Large cardinals

A cardinal κ is **inaccessible** if

1. κ is regular and uncountable,
2. κ is a limit cardinals,
3. $\lambda < \kappa \Rightarrow 2^\lambda < \kappa$.

- The existence of an inaccessible cardinal is not provable in ZFC!
- Even we can not prove their existence is consistent with ZFC!!
- But we use them in the arguments, and in fact we use much bigger large cardinals!!
- We also show their existence is necessary for the results!!!!
Some large cardinals that appear in the arguments:
Large cardinals

Some large cardinals that appear in the arguments:

1. inaccessible cardinals,
Large cardinals

Some large cardinals that appear in the arguments:

1. Inaccessible cardinals.
2. Measurable cardinals.
Some large cardinals that appear in the arguments:

1. Inaccessible cardinals.
2. Measurable cardinals.
3. Measurable cardinals of Mitchell order, say, $o(\kappa) = \lambda$,
Large cardinals

Some large cardinals that appear in the arguments:

1. Inaccessible cardinals.
2. Measurable cardinals.
3. Measurable cardinals of Mitchell order, say, $o(\kappa) = \lambda$,.
4. Strong cardinals.
Large cardinals

Some large cardinals that appear in the arguments:

1. Inaccessible cardinals.
2. Measurable cardinals.
3. Measurable cardinals of Mitchell order, say, $o(\kappa) = \lambda$,
4. Strong cardinals.
5. Supercompact cardinals.
Large cardinals

Some large cardinals that appear in the arguments:

1. Inaccessible cardinals.
2. Measurable cardinals.
3. Measurable cardinals of Mitchell order, say, $o(\kappa) = \lambda$.
4. Strong cardinals.
5. Supercompact cardinals.

The existence of a large cardinal of type (i), implies the consistency of the existence of a proper class of cardinals of type $(i - 1)$.
Consistent failure of \(SCH \)

Using large cardinals, we can violate \(SCH \):
Consistent failure of SCH

Using large cardinals, we can violate SCH:

1. (Silver-1970) Using a supercompact cardinal,
Consistent failure of SCH

Using large cardinals, we can violate SCH:

1. (Silver-1970) Using a supercompact cardinal,
2. (Woodin-Early 1980) Using a strong cardinal,
Consistent failure of SCH

Using large cardinals, we can violate SCH:

1. (Silver-1970) Using a supercompact cardinal,
2. (Woodin-Early 1980) Using a strong cardinal,
3. (Gitik-1989) Using a measurable cardinal κ with $\alpha(\kappa) = \kappa^{++}$.
Consistent failure of SCH

In all of the above models:
In all of the above models:

1. The cardinal κ in which SCH fails is very big, for example it is a limit of measurable cardinals,
Consistent failure of SCH

In all of the above models:

1. The cardinal κ in which SCH fails is very big, for example it is a limit of measurable cardinals,
2. There are many cardinals below κ in which GCH fails.
Consistent failure of \(SCH \)

In all of the above models:

1. The cardinal \(\kappa \) in which \(SCH \) fails is very big, for example it is a limit of measurable cardinals,

2. There are many cardinals below \(\kappa \) in which \(GCH \) fails.

So we can ask:
In all of the above models:

1. The cardinal κ in which SCH fails is very big, for example it is a limit of measurable cardinals,
2. There are many cardinals below κ in which GCH fails.

So we can ask:

- Can κ be small, say \aleph_ω?
Consistent failure of \textit{SCH}

In all of the above models:

1. The cardinal κ in which \textit{SCH} fails is very big, for example it is a limit of measurable cardinals,

2. There are many cardinals below κ in which \textit{GCH} fails.

So we can ask:

- Can κ be small, say \aleph_ω?
- Can \textit{GCH} first fail at a singular cardinal κ?
Consistent failure of \textit{SCH}

- (Silver-1974) \textit{GCH} can not first fail at a singular cardinal of uncountable cofinality (the first unexpected \textit{ZFC} result),
Consistent failure of SCH

- (Silver-1974) GCH can not first fail at a singular cardinal of uncountable cofinality (the first unexpected ZFC result),

- (Magidor-1977) SCH can fail at \beth_ω (with $2^{\beth_\omega} < \beth_\omega^{\omega+\omega}$) (using one supercompact cardinal),
Consistent failure of SCH

- **(Silver-1974)** GCH can not first fail at a singular cardinal of uncountable cofinality (the first unexpected ZFC result),
- **(Magidor-1977)** SCH can fail at \aleph_ω (with $2^{\aleph_\omega} < \aleph_{\omega+\omega}$) (using one supercompact cardinal),
- **(Magidor-1977)** GCH can first fail at \aleph_ω (with $2^{\aleph_\omega} = \aleph_{\omega+2}$) (using large cardinals much stronger than supercompact cardinals),
Consistent failure of SCH

- **(Silver-1974)** \(GCH\) can not first fail at a singular cardinal of uncountable cofinality (the first unexpected ZFC result),

- **(Magidor-1977)** \(SCH\) can fail at \(\aleph_\omega\) (with \(2^{\aleph_\omega} < \aleph_{\omega+\omega}\)) (using one supercompact cardinal),

- **(Magidor-1977)** \(GCH\) can first fail at \(\aleph_\omega\) (with \(2^{\aleph_\omega} = \aleph_{\omega+2}\)) (using large cardinals much stronger that supercompact cardinals),

- **(Shelah-1983)** \(SCH\) can fail at \(\aleph_\omega\) (with \(2^{\aleph_\omega} < \aleph_{\omega_1}\)) (using one supercompact cardinal),
Consistent failure of SCH

- **(Silver-1974)** GCH can not first fail at a singular cardinal of uncountable cofinality (the first unexpected ZFC result),
- **(Magidor-1977)** SCH can fail at \aleph_ω (with $2^{\aleph_\omega} < \aleph_{\omega+\omega}$) (using one supercompact cardinal),
- **(Magidor-1977)** GCH can first fail at \aleph_ω (with $2^{\aleph_\omega} = \aleph_{\omega+2}$) (using large cardinals much stronger that supercompact cardinals),
- **(Shelah-1983)** SCH can fail at \aleph_ω (with $2^{\aleph_\omega} < \aleph_{\omega_1}$) (using one supercompact cardinal),
- **(Gitik-Magidor-1992)** GCH can first fail at \aleph_ω (with $2^{\aleph_\omega} = \aleph_{\alpha+1}$, for any $\alpha < \omega_1$) (using a strong cardinal).
Do we need large cardinals to get the failure of \(SCH \)?
Do we need large cardinals to get the failure of \textit{SCH}?

- Do we need large cardinals to get the failure of \textit{SCH}?
- If yes, how large they should be?
Do we need large cardinals to get the failure of SCH?

- Do we need large cardinals to get the failure of SCH?
- If yes, how large they should be?
- And how can we prove this?
Core models

- Core model theory comes into play!
Core models

- Core model theory comes into play!
- A core model \mathcal{K} for a large cardinal is an inner model such that:
Core models

- Core model theory comes into play!
- A core model \(\mathcal{K} \) for a large cardinal is an inner model such that:
 1. \(\mathcal{K} \) is an \(L \)-like model,
Core models

- Core model theory comes into play!
- A core model \mathcal{K} for a large cardinal is an inner model such that:
 1. \mathcal{K} is an L-like model,
 2. \mathcal{K} attempts to approximate that large cardinal,
Core models

- **Core model theory** comes into play!
- **A core model** \mathcal{K} for a large cardinal is an inner model such that:
 1. \mathcal{K} is an L-like model,
 2. \mathcal{K} attempts to approximate that large cardinal,
 3. If that large cardinal does not exist, then \mathcal{K} approximates V nicely.
Core models

- **Core model theory** comes into play!
- A core model \mathcal{K} for a large cardinal is an inner model such that:
 1. \mathcal{K} is an L-like model,
 2. \mathcal{K} attempts to approximate that large cardinal,
 3. If that large cardinal does not exist, then \mathcal{K} approximates V nicely.

- Core models can be used to show that large cardinals are needed to get the failure of SCH!!!
Core models

- The first result is **Jensen’s covering lemma**, which says:
Core models

- The first result is Jensen’s covering lemma, which says:
 - If $0^\#$ does not exist, then V is close to L, Gödel’s universe.
Core models

- The first result is Jensen’s covering lemma, which says:
 - If 0♯ does not exist, then V is close to L, Godel’s universe.
 - It follows immediately that if SCH fails, then 0♯ exists (and hence there is a proper class of inaccessible cardinals in L).
Core models

- The first result is Jensen’s covering lemma, which says:
- If $0^\#$ does not exist, then V is close to L, Godel’s universe.
- It follows immediately that if SCH fails, then $0^\#$ exists (and hence there is a proper class of inaccessible cardinals in L).
- The work of Dodd-Jensen has started the theory of core models.
Core models

- The first result is **Jensen’s covering lemma**, which says:
 - If \(0^\# \) does not exist, then \(V \) is close to \(L \), Godel’s universe.
- It follows immediately that if \(SCH \) fails, then \(0^\# \) exists (and hence there is a proper class of inaccessible cardinals in \(L \)).
- The work of **Dodd-Jensen** has started the theory of core models.
- In particular they showed that if \(SCH \) fails, then there is an inner model with a measurable cardinal.
Core models

The most important subsequent results are due to Jensen, Dodd, Gitik and Mitchell.
The most important subsequent results are due to Jensen, Dodd, Gitik and Mitchell.

Theorem (Gitik-Woodin): The following are equiconsistent:
Core models

The most important subsequent results are due to Jensen, Dodd, Gitik and Mitchell.

Theorem (Gitik-Woodin): The following are equiconsistent:

1. SCH fails,
Core models

- The most important subsequent results are due to Jensen, Dodd, Gitik and Mitchell.
- Theorem (Gitik-Woodin): The following are equiconsistent:
 1. SCH fails,
 2. SCH fails at \aleph_ω.

The most important subsequent results are due to Jensen, Dodd, Gitik and Mitchell.

Theorem (Gitik-Woodin): The following are equiconsistent:

1. SCH fails,
2. SCH fails at \aleph_ω,
3. GCH first fails at \aleph_ω,
Core models

The most important subsequent results are due to Jensen, Dodd, Gitik and Mitchell.

Theorem (Gitik-Woodin): The following are equiconsistent:

1. SCH fails,
2. SCH fails at \aleph_ω,
3. GCH first fails at \aleph_ω,
4. There exists a measurable cardinals κ with $o(\kappa) = \kappa^{++}$.
Global failure of GCH

- In all of the above constructions, just one singular cardinal is considered.
Global failure of GCH

- In all of the above constructions, just one singular cardinal is considered.
- What if we consider the power function on all cardinals?
Global failure of GCH

- In all of the above constructions, just one singular cardinal is considered.
- What if we consider the power function on all cardinals?
- The problem becomes very complicated, and there are very few general results.
Global failure of GCH

- (Foreman-Woodin (1990)) GCH can fail everywhere (i.e., $\forall \kappa, 2^\kappa > \kappa^+$) (using a supercompact cardinal, and a little more),
Global failure of \textit{GCH}

- (Foreman-Woodin (1990)) \textit{GCH} can fail everywhere (i.e., $\forall \kappa, 2^\kappa > \kappa^+$) (using a supercompact cardinal, and a little more),

- (James Cummings (1992)) \textit{GCH} can hold at successors but fail at limits (using a strong cardinals),
Global failure of \textit{GCH}

- (Foreman-Woodin (1990)) \textit{GCH} can fail everywhere (i.e., $\forall \kappa, 2^\kappa > \kappa^+$) (using a supercompact cardinal, and a little more),

- (James Cummings (1992)) \textit{GCH} can hold at successors but fail at limits (using a strong cardinals),

- (Carmi Merimovich (2006)) We can have $\forall \kappa, 2^\kappa = \kappa^{+n}$, for any fixed natural number $n \geq 2$ (using a strong cardinals),
In all of the above models cofinalities are changed (and in the last two models cardinals are also collapsed),
Global failure of GCH

- In all of the above models cofinalities are changed (and in the last two models cardinals are also collapsed),
- (Sy Friedman) Can we force GCH to fail everywhere without collapsing cardinals and changing cofinalities?
Global failure of GCH

- In all of the above models cofinalities are changed (and in the last two models cardinals are also collapsed),
- *(Sy Friedman)* Can we force GCH to fail everywhere without collapsing cardinals and changing cofinalities?
- **Theorem** *(Friedman-G (2013))* Starting from a strong cardinal, we can find a pair (V_1, V_2) of models of ZFC with the same cardinals and cofinalities, such that GCH holds in V_1 and fails everywhere in V_2,
Global failure of GCH

- In all of the above models cofinalities are changed (and in the last two models cardinals are also collapsed),
- (Sy Friedman) Can we force GCH to fail everywhere without collapsing cardinals and changing cofinalities?
- Theorem (Friedman-G (2013)) Starting from a strong cardinal, we can find a pair (V_1, V_2) of models of ZFC with the same cardinals and cofinalities, such that GCH holds in V_1 and fails everywhere in V_2,
- Thus answer to Friedman’s question is yes.
Adding a single real

- Given V and a real R, let $V[R]$ be the smallest model of ZFC which includes V and has R as an element (if such a model exists).
Adding a single real

- Given V and a real R, let $V[R]$ be the smallest model of ZFC which includes V and has R as an element (if such a model exists).

- **Question** (R. Jensen - R. Solovay (1967)) Can we force the failure of CH just by adding a single real, i.e., can we have V and R as above such that $V \models CH$ but CH fails in $V[R]$?
Adding a single real

- Given V and a real R, let $V[R]$ be the smallest model of \textit{ZFC} which includes V and has R as an element (if such a model exists).

- **Question** (R. Jensen- R. Solovay (1967)) Can we force the failure of \textit{CH} just by adding a single real, i.e., can we have V and R as above such that $V \models \textit{CH}$ but \textit{CH} fails in $V[R]$?

- **Theorem** (Shelah-Woodin (1984)) Assuming the existence of λ-many measurable cardinals, we can find V and a real R such that $V \models \textit{GCH}$ and $V[R] \models 2^{\aleph_0} \geq \lambda$!!!
Adding a single real

Question (Shelah-Woodin (1984)) Can we force total failure of GCH just by adding a single real?
Adding a single real

- **Question** (Shelah-Woodin (1984)) Can we force total failure of GCH just by adding a single real?
- **Theorem** (Friedman-G (2013)) Assuming the existence of a strong cardinal, we can find a model V and a real R such that $V \models GCH$ and $V[R] \models \forall \kappa, 2^\kappa > \kappa^+$,
Adding a single real

- **Question (Shelah-Woodin (1984))** Can we force total failure of GCH just by adding a single real?

- **Theorem (Friedman-G (2013))** Assuming the existence of a strong cardinal, we can find a model V and a real R such that $V \models GCH$ and $V[R] \models \forall \kappa, 2^\kappa > \kappa^+$,

Thus the answer to the question is yes!!!
Silver’s theorem says that there are some non-trivial ZFC results for singular cardinals of uncountable cofinality.
Getting \textit{ZFC} results

- Silver’s theorem says that there are some non-trivial \textit{ZFC} results for singular cardinals of uncountable cofinality.

- After Silver, \textit{Galvin-Hajnal} proved more \textit{ZFC} results about power of singular cardinals of uncountable cofinality.
Silver’s theorem says that there are some non-trivial \(\text{ZFC} \) results for singular cardinals of uncountable cofinality.

After Silver, Galvin-Hajnal proved more \(\text{ZFC} \) results about power of singular cardinals of uncountable cofinality.

For example, they showed that: if \(\forall \alpha < \omega_1, 2^{\aleph_\alpha} < \aleph_{\omega_1} \), then \(2^{\aleph_{\omega_1}} < \aleph(2^{\omega_1})^+ \).
Silver’s theorem says that there are some non-trivial ZFC results for singular cardinals of uncountable cofinality.

After Silver, Galvin-Hajnal proved more ZFC results about power of singular cardinals of uncountable cofinality.

For example, they showed that: if $\forall \alpha < \omega_1, 2^{\aleph_\alpha} < \aleph_\omega_1$, then $2^{\aleph_\omega_1} < \aleph(2\omega_1)^+$.

None of the above results work for singular cardinals of countable cofinality.
Getting ZFC results

In early 1980, Shelah proved the first non-trivial ZFC result for singular cardinals of countable cofinality.
In early 1980, Shelah proved the first non-trivial ZFC result for singular cardinals of countable cofinality.

For example, he proved a result similar to Galvin-Hajnal for \aleph_ω: if \aleph_ω is strong limit, then $2^{\aleph_\omega} < \aleph_{(2^{\aleph_0})^+}$.
In late 1980th, Shelah created a technique, called **PCF theory** which shows that **ZFC** is very strong!!!
PCF theory

- In late 1980th, Shelah created a technique, called **PCF theory** which shows that **ZFC** is very strong!!!
- He used the method to prove many unexpected results just in **ZFC**.
In late 1980th, Shelah created a technique, called PCF theory which shows that ZFC is very strong!!!

He used the method to prove many unexpected results just in ZFC.

Given a set of A of regular cardinals, let:
In late 1980th, Shelah created a technique, called PCF theory which shows that ZFC is very strong!!!

He used the method to prove many unexpected results just in ZFC.

Given a set of A of regular cardinals, let:

$$PCF(A) = \{ \text{cf}(\prod A/U) : U \text{ is an ultrafilter on } A \}.$$
PCF theory

A set A of regular cardinals is progressive, if $|A| < \min(A)$.
PCF theory

- A set A of regular cardinals is progressive, if $|A| < \min(A)$.
- $PCF(A)$ is a closure operator:
A set A of regular cardinals is progressive, if $|A| < \min(A)$.

$PCF(A)$ is a closure operator:

1. $A \subseteq PCF(A)$,
PCF theory

- A set A of regular cardinals is progressive, if $|A| < \text{min}(A)$.
- $PCF(A)$ is a closure operator:
 1. $A \subseteq PCF(A)$,
 2. $PCF(A \cup B) = PCF(A) \cup PCF(B)$,
A set A of regular cardinals is progressive, if $|A| < \min(A)$.

$\text{PCF}(A)$ is a closure operator:

1. $A \subseteq \text{PCF}(A)$,
2. $\text{PCF}(A \cup B) = \text{PCF}(A) \cup \text{PCF}(B)$,
3. $A \subseteq B \Rightarrow \text{PCF}(A) \subseteq \text{PCF}(B)$,
PCF theory

- A set A of regular cardinals is progressive, if $|A| < \text{min}(A)$.
- $\text{PCF}(A)$ is a closure operator:
 1. $A \subseteq \text{PCF}(A)$,
 2. $\text{PCF}(A \cup B) = \text{PCF}(A) \cup \text{PCF}(B)$,
 3. $A \subseteq B \Rightarrow \text{PCF}(A) \subseteq \text{PCF}(B)$,
 4. If $\text{PCF}(A)$ is progressive, then $\text{PCF}(\text{PCF}(A)) = \text{PCF}(A)$.
PCF theory

- How PCF theory is related to cardinal arithmetic?
PCF theory

- How PCF theory is related to cardinal arithmetic?
- (Shelah) Suppose κ is a strong limit singular cardinal which is not a cardinal fixed point, and let A be a progressive tail of the successor cardinals below κ. Then:
How PCF theory is related to cardinal arithmetic?

(Shelah) Suppose κ is a strong limit singular cardinal which is not a cardinal fixed point, and let A be a progressive tail of the successor cardinals below κ. Then:

1. $\max(\text{PCF}(A))$ exists and is in $\text{PCF}(A)$,
PCF theory

- How PCF theory is related to cardinal arithmetic?
- (Shelah) Suppose κ is a strong limit singular cardinal which is not a cardinal fixed point, and let A be a progressive tail of the successor cardinals below κ. Then:
 1. $\max(\text{PCF}(A))$ exists and is in $\text{PCF}(A)$,
 2. $\max(\text{PCF}(A)) = 2^{\kappa}$.
How PCF theory is related to cardinal arithmetic?

(Shelah) Suppose κ is a strong limit singular cardinal which is not a cardinal fixed point, and let A be a progressive tail of the successor cardinals below κ. Then:

1. $\max(\text{PCF}(A))$ exists and is in $\text{PCF}(A)$,
2. $\max(\text{PCF}(A)) = 2^\kappa$.

(Shelah) If A is a progressive set of regular cardinals, then $|\text{PCF}(A)| < |A|^{+4}$!!!
It follows that if \aleph_ω is a strong limit cardinal, then:
PCF theory

- It follows that if \aleph_{ω} is a strong limit cardinal, then:
 \[2^{\aleph_{\omega}} < \aleph_{\omega_4}. \]
It follows that if \aleph_ω is a strong limit cardinal, then:

$$2^{\aleph_\omega} < \aleph_{\omega^4}.$$

(Shelah’s PCF conjecture) If A is a progressive set of regular cardinals, then $|PCF(A)| \leq |A|.$
It follows that if \aleph_ω is a strong limit cardinal, then:

$$2^{\aleph_\omega} < \aleph_{\omega_4}.$$

(Shelah’s PCF conjecture) If A is a progressive set of regular cardinals, then $|PCF(A)| \leq |A|$.

The conjecture implies if \aleph_ω is a strong limit cardinal, then $2^{\aleph_\omega} < \aleph_{\omega_1}$.

PCF theory:
PCF theory

- It follows that if \aleph_ω is a strong limit cardinal, then:
 \[2^{\aleph_\omega} < \aleph_{\omega_4}. \]

- (Shelah's PCF conjecture) If A is a progressive set of regular cardinals, then $|PCF(A)| \leq |A|$.

- The conjecture implies if \aleph_ω is a strong limit cardinal, then $2^{\aleph_\omega} < \aleph_{\omega_1}$.

- So by previous results we will have a complete solution of the power function at \aleph_ω.

(Gitik-201?) Assuming the existence of suitably large cardinals, it is consistent that the PCF conjecture fails.
PCF theory

- (Gitik-201?) Assuming the existence of suitably large cardinals, it is consistent that the PCF conjecture fails.
- Gitik’s result holds for some very large singular cardinal.
PCF theory

- (Gitik-201?) Assuming the existence of suitably large cardinals, it is consistent that the PCF conjecture fails.
- Gitik’s result holds for some very large singular cardinal.
- It is not known if we can extend his proof for \aleph_ω.
(Gitik-201?) Assuming the existence of suitably large cardinals, it is consistent that the PCF conjecture fails.

Gitik’s result holds for some very large singular cardinal.

It is not known if we can extend his proof for \mathfrak{N}_ω.

The following is one of the most important open questions in set theory:
PCF theory

- (Gitik-201?) Assuming the existence of suitably large cardinals, it is consistent that the PCF conjecture fails.
- Gitik’s result holds for some very large singular cardinal.
- It is not known if we can extend his proof for \aleph_ω.
- The following is one of the most important open questions in set theory:
- Is it consistent that \aleph_ω is strong limit and $2^{\aleph_\omega} > \aleph_{\omega_1}$?
Thank you for your attention!!!