On the Dimensions of Cyclic Symmetry Classes of Tensors

M. R. Darafsheh* and M. R. Pournaki†

Department of Mathematics and Computer Science, University of Tehran, and Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

Submitted by Walter Feit

Received November 17, 1997

The dimensions of the symmetry classes of tensors, associated with a certain cyclic subgroup of S_m which is generated by a product of disjoint cycles is explicitly given in terms of the generalized Ramanujan sum. These dimensions can also be expressed as the Euler ϕ-function and the Möbius function.

© 1998 Academic Press

1. INTRODUCTION

Let V be an n-dimensional vector space over the complex field \mathbb{C}. Let $\otimes V$ be the mth tensor power of V and write $\nu_1 \otimes \cdots \otimes \nu_m$ for the decomposable tensor product of the indicated vectors. To each permutation σ in S_m there corresponds a unique linear operator $P(\sigma): \otimes V \rightarrow \otimes V$ determined by $P(\sigma)(\nu_1 \otimes \cdots \otimes \nu_m) = \nu_{\sigma^{-1}(1)} \otimes \cdots \otimes \nu_{\sigma^{-1}(m)}$. Let G be a subgroup of S_m and let $I(G)$ be the set of all the irreducible complex characters of G. It follows from the orthogonality relations for characters that

$$\left\{ T(G, \chi): \otimes V \rightarrow \otimes V | T(G, \chi) = \frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) P(\sigma); \chi \in I(G) \right\}$$

is a set of annihilating idempotents which sum to the identity. The image

*E-mail: darafshe@vax.ipm.ac.ir.
†E-mail: pournaki@vax.ipm.ac.ir.
of $\otimes V$ under the $T(G, \chi)$ is called the symmetry class of tensors associated with G and χ and is denoted by $V^m_\chi(G)$. It is well known that

$$\dim V^m_\chi(G) = \frac{\chi(1)}{|G|} \sum_{\sigma \in G} \chi(\sigma) \ell(\sigma),$$

(1)

where $\ell(\sigma)$ is the number of cycles, including cycles of length 1, in the disjoint cycle decomposition of σ (see [4]).

Several papers are devoted to calculating $\dim V^m_\chi(G)$ in a more closed form than (1). Cummings [2] in the case that G is a cyclic subgroup of \mathbb{Z}_m generated by a cycle of length m gives a formula for $\dim V^m_\chi(G)$ in terms of the Euler ϕ-function and considers the case that G is isomorphic to a direct product of cyclic groups as well. In [3] when G is the dihedral group of order $2m$ is considered and a formula is given when G is equal to the whole group \mathbb{Z}_m in [5] and [6]. In all cases $\dim V^m_\chi(G)$ involves certain functions of n.

In [7] there is a formula for calculating $\dim V^m_\chi(G)$ in the case that $G = \langle \pi_1 \cdots \pi_p \rangle$, where $\pi_i, 1 \leq i \leq p$, are disjoint cycles in \mathbb{Z}_m. This formula involves the Euler ϕ-function and Möbius function and is a modification of the formula given in [2]. In this case if the order of π_i is $m_i, 1 \leq i \leq p$, then $G \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_p}$, m_1, \ldots, m_p are linear and are of the form

$$\chi_h: G \to \mathbb{C}^*, \quad \chi_h((\pi_1 \cdots \pi_p)^t) = \exp\left(\frac{2\pi iht}{[m_1, \ldots, m_p]}\right),$$

$$0 \leq t \leq [m_1, \ldots, m_p] - 1,$$
so

\[I(G) = \{ \chi_h: G \to \mathbb{C}^* \mid 0 \leq h \leq [m_1, \ldots, m_p] - 1 \}, \quad \text{where } [m_1, \ldots, m_p] \]

denotes the least common multiple of the integers \(m_1, \ldots, m_p \). The symbol \((m_1, \ldots, m_p)\) denotes the greatest common divisor of \(m_1, \ldots, m_p \).

2. A Result About the Ramanujan Sum

The well known Ramanujan sum is

\[
C_m(h) = \sum_{t=1}^{m-1} \exp \left(\frac{2\pi iht}{m} \right),
\]

where \(m \) is a positive integer and \(h \) is a nonnegative integer. Ramanujan proved that (see [1])

\[
C_m(h) = \frac{\varphi(m)\mu(m/(m, h))}{\varphi(m/(m, h))},
\]

where \(\varphi \) is the Euler \(\varphi \)-function, i.e., \(\varphi(1) = 1 \); for \(m > 1 \), \(\varphi(m) \) is the number of positive integers less than \(m \) and relatively prime to \(m \), and \(\mu \) is the Möbius function, i.e., \(\mu(1) = 1 \), \(\mu(m) = 0 \) if \(p^2 \mid m \) for some prime number \(p \), and \(\mu(m) = (-1)^y \) if \(m = p_1 \cdots p_r \), where \(p_1, \ldots, p_r \) are distinct prime numbers.

For our main result, we need to generalize the Ramanujan sum. It seems natural to us to generalize the Ramanujan sum as follows.

Definition 1. Let \(m_1, \ldots, m_p \) be positive integers and let \(h \) be a nonnegative integer. Suppose \(d_1 \mid m_1, \ldots, d_p \mid m_p \). The **generalized Ramanujan sum** denoted by \(S(h; m_1, \ldots, m_p; d_1, \ldots, d_p) \) is defined by

\[
S(h; m_1, \ldots, m_p; d_1, \ldots, d_p) = \sum_{t=0}^{[m_1, \ldots, m_p] - 1} \exp \left(\frac{2\pi iht}{[m_1, \ldots, m_p]} \right),
\]

where

\[
\begin{align*}
&\quad (t, m_1) = d_1 \\
&\quad \vdots \\
&\quad (t, m_p) = d_p
\end{align*}
\]
If the set \(0 \leq t \leq [m_1, \ldots, m_p] - 1 \mid (t, m_i) = d_i, \ 1 \leq i \leq p\) is empty, then we define \(S(h; m_1, \ldots, m_p; d_1, \ldots, d_p) = 0\).

Remark 1. It is obvious that \(S(h; m; 1) = C_m(h)\), and so the sum appearing in Definition 1 is a generalization of the Ramanujan sum.

In the following lemma we prove that the generalized Ramanujan sum defined in Definition 1 involves the Ramanujan sum.

Lemma 1. Let \(m_1, \ldots, m_p\) be positive integers and let \(h\) be a nonnegative integer. Suppose \(d_i|m_1, \ldots, d_p|m_p\) and set \(m'_i = m_i/d_i, M_i = m_1 \cdots m_p/m_i, M'_i = m'_1 \cdots m'_p/m'_i, D_i = d_1 \cdots d_p/d_i (1 \leq i \leq p)\) and

\[
l = \frac{(M_1, \ldots, M_p)}{(M'_1, \ldots, M'_p)(D_1, \ldots, D_p)}.
\]

Then we have

\[
S(h; m_1, \ldots, m_p; d_1, \ldots, d_p)
= \begin{cases}
\frac{1}{l} C_{[m_1, \ldots, m_p]}(hl), & \text{if } \left\lfloor \frac{d_1, \ldots, d_p}{d_i} \right\rfloor, m'_i = 1, \ 1 \leq i \leq p \\
0, & \text{otherwise}.
\end{cases}
\]

Proof. By Definition 1 and the fact that \(\exp(2\pi iht/[m_1, \ldots, m_p])\) is a periodic function of \(t\) with period \([m_1, \ldots, m_p]\) we have

\[
S(h; m_1, \ldots, m_p; d_1, \ldots, d_p)
= \sum_{t=0}^{[m_1, \ldots, m_p]-1} \exp\left(\frac{2\pi iht}{[m_1, \ldots, m_p]}\right)
= \frac{1}{l} \sum_{t=0}^{[[m_1, \ldots, m_p]-1} \exp\left(\frac{2\pi iht}{[m_1, \ldots, m_p]}\right).
\]
Now letting \(t = [d_1, \ldots, d_p]' \), we obtain

\[
S(h; m_1, \ldots, m_p; d_1, \ldots, d_p)
= \frac{1}{l} \sum_{t' = 0}^{[m'_1, \ldots, m'_p] - 1} \exp \left(\frac{2\pi i hl'}{[m'_1, \ldots, m'_p]} \right).
\]

If \(([d_1, \ldots, d_p]/d_i, m'_i) = 1 \) for all \(i, 1 \leq i \leq p \), then the set of all the \(t' \)'s indexing the above summation is equal to the set of all the \(t' \)'s such that \(0 \leq t' \leq [m'_1, \ldots, m'_p] - 1 \) with conditions \((t', m'_i) = 1, 1 \leq i \leq p \). And if there is an \(i \) for which \(([d_1, \ldots, d_p]/d_i, m'_i) \neq 1 \) then the above sum is zero and therefore we obtain:

\[
S(h; m_1, \ldots, m_p; d_1, \ldots, d_p)
= \begin{cases}
\frac{1}{l} \sum_{t' = 0}^{[m'_1, \ldots, m'_p] - 1} \exp \left(\frac{2\pi i hl'}{[m'_1, \ldots, m'_p]} \right), & \text{if } \left(\frac{d_1, \ldots, d_p}{d_i}, m'_i \right) = 1, \ 1 \leq i \leq p \\
0, & \text{otherwise},
\end{cases}
\]

\[
= \begin{cases}
\frac{1}{l} \sum_{t' = 0}^{[m'_1, \ldots, m'_p] - 1} \exp \left(\frac{2\pi i hl'}{[m'_1, \ldots, m'_p]} \right), & \text{if } \left(\frac{d_1, \ldots, d_p}{d_i}, m'_i \right) = 1, \ 1 \leq i \leq p \\
0, & \text{otherwise},
\end{cases}
\]
In some special cases the generalized Ramanujan sum is given in the following examples:

Example 1.

\[
S(0; m; d) = C_{m/d}(0) = \varphi(m/d) \mu((m/d)/(m/d, 0)) \varphi((m/d)/(m/d, 0)) = \varphi(m/d).
\]

Example 2. If \((h, m) = 1\); we have

\[
S(h; m; d) = C_{m/d}(h) = \frac{\varphi(m/d) \mu((m/d)/(m/d, h))}{\varphi((m/d)/(m/d, h))} = \mu(m/d).
\]

3. **The Dimensions of Some Symmetry Classes of Tensors**

In this section, as we mentioned earlier, the group \(G = \langle \pi_1, \ldots, \pi_p \rangle\) is considered, where the \(\pi_i\)'s, \(1 \leq i \leq p\), are disjoint cycles in \(S_m\). Our aim is to calculate \(\dim V^m(G)\), where \(\chi \in \mathcal{I}(G)\), in terms of known functions. Our formula involves the generalized Ramanujan sum.

Theorem 1. Let \(G = \langle \pi_1, \ldots, \pi_p \rangle\), where the \(\pi_i\)'s, \(1 \leq i \leq p\), are disjoint cycles in \(S_m\) of orders \(m_1, \ldots, m_p\), respectively, and let \(\chi_h, 0 \leq h \leq \left\lfloor \frac{m}{m_1, \ldots, m_p} \right\rfloor - 1\), be an irreducible complex character of \(G\). Then

\[
\dim V^m_{\chi_h}(G) = \frac{n^{m-(m_1+\cdots+m_p)}}{[m_1, \ldots, m_p]} \times \sum_{d_1|m_1} \ldots \sum_{d_p|m_p} S(h; m_1, \ldots, m_p; d_1, \ldots, d_p)n^{d_1+\cdots+d_p},
\]
where $S(h; m_1, \ldots, m_p; d_1, \ldots, d_p)$ denotes the generalized Ramanujan sum.

Proof. According to (1) the dimension of $V_{X_h}^m(G)$ is

$$\frac{1}{[m_1, \ldots, m_p]} \sum_{\sigma \in G} \chi_h(\sigma)n^{c(\sigma)},$$

where $c(\sigma)$ denotes the number of cycles, including cycles of length 1, in the disjoint cycle decomposition of σ. But every $\sigma \in G$ is equal to $\sigma = (\pi_1 \cdots \pi_p)^t$ for some $0 \leq t \leq [m_1, \ldots, m_p] - 1$ since π_1, \ldots, π_p are disjoint, so are $(\pi_1 \cdots \pi_p)^t = \pi_1^t \cdots \pi_p^t$. Appealing to [7] we can obtain

$$c(\pi_1^t \cdots \pi_p^t) = c(\pi_1^t) + \cdots + c(\pi_p^t) + m - (m_1 + \cdots + m_p).$$

Note that if $(t, m) = d$, then π_i^t has d cycles of length m_i/d and therefore $c(\pi_i^t) = d = (t, m)$. So we have

$$c(\pi_1^t \cdots \pi_p^t) = (t, m_1) + \cdots + (t, m_p) + m - (m_1 + \cdots + m_p).$$

Hence according to (2) we have

$$\dim V_{X_h}^m(G)$$

$$= \frac{1}{[m_1, \ldots, m_p]} \sum_{\sigma \in G} \chi_h(\sigma)n^{c(\sigma)}$$

$$= \frac{1}{[m_1, \ldots, m_p]} \sum_{t=0}^{[m_1, \ldots, m_p] - 1} \chi_h(\pi_1^t \cdots \pi_p^t)n^{c(\pi_1^t \cdots \pi_p^t)}$$

$$= \frac{1}{[m_1, \ldots, m_p]}$$

$$\times \sum_{t=0}^{[m_1, \ldots, m_p] - 1} \exp\left(\frac{2\pi iht}{[m_1, \ldots, m_p]}\right) n^{(t, m_1) + \cdots + (t, m_p) + m - (m_1 + \cdots + m_p)}$$

$$= \frac{1}{[m_1, \ldots, m_p]}$$

$$\times \sum_{t=0}^{[m_1, \ldots, m_p] - 1} \exp\left(\frac{2\pi iht}{[m_1, \ldots, m_p]}\right) n^{(t, m_1) + \cdots + (t, m_p)}.$$
Now letting \((t, m_i) = d_i, 1 \leq i \leq p\), we obtain

\[
\dim V^m_\chi(G) = \frac{n^{m-(m_1+\cdots+m_p)}}{[m_1, \ldots, m_p]} \sum_{d_i|m_1} \left(\frac{[m_1, \ldots, m_p]-1}{\prod_{t=0}^{i-1} (t, m_t)} \right) \sum_{d|d_i} \exp \left(\frac{2\pi i t d}{[m_1, \ldots, m_p]} \right) n^{d_1+\cdots+d_p}.
\]

Using Theorem 1 we obtain Theorems 1 and 2 of [2] in the following corollaries.

Corollary 1. If \(G\) is a cyclic subgroup of \(\mathbb{Z}_m\) generated by an \(m\)-cycle and \(\chi\) is the identity character 1, then \(\dim V^m_\chi(G) = (1/m) \sum_{d|m} \varphi(m/d)n^d\).

Proof. Since \(\chi = \chi_0\), by Example 1 and using Theorem 1 we obtain

\[
\dim V^m_\chi(G) = \frac{n^{m-m}}{m} \sum_{d|m} S(0; m; d)n^d = \frac{1}{m} \sum_{d|m} \varphi(m/d)n^d.
\]

Remark 2. In Corollary 1, if \(\dim V = n = 1\), then \(\dim \bigotimes V = 1\), and so \(\dim V^m_\chi(G) = 0\) or 1. so \((1/m)\sum_{d|m} \varphi(m/d) = 0\) or 1. But \((1/m)\sum_{d|m} \varphi(m/d) = 0\) is impossible, therefore \((1/m)\sum_{d|m} \varphi(m/d) = 1\) or \(\sum_{d|m} \varphi(d) = m\), which is well known identity in number theory.

Corollary 2. If \(G\) is a cyclic subgroup of \(\mathbb{Z}_m\) generated by an \(m\)-cycle and \(\chi\) is a primitive linear character, then \(\dim V^m_\chi(G) = (1/m) \sum_{d|m} \mu(m/d)n^d\).
Proof. We know that a linear character of a cyclic subgroup of S_m is primitive if its value on a generator of the subgroup is a primitive mth root of unity, so $\chi = \chi_h$ where $(h, m) = 1$ and by Example 2 and using Theorem 1, we have

$$\dim V^{m\chi}_\chi(G) = \frac{n^{m-m}}{m} \sum_{d|m} S(h; m; d) n^d = \frac{1}{m} \sum_{d|m} \mu\left(\frac{m}{d}\right) n^d.$$

Example 3. Let $G = \langle (12)(34)(5678) \rangle$ be a subgroup of S_9. Suppose χ is the identity character 1, i.e., $\chi = \chi_0$. Then by Theorem 1 we have

$$\dim V^{3\chi}_\chi(G) = \frac{n^{9-(2+2+4)}}{4} \sum_{d_1|2} S(0; 2, 2, 4; d_1, d_2, d_3) n^{d_1+d_2+d_3}$$

$$= \frac{n}{4} \left[S(0; 2, 2, 4; 2, 2, 4) n^8 + S(0; 2, 2, 4; 2, 2, 2) n^6 + S(0; 2, 2, 4; 1, 1, 1) n^3 \right]$$

$$= \frac{n}{4} \left[n^8 + n^6 + 2n^3 \right].$$

REFERENCES