A SURVEY ON THE ESTIMATION OF COMMUTATIVITY IN FINITE GROUPS

A. K. DAS, R. K. NATH, AND M. R. POURNAKI

Abstract. Let G be a finite group and let $C = \{(x, y) \in G \times G \mid xy = yx\}$. Then $\Pr(G) = |C|/|G|^2$ is the probability that two elements of G, chosen randomly with replacement, commute. This probability is a well known quantity, called commutativity degree of G, and indeed gives us an estimation of commutativity in G. In the last four decades this subject has enjoyed a flourishing development. In this article, we give a brief survey on the development of this subject and then we collect several of our results concerning $\Pr(G)$ as well as its various generalizations.

1. Introduction

The study of group theoretical problems related to discrete probability has long been a topic of interest. Indeed, the story goes back to a sequence of papers all of them entitled “On some problems of a statistical group-theory” written by P. Erdős and P. Turán during the years 1965 to 1972 (see [7, 8, 9, 10, 11, 12, 13]). In Theorem IV of [10] Erdős and Turán have shown that in an arbitrary finite group G, the number of elements of

$$C = \{(x, y) \in G \times G \mid xy = yx\}$$

is equal to $|G|k(G)$, where $k(G)$ is the number of conjugacy classes of G. Later, in 1973, W. H. Gustafson [18] reproved this theorem adopting the same technique which was used by Erdős and Turán [10]. Here, for convenience of the readers, we reproduce the proof as follows:

Note that

$$C = \bigsqcup_{x \in G} \{x\} \times C_G(x),$$

where the symbol \bigsqcup denotes the disjoint union of sets and $C_G(x)$ the centralizer of x in G. Therefore, we have

$$|C| = \sum_{x \in G} |\{x\} \times C_G(x)| = \sum_{x \in G} |C_G(x)|.$$

Recall that if x and y are conjugate elements of G, then $C_G(x)$ and $C_G(y)$ are conjugate subgroups of G. Also the number of elements in the conjugacy class of x is equal to the

Mathematics Subject Classification.
Primary: 20A05, 20D60; Secondary: 20C15, 20P05.

Key words and phrases. Finite group, Group character, Commutativity degree.

The research of M. R. Pournaki was in part supported by a grant from the Academy of Sciences for the Developing World (TWAS–UNESCO Associateship – Ref. FR3240126591).
index of $C_G(x)$ in G, i.e., $|G : C_G(x)|$. Therefore, if $x_1, \ldots, x_{k(G)}$ are representatives of the distinct conjugacy classes in G, then we have

$$|C| = \sum_{i=1}^{k(G)} |G : C_G(x_i)| \leq \sum_{i=1}^{k(G)} |G| = |G|k(G),$$

as shown by Erdős, Turán, and Gustafson.

Gustafson in [18] has also asked the following question which not only formed the title of his paper but also became the leading problem for the subsequent development of the subject:

What is the probability that two group elements commute?

Using the above-mentioned argument, Gustafson himself has provided an elementary but significant answer to this question. More precisely, if $Pr(G)$ denotes the probability that two elements of G, chosen randomly with replacement, commute, then

$$Pr(G) = \frac{|C|}{|G|^2} = \frac{|G|k(G)}{|G|^2} = \frac{k(G)}{|G|}.$$

The quantity $Pr(G)$ has been termed by some authors as the *commutativity degree* of G. Indeed, it gives us an estimation of commutativity in finite groups. Clearly, a finite group G is abelian if and only if $Pr(G) = 1$. Now, assuming G to be nonabelian, one can obtain (see [18]) an upper bound for $Pr(G)$ as follows:

Consider the class equation of G given by

$$|G| = |Z(G)| + \sum_{i=1}^{t} |G : C_G(x_i)|,$$

where $Z(G)$ denotes the center of G and x_1, \ldots, x_t are representatives of the distinct nontrivial conjugacy classes in G. For every i with $1 \leq i \leq t$, we have $|G : C_G(x_i)| \geq 2$ and so $t \leq (|G| - |Z(G)|)/2$. This implies that $k(G) = |Z(G)| + t \leq (|G| + |Z(G)|)/2$. Since G is nonabelian, it is easy to see that $G/Z(G)$ is not cyclic and so $|G/Z(G)| \geq 4$. Therefore, it follows that

$$Pr(G) = \frac{k(G)}{|G|} \leq \frac{|G| + |Z(G)|}{2|G|} = \frac{1}{2} + \frac{|Z(G)|}{2|G|} \leq \frac{1}{2} + \frac{1}{8} = \frac{5}{8}.$$
In 1975, G. Sherman [33] generalized the above probability. Let G be a finite group acting on a finite set Ω. Put $\Pr_G(\Omega) = |\text{Fix}(G, \Omega)|/|G||\Omega|$, where $\text{Fix}(G, \Omega)$ is the set of pairs (g, ω) of $G \times \Omega$ such that $g \omega = \omega$. Note that $\Pr_G(\Omega)$ is the probability that an element of G leaves an element of Ω fixed. Sherman [33] also considered the case for which G is abelian and A is the group of its automorphisms. $\Pr_A(G)$ is the probability that an automorphism leaves an element fixed. He proved that for groups of order p^n, p a prime, $\Pr_A(G) \leq 2(3/p^2)^{n/2}$. He further showed that if G_n is a sequence of abelian groups with $|G_n| \to \infty$, then $\Pr_A(G_n) \to 0$. Considering the action of G on itself by conjugation one obtains that $\Pr_G(G)$ is equal to $\Pr(G)$, i.e., the probability that two elements of G, chosen randomly with replacement, commute. In this sense $\Pr_G(\Omega)$ is a generalization of $\Pr(G)$.

In 1979, D. J. Rusin [32] continued the study of $\Pr(G)$. He considered, for a finite group G, two situations, namely, $G' \subseteq Z(G)$ and $G' \cap Z(G) = \{1\}$, where G' is the commutator subgroup of G. First, he obtained an explicit computation of $\Pr(G)$ for groups G with $G' \subseteq Z(G)$. In this case, G being the direct product of its Sylow subgroups, the product formula $\Pr(H \times K) = \Pr(H) \Pr(K)$ sufficed him to obtain Theorem 1 of [32]: If G is a p-group with $G' \subseteq Z(G)$, then

$$\Pr(G) = \frac{1}{|G'|} \left(1 + \sum_{G'/K \text{ cyclic}} \frac{(p-1)|G'| : K|}{p^{n(K)+1}}\right),$$

with $n(K)$ defined by $|\{x \in G \mid gxg^{-1}x^{-1} \in K \forall g \in G\}| = |G|/p^{n(K)}$. In the second case, i.e., when $G' \cap Z(G) = \{1\}$, he showed that $\Pr(G) = \Pr(K)$ holds true for some groups K such that $K' \cong G'$ and $Z(K) = \{1\}$. On the other hand, for every group G, there exist at most a finite number of groups K with $K' \cong G'$ and $Z(K) = \{1\}$ (see [32] Proposition 4]). Under an additional condition that $|G'|$ is a prime, he obtained an explicit computation of $\Pr(G)$ in this second case as well.

In Section IV, Rusin has classified the groups G for which $\Pr(G)$ is greater than $11/32$.

In 1995, P. Lescot [22] generalized $\Pr(G)$ in the other direction. Let G be a finite group and let $n \geq 0$ be an integer. Define

$$d_n(G) = \frac{|\{(x_1, \ldots, x_{n+1}) \in G^{n+1} \mid x_i x_j = x_j x_i, \ 1 \leq i, j \leq n + 1\}|}{|G|^{n+1}}.$$

Note that $d_1(G)$ is equal to $\Pr(G)$, i.e., the probability that two elements of G, chosen randomly with replacement, commute. Therefore, this later quantity is a generalization of $\Pr(G)$. He showed that $d_n(G) = d_n(H)$ provided G and H are isoclinic in the sense of P. Hall (see [19], Page 133]). He also showed that if G is a finite nonabelian group, then $d_n(G) \leq (3 \times 2^n - 1)/2^{2n+1}$. Moreover, the equality holds if and only if G is isoclinic to the group of quaternions of order eight. Also in 2001, Lescot [23] characterized all finite groups G with commutativity degree at least $1/2$. This is done by first determining all finite groups G whose central factor is a nonabelian group of order pq and then using a result of S. R. Blackburn [2] determining all finite 2-groups with derived subgroup of order two.
In 2008, M. R. Pournaki and R. Sobhani [31] gave a new generalization of \(\text{Pr}(G) \).
For a finite group \(G \) and \(g \in G \) define
\[
\text{Pr}_g(G) = \frac{|\{(x, y) \in G \times G \mid [x, y] = g\}|}{|G|^2},
\]
where \([x, y]\) denotes the commutator of \(x \) and \(y \). Note that \(\text{Pr}_1(G) \) is equal to \(\text{Pr}(G) \), i.e., the probability that two elements of \(G \), chosen randomly with replacement, commute. Therefore, this later quantity is a generalization of \(\text{Pr}(G) \). They found some results concerning \(\text{Pr}_g(G) \) and after that A. K. Das and R. K. Nath in a sequence of different papers gave new results and other new generalizations regarding \(\text{Pr}(G) \) and \(\text{Pr}_g(G) \) (see [3, 4, 5, 6, 28, 29]).

In the rest of this article we collect several of our results concerning \(\text{Pr}(G) \) as well as its various generalizations.

2. Commutativity of two elements

In this section we deal with probability that two elements of a finite group \(G \), chosen randomly with replacement, commute. As we mentioned in Section 1, this probability is \(\text{Pr}(G) = |C|/|G|^2 \), where \(C = \{(x, y) \in G \times G \mid xy = yx\} \). Here we collect several results dealing with this probability.

In 1979, Rusin [32] computed, for a finite group \(G \), the values of \(\text{Pr}(G) \) when \(G' \subseteq \text{Z}(G) \), and also when \(G' \cap \text{Z}(G) \) is trivial. In this direction we have the following result.

Theorem 2.1 ([5], Theorem 3.5). Let \(G \) be a finite group and let \(p \) be a prime number such that \(\text{gcd}(p - 1, |G|) = 1 \). If \(|G'| = p^2 \) and \(|G' \cap \text{Z}(G)| = p \), then the following statements hold:

\[
(1) \quad \text{Pr}(G) = \begin{cases}
\frac{2p^2 - 1}{p^4} & \text{if } C_G(G') \text{ is abelian,} \\
\frac{1}{p^4} \left(\frac{p - 1}{p^{2s-1}} + p^2 + p - 1 \right) & \text{otherwise,}
\end{cases}
\]

\[
(2) \quad \frac{|G|}{|\text{Z}(G)|} = \begin{cases}
p^3 & \text{if } C_G(G') \text{ is abelian,} \\
p^{2s+2} \text{ or } p^{2s+3} & \text{otherwise,}
\end{cases}
\]

where \(p^{2s} = |C_G(G') : \text{Z}(C_G(G'))| \). Moreover, we have

\[
\left| \frac{G}{G' \cap \text{Z}(G)} : \text{Z} \left(\frac{G}{G' \cap \text{Z}(G)} \right) \right| = \left| \frac{G}{\text{Z}(G)} : \text{Z} \left(\frac{G}{\text{Z}(G)} \right) \right| = p^2.
\]
It may be noted here that, on a number of occasions, the structure of $G/Z(G)$ is determined by its size. For example, using GAP [35] and the notion of semidirect product `\rtimes’, one can see that if G is a finite group with $G' \nsubseteq Z(G)$, then $G/Z(G)$ is isomorphic to $C_7 \times C_3$, $(C_3 \times C_3) \rtimes C_3$, $C_{13} \rtimes C_3$, $C_{19} \rtimes C_3$, $C_3 \rtimes (C_7 \rtimes C_3)$, or $(C_5 \times C_5) \rtimes C_3$ according as $|G/Z(G)|$ is equal to 21, 27, 39, 57, 63, or 75. Here, C_n denotes the cyclic group of order n.

Rusin also determined all numbers lying in the interval $(11/32, 1]$ that can be realized as the commutativity degree of some finite groups, and also classified all finite groups whose commutativity degrees lie in the interval $(11/32, 1]$. In 2006, F. Barry, D. MacHale, and A. Ní Shé [1] have shown that if G is a finite group with $|G|$ odd and Pr(G) $>$ 11/75, then G is supersolvable. They also proved that if Pr(G) $>$ 1/3, then G is supersolvable. It may be mentioned here that a group G is said to be supersolvable if there is a series of the form

$$\{1\} = A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots \subseteq A_r = G,$$

where $A_i \leq G$ and A_{i+1}/A_i is cyclic for every i with $0 \leq i \leq r - 1$ (see [16, 24, 34]). The previous theorem enables us to obtain the following characterization.

Theorem 2.2 [5. Theorem 4.3]. Let G be a finite group. If $|G|$ is odd and Pr(G) $\geq 11/75$, then the possible values of Pr(G) and the corresponding structures of G', $G' \cap Z(G)$, and $G/Z(G)$ are given by the following Table [1].

<table>
<thead>
<tr>
<th>Pr(G)</th>
<th>G'</th>
<th>$G' \cap Z(G)$</th>
<th>$G/Z(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>$\frac{1}{3}(1 + \frac{2}{37})$</td>
<td>C_3</td>
<td>C_3</td>
<td>$(C_3 \times C_3)^s$, $s \geq 1$</td>
</tr>
<tr>
<td>$\frac{1}{7}(1 + \frac{2}{37})$</td>
<td>C_5</td>
<td>C_5</td>
<td>$(C_5 \times C_5)^s$, $s \geq 1$</td>
</tr>
<tr>
<td>$\frac{55}{87}$</td>
<td>C_7</td>
<td>C_7</td>
<td>$C_7 \times C_7$</td>
</tr>
<tr>
<td>$\frac{17}{27}$</td>
<td>C_9 or $C_3 \times C_3$</td>
<td>C_3 or $C_3 \times C_3$</td>
<td>$(C_4 \times C_3) \rtimes C_3$ or C_3^3</td>
</tr>
<tr>
<td>$\frac{121}{129}$</td>
<td>$C_4 \times C_3$</td>
<td>$C_3 \times C_3$</td>
<td>C_4</td>
</tr>
<tr>
<td>$\frac{27}{37}$</td>
<td>C_{13}</td>
<td>(1)</td>
<td>$C_{13} \times C_3$</td>
</tr>
<tr>
<td>$\frac{3}{17}$</td>
<td>C_{19}</td>
<td>(1)</td>
<td>$C_{19} \times C_3$</td>
</tr>
<tr>
<td>$\frac{29}{189}$</td>
<td>C_{21}</td>
<td>C_3</td>
<td>$C_3 \times (C_7 \times C_3)$</td>
</tr>
<tr>
<td>$\frac{11}{45}$</td>
<td>$C_5 \times C_5$</td>
<td>(1)</td>
<td>$(C_5 \times C_5) \rtimes C_3$</td>
</tr>
</tbody>
</table>

Table 1. The possible values of Pr(G) and the corresponding structures of G', $G' \cap Z(G)$, and $G/Z(G)$ provided $|G|$ is odd and Pr(G) $\geq 11/75$.
The following result gives a universal lower bound for $\Pr(G)$.

Theorem 2.3 ([28], Theorem 1). Let G be a finite group. Then we have

$$\Pr(G) \geq \frac{1}{|G'|} \left(1 + \frac{|G'| - 1}{|G : Z(G)|}\right).$$

In particular, $\Pr(G) > 1/|G'|$ provided G is nonabelian.

There are several equivalent necessary as well as sufficient conditions for equality to hold in the above theorem. These are listed as follows.

Theorem 2.4 ([28], Theorem 2). Let G be a finite nonabelian group. Then the following statements are equivalent:

1. The equality $\Pr(G) = 1/|G'| \left(1 + \frac{|G'| - 1}{|G : Z(G)|}\right)$ holds.
2. We have $\text{cd}(G) = \{1, |G : Z(G)|^{1/2}\}$, which means that G is of central type with $|\text{cd}(G)| = 2$. Here, $\text{cd}(G)$ denotes the set of irreducible complex character degrees of G.
3. For every $x \in G \setminus Z(G)$, we have $|\text{Cl}_G(x)| = |G'|$. Here, $\text{Cl}_G(x)$ denotes the conjugacy class of x.
4. For every $x \in G \setminus Z(G)$, we have $\text{Cl}_G(x) = G'x$. In particular, G is a nilpotent group of class 2.
5. For every $x \in G \setminus Z(G)$, we have $C_G(x) \leq G$ and $G' \cong G/C_G(x)$. In particular, G is a CN-group, i.e., a group in which the centralizer of every element is normal.
6. For every $x \in G \setminus Z(G)$, we have $G' = \{[y,x] \mid y \in G\}$. In particular, every element of G' is a commutator.

Theorem 2.3 and Theorem 2.4 not only allow us to obtain some characterizations for finite nilpotent groups of class 2 whose commutator subgroups have prime order, but also enable us to re-establish certain facts (essentially due to K. S. Joseph [21]) concerning the smallest prime divisors of the orders of finite groups.

Theorem 2.5 ([28], Proposition 1). Let G be a finite group and let p be the smallest prime divisor of $|G|$. Then the following statements hold:

1. If $p \neq 2$, then $\Pr(G) \neq 1/p$.
2. In the case of G is nonabelian, $\Pr(G) > 1/p$ if and only if $|G'| = p$ and $G' \subseteq Z(G)$.

Some of the consequences of the above results are as given below.

Theorem 2.6 ([28], Corollary 1). Let G be a finite group with $\Pr(G) = 1/3$. Then $|G|$ is even.
Theorem 2.7 ([28], Corollary 2). Let G be a finite group and let $p \neq 2$ be the smallest prime divisor of $|G|$. If G is nonabelian with $G' \cap Z(G) = \{1\}$, then $\Pr(G) < 1/p$.

For a group K and an element k of that group consider $K = K/Z(K)$ and $k = kZ(K)$, and define the map $a_K : K \times K \rightarrow K'$ by $a_K(x, y) = [x, y]$ which is obviously well defined. We now introduce the notion of isoclinism which is originally due to P. Hall (see [19, Page 133]). Let G and H be two groups. A pair (φ, ψ) is called an isoclinism from G to H if φ is an isomorphism from G to H and ψ is an isomorphism from G' to H' for which the following diagram commutes.

\[
\begin{array}{ccc}
G \times G & \xrightarrow{\varphi \times \varphi} & H \times H \\
\downarrow a_G & & \downarrow a_H \\
G' & \xrightarrow{\psi} & H'
\end{array}
\]

If there is an isoclinism from G to H, we shall say that G and H are isoclinic. Clearly, isoclinism is an equivalence relation between groups. It is well known that if G and H are isomorphic groups, then they are isoclinic.

Theorem 2.8 ([28], Proposition 2). Let G be a finite group and let p be a prime. Then the following statements are equivalent:

1. We have $|G'| = p$ and $G' \subseteq Z(G)$.
2. The group G is of central type with $|\text{cd}(G)| = 2$ and $|G'| = p$.
3. The group G is a direct product of a p-group P and an abelian group A such that $|P'| = p$ and $\gcd(p, |A|) = 1$.
4. The group G is isoclinic to an extra-special p-group, and consequently, the equality $|G : Z(G)| = p^{2k}$ holds true for some positive integer k.

In particular, if G is nonabelian and p is the smallest prime divisor of $|G|$, then the above statements are also equivalent to the condition $\Pr(G) > 1/p$.

If $|G'| = p$, p prime, and $G' \subseteq Z(G)$, then we call the integer $2k + 1$, where k is as in Part 4 of Theorem 2.8, as the isoclinic exponent of G and denote it by iso.exp(G).

Thus, we have, in particular, the following theorem:

Theorem 2.9 ([31], Proposition 3.4). Let G be a finite group such that $G' \subseteq Z(G)$ and let $|G'| = p$ be a prime. If iso.exp$(G) = n$, then

\[
\Pr(G) = \frac{1}{p} \left(1 + \frac{p - 1}{p^n - 1} \right).
\]

Now consider a finite group G such that $|G'| = p$ is a prime and $G' \cap Z(G) = \{1\}$. We have $(G/Z(G))' \cong G'$. On the other hand, if we consider $Z(G/Z(G)) = H/Z(G)$ for some H, $Z(G) \leq H \leq G$, then $[G, H] \leq G' \cap Z(G) = \{1\}$ implies that $H = Z(G)$.
and so we have $Z(G/Z(G)) = 1$. Therefore by Proposition 5, there is a positive integer n depending only on G for which $G/Z(G) = \langle a, b \mid a^n = b^n = 1, bab^{-1} = a^r \rangle$. We call n as the invariant number of G and denote it by $\text{inv}(G)$.

Theorem 2.10 ([31], Proposition 4.4). Let G be a finite group such that $G' \cap Z(G) = \{1\}$ and let $|G'| = p$ be a prime. If $\text{inv}(G) = n$, then

$$\text{Pr}(G) = \frac{n^2 + p - 1}{pn^2}.$$

In [15, Corollary 1.2], I. V. Erovenko and B. Sury have shown, in particular, that for every integer $k > 1$ there exists a family $\{G_n\}$ of finite groups such that $\text{Pr}(G_n) \to 1/k^2$ as $n \to \infty$. In this connection, we have the following observations.

Theorem 2.11 ([27], Proposition 2.5.1). For any $k \in \mathbb{N}$ with $k > 1$, there exists a family $\{G_n\}$ of finite groups such that $\text{Pr}(G_n) \to 1/k$ as $n \to \infty$.

Theorem 2.12 ([27], Proposition 2.5.2). For any $n \in \mathbb{N}$, there exists a finite group G such that $\text{Pr}(G) = 1/n$.

The following result gives us a formula as well as an upper bound for $\text{Pr}(G)$ when G has exactly two irreducible complex character degrees.

Theorem 2.13 ([31], Theorem 2.2). Let G be a finite group such that $\text{cd}(G) = \{1, m\}$, $m > 1$. Then we have

$$\text{Pr}(G) = \frac{1}{|G'|} \left(1 + \frac{|G'| - 1}{m^2}\right) \leq \frac{|G'| + 3}{4|G'|}.$$

3. **Commutators of two elements which are equal to a given element**

In this section we deal with the probability that the commutator of two elements, chosen randomly with replacement, in a finite group is equal to a given element of that group. For a finite group G and a given element g of G, this probability is $\text{Pr}_g(G) = |C_g|/|G|^2$, where $C_g = \{(x, y) \in G \times G \mid [x, y] = g\}$. Clearly, this notion is a generalization of the previous one, mentioned in Section 2, as we have $\text{Pr}_1(G) = \text{Pr}(G)$.

In the following we collect several results dealing with this probability. Obviously for those g’s lie in $G \setminus G'$, we have $\text{Pr}_g(G) = 0$. Therefore in the sequel we deal only with g’s which lie in G'. Note that there are examples of groups G of order 96 due to R. M. Guralnick [17] where $\text{Pr}_g(G) = 0$ even when g belongs to G'.

The first result shows that $\text{Pr}_g(G)$ is an invariant under isoclinism in the following sense.

Theorem 3.1 ([31], Lemma 3.5). Let G and H be two isoclinic finite groups and let (φ, ψ) be an isoclinism from G to H. If $g \in G'$, then we have

$$\text{Pr}_g(G) = \text{Pr}_{\psi(g)}(H).$$

The following result gives us a character theoretical formula for $\text{Pr}_g(G)$.
Theorem 3.2 ([31], Theorem 2.1). Let G be a finite group and $g \in G'$. Then
\[
Pr_g(G) = \frac{1}{|G|} \sum_{\chi \in \text{Irr}(G)} \frac{\chi(g)}{\chi(1)},
\]
where $\text{Irr}(G)$ denotes the set of irreducible complex characters of G.

We also derive a formula as well as a lower bound for $Pr_g(G)$ when G has exactly two irreducible complex character degrees.

Theorem 3.3 ([31], Theorem 2.2). Let G be a finite group with $\text{cd}(G) = \{1, m\}$, $m > 1$. If $g \in G'$, $g \neq 1$, then we have
\[
Pr_g(G) = \frac{1}{|G'|} \left(1 - \frac{1}{m^2}\right) \geq \frac{3}{4|G'|}.
\]

In view of [20, Problem 2.13], we obtain the following theorem.

Theorem 3.4 ([31], Propositions 3.1 and 3.4). Let G be a finite group such that $G' \subseteq Z(G)$ and let $|G'| = p$ be a prime. If $g \in G'$, $g \neq 1$, then we have
\[
Pr_g(G) = \frac{1}{p} \left(1 - \frac{1}{|G : Z(G)|}\right) \geq \frac{3}{4p}.
\]

In particular, if $\text{iso.exp}(G) = n$, then we obtain that
\[
Pr_g(G) = \frac{1}{p} \left(1 - \frac{1}{p^{n-1}}\right).
\]

A universal upper bound for $Pr_g(G)$, $g \in G'$, $g \neq 1$, is given as follows.

Theorem 3.5 ([31], Corollary 2.3). Let G be a finite group with $|\text{cd}(G)| = 2$. Let $g \in G'$, $g \neq 1$. Then we have
\[
Pr_g(G) \leq \frac{1}{|G'|} \left(1 - \frac{1}{|G : Z(G)|}\right).
\]
Moreover, the equality holds if and only if G is of central type.

The following result gives us a formula for $Pr_g(G)$, $g \in G'$, $g \neq 1$, when $|G'|$ is prime and $G' \cap Z(G)$ is trivial.

Theorem 3.6 ([31], Proposition 4.4). Let G be a finite group such that $G' \cap Z(G) = \{1\}$ and let $|G'| = p$ be a prime. If $\text{inv}(G) = n$ and $g \in G'$, $g \neq 1$, then we have
\[
Pr_g(G) = \frac{n^2 - 1}{pn^2}.
\]

We close this section by listing some more properties of $Pr_g(G)$.

Theorem 3.7 ([31], Proposition 5.1). Let G be a finite group and let $g \in G'$. Then we have $Pr_g(G) \leq Pr(G)$. Moreover, the equality holds if and only if $g = 1$.
Theorem 3.8 ([31], Proposition 5.2). Let G be a finite group and let $g \in G'$, $g \neq 1$. Then we have $\Pr_g(G) < 1/2$.

Theorem 3.9 ([31], Proposition 5.3). For any $\epsilon \in \mathbb{R}$ with $\epsilon > 0$, there exists a finite group G and $g \in G$ such that $1/2 - \epsilon < \Pr_g(G) < 1/2$.

4. Admissible words which are equal to a given element

In this section we deal with a probability which is a generalization of the previous one mentioned in Section 3. For a given positive integer n, consider the free group of words on n generators x_1, x_2, \ldots, x_n. A word $\omega(x_1, x_2, \ldots, x_n)$ is called admissible (see [3]) if each letter in it has precisely two nonzero indices, namely, $+1$ and -1.

Given a nontrivial admissible word $\omega(x_1, x_2, \ldots, x_n)$, $n \geq 2$, and an element $g \in G$, consider the ratio

$$\Pr_\omega^g(G) = \frac{|\{(g_1, g_2, \ldots, g_n) \in G^n \mid \omega(g_1, g_2, \ldots, g_n) = g\}|}{|G^n|}.$$

Note that, for $\omega(x_1, x_2) = x_1x_2^{-1}x_2^{-1}$, we have $\Pr_\omega^1(G) = \Pr_g(G)$, and so this later probability is a generalization of $\Pr_g(G)$.

In the following we collect several results dealing with this probability.

Theorem 4.1 ([6], Proposition 2.2). Let G be a finite group and let $\omega(x_1, x_2, \ldots, x_n)$ be a nontrivial admissible word. Then the following statements hold:

(1) $\Pr_\omega^1(G) = 1$ if and only if G is abelian.

(2) $\Pr_\omega^g(G) = \Pr_\omega^h(G)$ if $g, h \in G'$ are conjugate in G.

(3) $\Pr_\omega^g(G) = \Pr_\omega^h(G)$ if $g, h \in G'$ generate the same cyclic subgroups of G. Consequently, we obtain that

$$\Pr_\omega^g(G) = \frac{1 - \Pr_\omega^1(G)}{p - 1}$$

provided $|G'| = p$ is a prime and $g \in G'$, $g \neq 1$.

The quantity $\Pr_\omega^g(G)$ respects the cartesian product in the following sense.

Theorem 4.2 ([6], Proposition 2.3). Let H and K be two finite groups, let $(h, k) \in H' \times K'$ and $\omega(x_1, x_2, \ldots, x_n)$ be a nontrivial admissible word. Then we have

$$\Pr_{(h,k)}^\omega(H \times K) = \Pr_h^\omega(H)\Pr_k^\omega(K).$$

The following result shows that $\Pr_\omega^g(G)$ is an invariant under isoclinism of finite groups.

Theorem 4.3 ([6], Proposition 2.4). Let G and H be two finite groups and (ϕ, ψ) be an isoclinism from G to H. If $g \in G'$ and $\omega(x_1, x_2, \ldots, x_n)$ is a nontrivial admissible word, then we have

$$\Pr_\omega^g(G) = \Pr_\omega^{\psi(g)}(H).$$
Theorem 4.4 ([6], Proposition 3.1). Let G be a finite group and let $\omega(x_1, x_2, \ldots, x_n)$ be a nontrivial admissible word. If $g \in G'$, then we have

$$\frac{\Pr_g(G)}{|G : Z(G)|^{n-2}} \leq \Pr_1^\omega(G).$$

If G is a finite nonabelian simple group and $\omega(x_1, x_2, \ldots, x_n)$ is a nontrivial admissible word, then using Ore conjecture (see [30]), which has been established recently in [25] Theorem 1, it follows from the above result that every element of G is of the form $\omega(g_1, g_2, \ldots, g_n)$ for some $g_1, g_2, \ldots, g_n \in G$.

As a generalization of Theorem 3.7, we have the following result.

Theorem 4.5 ([6], Proposition 3.6). Let G be a finite group and let $\omega(x_1, x_2, \ldots, x_n)$ be a nontrivial admissible word. If $g \in G'$, then the following statements hold:

(1) $\Pr_g^\omega(G) \leq \Pr_1^\omega(G) \leq \Pr(G)$.

(2) $\Pr_g^\omega(G) = \Pr_1^\omega(G)$ if and only if $g = 1$.

Consequently, $\Pr_g^\omega(G) = 1$ if and only if $g = 1$ and G is abelian.

The following result gives us a universal lower bound for $\Pr_1^\omega(G)$.

Theorem 4.6 ([6], Proposition 3.7). Let G be a finite group and let $\omega(x_1, x_2, \ldots, x_n)$ be a nontrivial admissible word. Then we have

$$\Pr_1^\omega(G) \geq \frac{1}{|G'|} \left(1 + \frac{|G'| - 1}{|G : Z(G)|^{n/2}} \right).$$

In particular, $\Pr_1^\omega(G) > \frac{1}{|G'|}$ provided G is nonabelian.

The following result generalizes Theorem 3.8.

Theorem 4.7 ([6], Proposition 3.8). Let G be a finite nonabelian group, let $g \in G'$ and p be the smallest prime divisor of $|G|$. If $\omega(x_1, x_2, \ldots, x_n)$ is a nontrivial admissible word and $g \neq 1$, then $\Pr_g^n(G) < 1/p$. In particular, we have $\Pr_g^n(G) < 1/2$.

Let us now take the nontrivial admissible word $\omega(x_1, x_2, \ldots, x_n)$ to be $x_1x_2\ldots x_nx_1^{-1}x_2^{-1}\ldots x_n^{-1}$, and write $\Pr_g^n(G)$ in place of $\Pr_1^\omega(G)$. It has been observed that $\Pr_g^n(G) = \Pr_g^{n+1}(G)$. Hence, without any loss we may assume that n is even.

Theorem 4.8 ([29], Equations 8, 11, and 12). Let G be a finite nonabelian group, let $g \in G'$ and $2 \leq d \leq \min\{\chi(1) \mid \chi \in \text{Irr}(G), \chi(1) \neq 1\}$. Then the following statements hold:

(1) $\left| \Pr_g^n(G) - \frac{1}{|G'|} \right| \leq \frac{1}{d^{n-2}} \left(\Pr(G) - \frac{1}{|G'|} \right)$.
(2) \(\left| \Pr_g^n(G) - \frac{1}{|G'|} \right| \leq \frac{1}{d^n} \left(1 - \frac{1}{|G'|} \right) \). In particular, we have
\[
\Pr_g^n(G) \leq \frac{2^n + 1}{2^{n+1}}.
\]

Theorem 4.9 ([29], Equation 14). Let \(G \) be a finite nonabelian simple group and let \(g \in G \). Then we have
\[
\left| \Pr_g^n(G) - \frac{1}{|G|} \right| \leq \frac{1}{3^{n-2}} \left(\frac{1}{12} - \frac{1}{|G|} \right).
\]
In particular, we conclude that
\[
\Pr_g^n(G) \leq \frac{3^{n-2} + 4}{3^{n-1} \times 20}.
\]

The following result generalizes Theorem 3.3.

Theorem 4.10 ([29], Proposition 5.1). Let \(G \) be a finite nonabelian group and let \(g \in G' \), \(g \neq 1 \). If \(\text{cd}(G) = \{1, d\} \), \(d > 1 \), then we have
\[
\Pr_g^n(G) = \frac{1}{|G'|} \left(1 - \frac{1}{d^n} \right).
\]

The next two results give us some necessary and sufficient conditions for equality to hold in Theorem 4.8.

Theorem 4.11 ([29], Propositions 4.2 and 5.2). Let \(G \) be a finite nonabelian group, let \(g \in G' \) and \(2 \leq d \leq \min \{ \chi(1) \mid \chi \in \text{Irr}(G), \chi(1) \neq 1 \} \). Then the following statements hold:

1. \(\Pr_g^n(G) = \frac{1}{d^{n-2}} \left(\Pr(G) + \frac{d^{n-2} - 1}{|G'|} \right) \) if and only if \(g = 1 \) and \(\text{cd}(G) = \{1, d\} \).

2. \(\Pr_g^n(G) = \frac{1}{d^{n-2}} \left(-\Pr(G) + \frac{d^{n-2} + 1}{|G'|} \right) \) if and only if \(g \neq 1 \), \(\text{cd}(G) = \{1, d\} \), and \(|G'| = 2 \).

Theorem 4.12 ([29], Proposition 4.4 and Corollary 5.3). Let \(G \) be a finite nonabelian group, let \(g \in G' \) and \(2 \leq d \leq \min \{ \chi(1) \mid \chi \in \text{Irr}(G), \chi(1) \neq 1 \} \). Then the following statements hold:

1. \(\Pr_g^n(G) = \frac{1}{d^n} \left(1 + \frac{d^n - 1}{|G'|} \right) \) if and only if \(g = 1 \) and \(\text{cd}(G) = \{1, d\} \).
Theorem 4.13 ([29], Proposition 4.6). Let G be a finite nonabelian group, let $g \in G'$ and p be the smallest prime divisor of $|G|$. Then we have

$$\Pr_{g}^{n}(G) = \frac{p^n + p - 1}{p^{n+1}},$$

if and only if $g = 1$ and G is isoclinic to

$$\langle x, y \mid x^{p^2} = 1 = y^p, y^{-1}xy = x^{p+1} \rangle.$$

In particular, putting $p = 2$, we conclude that

$$\Pr_{g}^{n}(G) = \frac{2^n + 1}{2^{n+1}},$$

if and only if $g = 1$ and G is isoclinic to D_8, the dihedral group, and hence, to Q_8, the group of quaternions.

We now list a few results which are basically generalizations of some of the results obtained in [31].

Theorem 4.14 ([29], Proposition 6.1). Let G be a finite nonabelian group with $|\text{cd}(G)| = 2$ and let $g \in G'$. Then we have

$$\Pr_{1}^{n}(G) \geq \frac{1}{|G'|} \left(1 + \frac{|G'| - 1}{|G : Z(G)|^{n/2}} \right)$$

and

$$\Pr_{g}^{n}(G) \leq \frac{1}{|G'|} \left(1 - \frac{1}{|G : Z(G)|^{n/2}} \right)$$

provided $g \neq 1$.

Moreover, in each case, the equality holds if and only if G is of central type.

Theorem 4.15 ([29], Corollary 6.2). Let G be a finite nonabelian group and $g \in G'$. Let G be of central type with $|\text{cd}(G)| = 2$. Then we have

$$\Pr_{1}^{n}(G) \leq \frac{1}{|G'|} \left(1 + \frac{|G'| - 1}{2^n} \right)$$

and

$$\Pr_{g}^{n}(G) \geq \frac{1}{|G'|} \left(1 - \frac{1}{2^n} \right)$$

provided $g \neq 1$.

Theorem 4.16 ([29], Proposition 6.3). Let G be a finite nonabelian group and let $G' \subseteq Z(G)$ and $|G'| = p$ be a prime. If $g \in G'$, then we have
Pr

\text{g}^n(G) = \begin{cases}
\frac{1}{p} \left(1 + \frac{p - 1}{p^{nk}}\right) & \text{if } g = 1, \\
\frac{1}{p} \left(1 - \frac{1}{p^{nk}}\right) & \text{if } g \neq 1,
\end{cases}

where \(k = \frac{1}{2} \log_p |G : Z(G)|. \)

\textbf{Theorem 4.17 (}[29], Proposition 6.5). Let \(G \) be a finite nonabelian group and \(g \in G' \).

If \(G' \cap Z(G) = \{1\} \), \(|G'| = p\), where \(p \) is a prime, and \(\text{inv}(G) = r \), then we have

\[\Pr^g_n(G) = \begin{cases}
\frac{r^n + p - 1}{pr^n} & \text{if } g = 1, \\
\frac{r^n - 1}{pr^n} & \text{if } g \neq 1.
\end{cases} \]

\textbf{Theorem 4.18 (}[29], Proposition 6.7). For any \(\varepsilon \in \mathbb{R} \) with \(\varepsilon > 0 \) and for any prime number \(p \), there exists a finite group \(G \) such that the inequality

\[\left| \Pr^g_n(G) - \frac{1}{p} \right| < \varepsilon \]

holds true for all \(g \in G' \).

5. COMMUTATORS OF TWO SUBGROUPS WHICH ARE EQUAL TO A GIVEN ELEMENT

In 2007, A. Erfanian, R. Rezaei, and P. Lescot [14] studied the probability \(\Pr(H, G) \) that an element of a given subgroup \(H \) of a finite group \(G \) commutes with an element of \(G \) (see also [26]). Note that \(\Pr(G, G) = \Pr(G) \). This notion has been further generalized as follows. Let \(G \) be a finite group and \(g \in G' \). Let \(H \) and \(K \) be two subgroups of \(G \). Consider the ratio

\[\Pr_g(H, K) = \frac{|\{(x, y) \in H \times K \mid [x, y] = g\}|}{|H||K|}. \]

If \(g = 1 \), then for brevity we write \(\Pr_1(H, K) = \Pr(H, K) \). Note that for \(H = K = G \), we have \(\Pr_g(H, K) = \Pr_g(G) \).

The following theorem says that \(\Pr_g(H, K) \) is not very far from being symmetric with respect to \(H \) and \(K \).

\textbf{Theorem 5.1 (}[14], Proposition 2.1). Let \(G \) be a finite group and let \(g \in G' \). If \(H \) and \(K \) are two subgroups of \(G \), then we have

\[\Pr_g(H, K) = \Pr_{g^{-1}}(K, H). \]
However, if \(g^2 = 1 \), or, if \(g \in H \cup K \) (for example, when \(H \) or \(K \) is normal in \(G \)), then we have

\[
\Pr_g(H, K) = \Pr_g(K, H) = \Pr_g^{-1}(H, K).
\]

The quantity \(\Pr_g(H, K) \) respects the cartesian product in the following sense.

Theorem 5.2 ([4], Proposition 2.2). Let \(G_1 \) and \(G_2 \) be two finite groups with subgroups \(H_1, K_1 \subseteq G_1 \) and \(H_2, K_2 \subseteq G_2 \). Let \(g_1 \in G'_1 \) and \(g_2 \in G'_2 \). Then we have

\[
\Pr_{(g_1, g_2)}(H_1 \times H_2, K_1 \times K_2) = \Pr_{g_1}(H_1, K_1)\Pr_{g_2}(H_2, K_2).
\]

Now, we have the following computing formula which plays a key role in the study of \(\Pr_g(H, K) \).

Theorem 5.3 ([4], Theorem 2.3). Let \(G \) be a finite group and let \(g \in G' \). If \(H \) and \(K \) are two subgroups of \(G \), then we have

\[
\Pr_g(H, K) = \frac{1}{|H||K|} \sum_{x \in H} |C_K(x)| = \frac{1}{|H|} \sum_{x \in H} \frac{1}{|\text{Cl}_K(x)|},
\]

where \(C_K(x) = \{ y \in K \mid xy = yx \} \) and \(\text{Cl}_K(x) = \{ yxy^{-1} \mid y \in K \} \), the \(K \)-conjugacy class of \(x \).

The following result generalizes the well known formula \(\Pr(G) = k(G)/|G| \).

Theorem 5.4 ([4], Corollary 2.4). Let \(G \) be a finite group and let \(H \) and \(K \) be two subgroups of \(G \). If \(H \trianglelefteq G \), then we have

\[
\Pr(H, K) = \frac{k_K(H)}{|H|},
\]

where \(k_K(H) \) is the number of \(K \)-conjugacy classes that constitute \(H \).

Let \(G \) be a finite group. If \(H \trianglelefteq G \) with \(C_G(x) \subseteq H \) for all \(x \in H \setminus \{1\} \), then using Sylow’s theorems and the fact that nontrivial \(p \)-groups have nontrivial centers, we have \(\gcd(|H|, |G : H|) = 1 \). Therefore, by the Schur-Zassenhaus theorem, \(H \) has a complement in \(G \). Such groups belong to a well known class of groups called the Frobenius groups; for example, the alternating group \(A_4 \), the dihedral groups of order \(2n \) with \(n \) odd, the nonabelian groups of order \(pq \), where \(p \) and \(q \) are primes with \(q|(p-1) \), etc.

Theorem 5.5 ([4], Proposition 2.5). Let \(G \) be a finite group. If \(H \) is an abelian normal subgroup of \(G \) with a complement \(K \) in \(G \) and \(g \in G' \), then we have

\[
\Pr_g(H, G) = \Pr_g(H, K).
\]

As a consequence, we conclude the following theorem.

Theorem 5.6 ([4], Corollary 2.6). Let \(G \) be a finite group and let \(g \in G' \). If \(H \trianglelefteq G \) with \(C_G(x) = H \) for all \(x \in H \setminus \{1\} \), then we have

\[
\Pr_g(H, G) = \Pr_g(H, K),
\]
where K is a complement of H in G. In particular,
\[
\Pr(H, G) = \frac{1}{|H|} + \frac{|H| - 1}{|G|}.
\]

The following result gives us some conditional lower bounds for $\Pr_g(H, K)$.

Theorem 5.7 ([4], Proposition 3.1). Let G be a finite group and $g \in G'$. Let H and K be any two subgroups of G. If $g \neq 1$, then the following statements hold:

1. If $\Pr_g(H, K) \neq 0$ then $\Pr_g(H, K) \geq \frac{|C_H(K)||C_K(H)|}{|H||K|}$.

2. If $\Pr_g(H, G) \neq 0$ then $\Pr_g(H, G) \geq \frac{2|H \cap Z(G)||C_G(H)|}{|H||G|}$.

3. If $\Pr_g(G) \neq 0$ then $\Pr_g(G) \geq \frac{3}{|G : Z(G)|^2}$.

The next two results are generalizations of Theorem 3.7 and Theorem 3.8.

Theorem 5.8 ([4], Proposition 3.2). Let G be a finite group and let $g \in G'$. If H and K are any two subgroups of G, then
\[
\Pr_g(H, K) \leq \Pr(H, K).
\]
Moreover, the equality holds if and only if $g = 1$.

Theorem 5.9 ([4], Proposition 3.3). Let G be a finite group and $g \in G'$, $g \neq 1$. Let H and K be any two subgroups of G. If p is the smallest prime divisor of $|G|$, then we have
\[
\Pr_g(H, K) \leq \frac{|H| - |C_H(K)|}{p|H|} < \frac{1}{p}.
\]

The quantity $\Pr_g(H, K)$ is monotonic in the following sense.

Theorem 5.10 ([4], Proposition 3.4). Let G be a finite group. Let H, K_1, and K_2 be three subgroups of G with $K_1 \subseteq K_2$. Then we have
\[
\Pr(H, K_1) \geq \Pr(H, K_2).
\]
Moreover, the equality holds if and only if $C_{\ell K_1}(x) = C_{\ell K_2}(x)$ for all $x \in H$.

Theorem 5.11 ([4], Proposition 3.5). Let G be a finite group. Let H, K_1, and K_2 be three subgroups of G with $K_1 \subseteq K_2$. Then we have
\[
\Pr(H, K_2) \geq \frac{1}{|K_2 : K_1|} \left(\Pr(H, K_1) + \frac{|K_2| - |K_1|}{|H||K_1|} \right).
\]
Moreover, the equality holds if and only if $C_H(x) = \{1\}$ for all $x \in K_2 \setminus K_1$.
Theorem 5.12 ([9], Proposition 3.6). Let G be a finite group. Let $H_1 \subseteq H_2$ and $K_1 \subseteq K_2$ be subgroups of G and $g \in G'$. Then we have
\[
\Pr_g(H_1, K_1) \leq |H_2 : H_1||K_2 : K_1|\Pr_g(H_2, K_2).
\]
Moreover, the equality holds if and only if
\[
g^{-1}x \notin \mathcal{C}_{K_2}(x) \text{ for all } x \in H_2 \setminus H_1,
\]
\[
g^{-1}x \notin \mathcal{C}_{K_2}(x) \setminus \mathcal{C}_{K_1}(x) \text{ for all } x \in H_1,
\]
and \(C_{K_1}(x) = C_{K_2}(x)\) for all \(x \in H_1\) with \(g^{-1}x \in \mathcal{C}_{K_1}(x)\).

In particular, for \(g = 1\), the condition for equality reduces to \(H_1 = H_2\) and \(K_1 = K_2\).

The following result also generalizes Theorem 3.7 in some sense.

Theorem 5.13 ([9], Corollary 3.7). Let G be a finite group, let H be a subgroup of G and $g \in G'$. Then we have
\[
\Pr_g(H, G) \leq |G : H|\Pr(G).
\]
Moreover, the equality holds if and only if \(g = 1\) and $H = G$.

We continue the survey by mentioning a few generalizations of some results obtained in [14].

Theorem 5.14 ([9], Theorem 3.8). Let G be a finite group and let p be the smallest prime divisor of $|G|$. If H and K are any two subgroups of G, then we have
\[
\Pr(H, K) \geq \frac{|C_H(K)|}{|H|} + \frac{p(|H| - |X_H| - |C_H(K)|) + |X_H|}{|H||K|}
\]
and
\[
\Pr(H, K) \leq \frac{(p - 1)|C_H(K)| + |H|}{p|H|} - \frac{|X_H|(|K| - p)}{p|H||K|},
\]
where \(X_H = \{x \in H \mid C_K(x) = \{1\}\}\). Moreover, in each of these bounds, H and K can be interchanged.

Theorem 5.15 ([9], Corollary 3.9). Let G be a finite group and let p be the smallest prime divisor of $|G|$. If H and K are two subgroups of G such that $[H, K] \neq \{1\}$, then we have
\[
\Pr(H, K) \leq \frac{2p - 1}{p^2}.
\]
In particular, we conclude that $\Pr(H, K) \leq 3/4$.

Theorem 5.16 ([9], Proposition 3.10). Let G be a finite group and let H and K be any two subgroups of G. If $\Pr(H, K) = (2p - 1)/p^2$ for some prime p, then p divides $|G|$. If p happens to be the smallest prime divisor of $|G|$, then we have
\[
\frac{H}{C_H(K)} \cong C_p \cong \frac{K}{C_K(H)},
\]
and hence, $H \neq K$.
In particular, we conclude that
\[
\frac{H}{C_H(K)} \cong C_2 \cong \frac{K}{C_K(H)} \text{ provided } \Pr(H, K) = \frac{3}{4}.
\]

We conclude the survey with the following result, which gives us a character theoretical formula.

Theorem 5.17 ([4], Theorem 4.2 and Proposition 4.4). Let \(G \) be a finite group. If \(H \) is a normal subgroup of \(G \) and \(g \in G' \), then we have
\[
\Pr_g(H, G) = \frac{1}{|G|} \sum_{\chi \in \text{Irr}(G)} \left[\chi_H, \chi_H \right] \chi(g).
\]

Consequently, we conclude that
\[
\left| \Pr_g(H, G) - \frac{1}{|G'|} \right| \leq |G : H| \left(\Pr(G) - \frac{1}{|G'|} \right).
\]

The above result yields, in particular, that if \(G \) is a finite group with \(|G'| \leq p^2 \), where \(p \) is the smallest prime divisor of \(|G| \), then every element of \(G' \) is a commutator.

Acknowledgments

Part of this work was done while the third author visited the Delhi Center of the Indian Statistical Institute (ISID). He would like to thank the Academy of Sciences for the Developing World (TWAS) and ISID for sponsoring his visits to New Delhi in July–August 2007 and January 2010. Especially he would like to express his thanks to Professor Rajendra Bhatia for the hospitality enjoyed at ISID.

References

