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Abstract

For a given graph F , the F -saturation number of a graph G, denoted by sat(G,F ), is the
minimum number of edges in an edge-maximal F -free subgraph ofG. In 2017, Korándi and Sudakov
determined sat(G(n, p),Kr) asymptotically, whereG(n, p) denotes the Erdős–Rényi random graph
and Kr is the complete graph on r vertices. In this paper, among other results, we present an
asymptotic upper bound on sat(G(n, p), F ) for any bipartite graph F and also an asymptotic lower
bound on sat(G(n, p), F ) for any complete bipartite graph F .

Keywords: Bipartite graph, Random graph, Saturation number.

2020 Mathematics Subject Classification: 05C35, 05C80.

1. Introduction

All graphs in this paper are assumed to be finite, undirected, and without loops or multiple edges. Fix
a graph F . We say that a graph G is F -free if G has no subgraph isomorphic to F . Turán [17] posed
one of the foundational problems in extremal graph theory in 1941 which was about the maximum
number of edges in an F -free graph on n vertices. Later, Zykov [18] introduced a dual idea in 1949
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which asks for the minimum number of edges in an edge-maximal F -free graph on n vertices. In this
paper, we deal with a random version of this concept. We below define the concept in a more general
form.

Let G be a graph. The edge set of G is denoted by E(G). A spanning subgraph H of G is said
to be an F -saturated subgraph of G if H is F -free and the addition of any edge from E(G) \E(H) to
H creates a copy of F . The minimum number of edges in an F -saturated subgraph of G is denoted
by sat(G,F ). Let Kr be the complete graph on r vertices and Ks,t be the complete bipartite graph
with parts of sizes s and t. Usually, sat(Kn, F ) is written as sat(n, F ). Erdős, Hajnal, and Moon [8]
proved that

sat(n,Kr) = (r − 2)n−
(
r − 1

2

)
,

where n > r > 2. Also, with the assumption t > s, Bohman, Fonoberova, and Pikhurko [3] proved
that

sat(n,Ks,t) =
2s+ t− 3

2
n+O

(
n

3
4

)
.

We refer the reader to the survey [9] for more known results on saturation in graphs.

Recall that the Erdős–Rényi random graph model G(n, p) is the probability space of all graphs
on a fixed vertex set of size n where every two distinct vertices are adjacent independently with
probability p. Throughout this paper, p is assumed to be a fixed real number in (0, 1). Recall that
the notion ‘with high probability’, which is written as ‘whp’ for brevity, is used whenever an event
occurs in G(n, p) with a probability approaching 1 as n → ∞. The study of saturation numbers in
random graphs was initiated in 2017 by Korándi and Sudakov [15]. They proved that whp

sat
(
G(n, p),Kr

)
=
(
1 + o(1)

)
n log 1

1−p
n

for any fixed r > 3. Mohammadian and Tayfeh-Rezaie [16] studied the saturation numbers for stars
and found that whp

sat
(
G(n, p),K1,t

)
=
t− 1

2
n−

(
t− 1 + o(1)

)
log 1

1−p
n

for any fixed t > 2. Their result was refined by Demyanov and Zhukovskii in [6] where it has been
proved that whp sat

(
G(n, p),K1,t

)
is concentrated in a set of two points. The related classical result

had been proved by Kászonyi and Tuza [14] as

sat(n,K1,t) =



(
t

2

)
+

(
n− t

2

)
if t+ 1 6 n 6

3t

2
,

⌈
t− 1

2
n− t2

8

⌉
if n >

3t

2
.

Demidovich, Skorkin, and Zhukovskii [5] proved that whp

sat
(
G(n, p), Ck

)
= n+Θ

(
n

log n

)
for any k > 5, where Ck is a cycle graph on k vertices, while(

3

2
+ o(1)

)
n 6 sat

(
G(n, p), C4

)
6
(
cp + o(1)

)
n

2



for some explicit constant cp. In particular, c1/2 = 27/14.

The exact values of both sat(n,Ks,t) and sat(G(n, p),Ks,t) are still unknown. Note that, for any
connected graph F with no cut edges, both sat(n, F ) and sat(G(n, p), F ) are at least n−1, since each
F -saturated subgraph should be connected. Therefore, in particular, whp sat(G(n, p),Ks,t) > n − 1
if t > s > 2. Diskin, Hoshen, and Zhukovskii [7] showed that, for any bipartite graph F , there exists
a constant cF such that sat(G(n, p), F ) 6 cFn whp. However, an explicit value of cF was not known.
In this paper, we prove the following theorem for any arbitrary bipartite graph.

Theorem 1.1. Let p ∈ (0, 1) be constant and let F be a bipartite graph with no isolated vertices. Let
{A1, B1}, . . . , {Ak, Bk} be the vertex bipartitions of all the connected components of F with |Bi| > |Ai|
for every i. Let a = max{|A1|, . . . , |Ak|} and δ be the minimum degree over all vertices from Ai with
|Ai| = a. Then, whp

sat
(
G(n, p), F

)
6

(
δ − 1

pa−1
− δ − 2a+ 1

2
+ o(1)

)
n.

Our proof of Theorem 1.1, which is presented in Section 4, is based on the construction suggested
in [7]. Actually, we have tuned the parameters of the construction in order to achieve the optimal
bound. For F = Ks,t with t > s, Theorem 1.1 shows that whp

sat(G(n, p),Ks,t) 6

(
t− 1

ps−1
− t− 2s+ 1

2
+ o(1)

)
n.

For a lower bound on sat(G(n, p),Ks,t), we prove the following theorem.

Theorem 1.2. Let t > s > 2 be fixed integers and let p ∈ (0, 1) be constant. Then, whp

sat(G(n, p),Ks,t) >

(
max

{
2s+ t− 3

2
,
t− s
4ps−1

+
s− 1

2

}
+ o(1)

)
n.

The proof of the lower bound in Theorem 1.2 is the most involved part of the paper. It is presented
in Section 5. For every fixed t > s, our bounds in Theorem 1.2 imply that the Ks,t-saturation number
in G(n, p) is Θ(p1−sn). Let us also note that, in the case s = t = 2, Theorem 1.2 provides the lower
bound obtained in [5], while our upper bound is slightly worse.

As we saw above, whp sat(G(n, p),Kr) � sat(n,Kr) for any r > 3. For complete bipartite
graphs, the saturation number is more stable, that is, sat(G(n, p),Ks,t) is linear in n whp as well as
sat(n,Ks,t). For t > s > 2 and sufficiently small p ∈ (0, 1), there is no asymptotical stability, that is,
there exists a constant c > 1 such that sat(G(n, p),Ks,t) > c sat(n,Ks,t) whp. However, for s = t or
t > s > 2 and sufficiently large p ∈ (0, 1), we do not know whether there is an asymptotical stability.
Finally, the K1,t-saturation number is asymptotically stable, while sat(G(n, p),K1,t) < sat(n,K1,t)
whp. Note that, for cycles, whp sat(G(n, p), Ck) 6 ((k + 2)/(k + 3) + o(1))sat(n,Ck) for any k > 5
by a result of Füredi and Kim [11].

For the sake of completeness, we give in Section 3 two simple general lower bounds on sat(G(n, p), F )
for any arbitrary graph F which are asymptotically tight for certain graph families.

2. Notation and preliminaries

In this section, we introduce notation and formulate several properties of random graphs that will be
used in the rest of the paper. First, let us fix some more notation and terminology of graph theory.
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Let G be a graph. The vertex set of G is denoted by V (G) and the order of G is defined as |V (G)|.
For a subset X of V (G), we denote the induced subgraph of G on X by G[X]. For a subset Y of
E(G), we denote by G − Y the graph obtained from G by removing the edges in Y . For a subset Z
of V (G), set NG(Z) = {v ∈ V (G) | v is adjacent to all vertices in Z}. For the sake of convenience, we
write NG(z1, . . . , zk) instead of NG({z1, . . . , zk}). For a vertex v of G, we define the degree of v as
|NG(v)| and denote by dG(v). The maximum and the minimum degree of vertices of G are denoted
by ∆(G) and δ(G), respectively. For two subsets S and T of V (G), we denote by EG(S, T ) the set of
all edges with endpoints in both S and T . We write EG(S) for EG(S, S). We drop subscripts if there
is no danger of confusion.

In what follows, we recall the probabilistic results that we make use of all in the next sections.
The next lemma is well known and can be deduced from the Chernoff bound [12, Theorem 2.1].

Lemma 2.1. Let X ∼ Bin(n, p) be a binomial random variable with parameters n and p. If E[X]→∞
as n→∞, then X = E[X](1 + o(1)) whp.

The following lemma is a consequence of Proposition 19 in [1].

Lemma 2.2. For any constant p ∈ (0, 1), there is a constant c, depending on p, such that G(n, p) has
the following property whp. For every subset X of vertices with |X| > c log n, the number of vertices
with no neighbors in X is at most c log n.

The following Lemma is an immediate consequence of the Chernoff bound [12, Theorem 2.1] and
the union bound.

Lemma 2.3. Let λ > 1 and p ∈ (0, 1) be constants. Then, G(n, p) has the following property whp.
For every two disjoint subsets X,Y of vertices of size at least logλ n, we have |E(X)| = p

(|X|
2

)
(1+o(1))

and |E(X,Y )| = p|X||Y |(1 + o(1)).

The following corollary follows from Lemma 2.3 immediately.

Corollary 2.4. Let λ > 1 and p ∈ (0, 1) be constants. Then, G(n, p) has the following property whp.
For every two subsets X,Y of vertices, |E(X,Y )| 6 3n logλ n+ p|X||Y |(1 + o(1)).

Note that, for a positive fixed integer M , the probability that G(n, p) does not contain a clique of
size M is exp(−Θ(n2)) due to the Janson bound [12, Theorem 2.14]. Therefore, by the union bound,
we get the following.

Lemma 2.5. Let λ > 1, p ∈ (0, 1) be constants and let M be a positive fixed integer. Then, G(n, p)
has the following property whp. Every subset X of vertices of size at least logλ n contains a clique of
size M .

3. General lower bounds

In this section, we prove a lower bound on sat(G,F ) for every two graphs G and F which provides a
lower bound on sat(G(n, p), F ). It is trivial that

sat(G,F ) >
min{δ(G), δ(F )− 1}

2
n

for any two graphs G and F . In order to proceed, we need the following definition.
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Let G be a graph and k be a nonnegative integer. A subset S of V (G) is called k-independent if
the maximum degree of G[S] is at most k. The k-independence number of G, denoted by αk(G), is
defined as the maximum cardinality of a k-independent set in G. In particular, α0(G) = α(G) is the
usual independence number of G. Furthermore, define r(G) = minxy∈E(G) max{d(x), d(y)}.

Theorem 3.1. Let F be a graph and let r = r(F ). If r > 2, then, for every graph G on n vertices,

sat(G,F ) >
(r − 1)

(
n− αr−2(G)

)
2

.

Proof. Let H be an F -saturated subgraph of G. Let r > 2 and let A be the set of vertices of H with
degree at most r − 2 in H. Suppose that there are two vertices x, y ∈ A with xy ∈ E(G) \E(H). By
definition of r, adding xy to H does not create a copy of F . This is a contradiction, since H is an
F -saturated subgraph of G. This implies that G[A] = H[A] and so |A| 6 αr−2(G). We hence obtain
that

|E(H)| >

∑
v∈V (H)\A

dH(v)

2
>

(r − 1)
(
n− αr−2(G)

)
2

.

Theorem 3.2 ([10, 16]). For every constants p ∈ (0, 1) and k > 0, whp

αk
(
G(n, p)

)
=
(
2 + o(1)

)
log 1

1−p
n.

Actually, we known from [13] that αk(G(n, p)) is concentrated in a set of two consecutive points
whp. Using Theorems 3.1 and 3.2, we conclude the following.

Corollary 3.3. Let F be a graph and let r = r(F ). Then, for each fixed real number p ∈ (0, 1), whp

sat
(
G(n, p), F

)
>
r − 1

2
n−

(
r − 1 + o(1)

)
log 1

1−p
n.

For F = K1,t, the lower bound given in Corollary 3.3 is tight by a result in [16]. However, for
graphs F satisfying the property that each edge uv ∈ E(F ) with max{d(u), d(v)} = r(F ) is contained
in a triangle, the lower bound can be significantly improved.

For any graph G, define w(G) = minxy∈E(G){max{d(x), d(y)} + |N(x) ∩ N(y)|}. Cameron and
Puleo [4] proved that

sat(n, F ) >
w(F )− 1

2
n− w(F )2 − 4w(F ) + 5

2

for any n. Below, we give a lower bound on sat(G(n, p), F ) in terms of w(F ) which is asymptotically
stronger than Corollary 3.3 for many graphs F .

Theorem 3.4. For any constant p ∈ (0, 1) and any graph F , whp

sat
(
G(n, p), F

)
>
w(F )− 1

2
n−O(log n).

Proof. If w(F ) = 1, then there is nothing to prove. So, assume that w(F ) > 2. Let G ∼ G(n, p) and
` = c log n, where c is given in Lemma 2.2. Assume that H is an arbitrary F -saturated subgraph of
G whose vertices are labeled as u1, . . . , un for which dH(u1) 6 · · · 6 dH(un). Let U = {u1, . . . , u`}.
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For i = 1, . . . , `, let Vi = NH(ui) and V =
⋃`
i=1 Vi. Also, for i = 1, . . . , `, define Wi = NG(ui) \ (U ∪

V ∪W1 ∪ · · · ∪Wi−1) and set W =
⋃`
i=1Wi. If dH(u`) > w(F )− 1, then

|E(H)| >

n∑
i=`+1

dH(ui)

2
>

(
w(F )− 1

)
(n− `)

2

which concludes the assertion. So, we may assume that dH(u`) 6 w(F )−2. Then, |V | 6
∑`

i=1 dH(ui) 6
`(w(F )− 2). Let R = V (G) \ (U ∪ V ∪W ). Note that R is the set of all vertices in V (G) \ U which
are not adjacent to any vertex in U and so |R| 6 c log n by Lemma 2.2. Let x ∈ Wi and let F ′ be a
copy of F in H + xui. It follows from dH(x) > dH(ui) that dH(x) > max{dF ′(x), dF ′(ui)} − 1. Since
NH(x) ∩ V ⊇ NF ′(x) ∩NF ′(ui), one concludes that

dH(x) + |NH(x) ∩ V | > max
{
dF ′(x), dF ′(ui)

}
− 1 + |NF ′(x) ∩NF ′(ui)| > w(F )− 1.

Now, we may write

2|E(H)| >
∑
x∈V

dH(x) +
∑
x∈W

dH(x)

>
∑
x∈V
|NH(x) ∩ U |+

∑
x∈V
|NH(x) ∩W |+

∑
x∈W

dH(x)

> |V |+
∑
x∈W
|NH(x) ∩ V |+

∑
x∈W

dH(x)

= |V |+
∑
x∈W

(
dH(x) + |NH(x) ∩ V |

)
> |V |+

∑
x∈W

(
w(F )− 1

)
= |V |+

(
w(F )− 1

)(
n− |U | − |V | − |R|

)
=
(
w(F )− 1

)
n−

(
w(F )− 2

)
|V | −

(
w(F )− 1

)(
`+ |R|

)
(1)

Since ` = c log n, |V | 6 `(w(F )− 2), and |R| 6 c log n, the result follows from (1).

4. Upper bound for bipartite graphs

In this section, we prove Theorem 1.1. Our proof is based on the construction suggested in [7] which,
in turn, resembles the proof strategy of a general linear in n upper bound on sat(n, F ) from [14].
First, we present a useful observation which can be proved straightforwardly.

Observation 4.1. Let H be an F -free subgraph of G. Then, there is an F -saturated subgraph of G
which has H as a subgraph.

Below, we show how a general linear in n upper bound on sat(n, F ) can be derived from Observation
4.1. While we use the same construction as in [14], we formulate the proof in a different way in order
to make the move to random settings smoother.

Theorem 4.2 ([14]). Let F be a graph and S be an independent set in F with maximum possible size.
Let b = |V (F )| − |S| − 1 and d = min{|NF (x) ∩ S| |x ∈ V (F ) \ S}. Then,

sat(n, F ) 6
2b+ d− 1

2
n− b(b+ d)

2
.
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Proof. Let B be a subset of V (Kn) of size b and let B = V (Kn) \B. Consider the spanning subgraph
H0 of Kn obtained by deleting all edges whose both endpoints are in B. If there is a copy F ′ of F in
H0, then V (F ′) ∩B is an independent set of size

|V (F ′) ∩B| = |V (F ′)| − |V (F ′) ∩B| > |V (F )| − |B| = |S|+ 1,

a contradiction. This shows thatH0 is F -free. Using Observation 4.1, there is an F -saturated subgraph
of G, say H, with E(H) ⊇ E(H0). For every x ∈ B, we have |NH(x) ∩ B| 6 d − 1, as otherwise the
subgraph of H with the edge set E(H0) ∪ EH({x}, B) contains a copy of F . Since

|E(H)| = |E(H0)|+
∑
x∈B

|NH(x) ∩B| 6 |E(H0)|+
(d− 1)|B|

2
,

the result follows.

Let us now prove Theorem 1.1. Note that it is impossible to find a construction as in the proof of
Theorem 4.2, since vertex degrees in the random graph equal np(1+o(1)). Thus, instead of considering
a single clique B with its common neighborhood, we will consider Θ(lnn) disjoint sets of constant
sizes as well as their common neighborhoods. For the sake of convenience, we handle the case of F
being a disjoint union of stars separately. This proves Theorem 1.1 for the case a = 1 and generalizes
a result given in [16].

Lemma 4.3. Let p ∈ (0, 1) be constant and let F be the disjoint union of stars K1,t1 , . . . ,K1,tk with
k > 1 and t1 > · · · > tk > 1. Then, whp

sat
(
G(n, p), F

)
=
tk − 1

2
n−

(
tk − 1 + o(1)

)
log 1

1−p
n.

Proof. In view of Corollary 3.3, it suffices to prove the upper bound. Using Theorem 3.2, α(G(n, p)) =
(2 + o(1)) log1/(1−p) n whp. Let G ∼ G(n, p) and h = |V (F )| − 1. Fix an integer-valued function
` = `(n) = (2 + o(1)) log1/(1−p) n such that (n− h− `)(tk − 1) is even and α(G(n, p)) > ` whp. Also,
let L be the disjoint union of Kh and an arbitrary regular graph on n − h − ` vertices with degree
tk − 1. We know from a result of Alon and Füredi [2] that, for sufficiently small ε > 0, the graph
G(n − `, n−ε) contains a copy of L whp. Using the standard multiple-exposure technique, it implies
that G(n − `, p) does not contain a copy of L with probability at most exp(n−ε+o(1)). Thus, by the
union bound, whp there exists a subset S ⊆ V (G) with |S| = ` such that S is an independent set in
G and G[V (G) \ S] has a copy L′ of L as a subgraph. Denote by H the spanning subgraph of G with
the edge set E(L′). It is easily seen that H is an F -saturated subgraph of G and

|E(H)| = (n− h− `)(tk − 1)

2
+

(
h

2

)
=
tk − 1

2
n−

(
tk − 1 + o(1)

)
log 1

1−p
n

which concludes the result.

Remark 4.4. Note that Lemma 4.3 for tk = 1 could be strengthened as follows. If F is a graph with
a connected component K2, then sat(G(n, p), F ) 6

(|V (F )|−1
2

)
whp. Conversely, if sat(G(n, p), F ) is

bounded from above by a constant, then Corollary 3.3 forces F to have a connected component K2.
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Proof of Theorem 1.1. In view of Lemma 4.3, we may assume that a > 2. Let G ∼ G(n, p), b = 1−
pa−1, and ` = blog1/b n

2/3c. Without loss of generality, assume that |A1| = · · · = |Aq| > |Aq+1| > · · · >
|Ak| for some q. Fix disjoint arbitrary (a− 1)-subsets V1, . . . , V` and (a+ 1)-subsets V`+1, . . . , V`+q−1
of V (G). Set V =

⋃`
i=1 Vi and V ′ =

⋃`+q−1
i=`+1 Vi. Let Mi =

⋃i
j=1N(Vj) for any i > 1. For i =

1, . . . , `+ q− 1, define Wi = N(Vi) \ (V ∪V ′ ∪Mi−1) and set W =
⋃`
i=1Wi. Let R = V (G) \ (V ∪W ).

Note that R = (V (G) \ (V ∪M`)) ∪ V ′. Set V ′′ = V ′ ∩M`. A schematic of the structure of V (G) is
illustrated in Figure 1.

Figure 1. The structure of V (G) described in the proof of Theorem 1.1.

As |R \ V ′′| ∼ Bin(n− `(a− 1), b`), Lemma 2.1 implies that whp

|R| = b`
(
n− `(a− 1)

)(
1 + o(1)

)
+ |V ′′|

which gives that |R| = O(n1/3). Similarly, for all i, whp

|Wi| = bi−1(1− b)
(
n− `(a− 1)− (q − 1)(a+ 1)

)(
1 + o(1)

)
which yields that |Wi| = Ω(n1/3) for i = 1, . . . , `+q−1. In particular, |Wi| > max{|B1|, . . . , |Bk|}+1.

Let H0 be a spanning subgraph of G with E(H0) = ∪`+q−1i=1 EG(Vi,Wi). By the definition of a, we
conclude that H0 is F -free. Using Observation 4.1, there is an F -saturated subgraph of G, say H,
with E(H) ⊇ E(H0). Now, we bound the number of edges of H. We will use

|E(H)| = |EH(V (G) \W )|+ |EH(V (G) \W,W )|+ |EH(W )|. (2)

It follows from V (G) \W = R∪ V that |V (G) \W | = O(n1/3) and hence |EH(V (G) \W )| = O(n2/3).
For every i ∈ {1, . . . , `} and every x ∈ V (G) \ Vi, we have |NH(x) ∩Wi| 6 δ − 1, as otherwise the
bipartite subgraph of H with the edge set E(H0) ∪ EH({x},Wi) contains a copy of F . Therefore,

|EH(V (G) \W,W )| =
∑̀
i=1

|EH(V (G) \W,Wi)|

8



=
∑̀
i=1

|EH(V (G) \ (Vi ∪W ),Wi)|+
∑̀
i=1

|EH(Vi,Wi)|

6 `(δ − 1)|V (G) \W |+
∑̀
i=1

|EH(Wi, Vi)|

6 O
(
n

1
3 log n

)
+ (a− 1)n. (3)

It remains to estimate |EH(W )|. To do this, we write

|EH(W )| =
∑̀
i=1

i−1∑
j=1

|EH(Wi,Wj)|+
∑̀
i=1

|EH(Wi)|

6
∑̀
i=1

(i− 1)(δ − 1)|Wi|+
∑̀
i=1

δ − 1

2
|Wi|

=
δ − 1

2

∑̀
i=1

(2i− 1)|Wi|

6
δ − 1

2

∑̀
i=1

(2i− 1)bi−1(1− b)n
(
1 + o(1)

)
6
δ − 1

2
(1− b)n

(
1 + o(1)

)∑̀
i=1

(2i− 1)bi−1

=
δ − 1

2
(1− b)n

(
1 + o(1)

)1 + b− (2`+ 1)b` + (2`− 1)b`+1

(1− b)2

6
δ − 1

2

(
1 + b

1− b

)
n
(
1 + o(1)

)
. (4)

By (2)–(4), we conclude that

|E(H)| 6
(
δ − 1

2

(
1 + b

1− b

)
+ a− 1

)
n
(
1 + o(1)

)
=

(
δ − 1

pa−1
− δ − 2a+ 1

2
+ o(1)

)
n.

Since sat(G,F ) 6 |E(H)|, the result follows.

5. Lower bound for Ks,t

In this section, we prove the two lower bounds in Theorem 1.2. We start from the bound that does not
depend on p that is stated separately below. Let us recall that this bound generalizes the lower bound
from [5] for F = K2,2, that is, sat(G(n, p),K2,2) > (32 +o(1))n whp. However, our argument is simpler
and resembles the argument used by Bohman, Fonoberova, and Pikhurko [3] for their asymptotic lower
bound on sat(n,Ks,t).

Theorem 5.1. Let t > s > 2 and p ∈ (0, 1) be constants. Then, whp

sat
(
G(n, p),Ks,t

)
>

(
2s+ t− 3

2
+ o(1)

)
n.

9



Proof. Let G ∼ G(n, p) and let H be a Ks,t-saturated subgraph of G with minimum possible number
of edges. Let V = V (G). By Theorem 1.1, we have that |E(H)| = O(n) whp. For the subsets

A =
{
x ∈ V

∣∣∣ dH(x) > n
1
4

}
,

B =
{
x ∈ V \A

∣∣ |NH(x) ∩A| 6 s− 2
}
,

C =
{
x ∈ V

∣∣ dH(x) 6 s+ t− 3
}
,

D = V \ (A ∪B ∪ C).

of V (H), we prove the following claims.

Claim 5.2. Whp |A| = O(n3/4).

Proof. Since |E(H)| > |A|n1/4/2, we have |A| = O(n3/4). �

Claim 5.3. Whp |B| = O(n3/4).

Proof. Take any two vertices x, y ∈ B such that {x, y} ∈ E(G)\E(H). The addition of xy to H creates
a copy of Ks,t with vertex bipartition {X,Y } so that x ∈ X and y ∈ Y . Since |NH(x) ∩ A| 6 s − 2,
x has a neighbor y′ ∈ Y \A. Similarly, y has a neighbor x′ ∈ X \A. This shows that there is a path
x, y′, x′, y of length three which connects x to y in H − A. Therefore, every two vertices in B which
are adjacent in G are connected in H −A by a path of length one or three. If |B| 6 n3/4, then we are
done. Otherwise, by Lemma 2.3, we have

p

2

(
|B|
2

)
6 |E(G[B])| 6 |E(H[B])|+ |B|

(
n

1
4n

1
4n

1
4

)
6
|B|n

1
4

2
+ |B|n

3
4

which gives |B| = O(n3/4). �

Claim 5.4. |C| 6 log2 n.

Proof. By contradiction, assume that |C| > log2 n. Recall that the Ramsey number Rs+t−3(s + t)
is the smallest positive integer m such that any coloring of the edges of Km with s + t − 3 colors
gives a monochromatic copy of Ks+t. Using Lemma 2.5, C contains a clique C ′ of size M = (s +
t − 2)Rs+t−3(s + t) in G. We know that every graph Γ contains an independent set of size at least
|V (Γ )|/(∆(Γ ) + 1). Since each vertex of C ′ has degree at most s+ t−3 in H, there is an independent
set C ′′ ⊆ C ′ with |C ′′| > Rs+t−3(s + t) in H. For each vertex x ∈ C ′′, fix an arbitrary ordering of
NH(x) which we encode by a bijection fx : N(x)→ {1, . . . , dH(x)}. For each pair of distinct vertices
x, y ∈ C ′′ do the following. Fix a copy of Ks,t in H + xy with partition {X,Y } so that x ∈ X and
y ∈ Y . Since |(X \ {x}) ∪ (Y \ {y})| = s + t − 2, there are x′ ∈ X \ {x} and y′ ∈ Y \ {y} with
fx(x′) = fy(y

′). Denote the integer fx(x′) = fy(y
′) by a. Clearly, x′y′ ∈ E(H). Now, color the edge xy

by a. This defines an edge coloring of E(G[C ′′]) with s+ t−3 colors. By Ramsey’s theorem, there is a
(s+ t)-subset C ′′′ ⊆ C ′′ such that all edges of G[C ′′′] have the same color, say c. For every two distinct
vertices x, y ∈ C ′′′, as f−1x (c) and f−1y (c) are adjacent in H, f−1x (c) 6= f−1y (c). So {f−1x (c)|x ∈ C ′′′} is
a clique of order s+ t in H which contradicts the Ks,t-freeness of H, proving the claim. �

Using Claims 5.2–5.4, we conclude that |D| = n − O(n3/4). Since every vertex in D has at least
s− 1 neighbors in A, we may choose s− 1 distinct edges for each vertex of D. Put all these edges in

10



a set E1. Since any vertex in D has at least s+ t− 2 neighbors in H, we conclude that every vertex
in D is incident to at least t− 1 edges in E(H) \ E1. Now, we have

|E(H)| > |E(D,V (H))| > (s− 1)|D|+ t− 1

2
|D| >

(
2s+ t− 3

2
+ o(1)

)
n.

The second lower bound in Theorem 1.2 is stated below.

Theorem 5.5. Let t > s > 2 and p ∈ (0, 1) be constants. Then, whp

sat
(
G(n, p),Ks,t

)
>

(
t− s
4ps−1

+
s− 1

2
+ o(1)

)
n.

Proof. If s = t, then the assertion follows from Corollary 3.3. So, assume that t > s. Let G ∼ G(n, p)
and let H be a Ks,t-saturated subgraph of G with minimum possible number of edges. Let V = V (G).
By Theorem 1.1, we have |E(H)| = O(n). Consider the partition {A,B,C} of V , where

A =
{
x ∈ V

∣∣ dH(x) < log n
}
,

B =

{
x ∈ V

∣∣∣∣ log n 6 dH(x) 6
n

logs+1 n

}
,

C =

{
x ∈ V

∣∣∣∣ dH(x) >
n

logs+1 n

}
.

For any y ∈ V , set Ny = NH(y) and

Fy =
{
x ∈ V

∣∣ |NH(x, y)| > t− 1
}
.

Moreover, let
O =

{
Y ⊆ V

∣∣ |Y | = s− 1 and |NH(Y )| > t
}
.

Further, for any Y ∈ O, set NY = NH(Y ) and

FY =
{
x ∈ V

∣∣ |NH({x} ∪ Y )| = t− 1
}
.

Finally, consider the partition {A,B,C} of O, where

A = {Y ∈ O |Y ∩A 6= ∅},
B = {Y ∈ O |Y ∩A = ∅ and Y ∩B 6= ∅},
C = {Y ∈ O |Y ⊆ C}.

Since adding every edge xx′ ∈ E(G) \ E(H) to H creates a copy of Ks,t in H, we conclude that
E(G) \ E(H) ⊆

⋃
Y ∈OEG(NY , FY ). Therefore, using Lemma 2.3, we find that whp∣∣∣∣∣ ⋃

Y ∈O
EG(NY , FY )

∣∣∣∣∣ > |E(G) \ E(H)| = n2p

2

(
1 + o(1)

)
. (5)

Note that EG(NY , FY ) ⊆ EG(Ny, Fy) for every y ∈ Y , since NY ⊆ Ny and FY ⊆ Fy. For every vertex
y ∈ V , by a double counting of the set {(x, S) |x ∈ Fy, S ⊆ NH(x, y), and |S| = s}, we derive that

|Fy|
(
t− 1

s

)
6

(
|Ny|
s

)
(t− 1).

11



It follows from t > s that |Fy| 6 |Ny|s. Hence, |Fy| 6 logs n for every y ∈ A. This gives∣∣∣∣∣ ⋃
Y ∈A

EG(NY , FY )

∣∣∣∣∣ 6
∣∣∣∣∣∣
⋃
y∈A

EG(Ny, Fy)

∣∣∣∣∣∣ 6
∑
y∈A
|Ny||Fy| 6 n(log n) logs n = n logs+1 n. (6)

Since |E(H)| = O(n) whp, we get that |Fy \ A| = O(n/ log n) for each y ∈ V whp. Using this, we
may write whp ∣∣∣∣∣ ⋃

Y ∈B
EG(NY , FY )

∣∣∣∣∣ 6
∣∣∣∣∣∣
⋃
y∈B

EG(Ny, Fy)

∣∣∣∣∣∣
6
∑
y∈B
|EG(Ny, Fy)|

6
∑
y∈B
|EG(Ny, Fy \A)|+

∑
y∈B
|EG(Ny, Fy ∩A)|

6
∑
y∈B
|Ny||Fy \A|+

∑
y∈B
|Ny||Fy ∩A|

6 O

(
n

log n

)∑
y∈B
|Ny|+

n

logs+1 n

∑
x∈A
|Fx ∩B|

6 O

(
n

log n

)
|E(H)|+ n

logs+1 n
|A| logs n

= O

(
n2

log n

)
(7)

Since |E(H)| = O(n) whp, we deduce that |C| = O(logs+1 n) whp and so |C| 6 |C|s−1 = O(logs
2−1 n)

whp. Now, by setting λ = 2 in Corollary 2.4, we obtain that whp∣∣∣∣∣ ⋃
Y ∈C

EG(NY , FY )

∣∣∣∣∣ 6∑
Y ∈C
|EG(NY , FY )|

6
∑
Y ∈C

(
3n log2 n+ p|NY ||FY |

(
1 + o(1)

))
6 3|C|n log2 n+

∑
Y ∈C

psn|FY |
(
1 + o(1)

)
6 O

(
n logs

2+1 n
)

+ psn

(∑
Y ∈C
|FY |

)(
1 + o(1)

)
. (8)

Therefore, by (5)–(8), we find that whp∑
Y ∈C
|FY | >

n

2ps−1
(
1 + o(1)

)
. (9)

Set
S =

⋃
X,Y ∈C
X 6=Y

NX ∩NY .
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Note that |S| 6
(|C|
2

)
(t− 1) = O(log2s

2−2 n) whp. For every Y ∈ C, set MY = NY \ S. Let

F ′ =

{
x ∈

⋃
Y ∈C

FY

∣∣∣∣∣ |Nx ∩ S| > s

}
.

We claim that |F ′| 6
(|S|
s

)
(t− 1). To see this, suppose otherwise. By the pigeonhole principle, there

is a t-subset T of F ′ such that |NH(T )∩S| > s which gives a copy of Ks,t in H, a contradiction. This

proves the claim which in turn implies that |F ′| = O(log2s
3−2s n). For every Y ∈ C, set F ′Y = FY \F ′.

Noting that the sets MY are mutually disjoint and FY ∩ Y = ∅ for every Y ∈ O, we may write whp

2|E(H)| =
∑
Y ∈C

∑
x∈MY

dH(x) +
∑

x/∈
⋃

Y ∈CMY

dH(x)

>
∑
Y ∈C

(
|EH(MY , F

′
Y \MY )|+ 2|EH(MY , F

′
Y ∩MY )|+ |EH(MY , Y )|

)
+ (s− 1)

∣∣∣∣∣V \ ⋃
Y ∈C

MY

∣∣∣∣∣
>
∑
Y ∈C

(
(t− s)|F ′Y \MY |+ (t− s)|F ′Y ∩MY |+ (s− 1)|MY |

)
+ (s− 1)

(
n−

∑
Y ∈C
|MY |

)
= (s− 1)n+

∑
Y ∈C

(t− s)|F ′Y |

= (s− 1)n+ (t− s)

((∑
Y ∈C
|FY |

)
− |C||F ′|

)

> (s− 1)n+ (t− s)
(

n

2ps−1
(
1 + o(1)

)
−O

(
log2s

3+s2−2s−1 n
))

=

(
t− s
2ps−1

+ s− 1 + o(1)

)
n,

where the last inequality follows from (9), completing the proof.

We point out here that Theorem 1.2 is concluded from Theorems 5.1 and 5.5.

Remark 5.6. It is worth noting that using the proof of Theorem 5.1, one may improve the estimate
on the number of edges of H in the last paragraph of proof of Theorem 5.5 to obtain

sat(G(n, p),Ks,t) >

(
t− s
4ps−1

+ s− 1 + o(1)

)
n.

For the sake of clarity of presentation we disregarded this improvement in the proof of Theorem 5.5.
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