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Abstract

The r-neighbor bootstrap percolation on a graph is an activation process of the
vertices. The process starts with some initially activated vertices and then, in each
round, any inactive vertex with at least r active neighbors becomes activated. A
set of initially activated vertices leading to the activation of all vertices is said to be
a percolating set. Denote the minimum size of a percolating set in the r-neighbor
bootstrap percolation process on a graph G by m(G, r). In this paper, we present
upper and lower bounds on m(Kd

n, r), where Kd
n is the Cartesian product of d

copies of the complete graph Kn which is referred as the Hamming graph. Among
other results, when d goes to infinity, we show that m(Kd

n, r) =
1+o(1)
(d+1)! r

d if r � d2

and n > r + 1. Furthermore, we explicitly determine m(L(Kn), r), where L(Kn)
is the line graph of Kn also known as triangular graph.

Keywords: Bootstrap percolation, Hamming graph, Percolating set, Triangular
graph.

AMS Mathematics Subject Classification (2020): 05C35, 60K35.

1 Introduction

Bootstrap percolation process on graphs can be interpreted as a cellular automaton,
a concept introduced by von Neumann [16]. It has been extensively investigated in
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several diverse fields such as combinatorics, probability theory, statistical physics and
social sciences. The r-neighbor model is the most studied version of this process in the
literature. It was introduced in 1979 by Chalupa, Leath and Reich [9]. In the r-neighbor
bootstrap percolation process on a graph, first some vertices are initially activated
and then, in each phase, any inactive vertex with at least r active neighbors becomes
activated. Once a vertex becomes activated, it remains active forever. This process
has also been treated in the literature under other names like irreversible threshold,
influence propagation and dynamic monopoly.

Throughout this paper, all graphs are assumed to be finite, undirected, without
loops and multiple edges. For a graph G, we denote the vertex set and the edge set
of G by V (G) and E(G), respectively. For a vertex v of G, we set N(v) = {x ∈
V (G) |x is adjacent to v}. The degree of v is defined to be |N(v)|. Given a nonnegative
integer r and a graph G, the r-neighbor bootstrap percolation process on G begins with
a subset A0 of V (G) whose elements are initially activated and then, at step i of the
process, the set Ai of active vertices is

Ai = Ai−1 ∪
{
v ∈ V (G)

∣∣∣ |N(v) ∩Ai−1| > r
}

for each i > 1. We say A0 is a percolating set of G if
⋃
i>0Ai = V (G). The main

extremal problem here is to determine the minimum size of a percolating set which is
denoted by m(G, r). The size of percolating sets has been studied for various families of
graphs such as hypercubes [15], grids [4, 6, 12], tori [12], trees [17] and random graphs
[10, 13].

Let us fix some notation and terminology. The Cartesian product of two graphs G
andH, denoted byG�H, is the graph with vertex set V (G)×V (H) in which two vertices
(g1, h1) and (g2, h2) are adjacent if and only if either g1 = g2 and h1 is adjacent to h2 or
h1 = h2 and g1 is adjacent to g2. For any integer n > 1, we let [[n]] = {0, 1, . . . , n− 1}
and we use the convention that [[0]] = ∅. We denote the complete graph on n vertices by
Kn and we consider [[n]] as the vertex set of Kn. Denote by Kd

n the Cartesian product
of d vertex disjoint copies of Kn, that is, the Hamming graph of dimension d. The
line graph of a graph G, written L(G), is the graph whose vertex set is E(G) and in
which two vertices of L(G) are adjacent if they share an endpoint. The line graph of a
complete graph is known as a triangular graph.

Balister, Bollobás, Lee and Narayanan [1] gave the lower bound (r/d)d and the upper
bound rd/(2d!) on m(Kd

n, r). The lower bound follows from Theorem 2.3 of [1] and the
upper bound is stated in [1] as a remark without proof. In this paper, we improve
their lower bound by utilizing a polynomial technique introduced by Hambardzumyan,
Hatami and Qian [12]. In order to improve the upper bound, we present a percolating
set of Kd

n in the r-neighbor bootstrap percolation process. Letting δ = (d− 2)/(d− 1),
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we establish that

1

r

(
d+ r

d+ 1

)
6 m

(
Kd
n, r
)
6

(r + 2d− 1)d − δ2(r − 2)d

2d!
,

for any positive integers n, r, d with n > r+1 and d > 2. This in particular implies that,
when d goes to infinity, m(Kd

n, r) =
1+o(1)
(d+1)! r

d if r � d2 and n > r + 1. It is worth to
mention that a random version of the r-neighbor bootstrap percolation process on the
Hamming graphs has been investigated in [11]. Among other results, we will present an
exact formula for m(L(Kn), r).

The paper is organized as follows. In Section 2, we determine m(K2
n, r). In Section

3, we apply a polynomial technique to find an auxiliary quantity which will be used to
get a lower bound for m(Kd

n, r). In Section 4, we present our upper and lower bounds
for m(Kd

n, r) which will result in an asymptotic formula for m(Kd
n, r). An exact formula

for m(Kd
n, 2) and a tighter upper bound on m(Kd

n, 3) will be given in Section 5. Finally,
we present an exact formula for m(L(Kn), r) in Section 6 as the last result of the paper.

2 Two-dimensional Hamming graphs

For any integers n > 1 and r > 0, it is clear that m(Kn, r) = min{n, r}. In this section,
we deal with the first nontrivial case, that is, the Hamming graph of dimension 2. More
precisely, we derive an exact formula for m(K2

n, r). However, it is not easy to provide
an exact formula for the same problem for higher dimensions which will be investigated
in the subsequent sections. The result of this section will be the basis of an inductive
proof for higher dimensions in Section 4.

If n 6 dr/2e, then the degree of any vertex of K2
n is 2n − 2 6 r − 1. This implies

that no vertex of K2
n can be activated by other vertices in the r-neighbor bootstrap per-

colation process. Therefore, any percolating set of K2
n consists of all vertices, meaning

that m(K2
n, r) = n2. The following theorem resolves the remaining cases.

Theorem 2.1 For any nonnegative integers n and r with n > dr/2e+ 1,

m
(
K2
n, r
)
=

⌊
(r + 1)2

4

⌋
.

Proof. We first present a percolating set of K2
n in the r-neighbor bootstrap percolation

process. Let

Vn,r =
{
(x, y) ∈ [[n]]2

∣∣∣x+ (n− 1− y) 6
⌈
r
2

⌉
− 1 or (n− 1− x) + y 6

⌊
r
2

⌋
− 1
}
. (1)

As an example, V6,5 is shown in Figure 1.
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Figure 1. The set V6,5 is outlined with circles drawn around its elements. The points’ coordinates
can be found using the numbers written on the left and bottom margins.

Since n > dr/2e+ 1, we have

|Vn,r| =
d r2e∑
i=1

i+

b r2c∑
i=1

i =

(⌈ r
2

⌉
+ 1

2

)
+

(⌊ r
2

⌋
+ 1

2

)
=

⌊
(r + 1)2

4

⌋
.

Note that Vn,r∩[[n−1]]2 = Vn−1,r−2. We prove by induction on r that Vn,r is a percolating
set in the r-neighbor bootstrap percolation process on K2

n. The statement is trivial for
r = 0, 1. Let r > 2 and assume that the vertices in Vn,r are initially activated. The
points on the lines x = n− 1 and y = n− 1 become consecutively activated from top to
bottom and from right to left, respectively. Remove from K2

n all the vertices in the set

L =
{
(x, y) ∈ [[n]]2

∣∣∣x = n− 1 or y = n− 1
}

to get K2
n−1. By the induction hypothesis, Vn−1,r−2 = Vn,r ∩ [[n − 1]]2 is a percolating

set of K2
n−1 in the (r− 2)-neighbor bootstrap percolation process. Since each vertex in

[[n − 1]]2 has two additional active neighbors in L, we conclude that Vn−1,r−2 ∪ L is a
percolating set of K2

n in the r-neighbor bootstrap percolation process. This proves the
assertion.

We next use induction on r to establish that any percolating set of K2
n in the r-

neighbor bootstrap percolation process has at least b(r+1)2/4c elements. The statement
is trivially true for r = 0, 1. Let r > 2 and consider a percolating set A in the r-neighbor
bootstrap percolation process on K2

n. Without loss of generality, one may assume that
(n − 1, n − 1) is the first vertex in [[n]]2 \ A that becomes activated. So, (n − 1, n − 1)
must have at least r initially activated neighbors in L, meaning that |A ∩ L| > r.
Remove from K2

n all vertices in L to get K2
n−1. Since A ∪ L is a percolating set in the

r-neighbor bootstrap percolation process on K2
n and each vertex in [[n− 1]]2 has exactly

two neighbors in L, we deduce that A ∩ [[n − 1]]2 is a percolating set of K2
n−1 in the
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(r−2)-neighbor bootstrap percolation process. It follows from the induction hypothesis
that |A ∩ [[n− 1]]2| > b(r − 1)2/4c. Therefore,

|A| > |A ∩ L|+
∣∣∣A ∩ [[n− 1]]2

∣∣∣ > r + ⌊(r − 1)2

4

⌋
=

⌊
(r + 1)2

4

⌋
.

3 Polynomials and bootstrap percolation

The main result of this section is an exact formula for a quantity that gives rise to a lower
bound for m(Kd

n, r). We use a polynomial technique introduced by Hambardzumyan,
Hatami and Qian [12] to determine m(Kd

2 , r). This quantity is the minimum size of
a percolating set in another version of bootstrap percolation which is called ‘graph
bootstrap percolation’ and is closely related to the r-neighbor bootstrap percolation.
The notion of graph bootstrap percolation was introduced by Bollobás in 1968 under
the name of ‘weak saturation’ [8] and was later studied in 2012 by Balogh, Bollobás
and Morris [3]. We recall the formal definition here. Given two graphs G and H, the
H-bootstrap percolation process on G begins with a subset E0 of E(G) whose elements
are initially activated and then, at step i of the process, the set of active edges is

Ei = Ei−1 ∪

e ∈ E(G)

∣∣∣∣∣∣
There exists a subgraph He of G such
that He is isomorphic to H, e ∈ E(He)
and E(He) \ {e} ⊆ Ei−1.


for each i > 1. The set E0 is called a percolating set of G provided

⋃
i>0Ei = E(G).

The minimum size of a percolating set in the H-bootstrap percolation process on G
is said to be the weak saturation number of H in G and is denoted by wsat(G,H).
We refer to the Sr+1-bootstrap percolation as the r-edge bootstrap percolation, where
Sr+1 denotes the star graph with r + 1 edges. For simplicity and following [12], we let
me(G, r) = wsat(G,Sr+1). Roughly speaking, the r-edge bootstrap percolation can be
considered as an edge analogue of the r-neighbor bootstrap percolation. It is worth to
mention that 2-edge bootstrap percolation had been studied in 1984 by Lenormand and
Zarcone under the name of ‘bond percolation’ [14]. We know from [15] that

me(G, r) 6 rm(G, r). (2)

Using this inequality and by computingme(K
d
n, r) in the current section, we will present

a lower bound on m(Kd
n, r) in the next section. We first state the following definition

which slightly differs from the original definition in [12].

Definition 3.1 Let r be a nonnegative integer and let G be a graph equipped with a
proper edge coloring c : E(G) −→ R. Let Wc(G, r) be the vector space over R consist-
ing of all functions φ : E(G) −→ R for which there exist polynomials {Pv(x)}v∈V (G)

satisfying
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(i) degPv(x) 6 r − 1 for any vertex v ∈ V (G);

(ii) Pu(c(uv)) = Pv(c(uv)) = φ(uv) for each edge uv ∈ E(G).

It is said that the polynomials
{
Pv(x)

}
v∈V (G)

recognize φ. Notice that we adopt the
convention that the degree of the zero polynomial is −1.

The following theorem provides an interesting linear algebraic lower bound on
me(G, r). Other surprising applications of vector spaces and polynomials for boot-
strap percolation can be found in [1, 5, 15]. The method presented in the following
theorem can be regarded as a special case of a general framework introduced in [5].

Theorem 3.2 (Hambardzumyan, Hatami, Qian [12]) Let r be a nonnegative integer
and let c : E(G) −→ R be a proper edge coloring of a graph G. Then me(G, r) >
dimWc(G, r).

To have a sense on how the dimension of the vector space Wc(G, r) is related to
me(G, r), one may consider a percolating set E0 ⊆ E(G) and observe the fact that if a
function φ ∈Wc(G, r) vanishes on E0, then φ = 0. This fact forces that dimWc(G, r) 6
|E0| by considering Wc(G, r) as a subspace of the space of all arbitrary functions from
E(G) to R. To observe the fact, note that throughout the process, for the newly
activated edge e /∈ E0, at least one of the endpoints of e, say v, is incident to at least r
already activated edges. This shows that the polynomial Pv has at least r distinct roots,
implying Pv = 0 and thus φ(e) = 0. Since E0 is a percolating set of G, φ eventually
vanishes on E(G) which means that φ = 0.

The rest of this section is dedicated to first find an appropriate proper edge color-
ing of Kn for which dimWc(Kn, r) attains its maximum value which turns out to be
equal to me(Kn, r) =

(
r+1
2

)
. Although the latter equality can be proved by a simple

combinatorial argument, our approach using the above mentioned polynomial technique
has the advantage that we can extend the argument to higher dimensions afterward.
So, the next step will be introducing a proper edge coloring of Kd

n and calculating
dimWc(Kn, r). Doing this, we will have a lower bound on me(K

d
n, r) which we will

show that it is an upper bound as well.
Before proceeding, let us present here a direct combinatorial proof for the equality

me(Kn, r) =
(
r+1
2

)
for n > r + 1. As the edges of a clique of size r + 1 clearly forms a

percolating set in the r-edge bootstrap percolation process on Kn, it is enough to prove
that this number of edges is necessary. Suppose that v1, . . . , vn is an order of vertices
of Kn that will be incident to at least r active edges during the process. Obviously, v1
is incident to at least r initially active edges. The vertex v2 needs to be incident to at
least r − 1 new initially active edges. With the same argument, we conclude that any
percolating set is necessarily of size at least r + (r − 1) + · · ·+ 1 =

(
r+1
2

)
, as we aimed

for.
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Lemma 3.3 For any positive integers n and r with n > r+1, there exists a proper edge
coloring c : E(Kn) −→ R such that dimWc(Kn, r) >

(
r+1
2

)
.

Proof. We introduce an edge coloring c and
(
r+1
2

)
independent vectors in Wc(Kn, r).

Fix arbitrary distinct nonzero real numbers γ0, γ1, . . . , γn−1 and let c(ij) = γiγj for any
edge ij ∈ E(Kn). Obviously, c : E(Kn) −→ R is a proper edge coloring of Kn. For each
edge uv ∈ E(Kn) with u, v ∈ [[r+1]], we define polynomials P uv0 (x), P uv1 (x), . . . , P uvn−1(x)
as follows. For any i ∈ [[n]], let

P uvi (x) =



0, if i ∈ [[r + 1]] \ {u, v};∏
k∈[[r+1]]
k/∈{u,v}

x− γiγk
γuγv − γiγk

, if i ∈ {u, v};

∏
k∈[[r+1]]
k/∈{u,v}

(x− γiγk)(γi − γk)
γi(γu − γk)(γv − γk)

, if i ∈ {r + 1, . . . , n− 1}.

We have degP uvi (x) 6 r − 1 and P uvi (c(ij)) = P uvj (c(ij)). To see the latter equality,
note that

P uvi (γiγj) =



0, if i ∈ [[r + 1]] \ {u, v};∏
k∈[[r+1]]
k/∈{u,v}

γj − γk
γuγv
γi
− γk

, if i ∈ {u, v};

∏
k∈[[r+1]]
k/∈{u,v}

(γi − γk)(γj − γk)
(γu − γk)(γv − γk)

, if i ∈ {r + 1, . . . , n− 1}.

Now, using the symmetry between i and j, the equality P uvi (γiγj) = P uvj (γiγj) is easily
verified by just considering the following cases:

(i) i ∈ [[r + 1]] \ {u, v}. In this case, P uvi (γiγj) = P uvj (γiγj) = 0.

(ii) {i, j} = {u, v}. In this case, P uvi (γiγj) = P uvj (γiγj) = 1.

(iii) i ∈ {u, v} and j ∈ {r + 1, . . . , n− 1}.

(iv) i, j ∈ {r + 1, . . . , n− 1}.
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Define φuv : E(Kn) −→ R as φuv(ij) = P uvi (c(ij)). We saw above that the polynomials{
P uvi (x)

}
i∈[[n]] recognize φuv. Note that φuv vanishes on each edge ij with i, j ∈ [[r+1]]

except on uv. From this, it follows that {φuv}u,v∈[[r+1]] is a linearly independent subset
of Wc(Kn, r). This completes the proof.

Lemma 3.4 Let n, r be positive integers and let c : E(G) −→ R be a proper edge
coloring of a graph G. Then, there is a proper edge coloring ĉ : E(G�Kn) −→ R such
that

dimWĉ (G�Kn, r) >
n−1∑
t=0

dimWc(G, r − t),

where Wc(G, i) is interpreted as {0} if i < 0.

Proof. Consider arbitrary distinct nonzero real numbers γ0, γ1, . . . , γn−1 such that none
of the numbers γiγj is in the image of c. For any two adjacent vertices u = (g, i) and
v = (h, j) of G�Kn, define

ĉ(uv) =

 c(gh), if i = j;

γiγj , if g = h.

Fix t ∈ [[n]], a basis Bt for Wc(G, r− t) and a function φ ∈ Bt. According to Definition
3.1, there exist polynomials {P φg (x)}g∈V (G) recognizing φ. Define polynomial Qt,φu for
any vertex u = (g, i) ∈ V (G�Kn) as Q

t,φ
u (x) = P φg (x)Γ ti (x), where

Γ ti (x) =
t−1∏
`=0

(γi − γ`)
(
x

γi
− γ`

)
. (3)

Note that Γ ti (γiγj) = Γ tj (γiγj) for all i and j. Also, we know from Definition 3.1
that P φg (c(gh)) = P φh (c(gh)) for each edge gh ∈ E(G). Hence, Qt,φu and Qt,φv have the
same value on ĉ(uv) for any edge uv ∈ E(G�Kn). This implies that {Qt,φu }u∈V (G�Kn)

recognize a function Ψt,φ ∈Wĉ(G�Kn, r).
Since we may choose the pair (t, φ) in

∑n−1
t=0 dimWc(G, r − t) different ways,

it remains to show that all functions Ψt,φ are linearly independent. Suppose that∑
t,φ λt,φΨt,φ = 0 for some scalars λt,φ ∈ R. Towards a contradiction, assume that

τ is the smallest number from [[n]] such that λτ,φ 6= 0 for some φ. If i < t, then γi − γi
appears in the expression of Γ ti given in (3) and so Γ ti = 0. This yields that Qt,φ(g,τ) = 0 for
any integer t > τ and vertex g ∈ V (G). Thus, for any two adjacent vertices u = (g, τ)
and v = (h, τ) in G�Kn, we have∑

t,φ

λt,φΨt,φ(uv) =
∑
t,φ

λt,φQ
t,φ
u

(
ĉ(uv)

)
=
∑
φ∈Bτ

λτ,φP
φ
g

(
c(gh)

)
Γ ττ
(
c(gh)

)
= 0.
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Our assumption on γ0, γ1, . . . , γn−1 implies that Γ ττ (c(gh)) 6= 0. Therefore,∑
φ∈Bτ

λτ,φφ

 (gh) =
∑
φ∈Bτ

λτ,φP
φ
g

(
c(gh)

)
= 0

for each edge gh ∈ E(G). This is a contradiction, since Bτ is a basis forWc(G, r−τ).

Lemma 3.5 Let n, r be positive integers and let G be a graph with all vertices of degree
at least r. Then

me(G�Kn, r) 6
n−1∑
t=0

me(G, r − t),

where me(G, i) is interpreted as 0 if i < 0.

Proof. For any t with 0 6 t 6 min{r, n−1}, consider the subgraph Gt of G�Kn induced
by {(v, t) ∈ V (G�Kn) | v ∈ V (G)} which is clearly isomorphic to G. Also, consider a
percolating set Ut of the minimum possible size in the (r−t)-edge bootstrap percolation
process on Gt and activate its elements. We show that the edges of G0, . . . , Gn−1
become activated in the r-edge bootstrap percolation process consecutively. At first,
the edges of G0 become activated in the r-edge bootstrap percolation process, according
to the definition of U0. Let t > 1 and assume that the edges of G0, . . . , Gt−1 are
activated. Since any vertex (v, t) ∈ V (Gt) is incident to t active edges with endpoints in
{(v, i) | 0 6 i 6 t− 1}, we conclude that the edges of Gt become activated in the r-edge
bootstrap percolation process on Gt by considering Ut as the set of initially activated
vertices. Hence,

⋃
t>0 Ut is a percolating set of size

∑n−1
t=0 me(G, r − t) in the r-edge

bootstrap percolation process on G�H.

Theorem 3.6 Let n, r, d be positive integers with n > r + 1. Then me(K
d
n, r) =

(
d+r
d+1

)
.

Proof. First, we prove by induction on d that there exists a proper edge coloring cd :
E(G) −→ R such that dimWcd(K

d
n, r) >

(
d+r
d+1

)
. The case d = 1 is exactly Lemma

3.3. By Lemma 3.4 and the induction hypothesis, there is a proper edge coloring
cd : E(Kd

n) −→ R such that

dimWcd

(
Kd
n, r
)
>

n−1∑
t=0

dimWcd−1

(
Kd−1
n , r − t

)
>

r−1∑
t=0

(
d− 1 + r − t

d

)
=

(
d+ r

d+ 1

)
.
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It follows from Theorem 3.2 that me(K
d
n, r) >

(
d+r
d+1

)
. Now, we establish by induction

on d that me(K
d
n, r) 6

(
d+r
d+1

)
. The edges of Kn with two endpoints in [[r + 1]] clearly

form a percolating set in the r-edge bootstrap percolation process on Kn and so there
is nothing to prove for d = 1. By applying Lemma 3.5 and the induction hypothesis,
we obtain that

me

(
Kd
n, r
)
6

n−1∑
t=0

me

(
Kd−1
n , r − t

)
6

r−1∑
t=0

(
d− 1 + r − t

d

)
=

(
d+ r

d+ 1

)
.

4 Multi-dimensional Hamming graphs

Balister, Bollobás, Lee and Narayanan [1] gave the lower bound (r/d)d and the upper
bound rd/(2d!) onm(Kd

n, r). Although the lower bound follows from Theorem 2.3 of [1],
the upper bound is stated in [1] without a proof. In this section, we improve both bounds
which result in an asymptotic formula for m(Kd

n, r). Indeed, the previous section paved
the way to reach a drastic improvement in the lower bound. We use a generalization of
the construction given in Theorem 2.1 to attain the upper bound rd/(2d!), and then,
in order to improve it, we carefully chop the corners of the construction in such a way
that it will still remain a percolating set.

To begin with, let us fix the notation we shall use throughout this section. We set
d > 2 and δ = (d − 2)/(d − 1). For a point t = (t1, . . . , td) ∈ {0, 1}d and a subset
P ⊆ [[n]]d, we define

P (t) =

{
(x1, . . . , xd) ∈ [[n]]d

∣∣∣∣ There exists (p1, . . . , pd) ∈ P such that
xi = ti(n− 1− pi) + (1− ti)pi for all i.

}
. (4)

Roughly speaking, P (t) is a region in [[n]]d congruent to P around the point (n − 1)t
instead of the origin. Let

Adn,r =

{
(x1, . . . , xd) ∈ [[n]]d

∣∣∣∣∣
d∑
i=1

xi 6
⌈
r
2

⌉
− 1

}
(5)

and

Bd
n,r =

{
(x1, . . . , xd) ∈ [[n]]d

∣∣∣∣∣ x1 + x2 + δ
d∑
i=3

xi < δ
(⌈

r
2

⌉
− 1
)}

. (6)
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Note that Bd
n,r ⊆ Adn,r as δ < 1. Set

Cdn,r = Adn,r \Bd
n,r. (7)

For the above sets, we define
Adn,r =

⋃
t∈T d

Adn,r(t), (8)

Bdn,r =
⋃
t∈T d

Bd
n,r(t)

and
Cdn,r =

⋃
t∈T d

Cdn,r(t),

where
T d =

{
(t1, . . . , td) ∈ {0, 1}d

∣∣∣ t1 = t2

}
.

As an instance, C35,4 is depicted in Figure 2.

Figure 2. The set C3
5,4 is outlined with circles drawn around its elements. The points (0, 0, 0), (0, 4, 0),

(4, 0, 4) and (4, 4, 4) form the set B3
5,4. The other points’ coordinates can be found using these points’

coordinates.

Notice that all Adn,r(t) are pairwise disjoint under the condition n > r + 1.

Lemma 4.1 Let n, r, d be positive integers with n > r + 1 and d > 2. Then Adn,r is a
percolating set of Kd

n in the r-neighbor bootstrap percolation process.

11



Proof. Let s = dr/2e. We use an induction argument on d. We know from the proof of
Theorem 2.1 that the set Vn,r, given in (1), is a percolating set of K2

n in the r-neighbor
bootstrap percolation process. So, the set

V̂n,r =
{
(x1, x2) ∈ [[n]]2

∣∣∣x1 + (n− 1− x2) 6
⌈
r
2

⌉
− 1 or (n− 1− x1) + x2 6

⌈
r
2

⌉
− 1
}

is also a percolating set of K2
n in the r-neighbor bootstrap percolation process. Using

(4), it is easy to check that

V̂n,r(0, 1) =

{
(x1, x2) ∈ [[n]]2

∣∣∣∣ x1 + x2 6
⌈
r
2

⌉
− 1 or

(n− 1− x1) + (n− 1− x2) 6
⌈
r
2

⌉
− 1

}
which is in turn equal to A2

n,r by (8). This shows that the assertion is true for d = 2.
Let d > 3 and assume that the assertion holds for d − 1. Set Pi = {(x1, . . . , xd) ∈
[[n]]d |xd = i} and Qi = Pi ∩ Adn,r. We claim that, after ignoring the last coordinate,
both Qi and Qn−1−i are exactly Ad−1n,r−2i for every i ∈ [[s]].

To prove the claim, consider an arbitrary element α = (α1, . . . , αd) ∈ Pi∩Adn,r(t) for
some t = (t1, . . . , td) ∈ T d. By (4) and (5), there exists (a1, . . . , ad) with

∑d
`=1 a` 6 s−1

such that α` = t`(n − 1 − a`) + (1 − t`)a` for ` = 1, . . . , d. Furthermore, αd = i, since
α ∈ Pi. If td = 1, then i = n − 1 − ad > n − 1 − (s − 1) > s > i, a contradiction.
Therefore, td = 0 and so ad = i. This means that (α1, . . . , αd−1) is belong to{

(x1, . . . , xd−1) ∈ [[n]]d−1
∣∣∣∣ There is (a1, . . . , ad−1) with

∑d−1
`=1 a` 6 s− 1− i

such that x` = t`(n− 1− a`) + (1− t`)ai for all `.

}
which is equal to Ad−1n,r−2i(t1, . . . , td−1). Conversely, if (α1, . . . , αd−1) ∈ Ad−1n,r−2i(t)

for some t = (t1, . . . , td−1) ∈ T d−1, then (α1, . . . , αd−1, i) ∈ Pi ∩ Adn,r(t̂), where
t̂ = (t1, . . . , td−1, 0) ∈ T d. This proves the claim on Qi. A similar argument works
for Qn−1−i.

We consider the following iterative procedure for any i ∈ [[s]]. At step i, we show
that the vertices in Pi∪Pn−1−i become activated. The induction hypothesis implies that
all vertices in P0 and Pn−1 are activated by Q0 and Qn−1, respectively. Hence, there is
nothing to prove for i = 0. Assume that i > 1. Each vertex in Pi ∪ Pn−1−i has already
2i active neighbors from the previous steps. So, in order to activate the vertices in
Pi∪Pn−1−i, it is enough to consider the (r−2i)-neighbor bootstrap percolation process
on Pi∪Pn−1−i. This is done by the induction hypothesis and by considering Qi∪Qn−1−i
as the initially activated set, since both Qi and Qn−1−i are copies of Ad−1n,r−2i.

Finally, we observe that any vertex in
⋃n−s−1
i=s Pi has at least r neighbors in

⋃s−1
i=0 (Pi∪

Pn−1−i) and so it becomes activated. This completes the proof, since
⋃n−1
i=0 Pi = [[n]]d

and
⋃n−1
i=0 Qi = Adn,r.

12



Lemma 4.2 Let n, r, d be positive integers with n > r + 1 and d > 2. Then Cdn,r is a
percolating set of Kd

n in the r-neighbor bootstrap percolation process.

Proof. By Lemma 4.1, it suffices to prove that all vertices in Bdn,r become activated in
the r-neighbor bootstrap percolation process on Kd

n. Note that once a vertex in Bd
n,r

becomes activated, the corresponding vertices in all other Bd
n,r(t) become simultaneously

activated, due to symmetry. So, it is sufficient to show that any vertex in Bd
n,r becomes

activated in the r-neighbor bootstrap percolation process on Kd
n. Since B2

n,r = ∅, we
may assume that d > 3. Fix an arbitrary vertex x = (x1, . . . , xd) ∈ Bd

n,r and denote by
ηix the number of neighbors of x in Cdn,r differing from x in the coordinate i. Letting
σx = x3 + · · ·+ xd and s = dr/2e, it follows from (5)–(7) that

η1x =
∣∣∣{(y, x2, . . . , xd) ∈ [[n]]d

∣∣∣ δ(s− 1− σx)− x2 6 y 6 s− 1− σx − x2
}∣∣∣

= s− 1− σx − x2 −
⌈
δ (s− 1− σx)− x2

⌉
+ 1

= s− σx −
⌈
δ (s− 1− σx)

⌉
.

By symmetry, η2x = s− σx − dδ(s− 1− σx)e. Also, by (5)–(7), η3x is equal to the total
number of points of the form (x1, x2, y, x4 . . . , xd) or (x1, x2, n− 1− y, x4 . . . , xd) with

s− 1− (σx − x3)−
x1 + x2

δ
6 y 6 s− 1− (σx − x3)− x1 − x2.

So, it follows from δ = (d− 2)/(d− 1) that

η3x = 2

(
s− 1− (σx − x3)− x1 − x2 −

⌈
s− 1− (σx − x3)−

x1 + x2
δ

⌉
+ 1

)
= 2

(⌊
x1 + x2
d− 2

⌋
+ 1

)
.

Again, by symmetry,

η4x = · · · = ηdx = 2

(⌊
x1 + x2
d− 2

⌋
+ 1

)
whenever d > 4. Therefore, by letting ηx = η1x + · · ·+ ηdx, we derive that

ηx = 2
(
s− σx −

⌈
δ (s− 1− σx)

⌉)
+ 2(d− 2)

(⌊
x1 + x2
d− 2

⌋
+ 1

)
.

Since s > r/2 and ⌊
x1 + x2
d− 2

⌋
>
x1 + x2 − (d− 3)

d− 2
,

13



we obtain that ηx > r − 2(ρx + σx), where ρx = dδ(s− 1− σx)e − (x1 + x2 + 1). Note
that ρx > 0 in view of the definition of Bd

n,r.
We now prove by induction on τx = ρx + 2σx that any vertex x ∈ Bd

n,r becomes
activated in the r-neighbor bootstrap percolation process on Kd

n. If τx = 0, then
ρx = σx = 0 and it follows from ηx > r − 2(ρx + σx) that x has at least r active
neighbors, we are done. So, we may assume that τx > 1. In view of the inequality
ηx > r−2(ρx+σx), it is sufficient to show that at least 2(ρx+σx) neighbors of x in Bdn,r
have been activated during the previous induction steps. For this, consider the sets

Px =

2⋃
i=1

{
w ∈ [[n]]d

∣∣∣∣ x and w coincide in all coordinates except the
ith coordinate and wi ∈ {xi + 1, . . . , xi + ρx}.

}
,

Qx =
d⋃
i=3

{
w ∈ [[n]]d

∣∣∣∣ x and w coincide in all coordinates except
the ith coordinate and wi ∈ [[xi]].

}
and

Q′x =

d⋃
i=3

{
w ∈ [[n]]d

∣∣∣∣ x and w coincide in all coordinates except
the ith coordinate and n− 1− wi ∈ [[xi]].

}
,

where w = (w1, . . . , wd). We have Px ∪ Qx ∪ Q′x ⊆ N(x) ∩ Bdn,r. Further, τw < τx for
each vertex w ∈ Px ∪Qx. Therefore, by the induction hypothesis and the symmetry of
Bdn,r, we deduce that Px ∪Qx ∪Q′x is a set of active vertices of size 2(ρx+ σx). Thus, x
becomes activated, as required.

We need the following theorem in order to prove our result about the upper bound
on m(Kd

n, r).

Theorem 4.3 (Beged-Dov [7]) Let a1, . . . , ak, b be positive numbers satisfying b >
min{a1, . . . , ak} and let N be the number of solutions of a1x1 + · · · + akxk 6 b for
the nonnegative integers x1, . . . , xk. Then

bk

k!a1 · · · ak
6 N 6

(a1 + · · ·+ ak + b)k

k!a1 · · · ak
.

Theorem 4.4 Let n, r, d be positive integers with n > r + 1 and d > 2. Then

1

r

(
d+ r

d+ 1

)
6 m

(
Kd
n, r
)
6

(r + 2d− 1)d − δ2(r − 2)d

2d!
,

where δ = (d− 2)/(d− 1).

14



Proof. The lower bound is obtained from (2) and Theorem 3.6. For the upper bound,
note that Cdn,r is a percolating set in the r-neighbor bootstrap percolation process on
Kd
n by Lemma 4.2. It follows from Bd

n,r ⊆ Adn,r and Theorem 4.3 that∣∣∣Cdn,r∣∣∣ = ∣∣∣Adn,r∣∣∣− ∣∣∣Bd
n,r

∣∣∣
6

(
d+

⌈
r
2

⌉
− 1
)d

d!
−
(
δ
(⌈

r
2

⌉
− 1
))d

d!δd−2

6
(r + 2d− 1)d − δ2(r − 2)d

2dd!
.

As |T d| = 2d−1, we have∣∣∣Cdn,r∣∣∣ 6∑
t∈T d

∣∣∣Cdn,r(t)∣∣∣ 6 (r + 2d− 1)d − δ2(r − 2)d

2d!
.

This proves the upper bound.

Corollary 4.5 Let r →∞, n > r + 1 and d = o(
√
r). Then

rd

(d+ 1)!

(
1 + o(1)

)
6 m

(
Kd
n, r
)
6

rd(2d− 3)

2d!(d− 1)2
(
1 + o(1)

)
.

In particular, if in addition d→∞, then m(Kd
n, r) =

1+o(1)
(d+1)! r

d.

5 2-, 3-neighbor bootstrap percolation on Hamming graphs

In Section 2, we provided an exact formula for the special case m(K2
n, r). Here, we

focus on another type of interesting special cases and try to find the exact formula for
m(Kd

n, r) when r is small. It is trivial that m(Kd
n, 1) = 1. In the next theorems, we

precisely determine m(Kd
n, 2) as the first nontrivial case, and moreover, we use a result

given in [15] to derive a tighter upper bound on m(Kd
n, 3). Finding an exact formula

for m(Kd
n, 3) remains an interesting open problem.

Before proceeding, for i = 1, . . . , d, let ei be the point in {0, 1}d whose ith coordinate
is 1 and whose other coordinates are 0. Recall that the weight of a tuple is defined to
be the number of its nonzero entries.

Theorem 5.1 Let n, d be positive integers with n > 2. Then m(Kd
n, 2) = dd/2e+ 1.

Proof. We may assume that d > 2, since the assertion is obviously valid for d = 1. The
inequality m(Kd

n, 2) > dd/2e+ 1 holds by Lemma 2.4 of [4] for n = 2 and by Theorem
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4.4 for n > 3. In order to finish the proof, we present a percolating set of Kd
n of size

dd/2e + 1 in 2-neighbor bootstrap percolation process. For this, let o = (0, . . . , 0) and
define

S =

 T ∪ {o}, if d is even;

T ∪ {o, ed}, if d is odd,

where
T =

{
e2i+1 + e2i+2

∣∣∣ i ∈ [[⌊d2⌋]]} .
Assume that the vertices in S are initially activated. As the first step, the vertices in
{e1, . . . , ed} \ S become activated, since each of them has exactly two neighbors in S.
Then, by the percolation rule, all remaining vertices ofKd

n of weight 1 become activated.
After that, the remaining vertices of Kd

n of weights 2, . . . , d become consecutively acti-
vated, since each vertex of the weight w is adjacent to w vertices of the weight w − 1.
Therefore, S is a percolating set of Kd

n in 2-neighbor bootstrap percolation process.
This completes the proof, since |S| = dd/2e+ 1.

It is proven in [15] that m(Kd
2 , 3) = dd(d+ 3)/6e+ 1. Using this and Theorem 4.4,

we give lower and upper bounds on m(Kd
n, 3) below.

Theorem 5.2 Let n, d be positive integers with n > 4. Then⌈
d(d+ 5)

6

⌉
+ 1 6 m(Kd

n, 3) 6

⌈
d(d+ 6)

6

⌉
+ 1.

Proof. The lower bound obviously holds for d = 1 and comes from Theorem 4.4 for
d > 2. In order to establish the upper bound, it suffices to present a percolating set of
Kd
n of size dd(d + 6)/6e + 1 in 3-neighbor bootstrap percolation process. By Theorem

1.4 of [15], there is a subset S ⊆ {0, 1}d of size dd(d+3)/6e+1 such that all vertices in
{0, 1}d become activated in 3-neighbor bootstrap percolation process if the vertices in
S have been initially activated. Let T = {(n− 1)(e2i+1 + e2i+2) | i ∈ [[dd/2e]]}, where it
is assumed that ed+1 = e1. We have

|S ∪ T | =
(⌈

d(d+ 3)

6

⌉
+ 1

)
+

⌈
d

2

⌉
=

⌈
d(d+ 6)

6

⌉
+ 1.

To end the proof, we show that S∪T is a percolating set of Kd
n in 3-neighbor bootstrap

percolation process. For this, assume that the vertices in S ∪ T are initially activated.
According to the selection of S, all vertices in {0, 1}d become activated. We know from
the proof of Theorem 2.1 that the set Vn,3, given in (1), is a percolating set of K2

n in the
3-neighbor bootstrap percolation process. Therefore, for any i ∈ [[dd/2e]], by suitable
translation and rotation, it is obtained that

Wi =
{
xe2i+1 + ye2i+2 ∈ [[n]]d

∣∣∣x+ y 6 1 or (n− 1− x) + (n− 1− y) = 0
}
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is a percolating set of the subgraph of Kd
n induced by {xe2i+1 + ye2i+2 |x, y ∈ [[n]]} in

3-neighbor bootstrap percolation process. Since all Wi are subsets of S ∪ T , all vertices
of Kd

n of weight 1 have become activated. As a next step, all remaining vertices of Kd
n

of the form xei + ej become activated, since xei + ej is adjacent to the active vertices
xei, ej and ei + ej if x /∈ {0, 1}. After that, all remaining vertices of Kd

n of weight 2
become activated, since xei + yej is adjacent to the active vertices xei, yej , xei + ej
and ei + yej provided x, y /∈ {0, 1}. Finally, all remaining vertices of Kd

n of weights
3, . . . , d become consecutively activated, since each vertex of the weight w is adjacent
to w vertices of the weight w − 1. This shows that S ∪ T is a percolating set of Kd

n in
3-neighbor bootstrap percolation process, completing the proof.

6 Triangular graph

It is well known that K2
n is isomorphic to the line graph of Kn,n, the complete bipartite

graph with equal parts of size n. Since m(K2
n, r) is determined in Section 2, it is

natural to look for the same parameter for the line graph of Kn. In this section, we
aim to compute m(L(Kn), r). Note that one may view the activation of vertices in the
r-neighbor bootstrap percolation process on L(Kn) as the activation of edges of Kn.
Therefore, by this correspondence, in each round of the r-neighbor bootstrap percolation
process on L(Kn), an edge e ∈ E(Kn) becomes activated if the number of active edges
incident to either of the endpoints of e is at least r.

Since the vertex degrees of L(Kn) are all equal to 2n− 4, they are at most r − 1 if
n 6 dr/2e+1 and so in this case no percolation occurs in L(Kn), forcing m(L(Kn), r) =(
n
2

)
. The following theorem determines m(L(Kn), r) for the remaining cases.

Theorem 6.1 Let n, r be nonnegative integers with n > dr/2e+ 2. Then

m
(
L(Kn), r

)
=

⌊
(r + 2)2

8

⌋
.

Proof. We consider the edge set of Kn as {(i, j) | i, j ∈ [[n]] and i < j}. First, we show
that m(L(Kn), r) 6 b(r + 2)2/8c. For this, define

En,r =

 E′n,r ∪ E′′n,r, if r is even;

E′n,r, if r is odd,

where
E′n,r =

{
(i, j)

∣∣∣ i ∈ [[⌈ r2⌉]] and j ∈
{
n−

⌈
r
2

⌉
+ i, . . . , n− 1

}}
and

E′′n,r =
{(
n− r

2 + 2k − 1, n− r
2 + 2k

) ∣∣∣ k ∈ [[⌈ r4⌉]]} .
17



The condition n > dr/2e+ 2 ensures that

|En,r| = |E′n,r|+ ε|E′′n,r| =

d r2e−1∑
i=0

(⌈r
2

⌉
− i
)
+ ε

⌈r
4

⌉
=

⌊
(r + 2)2

8

⌋
,

where

ε =

 1, if r is even;

0, if r is odd.

For instance, E8,6, E8,7 and E8,8 are depicted in Figure 3.

Figure 3. From left to right, the edges of K8 which are contained in E8,6, E8,7 or E8,8.

We claim that the activation of En,r leads to the activation of E(Kn) in the r-
neighbor bootstrap percolation process on L(Kn). To prove the claim, we first show
that En,r ∩ [[n− 1]]2 = En−1,r−2. For this, we note that

E′n,r ∩ [[n− 1]]2 =
{
(i, j)

∣∣∣ i ∈ [[⌈ r2⌉− 1
]]

and j ∈
{
n−

⌈
r
2

⌉
+ i, . . . , n− 2

}}
=
{
(i, j)

∣∣∣ i ∈ [[⌈ r−22 ⌉]] and j ∈
{
n− 1−

⌈
r−2
2

⌉
+ i, . . . , n− 2

}}
= E′n−1,r−2

Moreover, if r ≡ 0 (mod 4), then

E′′n,r ∩ [[n− 1]]2 =
{(
n− r

2 + 2k − 1, n− r
2 + 2k

) ∣∣∣ k ∈ [[⌈ r4⌉]]}
=
{(
n− r−2

2 + 2k − 2, n− 1− r−2
2 + 2k

) ∣∣∣ k ∈ [[⌈ r−24 ⌉]]}
= E′′n−1,r−2,
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and, if r ≡ 2 (mod 4), then

E′′n,r ∩ [[n− 1]]2 =
{(
n− r

2 + 2k − 1, n− r
2 + 2k

) ∣∣∣ k ∈ [[⌈ r4⌉− 1
]]}

=
{(
n− r−2

2 + 2k − 2, n− 1− r−2
2 + 2k

) ∣∣∣ k ∈ [[⌈ r−24 ⌉]]}
= E′′n−1,r−2.

The above relations confirm that En,r ∩ [[n− 1]]2 = En−1,r−2. Now, we use an induction
argument on r to prove the claim. Since En,0 = ∅ and En,1 = {(0, n − 1)}, the claim
is valid for r = 0, 1. So, assume that r > 2. For i = 1, . . . , n− dr/2e, we show that the
number of edges in En,r incident to the vertex n− i is equal to

⌈
r
2

⌉
+ ε, if i = 1;

max
{⌊

r
2

⌋
− i+ 2, 0

}
, if 2 6 i 6 n−

⌈
r
2

⌉
,

(9)

where

ε =

 1, if r ≡ 2 (mod 4);

0, otherwise.

To see this, we note that, for i = 1, . . . , n − dr/2e, the set of edges in En,r which are
incident to the vertex n− i is

Ti, if either r is odd or i = 1 and r ≡ 0 (mod 4);

Ti ∪ {(n− i− 1, n− i)}, if r is even and r
2 ≡ i (mod 2);

Ti ∪ {(n− i, n− i+ 1)}, otherwise,

where
Ti =

{
(k, n− i)

∣∣∣ k ∈ [[⌈ r2⌉− i+ 1
]]}

.

It follows from (9) that the number of edges in En,r incident to one of the vertices n−1
and n − 2 − ε is equal to (dr/2e + ε) + (br/2c − ε) = r. Therefore, as the first step,
the edge with the endpoints n − 1 and n − 2 − ε becomes activated. After that, the
number of active edges incident to the vertex n − 1 increases by 1 and thus, as the
second step, the edge with the endpoints n − 1 and n − 3 − ε becomes activated by a
similar reasoning. Repeating this argument, all edges incident to n−1 become activated
and so we may remove the vertex n− 1 from Kn to use the induction hypothesis. Since
each edge (i, j) ∈ E(Kn) with i, j ∈ [[n − 1]] is adjacent to the edges (i, n − 1) and
(j, n− 1) in L(Kn), we may consider the (r−2)-neighbor bootstrap percolation process
on L(Kn−1) with the initially activated set En,r ∩ [[n − 1]]2 = En−1,r−2. Hence, the
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induction hypothesis implies that the activation of En−1,r−2 leads to the activation of
E(Kn−1), proving the claim. So, we showed that m(L(Kn), r) 6 b(r + 2)2/8c.

In order to end the proof, we need to establish that any percolating set in the r-
neighbor bootstrap percolation process on L(Kn) is of size at least b(r + 2)2/8c. Fix a
percolating set A of size m(L(Kn), r) in the r-neighbor bootstrap percolation process
on L(Kn). We consider A as a set of edges of Kn. As we saw above, |A| 6 b(r+2)2/8c.
Assume that f : e0, . . . , ek−1 is an order in which the edges in E(Kn) \ A become
activated, where k =

(
n
2

)
− |A|. We find a maximal subsequence g : ei0 , . . . , ei`−1

of the
sequence f as follows. Set ei0 = e0 and, after choosing ei0 , . . . , eit−1 , let eit be the first
edge in the sequence eit−1+1, . . . , ek−1 which does not share an endpoint with any of
ei0 , . . . , eit−1 .

We want to establish that ` > br/4c + 1. Let eit = utvt for any t ∈ [[`]]. Since eit
becomes activated after the activation of e0, . . . , eit−1, by the percolation rule, there
must be at least r edges in A ∪ {e0, . . . , eit−1} incident to one of ut and vt. As ut and
vt are in total incident to 2n − 3 edges in Kn, the set Xt consists of the edges among
eit , . . . , ek with an endpoint in {ut, vt} is of size at most 2n − r − 3. By the definition
of g, one concludes that {e0, . . . , ek−1} =

⋃`−1
t=0 Xt and thus k 6 `(2n − r − 3). The

assumption n > dr/2e+ 2 concludes that 2n− r − 3 > 1 and thus

` >
k

2n− r − 3
>

(
n
2

)
− (r+2)2

8

2n− r − 3
=

1

8

(
2n+ r + 1− 1

2n− r − 3

)
>

2n+ r

8
>
r + 2

4

which means that ` > br/4c, as desired.
For every t ∈ [[`]], we show that each of ut and vt is incident to at most 2t edges among

e0, . . . , eit−1. To see this, let eh ∈ {e0, . . . , eit−1} and eh = xy with x ∈ {ut, vt}. Then,
y ∈ {u0, . . . , ut−1, v0, . . . , vt−1}, since, otherwise, in the process of determination of the
subsequence g, we should have selected eh which contradicts to the selection of eit later
in the process. So, for the activation of eit , we need that the set Yt consists of the edges in
A with one endpoint in {ut, vt} and the other endpoint not in {u0, . . . , ut−1, v0, . . . , vt−1}
to be of size at least r − 4t. Since Y0, . . . , Y`−1 are pairwise disjoint,

|A| >
`−1∑
t=0

|Yt| >
b r4c∑
t=0

(r − 4t) =

⌊
(r + 2)2

8

⌋
,

completing the proof.

7 Concluding remarks

In this paper, we computed the exact value of m(K2
n, r). We also determined me(K

d
n, r)

whenever n > r+1 and d > 1. Using this formula, an asymptotic formula for m(Kd
n, r)
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was derived when both r and d go to infinity with d = o(
√
r) and n > r + 1. However,

finding an asymptotic formula for m(Kd
n, r) when one of r and d is fixed and the other

one goes to infinity is challenging to find. An asymptotic formula form(Kd
2 , r) when r is

fixed and d goes to infinity has been given in [15], settling a conjecture raised by Balogh
and Bollobás in [2]. One may also think of finding the exact value of m(Kd

n, r) for small
r. Trivially, m(Kd

n, 1) = 1 and we know from Theorem 5.1 that m(Kd
n, 2) = dd/2e + 1

for any n > 2. As we mentioned before, it is established in [15] that m(Kd
2 , 3) =

dd(d + 3)/6e + 1. In addition, we proved in Theorem 5.2 that dd(d + 5)/6e + 1 6
m(Kd

n, 3) 6 dd(d+ 6)/6e+ 1 for any n > 4. It seems a challenging problem to find the
exact value of m(Kd

n, 3). As the last result, we obtained the exact value of m(L(Kn), r).
It would be an interesting problem to apply the polynomial technique raised in Section
3 to determine me(L(Kn), r).
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