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Abstract

The notion of type of quadruples of rows is proven to be useful in
the classification of Hadamard matrices. In this paper, we investigate
Hadamard matrices with few distinct types. Among other results, the
Sylvester Hadamard matrices are shown to be characterized by their
spectrum of types.
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1 Introduction

A Hadamard matrix of order 𝑛 is an 𝑛×𝑛 matrix 𝐻 with entries in {−1, 1}
such that 𝐻𝐻⊤ = 𝑛𝐼, where 𝐻⊤ is the transpose of 𝐻 and 𝐼 is the 𝑛 × 𝑛
identity matrix. It is well known that the order of a Hadamard matrix is
1, 2, or a multiple of 4 [10]. It is a longstanding open question whether
Hadamard matrices of order 𝑛 exist for every 𝑛 divisible by 4. The order
668 is the smallest for which the existence of a Hadamard matrix is open
[7]. Hadamard matrices were first investigated in [11] by Sylvester who gave
an explicit construction for Hadamard matrices of any order that is a power
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of 2. Such matrices were later considered by Hadamard as solutions to the
problem of finding the maximum determinant of an 𝑛×𝑛 matrix with entries
from the complex unit disk [2]. Since then, Hadamard matrices have been
widely studied and have found many applications in combinatorics and other
scientific areas [4].

Two Hadamard matrices are said to be equivalent if one can be ob-
tained from the other by a sequence of row negations, row permutations,
column negations, and column permutations. The complete classification of
Hadamard matrices up to order 32, with respect to the equivalence relation,
has been achieved by several authors. For references we refer to [5]. The
resulting classification is shown in Table 1. As it can be seen from Table
1, a combinatorial explosion in the number of Hadamard matrices occurs in
the order 32. Full classification in order 36 or more seems to be difficult and
perhaps inaccessible.

𝑛 1 2 4 8 12 16 20 24 28 32
# 1 1 1 1 1 5 3 60 487 13710027

Table 1. The number of equivalence classes of Hadamard matrices of order 𝑛 6 32.

In the above mentioned classifications, the authors associated an integer
number, called the type, to any quadruple of rows of a Hadamard matrix.
We give the definition of type in the next section. It seems that the notion of
type deserves to be investigated to a greater extent. Apparently, Hadamard
matrices with few distinct types are very rare and have nice combinatorial
properties. For instance, the Sylvester Hadamard matrices have only two
distinct types for quadruples of rows. Furthermore, there are five Hadamard
matrices obtained from strongly regular graphs on 36 vertices with exactly
two distinct types [9]. In this paper, we show that there exists no Hadamard
matrix of order larger than 12 whose quadruples of rows are all of the same
type. We then focus on Hadamard matrices with two distinct types. Among
other results, it is established that the Sylvester Hadamard matrices are
characterized by their spectrum of types.

2 Preliminaries

In this section, we fix our notation and present some preliminary results.
We denote the zero vector and the all one vector of length 𝑘 by 0𝑘 and 1𝑘,
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respectively. A zero matrix is denoted by 0. For convenience, we respectively
use the notation

𝑟
+ and

𝑠
−

instead of
1 · · · 1⏟  ⏞  

𝑟

and −1 · · · −1⏟  ⏞  
𝑠

·

We drop the superscripts whenever there is no danger of confusion.
Let 𝐻 be a Hadamard matrix of order 𝑛. We know from [1] that, by

a sequence of row negations, column negations, and column permutations,
every four distinct rows 𝑖, 𝑗, 𝑘, ℓ of 𝐻 may be transformed to the form

𝑠 𝑡 𝑡 𝑠 𝑡 𝑠 𝑠 𝑡
𝑖 : + + + + + + + +
𝑗 : + + + + − − − −
𝑘 : + + − − + + − −
ℓ : + − + − + − + −

(1)

for some uniquely determined 𝑠, 𝑡 with 𝑠 + 𝑡 = 𝑛/4 and 0 6 𝑡 6 ⌊𝑛/8⌋.
Following [8], we define the type of the four rows 𝑖, 𝑗, 𝑘, ℓ as 𝑇𝑖𝑗𝑘ℓ = 𝑡. It is
straightforward to check that 𝑇𝑖𝑗𝑘ℓ =

𝑛−𝑃𝑖𝑗𝑘ℓ

8 , where

𝑃𝑖𝑗𝑘ℓ =

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑟=1

ℎ𝑖𝑟ℎ𝑗𝑟ℎ𝑘𝑟ℎℓ𝑟

⃒⃒⃒⃒
⃒

assuming that ℎ𝑢𝑣 is the (𝑢, 𝑣)-entry of 𝐻. This in particular shows that
‘type’ is an equivalence invariant, meaning that any negation of rows and
columns and any permutation of columns leaves the type unchanged.

The following lemma plays a key role in the sequel of paper.

Lemma 1. Let 𝐻 be a Hadamard matrix of order 4𝑚. Fix three rows of 𝐻
and let 𝜅𝑡 be the number of other rows which are of type 𝑡 with theses three
rows. Then

⌊𝑚
2 ⌋∑︁

𝑡=0

𝜅𝑡(𝑚− 2𝑡)2 = 𝑚2.

Proof. Let 𝑛 = 4𝑚. Without loss of generality, assume that the fixed three
rows of 𝐻 take the form

𝑚 𝑚 𝑚 𝑚
+ + + +
+ + − −
+ − + −
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and have been put as the first three rows of 𝐻. Let 𝑥⊤ = (1𝑚, 0𝑚, 0𝑚, 0𝑚).
We deduce from (1) that (𝐻𝑥)⊤ is of the form(︁

𝑚,𝑚,𝑚,±
(︀
𝑚− 2𝑇1234

)︀
,±

(︀
𝑚− 2𝑇1235

)︀
, . . . ,±

(︀
𝑚− 2𝑇123𝑛

)︀)︁
.

Since (𝐻𝑥)⊤(𝐻𝑥) = 𝑥⊤𝐻⊤𝐻𝑥 = 𝑛𝑥⊤𝑥 = 𝑛𝑚, we obtain that

𝑛𝑚 = (𝐻𝑥)⊤(𝐻𝑥) = 3𝑚2 +

⌊𝑚
2 ⌋∑︁

𝑡=0

𝜅𝑡(𝑚− 2𝑡)2,

as desired.

The following result originally proven in Proposition 2.1 of [8] is an easy
consequence of Lemma 1.

Corollary 2. Let 𝑛 > 8 and 𝐻 be a Hadamard matrix of order 𝑛. If there
exists a quadruple {𝑖, 𝑗, 𝑘, ℓ} of rows of 𝐻 with 𝑇𝑖𝑗𝑘ℓ = 0, then 𝑛 ≡ 0 (mod 8).

The following result is a generalization of Lemma 2 of [6].

Corollary 3. Let 𝑛 > 4 and 𝐻 be a Hadamard matrix of order 𝑛. If there
exist three distinct rows 𝑖, 𝑗, 𝑘 of 𝐻 such that all quadruples {𝑖, 𝑗, 𝑘, ℓ} of
rows are of the same type, then 𝑛 = 4 or 𝑛 = 12.

Proof. Let 𝑛 = 4𝑚. Assume that for three distinct rows 𝑖, 𝑗, 𝑘 of 𝐻, four
rows 𝑖, 𝑗, 𝑘, ℓ are of type 𝑡 for any ℓ /∈ {𝑖, 𝑗, 𝑘}. By Lemma 1, we have
(𝑛− 3)(𝑚− 2𝑡)2 = 𝑚2. This means that 𝑛2 is divisible by 𝑛− 3. Therefore,
9 = 𝑛2 − (𝑛2 − 9) is divisible by 𝑛 − 3 and we conclude that 𝑛 = 4 or
𝑛 = 12.

Corollary 4. Let 𝑛 > 4 and 𝐻 be a Hadamard matrix of order 𝑛. If all
quadruples of rows are of the same type, then 𝑛 = 4 or 𝑛 = 12.

3 Hadamard matrices with two distinct types

In this section, we investigate Hadamard matrices whose types of quadruples
of rows take few distinct values. By Corollary 4, any Hadamard matrix of
order larger than 12 has at least two distinct types. Thus, it is natural to ask
about Hadamard matrices with exactly two distinct types. We expect such
matrices to be very rare and structurally nice. The complete classification
of theses objects seems difficult. We here obtain some partial results. In
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particular, we examine the Hadamard matrices of order 𝑛 having types 𝛼
and 𝛽 for any quadruple of rows with (𝛼, 𝛽) ∈ {(0, 𝑛8 ), (1,

𝑛−4
8 ), ( 𝑛

16 ,
𝑛
8 )}.

Note that these pairs of types satisfy the equation given in Lemma 1.
The following lemma is useful in eliminating some possible solutions of

the equation stated in Lemma 1.

Lemma 5. Let 𝑖, 𝑗, 𝑘, 𝑝, 𝑞 be five distinct rows of a Hadamard matrix of
order 4𝑚. Then 𝑇𝑖𝑗𝑘𝑝 + 𝑇𝑖𝑗𝑘𝑞 > 𝑚/2. Moreover, if the equality occurs, then
these five rows can be written as

𝑚
2 𝑡′ 𝑠′ 𝑡 𝑠 𝑚

2 𝑡 𝑠 𝑚
2

𝑚
2 𝑡′ 𝑠′

𝑖 : + + + + + + + + + + + +
𝑗 : + + + + + + − − − − − −
𝑘 : + + + − − − + + + − − −
𝑝 : + + − + − − + − − + + −
𝑞 : + − + − + − − + − + − +

(2)

where 𝑡 = 𝑚/2− 𝑡′ = 𝑇𝑖𝑗𝑘𝑝 and 𝑠 = 𝑚/2− 𝑠′ = 𝑇𝑖𝑗𝑘𝑞.

Proof. Without loss of generality, we may assume that

𝑎1 𝑎2 𝑎3 𝑎4 𝑏1 𝑏2 𝑏3 𝑏4 𝑐1 𝑐2 𝑐3 𝑐4 𝑑1 𝑑2 𝑑3 𝑑4
𝑖 : + + + + + + + + + + + + + + + +
𝑗 : + + + + + + + + − − − − − − − −
𝑘 : + + + + − − − − + + + + − − − −
𝑝 : + + − − + + − − + + − − + + − −
𝑞 : + − + − + − + − + − + − + − + −,

where 𝑇𝑖𝑗𝑘𝑝 = 𝑎3 + 𝑎4 and 𝑇𝑖𝑗𝑘𝑞 = 𝑎2 + 𝑎4. Let 𝑡 = 𝑇𝑖𝑗𝑘𝑝 and 𝑠 = 𝑇𝑖𝑗𝑘𝑞. It
follows from (1) that

𝑎3 + 𝑎4 = 𝑏1 + 𝑏2 = 𝑐1 + 𝑐2 = 𝑑3 + 𝑑4 = 𝑡,

𝑎2 + 𝑎4 = 𝑏1 + 𝑏3 = 𝑐1 + 𝑐3 = 𝑑2 + 𝑑4 = 𝑠,

and

𝑎1+𝑎2+𝑎3+𝑎4 = 𝑏1+𝑏2+𝑏3+𝑏4 = 𝑐1+𝑐2+𝑐3+𝑐4 = 𝑑1+𝑑2+𝑑3+𝑑4 = 𝑚.

Solving the equations above, we obtain that⎧⎨⎩
𝑎2 = 𝑚− 𝑡− 𝑎1
𝑎3 = 𝑚− 𝑠− 𝑎1
𝑎4 = 𝑡+ 𝑠−𝑚+ 𝑎1,

⎧⎨⎩
𝑏2 = 𝑡− 𝑏1
𝑏3 = 𝑠− 𝑏1
𝑏4 = 𝑚− 𝑡− 𝑠+ 𝑏1,⎧⎨⎩

𝑐2 = 𝑡− 𝑐1
𝑐3 = 𝑠− 𝑐1
𝑐4 = 𝑚− 𝑡− 𝑠+ 𝑐1,

⎧⎨⎩
𝑑2 = 𝑚− 𝑡− 𝑑1
𝑑3 = 𝑚− 𝑠− 𝑑1
𝑑4 = 𝑡+ 𝑠−𝑚+ 𝑑1.

(3)
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The inner product of two rows 𝑝 and 𝑞 is equal to 4(𝑎1+𝑏1+𝑐1+𝑑1−𝑚). So
the orthogonality of rows 𝑝 and 𝑞 implies that 𝑎1 + 𝑏1 + 𝑐1 + 𝑑1 = 𝑚. Since
𝑎4, 𝑑4 > 0, we deduce that both 𝑎1 and 𝑑1 are at least 𝑚− 𝑡− 𝑠. Therefore,
𝑚 > 𝑎1 + 𝑑1 > 2(𝑚− 𝑡− 𝑠) and so 𝑡+ 𝑠 > 𝑚/2, as desired.

If 𝑡+𝑠 = 𝑚/2, then 𝑎1+𝑑1 = 𝑚. As mentioned above, since 𝑎1 and 𝑑1 are
at least 𝑚−𝑡−𝑠, we conclude that 𝑎1 = 𝑑1 = 𝑚/2. By 𝑎1+𝑏1+𝑐1+𝑑1 = 𝑚,
we find that 𝑏1 = 𝑐1 = 0. Now, the result follows from (3).

Theorem 6. There exists no Hadamard matrix of order 16𝑡 whose quadru-
ples of rows are all of type 𝑡 or 2𝑡.

Proof. Assume, in contradiction, that there exists a Hadamard matrix 𝐻 of
order 𝑛 = 16𝑡 whose quadruples of rows are all of type 𝑡 or 2𝑡. Let 𝜅𝑡 and
𝜅2𝑡 be the number of rows which respectively are of type 𝑡 and 2𝑡 with the
first three rows. By applying Lemma 1, we find that 𝜅𝑡 = 4 and 𝜅2𝑡 = 𝑛−7.
Without loss of generality, we may assume that 𝑇1234 = 𝑇1235 = 𝑇1236 =
𝑇1237 = 𝑡. For any pair 𝑝, 𝑞 ∈ {4, 5, 6, 7}, since the equality holds in Lemma
5, five rows 1, 2, 3, 𝑝, 𝑞 can be written as (2). Thus, it is straightforward to
check that we necessarily have the following configuration:

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
1 : + + + + + + + + + + + + + + + +
2 : + + + + + + + + − − − − − − − −
3 : + + + + − − − − + + + + − − − −
4 : + + + − + − − − + − − − + + + −
5 : + + − + − + − − − + − − + + − +
6 : + − + + − − + − − − + − + − + +
7 : − + + + − − − + − − − + − + + +·

It turns out that 𝑃4567 = 𝑛 and so 𝑇4567 = 0, a contradiction.

It has been shown in [3] that there are exactly five equivalence classes of
Hadamard matrices of order 16. We prove the following result without any
reference to these equivalence classes.

Corollary 7. Every Hadamard matrix of order 16 has four rows of type 0.

Proof. By Lemma 1, for each triple {𝑖, 𝑗, 𝑘} of rows of a Hadamard matrix
of order 16, one of the following holds:

(i) There are one row ℓ with 𝑇𝑖𝑗𝑘ℓ = 0 and twelve rows ℓ with 𝑇𝑖𝑗𝑘ℓ = 2.

(ii) There are four rows ℓ with 𝑇𝑖𝑗𝑘ℓ = 1 and nine rows ℓ with 𝑇𝑖𝑗𝑘ℓ = 2.
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Now, the result follows from Theorem 6.

Recall that the Hadamard product of two (−1, 1)-vectors 𝑎 = (𝑎1, . . . , 𝑎𝑛)
and 𝑏 = (𝑏1, . . . , 𝑏𝑛) is defined as 𝑎 ∘ 𝑏 = (𝑎1𝑏1, . . . , 𝑎𝑛𝑏𝑛). We also define
𝜎(𝑎) = |𝑎1 + · · ·+ 𝑎𝑛|. It is not hard to check that

𝜎(𝑎 ∘ 𝑏) > 𝜎(𝑎) + 𝜎(𝑏)− 𝑛. (4)

Roughly specking, the following theorem states that there is no large gap
between the types of quadruples of rows of a Hadamard matrix whose order
is not a power of 2.

Theorem 8. Let 𝐻 be a Hadamard matrix of order 𝑛 and let 𝑟 < 𝑛/16.
Suppose that for every three distinct rows 𝑖, 𝑗, 𝑘 of 𝐻, there exists a row ℓ
with 𝑇𝑖𝑗𝑘ℓ 6 𝑟 and no row 𝑥 with 𝑟 < 𝑇𝑖𝑗𝑘𝑥 6 2𝑟. Then 𝑛 must be a power
of 2.

Proof. By Lemma 5, for every three distinct rows 𝑖, 𝑗, 𝑘 of 𝐻, there exists a
unique row ℓ with 𝑇𝑖𝑗𝑘ℓ 6 𝑟. We call a set 𝒮 of rows of 𝐻 to be ‘full’ if for
every distinct rows 𝑖, 𝑗, 𝑘 ∈ 𝒮, the unique row ℓ with 𝑇𝑖𝑗𝑘ℓ 6 𝑟 is contained
in 𝒮. Trivially, 𝐻 has a full set of size 4. We claim that any full set of size
𝑠 < 𝑛 can be extended to a full set of size 2𝑠. Clearly, the claim implies the
assertion of the theorem.

Suppose that 𝒮 = {𝑎1, . . . , 𝑎𝑠} is a full set in 𝐻. Choose an arbitrary
row 𝑏1 in 𝐻 outside of 𝒮 and, for 𝑖 = 2, . . . , 𝑠, let 𝑏𝑖 be the unique row in 𝐻
such that 𝑇𝑎1𝑎𝑖𝑏1𝑏𝑖 6 𝑟. For 𝑖 = 1, . . . , 𝑠, we may write 𝑏𝑖 = 𝑎1 ∘ 𝑎𝑖 ∘ 𝑏1 ∘ 𝛽𝑖
for a suitable (−1, 1)-vector 𝛽𝑖. Note that let 𝛽1 = 1𝑛, and for any 𝑖 > 2,

𝜎(𝛽𝑖) = 𝜎(𝑎1 ∘ 𝑎𝑖 ∘ 𝑏1 ∘ 𝑏𝑖) = 𝑛− 8𝑇𝑎1𝑎𝑖𝑏1𝑏𝑖 > 𝑛− 8𝑟. (5)

Since 𝒮 is a full set and 𝑏1 is not in 𝒮, 𝑏2, . . . , 𝑏𝑠 are not in 𝒮. If 𝑖 ̸= 𝑗 and
𝑏𝑖 = 𝑏𝑗 , then 𝑇𝑎1𝑏1𝑏𝑖ℓ 6 𝑟 for ℓ = 𝑎𝑖 and ℓ = 𝑎𝑗 which is a contradiction. So,
𝒮 ′ = 𝒮 ∪ {𝑏1, . . . , 𝑏𝑠} is of size 2𝑠. Now, we prove that 𝒮 ′ is full. It clearly
suffices to establish that

(i) 𝑇𝑎𝑖𝑎𝑗𝑏𝑖𝑏𝑗 6 𝑟, for every 1 6 𝑖 < 𝑗 6 𝑠;

(ii) 𝑇𝑎𝑖𝑎𝑗𝑏𝑘𝑏ℓ 6 𝑟, for any quadruple {𝑎𝑖, 𝑎𝑗 , 𝑎𝑘, 𝑎ℓ} of type at most 𝑟;

(iii) 𝑇𝑏𝑖𝑏𝑗𝑏𝑘𝑏ℓ 6 𝑟, for any quadruple {𝑎𝑖, 𝑎𝑗 , 𝑎𝑘, 𝑎ℓ} of type at most 𝑟.

In order to prove (i), in view of (4) and (5), we may write 𝑛 − 8𝑇𝑎𝑖𝑎𝑗𝑏𝑖𝑏𝑗 =
𝜎(𝑎𝑖∘𝑎𝑗 ∘𝑏𝑖∘𝑏𝑗) = 𝜎(𝛽𝑖∘𝛽𝑗) > 𝜎(𝛽𝑖)+𝜎(𝛽𝑗)−𝑛 > 𝑛−16𝑟 which implies that
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𝑇𝑎𝑖𝑎𝑗𝑏𝑖𝑏𝑗 6 2𝑟. Using the assumption of the theorem, we have 𝑇𝑎𝑖𝑎𝑗𝑏𝑖𝑏𝑗 6 𝑟,
proving (i). Now, from (i), we find that

𝜎(𝛽𝑖 ∘ 𝛽𝑗) = 𝜎(𝑎𝑖 ∘ 𝑎𝑗 ∘ 𝑏𝑖 ∘ 𝑏𝑗) = 𝑛− 8𝑇𝑎𝑖𝑎𝑗𝑏𝑖𝑏𝑗 > 𝑛− 8𝑟, (6)

for every 1 6 𝑖 < 𝑗 6 𝑠. Next, fix a quadruple {𝑎𝑖, 𝑎𝑗 , 𝑎𝑘, 𝑎ℓ} of type at most
𝑟. In order to prove (ii), using (4) and (5), we may write

𝑛− 8𝑇𝑎𝑖𝑎𝑗𝑏𝑘𝑏ℓ = 𝜎(𝑎𝑖 ∘ 𝑎𝑗 ∘ 𝑏𝑘 ∘ 𝑏ℓ)
= 𝜎(𝑎𝑖 ∘ 𝑎𝑗 ∘ 𝑎𝑘 ∘ 𝑎ℓ ∘ 𝛽𝑖 ∘ 𝛽𝑗)
> 𝜎(𝑎𝑖 ∘ 𝑎𝑗 ∘ 𝑎𝑘 ∘ 𝑎ℓ) + 𝜎(𝛽𝑖 ∘ 𝛽𝑗)− 𝑛

> 𝑛− 16𝑟,

yielding 𝑇𝑎𝑖𝑎𝑗𝑏𝑘𝑏ℓ 6 2𝑟. The assumption of the theorem results in 𝑇𝑎𝑖𝑎𝑗𝑏𝑘𝑏ℓ 6
𝑟, proving (ii). Note that 𝜎(𝑎𝑖 ∘ 𝑎𝑗 ∘ 𝑎𝑘 ∘ 𝑎ℓ ∘ 𝛽𝑖 ∘ 𝛽𝑗) = 𝜎(𝑎𝑖 ∘ 𝑎𝑗 ∘ 𝑏𝑘 ∘ 𝑏ℓ) =
𝑛− 8𝑇𝑎𝑖𝑎𝑗𝑏𝑘𝑏ℓ > 𝑛− 8𝑟. The latter inequality along with (6) give

𝑛− 8𝑇𝑏𝑖𝑏𝑗𝑏𝑘𝑏ℓ = 𝜎(𝑏𝑖 ∘ 𝑏𝑗 ∘ 𝑏𝑘 ∘ 𝑏ℓ)
= 𝜎(𝑎𝑖 ∘ 𝑎𝑗 ∘ 𝑎𝑘 ∘ 𝑎ℓ ∘ 𝛽𝑖 ∘ 𝛽𝑗 ∘ 𝛽𝑘 ∘ 𝛽ℓ)
> 𝜎(𝑎𝑖 ∘ 𝑎𝑗 ∘ 𝑎𝑘 ∘ 𝑎ℓ ∘ 𝛽𝑖 ∘ 𝛽𝑗) + 𝜎(𝛽𝑘 ∘ 𝛽ℓ)− 𝑛

> 𝑛− 16𝑟,

implying 𝑇𝑏𝑖𝑏𝑗𝑏𝑘𝑏ℓ 6 2𝑟. It follows from the assumption of the theorem that
𝑇𝑏𝑖𝑏𝑗𝑏𝑘𝑏ℓ 6 𝑟. This proves (iii) and completes the proof.

The following consequence immediately follows from Theorem 8.

Corollary 9. Let 𝐻 be a Hadamard matrix of order 𝑛 such that for every
three distinct rows 𝑖, 𝑗, 𝑘 of 𝐻, there exists a row ℓ with 𝑇𝑖𝑗𝑘ℓ < 𝑛/24. Then
𝑛 is a power of 2.

Consider a Hadamard matrix 𝐻 of order 𝑛 > 12. Assume that 𝑛 = 4𝑚
is not a power of 2 and 𝐻 has exactly two distinct types 𝛼 and 𝛽 for the
quadruples of rows with 𝛼 < 𝛽. By Lemma 1 and Corollary 3, we have

𝑚2 = 𝜅𝛼(𝑚−2𝛼)2+𝜅𝛽(𝑚−2𝛽)2 < (𝜅𝛼+𝜅𝛽)(𝑚−2𝛼)2 = (4𝑚−3)(𝑚−2𝛼)2,

which implies that 𝛼 < 𝑛
8

(︀
1 − 1√

𝑛−3

)︀
. Similarly, 𝛽 > 𝑛

8

(︀
1 − 1√

𝑛−3

)︀
. In

conclusion, by Corollary 9, we obtain

𝑛

24
6 𝛼 <

𝑛

8

(︂
1− 1√

𝑛− 3

)︂
< 𝛽 6

𝑛

8
.
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We recall that the Sylvester Hadamard matrices are recursively defined
as follows:

H1 =
[︀
1
]︀

and H2𝑟 =

[︂
H2𝑟−1 H2𝑟−1

H2𝑟−1 −H2𝑟−1

]︂
for 𝑟 = 1, 2, . . .

It follows from Theorem 4 of [1] that every quadruple of rows of H2𝑟 is of
type 0 or 2𝑟−3 for all 𝑟 > 3. We below show that the converse is also true.

Theorem 10. Let 𝐻 be a Hadamard matrix of order 8𝑡 whose quadruples of
rows are all of type 0 or 𝑡. Then 𝐻 is equivalent to the Sylvester Hadamard
matrix.

Proof. Fix three rows of 𝐻 and let 𝜅0 and 𝜅𝑡 be the number of other rows
which respectively are of type 0 and 𝑡 with the these fixed rows. By applying
Lemma 1, we find that 𝜅0 = 1 and 𝜅𝑡 = 𝑛 − 4, where 𝑛 = 8𝑡. It is easy to
see that, for every triple {𝑖, 𝑗, 𝑘} of rows of 𝐻, the vector 𝑖 ∘ 𝑗 ∘ 𝑘 is equal to
the unique row ℓ in 𝐻 with 𝑇𝑖𝑗𝑘ℓ = 0 up to negation. This means that if we
write the first three rows of 𝐻 as the form

2𝑡 2𝑡 2𝑡 2𝑡
+ + + +
+ + − −
+ − + −

then we may consider
2𝑡 2𝑡 2𝑡 2𝑡
+ − − +

as the forth row of 𝐻. By a sequence of column permutations, we may
consider the 4× 𝑛 top submatrix of 𝐻 as[︀

H4 · · · H4

]︀
.

In order to proceed, assume that 𝑛 is divisible by 2𝑟, for some 𝑟 > 2, and
the 2𝑟 × 𝑛 top submatrix of 𝐻 is written as[︀

H2𝑟 · · · H2𝑟
]︀
.

Again, by a sequence of column permutations, we may consider the 2𝑟 × 𝑛
top submatrix of 𝐻 as

𝐻 ′ =
[︀ ⏟  ⏞  

𝑛
2𝑟

𝐾1 · · ·𝐾1 · · · ⏟  ⏞  
𝑛
2𝑟

𝐾2𝑟 · · ·𝐾2𝑟
]︀
, (7)

9



where 𝐾 = H2𝑟 and 𝐾𝑖 is the 𝑖th column of 𝐾 for 𝑖 = 1, . . . , 2𝑟. Let

𝑥 : 𝑥1 · · · 𝑥2𝑟

be any of the remaining rows of 𝐻. In view of (7), by a column permutation,
we may assume that

𝛼𝑖 𝛽𝑖
𝑥𝑖 : + −

for any 𝑖. Since 𝐻 ′𝑥⊤ = 0, it is not hard to see that

𝐾

⎡⎢⎣ 𝛼1 − 𝛽1
...

𝛼2𝑟 − 𝛽2𝑟

⎤⎥⎦ = 0.

As 𝐾 is an invertible matrix, we conclude that 𝛼𝑖 = 𝛽𝑖 for any 𝑖. Thus, we
may rewrite the first 2𝑟 + 1 rows of 𝐻 in the form

𝐾 · · · 𝐾 𝐾 · · · 𝐾
+ · · · + − · · · −·

For any 𝑖 ∈ {2, 3, . . . , 2𝑟}, 𝐻 has a unique row 𝜌𝑖 = 1 ∘ 𝑖 ∘ 𝜌1 corresponding
to the rows 1, 𝑖, and 𝜌1 = 2𝑟 + 1 with 𝑇1𝑖𝜌1𝜌𝑖 = 0. So, one can easily deduce
that the first 2𝑟+1 rows of 𝐻 have the form

𝐾 · · · 𝐾 𝐾 · · · 𝐾
𝐾 · · · 𝐾 −𝐾 · · · −𝐾.

This shows in particular that 𝑛 is divisible by 2𝑟+1. Also, by a sequence of
column permutations, we may consider the 2𝑟+1 × 𝑛 top submatrix of 𝐻 as[︀

H2𝑟+1 · · · H2𝑟+1

]︀
.

Now, the assertion clearly follows by repeating the above process.

The following result is an analogue of Theorem 10 and is easily derived
from Corollary 9.

Corollary 11. Let 𝐻 be a Hadamard matrix of order 𝑛 = 8𝑡 + 4 whose
quadruples of rows are all of type 1 or 𝑡. Then 𝑛 ∈ {4, 12, 20}.

10



4 Concluding remarks

Let us summarize our results. We classified Hadamard matrices of order 𝑛
having two types 𝛼 and 𝛽 with (𝛼, 𝛽) ∈ {(0, 𝑛8 ), (1,

𝑛−4
8 ), ( 𝑛

16 ,
𝑛
8 )}. In the case

(𝛼, 𝛽) = (0, 𝑛8 ), only Sylvester Hadamard matrices exist. If (𝛼, 𝛽) = (1, 𝑛−4
8 ),

then 𝑛 = 12, 20, and there exists no example if (𝛼, 𝛽) = ( 𝑛
16 ,

𝑛
8 ). These

results along with our Lemma 1 and Tables 1–2 in [5] are enough to obtain
the number of equivalence classes of Hadamard matrices of order up to 32
with exactly two types. The findings are shown in Table 2. In attempt to

𝑛 8 16 20 24 28 32
# 1 1 3 1 1 2

Table 2. The number of Hadamard matrices of order 𝑛 6 32 with exactly two types.

find more examples of Hadamard matrices with exactly two types, we looked
at the Paley Hadamard matrices of order 𝑝 + 1 for primes 𝑝 less than 200.
Examples were only in the orders 8, 20, 24, 32, 44, 60. The search within the
Paley Hadamard matrices of order 2(𝑝 + 1) for primes 𝑝 less than 100 gave
no examples. The definition of Paley Hadamard matrices can be found in
[4].

The classification of Hadamard matrices with exactly two distinct values
for type of quadruples of rows seems to be a hard problem. Even, in order
36 the problem is already challenging. We carried out a non-exhaustive
computer search for Hadamard matrices of order 36 having types 3 and 4.
We obtained only five such matrices which had previously been found in [9].
It is an interesting question if there exists an infinite family of Hadamard
matrices with exactly two distinct types besides the Sylvester Hadamard
matrices.
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