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Abstract

For two graphs G and F , we say that G is weakly F -saturated if G has no copy of F as a
subgraph and one can join all the nonadjacent pairs of vertices of G in some order so that a
new copy of F is created at each step. The weak saturation number wsat(n, F ) is the mini-
mum number of edges of a weakly F -saturated graph on n vertices. In this paper, we examine
wsat(n,Ks,t), where Ks,t is the complete bipartite graph with parts of sizes s and t. We deter-
mine wsat(n,K2,t) for all n > t+2 which particulary corrects a previous report in the literature.
It is also shown that wsat(s+t,Ks,t) =

(
s+t−1

2

)
if gcd(s, t) = 1 and wsat(s+t,Ks,t) =

(
s+t−1

2

)
+1

otherwise.
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1. Introduction

All graphs throughout this paper are finite, undirected, and without loops or multiple edges. The
edge set of a graph G is denoted by E(G). For given two graphs G and F , a spanning subgraph
H of G is said to be a weakly F -saturated subgraph of G if H has no copy of F as a subgraph and
there is an ordering e1, e2, . . . of edges in E(G) \E(H) such that for i = 1, 2, . . . the addition of ei
a
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to the spanning subgraph of G with the edge set E(H) ∪ {e1, . . . , ei−1} creates a copy of F that
contains ei. The minimum number of edges in a weakly F -saturated subgraph of G is called the
weak saturation number of F in G and is denoted by wsat(G,F ). For the purpose of simplification,
a weakly F -saturated subgraph of Kn is said to be a weakly F -saturated graph and wsat(Kn, F )
is written as wsat(n, F ), where Kn is the complete graph on n vertices. For example, each path
graph is weakly K3-saturated and it is easily seen that wsat(n,K3) = n−1 due to the connectivity.

Determining the exact value of wsat(n, F ) for a given graph F is often quite difficult. It is
worth mentioning that the study of any extremal parameter is an important task in graph theory
and often receives a great deal of attention. Weak saturation is closely related to the so-called
‘graph bootstrap percolation’ which was introduced for the first time in [2]. The notion of weak
saturation was initially introduced by Bollobás [3] in 1968. Although the weak saturation number
has been studied for a long time, related literature is still poor. Indeed, the main difficulty lies in
proving lower bounds where usually combinatorial methods do not seem to work. Most arguments
that have been used in this area are based on algebraic methods. However, our proofs in the
current paper are all combinatorial. For results on weak saturation and related topics, we refer to
the survey [6].

Lovász [13] proved that wsat(n,Kr) = (r−2)n−
(
r−1
2

)
when n > r > 2, settling a conjecture of

Bollobás [3]. The result is also proved by Frankl [8], Kalai [10], Alon [1], and Yu [14]. Surprisingly,
these proofs all are based on algebraic techniques and no combinatorial proof has been found so
far.

After complete graphs, the next most natural problem to consider regarding weak saturation
numbers is description of the behavior of wsat(n,Ks,t), where Ks,t is the complete bipartite graph
with parts of sizes s and t. Borowiecki and Sidorowicz [4] proved that wsat(n,K1,t) =

(
t
2

)
provided

n > t+ 1. A short proof of this result is given in [7]. The equality wsat(n,K2,2) = n follows from
Theorem 16 of [4] for all n > 4. Faudree, Gould, and Jacobson [7] showed that wsat(n,K2,3) = n+1
for all n > 5. Using multilinear algebra, Kalai [9] established that wsat(n,Kt,t) = (t−1)n−

(
t−1
2

)
if

n > 4t−4. This result is also proved by Kronenberg, Martins, and Morrison [12] for every n > 3t−3
by a linear algebraic argument. They also determined wsat(n,Kt,t+1) for any n > 3t− 3.

The authors of [5] have claimed that they determine wsat(n,K2,t) for t > 4 and n > 2t − 1.
We believe that their half page argument to prove the lower bound on wsat(n,K2,t) is not correct.
In the current paper, we fill this gap in the literature by proving the following result.

Theorem 1.1. For every two integers n, t with t > 3 and n > t+ 2, the following statements hold.

(i) If t is odd, then wsat(n,K2,t) = n− 2 +
(
t
2

)
.

(ii) If t is even and n 6 2t− 2, then wsat(n,K2,t) = n− 1 +
(
t
2

)
.

(iii) If t is even and n > 2t− 1, then wsat(n,K2,t) = n− 2 +
(
t
2

)
.

The proofs of the lower bounds of Theorem 1.1 which are presented in Section 3 form the most
involved part of the paper. In Section 2, we establish the following theorem which particularly
proves Theorem 1.1 for the initial case n = t+2. Generally, determination of wsat(n, F ) for graphs
F on n vertices seems to be an attractive problem.
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Theorem 1.2. For every two positive integers s and t,

wsat(s+ t,Ks,t) =



(
s+ t− 1

2

)
if gcd(s, t) = 1,

(
s+ t− 1

2

)
+ 1 otherwise.

A relatively new trend in extremal graph theory is to extend the classical deterministic results
to random analogues. Such study reveals the behavior of extremal parameters for a typical graph.
For instance, the problem of determination of wsat(G(n, p),Ks,t) for given fixed integers s and
t is still unsolved in general case, where G(n, p) denotes the Erdős–Rényi random graph model.
Kalinichenko and Zhukovskii [11] presented some sufficient conditions for which wsat(G(n, p), F ) =
wsat(n, F ) with high probability. Theorem 1.1 combined with Corollary 1 of [11] yields that with
high probability wsat(G(n, p),K2,t) = n− 2 +

(
t
2

)
for each constant p ∈ (0, 1).

Below, we introduce more notation and terminology that we use in the rest of the paper. Let G
be a graph. The vertex set of G is denoted by V (G) and the order of G is defined as |V (G)|. We set
e(G) = |E(G)|. For every two adjacent vertices u and v, we denote the edge joining u and v by uv.
The complement of G, denoted by G, is a graph with vertex set V (G) in which uv ∈ E(G) if u 6= v
and uv /∈ E(G). For a subset X of V (G), we denote the induced subgraph of G on X by G[X]. For
a subset Y of E(G), we denote by G− Y the graph obtained from G by removing the edges in Y .
For a subset Z of E(G), we adopt the notation G+Z to denote the graph with vertex set V (G) and
edge set E(G)∪Z. For simplicity, we write G− e instead of G−{e} and G+ e instead of G+ {e}.
For a vertex v of G, denote by G − v the graph obtained from G by removing v and all edges
incident to v. Also, define the set of neighbors of v as NG(v) = {x ∈ V (G) |x is adjacent to v} and
the degree of v as degG(v) = |NG(v)|. The minimum degree of vertices of G is denoted by δ(G).
For the sake of convenience, we set NG[u] = {u} ∪ NG(u) and NG(u, v) = NG(u) ∩ NG(v). For
every two subsets A and B of V (G), let EG(A,B) denote the set of edges of G having an endpoint
in A and the other endpoint in B. We set eG(A,B) = |EG(A,B)|. For simplicity, we write EG(A)
instead of EG(A,A) and eG(A) instead of eG(A,A). The union of two vertex disjoint graphs G1

and G2, denoted by G1 t G2, is the graph with the vertex set V (G1) ∪ V (G2) and the edge set
E(G1) ∪ E(G2). The join of two vertex disjoint graphs G1 and G2, denoted by G1 ∨ G2, is the
graph obtained from G1 tG2 by joining every vertex in V (G1) to every vertex in V (G2).

2. Determination of wsat(s + t,Ks,t)

The problem of determining wsat(n, F ) when the graph F is of order n is interesting to explore.
In this section, we solve this problem when F is a complete bipartite graph. The following lemma
helps us to get a lower bound.

Lemma 2.1. Let s, t be positive integers and let G be a weakly Ks,t-saturated graph of order s+ t.
Then, G has no cycle. Moreover, if gcd(s, t) 6= 1, then G is disconnected.

Proof. Fix an order e1, e2, . . . of E(G) that is obtained from a weakly Ks,t-saturation process on G.
By contradiction, suppose that G has a cycle, say C. Let ei be the first edge of C that appears in
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the order e1, e2, . . . In view of the definition of weakly Ks,t-saturation process, there is a partition
{A,B} of V (G) with |A| = s and |B| = t such that ei is the only missing edge between A and B in
G+ {e1, . . . , ei−1}. So, both endpoints of each edge among ei+1, ei+2, . . . belong to one of A or B.
This is impossible, since C has to pass through at least one edge ej with j > i having endpoints
in both A and B. This shows that G has no cycle.

Now, assume that G is connected. As we saw above, G is a tree. Let H0 = G and Hi =
G − {e1, . . . , ei} for any i > 1. We claim that for any i > 0, Hi is a forest whose connected
components are of order divisible by d, where d = gcd(s, t). Since G−{e1, e2, . . .} = Ks+t, we find
that d = 1, as required.

We prove the claim by induction on i. The claim is clearly valid for i = 0. So, assume that
i > 1. According to the definition of weakly Ks,t-saturation process, there is a partition {A,B}
of V (G) with |A| = s and |B| = t such that ei is the only missing edge between A and B in
G + {e1, . . . , ei−1}. Hence, ei is the only edge in Hi−1 between A and B. Let C1, . . . , Ci be the
connected components of Hi−1. Without loss of generality, assume that ei ∈ E(C1). So, the
connected components of Hi are C ′1, C

′′
1 , C2, . . . , Ci, where C ′1 and C ′′1 are respectively the induced

subgraphs of C1 on A ∩ V (C1) and B ∩ V (C1). As ei is the only edge in Hi−1 between A and B,
we conclude that either V (Ci) ⊆ A or V (Ci) ⊆ B for any i > 2. It follows that A is a disjoint
union of V (C ′1) and some sets among V (C2), . . . , V (Ci). The induction hypothesis yields that
|V (C2)|, . . . , |V (Ci)| are multiples of d. This and the divisibility of |A| by d imply that |V (C ′1)| is
a multiple of d. A similar argument works for |V (C ′′1 )|. The claim is established.

The following consequence immediately follows from Lemma 2.1.

Corollary 2.2. For every integers s and t, wsat(s+ t,Ks,t) >
(
s+t−1

2

)
. Moreover, if gcd(s, t) 6= 1,

then wsat(s+ t,Ks,t) >
(
s+t−1

2

)
+ 1.

We present the following two lemmas to obtain a tight upper bound. We use the notation Pn

for the path graph of order n.

Lemma 2.3. Let s and t be positive integers. Then, wsat(s+ t,Ks,t) 6
(
s+t−1

2

)
+ 1.

Proof. We prove that G = Ps+t−1 tK1 is weakly Ks,t-saturated. Denote by v1, . . . , vs+t−1 the
vertices of Ps+t−1 going in the natural order of the path and set V (K1) = {vs+t}. Let e1 = vsvs+1,
ei = vi−1vi for i = 2, . . . , s, and ei = vivi+1 for i = s+1, . . . , s+t−2. We claim that e1, . . . , es+t−2 is
an order in which the weakly Ks,t-saturation process occurs. Let H0 = G and Hi = G+{e1, . . . , ei}
for i = 1, . . . , s+t−2. In order to prove the assertion, we find a partition {Ai, Bi} of V (G) such that
|Ai| = s, |Bi| = t, and ei+1 is the only missing edge between Ai and Bi in Hi for i = 0, 1, . . . , s+t−3.
To do this, it is enough to introduce A0, A1, . . . As+t−3. Let A = {v1, . . . , vs}. Now, set A0 = A,
Ai = (A\{vi})∪{vs+t} for i = 1, . . . , s−1, and Ai = (A\{v1})∪{vi+1} for i = s, . . . , s+ t−3.

Lemma 2.4. Let s and t be positive integers with gcd(s, t) = 1. Then, wsat(s+ t,Ks,t) 6
(
s+t−1

2

)
.

Proof. We prove that G = Ps+t is weakly Ks,t-saturated. We proceed by induction on s+ t. The
assertion clearly holds for s + t = 2. Let s + t > 3 and denote by v1, . . . , vs+t the vertices of
Ps+t going in the natural order of the path. Partition V (G) into two subsets A = {v1, . . . , vs}
and B = {vs+1, . . . , vs+t}. Since the edge e = vsvs+1 is the only missing edge between A and B
in G, we may consider e as the first element in an ordering of E(G) in a weakly Ks,t-saturation
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process on G. For the sake of convenience, let G′ = G + e and without loss of generality, assume
that t > s. Using the definition, in each step of a weakly Ks,t−s-saturation process on G′[B], there
is a partition {C,D} of B such that |C| = s, |D| = t − s, and all edges between C and D are
present except exactly one. Since there is no edge between A and B in G′, every step of a weakly
Ks,t−s-saturation process on G′[B] corresponding to a vertex partition {C,D} can be considered as
a step of a weakly Ks,t-saturation process on G′ corresponding to the vertex partition {C,A∪D}.
Hence, by the induction hypothesis, G′[B] may be completed to reach to Kt through a weakly
Ks,t-saturation process. Thus, it remains to show that G′′ = G′+ {vivi+1 | s+ 1 6 i 6 s+ t− 1} is
weakly Ks,t-saturated. For i = 1, . . . , s− 1, the edge ei = vivi+1 is the only missing edge between
{v1, . . . , vi}∪{vs+1, . . . , v2s−i} and {vi+1, . . . , vs}∪{v2s−i+1, . . . , vs+t} in G′′ and therefore we may
add ei to G′′ in the weakly Ks,t-saturation process.

We end this section by pointing out that Theorem 1.2 is immediately concluded from Corollary
2.2, Lemma 2.3, and Lemma 2.4.

3. Determination of wsat(n,K2,t)

In this section, we establish Theorem 1.1 which is a direct consequence of Lemmas 3.2, 3.4, and
3.14. The following lemma is known, although it seems that it is not explicitly stated anywhere.
We include a proof here for the sake of completeness.

Lemma 3.1. Let F be a graph with δ(F ) > 1 and let G be a weakly F -saturated graph such that
|V (G)| > |V (F )| − 1. Join a new vertex v to δ(F )− 1 arbitrary vertices of G. Then, the resulting
graph is also weakly F -saturated.

Proof. Denote the resulting graph by G′. Since G is weakly F -saturated, we may add all edges
in {uv ∈ E(G′) |u, v ∈ V (G)} to G′ in some order to obtain a complete subgraph of G′ on V (G).
Let e ∈ E(F ) be incident to a vertex of degree δ(F ). For each vertex x ∈ V (G) \NG′(v), there is
a copy of F − e in G′ containing the vertices in {v, x} ∪NG′(v) and so, we may connect v to x in
the weakly F -saturation process on G′. The assertion follows.

The following lemma proves the upper bounds of Theorem 1.1.

Lemma 3.2. For every two integers n, t with t > 3 and n > t+ 2, the following statements hold.

(i) If t is odd, then wsat(n,K2,t) 6 n− 2 +
(
t
2

)
.

(ii) If t is even and n 6 2t− 2, then wsat(n,K2,t) 6 n− 1 +
(
t
2

)
.

(iii) If t is even and n > 2t− 1, then wsat(n,K2,t) 6 n− 2 +
(
t
2

)
.

Proof. Let H be a weakly K2,t-saturated graph of order t+ 2 with wsat(t+ 2,K2,t) edges. Attach
n− t− 2 pendent vertices to an arbitrary vertex of H to obtain a graph G of order n. By Lemma
3.1, G is a weakly K2,t-saturated graph with n− t− 2 + wsat(t+ 2,K2,t) edges. Parts (i) and (ii)
follow from Theorem 1.2. The graph Gn,t, depicted in Figure 1 and introduced in [5, 12], is weakly
K2,t-saturated for n > 2t− 1. This can be proved by using a proof similar to that of Proposition
14 in [12]. Since Gn,t has n vertices and n− 2 +

(
t
2

)
edges, (iii) follows.
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Kt−1

Kn−t−2

Figure 1. The graph Gn,t. We have not drawn the edges between the vertices in the gray elliptical disk.

The following observation is trivially true. We state it for clarity.

Observation 3.3. Fix a graph F and let G,H be two graphs with the same vertex set. Assume
that the graph obtained from H by adding a sequence of edges in a weakly F -saturation process
contains G as a subgraph. If G is weakly F -saturated, then so is H.

The following lemma establishes a general lower bound on wsat(n,K2,t).

Lemma 3.4. Let t > 3 and n > t+ 2. Then, wsat(n,K2,t) > n− 2 +
(
t
2

)
.

Proof. Let G0 be a weakly K2,t-saturated graph. So, G0 is connected. By Lemma 3.1, if we attach
a new pendent vertex to a vertex of G0, then the resulting graph is also weakly K2,t-saturated
whose number of vertices is one more than the number of vertices of G0 and whose number of
edges is one more than the number of edges of G0. We attach t3 new pendent vertices to each
vertex of G0 and we call the resulting graph by G. To prove the assertion, it suffices to show that
e(G) > n− 2 +

(
t
2

)
provided n = |V (G)|.

We define a process in which step, G is updated so that a special structure on G is preserved.
In each step of the process, G looks as follows. The graph G contains G0 as a subgraph. The edges
of G are colored by two colors black and red. At the beginning of the process, all edges are black
and the number of black edges does not change during the process. The spanning subgraph of G
induced on black edges is connected. There exist two disjoint subsets A and B of V (G) which are
equipped with the following features. There is an ordering on A under which the vertices in A can
be arranged as x1, . . . , xk, where k = |A|. Every red edge has at least one endpoint in A. There
exist the partition {A1, . . . , Am} of A and the partition {B1, . . . , Bm} of B which are described
below. Let i ∈ {1, . . . ,m} and denote by xsi the first element among x1, . . . , xk which appears
within Ai. The following properties will be held in each step of the process.

(P.1) For every two vertices x, y ∈ Ai, we have NG(x) \ {y} = NG(y) \ {x}.
(P.2) The set Ai is either a clique of size at least 2 or an independent set of size 2 or 3.
(P.3) Every edge between xsi and Ai \ {xsi} is black whenever Ai is a clique.
(P.4) Every vertex in Ai is adjacent to every vertex in Aj whenever i 6= j.
(P.5) Each edge between xsi and V (G) \A is black.
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(P.6) Every vertex xr ∈ Ai is adjacent to every vertex xsj by a black edge if i 6= j and sj < r.
(P.7) The size of Bi is t− si.
(P.8) For any vertex x ∈ Bi, we have NG(x) = Ai.
(P.9) Any vertex xr ∈ Ai is adjacent to exactly αr vertices in Bi by black edges, where

αr =


t− r if r = si,

t− r + 2
if Ai is an independent set of size
3 and xr is the third element of Ai,

t− r + 1 otherwise.

The configuration described above is designed so that at each step of the process, the graph induced
on black edges is weakly K2,t-saturated, and red edges are the ones that are added through the
weakly K2,t-saturation process. This will be shown in Cases 3.5, 3.6, and 3.7 below.

At the beginning of the process, all edges are black and A = B = ∅. In Cases 3.5, 3.6, and
3.7, we explain how in each step of the process we update G and A,B,C to proceed to the next
step, where C = V (G) \ (A ∪B). More precisely, we repeat the process until one of the following
occurs.

(T.1) |Ai| > t− 1 for some i ∈ {1, . . . ,m}.
(T.2) k = t, |Ai| 6 t − 2 for i = 1, . . . ,m, and there are two vertices u, v ∈ C such that

|NG(u, v)| > t− 1 and NG(u) \ {v} 6= NG(v) \ {u}.
(T.3) k = t + 1, |Ai| 6 t − 2 for i = 1, . . . ,m, and there are two vertices u, v ∈ C such that

|NG(u, v)| > t− 1 and NG(u) \ {v} 6= NG(v) \ {u}.
(T.4) k = t + 1, |Ai| 6 t − 2 for i = 1, . . . ,m, and there are two vertices u ∈ A and v ∈ C such

that |NG(u, v)| > t− 1 and NG(u) \ {v} 6= NG(v) \ {u}.
We now show what we do in each step of the process before termination. At the beginning of

each step, G is weakly K2,t-saturated and so there are two vertices a, b such that |NG(a, b)| > t−1
and NG(a) \ {b} 6= NG(b) \ {a}. As (T.1) is not happened, (P.8) forces that a, b /∈ B.

Case 3.5. a, b ∈ C.

Description. As (T.1)–(T.3) are not happened, k 6 t−1. Set xk+1 = a, xk+2 = b, sm+1 = k+1, and
Am+1 = {xk+1, xk+2}. Suppose that xk+1 or xk+2 is not adjacent to xsi for some i ∈ {1, . . . ,m}. We
find from (P.1) that |NG(xk+1, xk+2)\A| > t−1−|NG(xk+1, xk+2)∩A| > t−1−(k−|Ai|) > |Ai| > 2.
So, we may remove two arbitrary edges between xk+2 and NG(xk+1, xk+2) \A and join both xk+1

and xk+2 to xsi by black edges and to all vertices in Ai \ {xsi} by red edges. By repeating this, we
derive that A ⊆ NG(xk+1, xk+2) and hence |NG(xk+1, xk+2) \A| > t− 1− k. We remove t− 1− k
arbitrary edges between xk+2 and NG(xk+1, xk+2) \A and connect xk+2 to all vertices in a subset
Bm+1 consisting of t− 1− k arbitrary pendent vertices in NG(xk+1).

Now, update A to A ∪ Am+1 with the partition {A1, . . . , Am+1} and update B to B ∪ Bm+1

with the partition {B1, . . . , Bm+1}. �

Case 3.6. a ∈ Ai for some i ∈ {1, . . . ,m} and b ∈ C.

Description. Since (T.1) and (T.4) are not happened, k 6 t. In view of (P.1) and without loss of
generality, we may assume that a = xsi . Let xk+1 = b.
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First, assume that Ai ∪ {xk+1} is an independent set of size 3. Suppose that xk+1 is not
adjacent to xsj for some j ∈ {1, . . . ,m} \ {i}. We obtain from (P.1) that |NG(xsi , xk+1) \ A| >
t − 1 − |NG(xsi , xk+1) ∩ A| > t − 1 − (k − |Aj |) > |Aj | − 1 > 1. So, we may remove an arbitrary
edge between xk+1 and NG(xsi , xk+1) \A and join xk+1 to xsj by a black edge and to all vertices
in Aj \ {xsj} by red edges. By repeating this, we derive that A \ Ai ⊆ NG(xsi , xk+1) and thus
|NG(xsi , xk+1) \ A| > t − 1 − (k − |Ai|) > t − k + 1. We now remove t − k + 1 arbitrary edges
between xk+1 and NG(xsi , xk+1) \A and connect xk+1 to t− k+ 1 arbitrary distinct vertices in Bi

by black edges. This is possible, since |Bi| > t− k + 1 by (P.7) and using si 6 k − 1.

Next, assume thatAi∪{xk+1} is not an independent set of size 3. Let xk+1 be not adjacent to xsj
for some j ∈ {1, . . . ,m}. We find from (P.1) that |NG(xsi , xk+1)\A| > t−1−|NG(xsi , xk+1)∩A| >
t − 1 − (k − |Aj |) > |Aj | − 1 > 1. So, we may remove an arbitrary edge between xk+1 and
NG(xsi , xk+1)\A and join xk+1 to xsj by a black edge and to all vertices in Aj \{xsj} by red edges.
By repeating this, we derive that A ⊆ NG(xk+1). If Ai is a clique, then A \ {xsi} ⊆ NG(xsi , xk+1).
Suppose that Ai is an independent set. It follows from A ⊆ NG(xk+1) that NG(xsi , xk+1) ∩ A =
A \ Ai and hence |NG(xsi , xk+1) \ A| > t − 1 − (k − |Ai|) > |Ai| − 1. We now remove |Ai| − 1
arbitrary edges between xk+1 and NG(xsi , xk+1) \ A and join xsi to all vertices in Ai \ {xsi} by
black edges, resulting in A \ {xsi} ⊆ NG(xsi , xk+1). Therefore, regardless of whether Ai is a clique
or an independent set, |NG(xsi , xk+1)\A| > t−1− (|A|−1) = t−k. Remove t−k arbitrary edges
between xk+1 and NG(xsi , xk+1) \A and connect xk+1 to t− k arbitrary distinct vertices in Bi by
black edges.

Now, update Ai to Ai ∪ {xk+1} and A to A ∪ {xk+1} with the partition {A1, . . . , Am}. �

Case 3.7. a ∈ Ai and b ∈ Aj for some i, j with 1 6 i < j 6 m.

Description. In view of (P.1) and without loss of generality, we may assume that a = xsi and
b = xsj . Let xr ∈ Aj . We know that |Bi| > αr and there are exactly αr black edges between
xr and Bj by (P.9). If Aj is an independent set of size 3 and xr is the third element of Aj , then
remove αr − 1 black edges between xr and Bj and connect xr to αr − 1 arbitrary vertices in Bi by
black edges. Otherwise, remove αr black edges between xr and Bj and connect xr to αr arbitrary
vertices in Bi by black edges.

Remove all black edges between xsj and xr if r > sj . The number of such edges is k − sj − q,
where q = |Aj \NG[xsj ]|. Note that, |NG(xsi , xsj ) ∩ A| = k − p− q − 2, where p = |Ai \NG[xsi ]|.
We have |NG(xsi , xsj ) \ A| > t− 1− (k − p− q − 2). Remove t− 1− (k − p− q − 2) black edges
between xsj and NG(xsi , xsj ) \A. Since (k − sj − q) + (t− 1− (k − p− q − 2)) = p+ (t− sj) + 1,
we may connect xsi to all vertices in (Ai \NG[xsi ]) ∪ Bj and xsj to an arbitrary vertex in Bi by
black edges.

Now, update Ai to Ai ∪Aj and consider the partition {A1, . . . , Aj−1, Aj+1, . . . , Am} for A and
the partition {B1, . . . , Bj−1, Bj+1, . . . , Bm} for B. �

At the end of each of Cases 3.5, 3.6, and 3.7, we do the following. In order to establish (P.1)
and (P.2), for each vertex w with NG(w) ∩ Ai 6= ∅, join w to all vertices in Ai \ NG(w) by red
edges. In order to establish (P.5), for each vertex w ∈ C with NG(w) ∩Ai 6= ∅, since there exists
at least a vertex xr ∈ Ai so that the color of the edge wxr is black, we may switch the color of the
edge wxr with the color of the edge wxsi . Note that, after doing all these changes, the number
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of black edges does not change and the resulting graph have Properties (P.1)–(P.9). Moreover, by
Observation 3.3, G is still weakly K2,t-saturated.

Now, assume that the process is terminated. Denote by Gb the spanning subgraph of G induced
on black edges. So, in order to establish the assertion, we should show that e(Gb) > n−2+

(
t
2

)
. For

each i > 0, let Ci be the set of vertices in C with the distance i from A in Gb and let {C1, . . . , Cd}
be a partition of C. Notice that C0 = A. For any integer i ∈ {1, . . . , d} and any vertex c ∈ Ci,
consider an arbitrary edge ec ∈ EGb

({c}, Ci−1) and set E = {ec | c ∈ C}. Denote by Gc the
spanning subgraph of Gb with E(Gc) = {xsixr ∈ E(Gb) | si < r} ∪ EGb

(A,B) ∪ E. Finally, set
F = EGb

(C, V (G))\EGc(C, V (G)). Note that, in Gc, every Ci is an independent set and moreover,
for i = 1, . . . , d, every vertex in Ci has exactly one neighbor in Ci−1.

Let β and γ be respectively the number of independent sets among A1, . . . , Am of sizes 2 and
3. Also, let δ be 1 if k = t− 1 and 0 otherwise. We have

e(Gc) = eGc(A) + eGc(A,B) + eGc

(
C, V (G)

)
=

(
k∑

r=1

∣∣{i | si < r}
∣∣− β − 2γ

)
+

(
k∑

r=1

αr

)
+

(
n− |A| −

m∑
i=1

|Bi|

)

=

(
m∑
i=1

∣∣{r | r > si}
∣∣− β − 2γ

)
+

(
t∑

r=1

(t− r + 1)−m+ γ − δ

)
+

(
n− k −

m∑
i=1

(t− si)

)

=

(
m∑
i=1

(k − si)− β − 2γ

)
+

((
t+ 1

2

)
−m+ γ − δ

)
+

(
n− k −

m∑
i=1

(t− si)

)

=

(
n− 2 +

(
t

2

))
+

(
(m− 1)(k − t− 1)− β − γ − δ + 1

)
. (1)

We consider the termination states (T.1)–(T.4) in Cases 3.8, 3.9, 3.10, and 3.11. In each of these
cases, we will use (1) to establish that e(Gb) > n− 2 +

(
t
2

)
.

Case 3.8. (T.1) has happened.

If the second term in (1) is nonnegative, then there is nothing to prove. So, we may assume
that (m − 1)(k − t − 1) − β − γ − δ + 1 < 0. From k > t − 1 + 2(m − 1), β + γ 6 m, and the
definition of δ, we deduce that one of situations

k = t− 1
m = β + γ = 1
δ = 1

or


k = t+ 1
m = β + γ = 2
δ = 0

holds. Thus, the second term in (1) is equal to −1, yielding that e(Gc) > n − 3 +
(
t
2

)
. If F 6= ∅,

then e(Gb) > e(Gc)+ |F | > n−2+
(
t
2

)
, we are done. Suppose by way of contradiction that F = ∅.

Since there is an independent set of size t − 1 among A1, . . . , Am, one concludes that t = 3 or 4.
We show that G[A ∪B] is a bipartite graph. This is clearly seen for m = 1 and one may consider
the vertex partition {A1 ∪ B2, A2 ∪ B1} for m = 2. Using the connectivity of G and starting by
G[A∪B], we may add vertices in C to G[A∪B] in some order such that in each step the resulting
graph is bipartite. This means that G is bipartite which is impossible, since a bipartite graph is
clearly not weakly K2,t-saturated.
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Case 3.9. (T.2) has happened.

As k = t, it follows from (1) that e(Gc) = n−2+
(
t
2

)
−(m+β+γ−2). Since e(Gb) > e(Gc)+|F |,

in order to prove the assertion, it suffices to show that |F | > m+ β + γ − 2.

We may assume that either A ⊆ NG(u, v) or NG(u, v)∩A = A\Ai for some i ∈ {1, . . . ,m} with
|Ai| = 2. To see this, suppose that |NG(u, v) ∩A| 6 t− 3 and suppose that u or v is not adjacent
to xsj for some j ∈ {1, . . . ,m}. We find that |NG(u, v) \ A| > t − 1 − |NG(u, v) ∩ A| > 2. So, we
may remove two arbitrary edges between v and NG(u, v) \A and join both u and v to xsj by black
edges and to all vertices in Aj \{xsj} by red edges. By repeating this, we get |NG(u, v)∩A| > t−2,
as desired.

If A ⊆ NG(u, v), then there are 2m black edges between {u, v} and {xs1 , . . . , xsm} by (P.5)
which only two of them belong to E and thus |F | > 2m− 2 > m+ β + γ − 2, we are done.

So, assume that NG(u, v) ∩ A = A \ Ai for some i ∈ {1, . . . ,m} with |Ai| = 2. We have
|NG(u, v)\A| = |NG(u, v)|− |NG(u, v)∩A| > t−1−|A\Ai| = 1. Fix w ∈ NG(u, v)\A. Obviously,
w ∈ C1 ∪ C2. Then, there are 2m black edges between {u, v} and ({xs1 , . . . , xsm} \ {xsi}) ∪ {w}
which at most three of them belong to E. Hence, |F | > 2m− 3 > m+ β + γ − 3.

Towards a contradiction, suppose that the inequality |F | > m + β + γ − 2 does not hold. We
have m+β+γ−3 > |F | > 2m−3 > m+β+γ−3 which shows that |F | = 2m−3 and β+γ = m.
It follows from β + γ = m that A1, . . . , Am are independent sets. Since there are 2m − 2 black
edges between {u, v} and {xs1 , . . . , xsm} \ {xsi} and only two of them belong to E, we deduce that
|F ∩ EGb

(A,C)| > 2m − 4. Also, at least one of the black edges uw or vw belong to F , meaning
that |F ∩EGb

(C)| > 1. Now, from |F | = 2m−3, |F ∩EGb
(A,C)| > 2m−4, and |F ∩EGb

(C)| > 1,
we derive that uv /∈ E(G) and |F ∩ EGb

(C)| = 1. Thus, w ∈ C2 and Gc[C] = Gb[C] − e, where
e ∈ {uw, vw}.

Denote by G′ be the graph obtained from G by joining u to all vertices in NG(v) \NG(u) and
joining v to all vertices in NG(u) \ NG(v). Set A′ = A ∪ {u, v}, C ′ = C \ {u, v}, A′j = Aj for
j = 1, . . . ,m, and A′m+1 = {u, v}. We know that A′1, . . . , A

′
m+1 are independent sets. For each

j > 0, let C ′j be the set of vertices in C ′ with the distance j from A′ in G′ and let {C ′1, . . . , C ′d′} be a
partition of C ′. Since G′[C ′] = Gc[C

′], we observe in G′ that C ′1, . . . , C
′
d′ are independent sets and

moreover, for j = 2, . . . , d′, every vertex in C ′j has exactly one neighbor in C ′j−1. Further, for any
vertex c ∈ C ′1, there is an index j ∈ {1, . . . ,m + 1} such that NG′(c) = A′j . Using these features,
the following statements are easily obtained for two arbitrary distinct vertices y, z ∈ V (G′).

(i) Let y ∈ C ′ and z ∈ A′ ∪ C ′. Then, NG′(y, z) is one of ∅, {c}, or A′j for some vertex c ∈ C ′
and integer j ∈ {1, . . . ,m+ 1}. Hence, |NG′(y, z)| 6 t− 2.

(ii) Let y, z ∈ A′. If y ∈ A′j and z ∈ A′` for some indices j 6= `, then NG′(y, z) ⊆ A′ \ (A′j ∪ A′`).
Thus, |NG′(y, z)| 6 t− 2.

As G′ is not a complete graph and there is no pair {y, z} of vertices of G′ such that |NG′(y, z)| > t−1
and NG′(y)\{z} 6= NG′(z)\{y}, one derives that G′ and therefore G are not weakly K2,t-saturated,
a contradiction.

Case 3.10. (T.3) has happened.

As k = t+1, it follows from (1) that e(Gc) = n−2+
(
t
2

)
−(β+γ−1). Since e(Gb) > e(Gc)+|F |,

in order to prove the assertion, it is sufficient to show that |F | > β + γ − 1.

We may assume that either A ⊆ NG(u, v) or NG(u, v) ∩ A = A \ Ai for some i ∈ {1, . . . ,m}
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with |Ai| ∈ {2, 3}. To see this, suppose that |NG(u, v) ∩ A| 6 t − 3 and u or v is not adjacent to
xsj for some j ∈ {1, . . . ,m}. We find that |NG(u, v) \A| > t− 1− |NG(u, v)∩A| > 2. So, we may
remove two arbitrary edges between v and NG(u, v)\A and join both u and v to xsj by black edges
and to all vertices in Aj \ {xsj} by red edges. By repeating this, we get |NG(u, v) ∩A| > t− 2, as
desired.

If A ⊆ NG(u, v), then there are 2m black edges between {u, v} and {xs1 , . . . , xsm} by (P.5)
which only two of them belong to E and thus |F | > 2m− 2 > β + γ − 1, we are done.

So, assume that NG(u, v) ∩A = A \Ai for some i ∈ {1, . . . ,m} with |Ai| ∈ {2, 3}. Thus, there
are 2m − 2 black edges between {u, v} and {xs1 , . . . , xsm} \ {xsi} which only two of them belong
to E. Therefore, |F | > 2m− 4 > m− 2 > β + γ − 2.

Working toward a contradiction, suppose that the inequality |F | > β + γ − 1 is not valid. We
have β + γ − 2 > |F | > 2m − 4 > m − 2 > β + γ − 2 which means that m = β + γ = 2 and
F = ∅. It follows from m = β + γ = 2 that A1, A2 are independent sets and A = A1 ∪ A2. Since
t + 1 = |A1| + |A2| 6 2 min{3, t − 2}, one concludes that t = 5 and therefore |A1| = |A2| = 3.
Furthermore, it follows from F = ∅ that |NG(u, v)∩C| = 0 and so |NG(u, v)| = |NG(u, v)∩A| = 3,
contradicts with |NG(u, v)| > t− 1.

Case 3.11. (T.4) has happened.

As k = t+1, it follows from (1) that e(Gc) = n−2+
(
t
2

)
−(β+γ−1). Since e(Gb) > e(Gc)+|F |,

in order to prove the assertion, it is enough to show that |F | > β + γ − 1. Before proceeding, we
point out that 2m 6 |A1|+ · · ·+ |Am| 6 m(t− 2) and so 2m 6 t+ 1 6 m(t− 2) which forces that
t > 5.

From u ∈ A and in view of (P.1), we may assume that u = xsi for some i ∈ {1, . . . ,m}.
Suppose that v is not adjacent to xsj for some j ∈ {1, . . . ,m} \ {i}. We have |NG(u, v) \ A| >
t− 1− |NG(u, v) ∩ A| > t− 1− (k − |{u} ∪ Aj |) = |Aj | − 1 > 1. So, we may remove an arbitrary
edge between v and NG(u, v) \A and join v to xsj by a black edge and to all vertices in Aj \ {xsj}
by red edges. By repeating this, we get A \ Ai ⊆ NG(u, v). Accordingly, there are m − 1 black
edges between v and {xs1 , . . . , xsm} \ {xsi} which only one of them belongs to E. Therefore,
|F | > m− 2 > β + γ − 2.

Towards a contradiction, suppose that the inequality |F | > β + γ − 1 does not hold. We have
β + γ − 2 > |F | > m − 2 > β + γ − 2 which means that |F | = m − 2 and β + γ = m. It follows
from m = β + γ that A1, . . . , Am are independent sets. Also, it follows from |F | = m − 2 that
uv /∈ E(G) and Gb[C] = Gc[C]. The latter equality shows that NG(u, v) ∩ C = ∅. Since Ai is an
independent set, we get NG(u, v) = A \Ai which in turn yields that |Ai| = 2.

Denote by G′ the graph obtained from G by joining both vertices in Ai to all vertices in
NG(v) \ NG(u) and joining v to all vertices in NG(u) \ NG(v). Set A′ = A ∪ {v}, C ′ = C \ {v},
A′i = Ai ∪ {v}, and A′j = Aj for any j ∈ {1, . . . ,m} \ {i}. We know that A′1, . . . , A

′
m+1 are

independent sets. For each j > 0, let C ′j be the set of vertices in C ′ with the distance j from A′ in
G′ and let {C ′1, . . . , C ′d′} be a partition of C ′. As G′[C ′] = Gc[C

′], we observe in G′ that every C ′j
is an independent set and moreover, for j = 2, . . . , d′, every vertex in C ′j has exactly one neighbor
in C ′j−1. Further, for any vertex c ∈ C ′1, there is an index j ∈ {1, . . . ,m} such that NG′(c) = A′j .
Using these features and noting that t > 5, the following statements are straightforwardly obtained
for two arbitrary distinct vertices y, z ∈ V (G′).

(i) Let y ∈ C ′ and z ∈ A′ ∪ C ′. Then, NG′(y, z) is one of ∅, {c}, or A′j for some vertex c ∈ C ′
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and integer j ∈ {1, . . . ,m}. Thus, |NG′(y, z)| 6 t− 2.
(ii) Let y, z ∈ A′. If y ∈ A′j and z ∈ A′` for some indices j 6= `, then NG′(y, z) ⊆ A′ \ (A′j ∪ A′`).

Hence, |NG′(y, z)| 6 t− 2.

As G′ is not a complete graph and there is no pair {y, z} of vertices of G′ such that |NG′(y, z)| > t−1
and NG′(y)\{z} 6= NG′(z)\{y}, one deduces that G′ and therefore G are not weakly K2,t-saturated,
a contradiction.

The proof is completed here.

To complete the proof of Theorem 1.1, it remains to establish that wsat(n,K2,t) > n−1+
(
t
2

)
for

every integers n, t when t is even and t+ 2 6 n 6 2t− 2. The following lemma is straightforwardly
verified.

Lemma 3.12. Let G be a graph with the partitioned vertex set V (G) = X ∪ Y ∪ Z and the edge
set E(G) = {ab | (a, b) ∈ (X,X)∪ (X,Y )∪ (Y,Z)}, where |X| > 2 and |Y | > 1. Then, G is weakly
K2,t-saturated if and only if either |X| > t or |Y | > t− 1 and |X|+ |Z| > t.

The following result has a crucial role in the proof of the last lemma.

Lemma 3.13. Let t > 3 and let G be a weakly K2,t-saturated graph of order n with n 6 2t − 2.
Assume that v is a degree one vertex in G. Then, G− v is also weakly K2,t-saturated.

Proof. Do a weakly K2,t-saturation process on V (G)\{v} by joining nonadjacent vertices as far as
possible. Suppose by way of contradiction that G− v is not a complete graph. Define the relation
≈ on V (G)\{v} as x ≈ y if |NG(x, y)| > t−1. Clearly, ≈ is an equivalence relation on V (G)\{v}.
Note that the equivalence classes are cliques or independent sets and the connections between two
distinct equivalence classes are all present or all absent. Moreover, in view of n 6 2t − 2 and
degG(v) = 1, we observe that any independent equivalence class is of size at most t− 2. Further,
any clique equivalence class is of size at most t−1. Otherwise, we observe that Kt+1 is a subgraph
of G− v and, by the connectivity of G and applying Lemma 3.1, we deduce that G− v is a weakly
K2,t-saturated graph, a contradiction.

Assume that A is the equivalence class containing the neighbor of v. Note that A 6= V (G)\{v}.
We continue the weakly K2,t-saturation process on G by joining v to all vertices in A. As G is
not complete, there is a vertex w such that |NG(v, w)| > t − 1 and NG(v) \ {w} 6= NG(w) \ {v}.
Since NG(v) = A, we deduce that A is a clique of size t − 1 and moreover, A ⊆ NG(w) implies
that w /∈ A. Let B be the equivalence class containing w. We claim that B is an independent set.
By contradiction, suppose that w has a neighbor b ∈ B. Letting a ∈ A, we have (A \ {a})∪{w} ⊆
NG(a, b). This implies that a ≈ b which contradicts A 6= B, proving the claim. Now, add v to
B, join v to all vertices in NG(w) \ NG(v), and join w to all vertices in NG(v) \ NG(w). The
resulting graph is not still complete, since B is an independent set. Thus, to proceed with the
weakly K2,t-saturation process, there should be two vertices x ≉ y such that |NG(x, y)| > t − 1
and v ∈ NG(x, y).

Since x ≉ y, at most one of x, y belongs to A. First, suppose that x, y /∈ A. From x ≉ y and
|A| = t− 1, we conclude that A * NG(x, y) which means that A ∩NG(x, y) = ∅. Then, it follows
from x, y /∈ A and {x, y} ∪ A ∪ NG(x, y) ⊆ V (G) that n > 2t, a contradiction. Next, suppose
without loss of generality that x ∈ A and y /∈ A. As v ∈ NG(x, y), we deduce that w ∈ NG(x, y)
and so (A \ {x}) ∪ {w} ⊆ NG(x, y). This shows that |NG(x, y)| > t − 1 and therefore x ≈ y, a
contradiction. This contradiction completes the proof.
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The following lemma establishes a lower bound on wsat(n,K2,t) for even t.

Lemma 3.14. Let t > 4 be even and let n be an integer with t + 2 6 n 6 2t − 2. Then,
wsat(n,K2,t) > n− 1 +

(
t
2

)
.

Proof. For t = 4, the assertion follows from Theorem 1.2. So, assume that t > 6 is fixed. Working
toward a contradiction, consider a weakly K2,t-saturated graph G0 which is a counterexample with
the minimum possible order. In view of Lemma 3.4, we find that e(G0) = n0 − 2 +

(
t
2

)
, where

n0 = |V (G0)|. We have t+ 3 6 n0 6 2t− 2 by Theorem 1.2 and δ(G0) > 2 by Lemma 3.13. Using
Lemma 3.1, if we attach a new pendent vertex to a vertex of G0, then the resulting graph is also
weakly K2,t-saturated whose number of vertices is one more than the number of vertices of G0

and whose number of edges is one more than the number of edges of G0. Attach t3 new pendent
vertices to each vertex of G0 and call the resulting graph by G. By assuming n = |V (G)|, we have
e(G) = n− 2 +

(
t
2

)
.

We apply the process defined in the proof of Lemma 3.4 to G and assume that the process has
terminated. As the number of black edges does not change during the process, e(Gb) = n−2+

(
t
2

)
.

We need a careful exploration of termination states (T.1)–(T.4) to get a contradiction. We will do
it below by distinguishing Cases 3.15, 3.16, 3.17, and 3.18.

Case 3.15. (T.1) has happened.

Since e(Gb) = n− 2 +
(
t
2

)
, it follows from (1) that

(m− 1)(k − t− 1)− β − γ − δ + 1 6 0. (2)

Using k > t − 1 + 2(m − 1), β + γ 6 m, and δ 6 1, we derive from (2) that m = 1 or 2. First,
assume that m = 1. Then, we deduce from k > t − 1 > 5 that β = γ = 0. Thus, it follows from
(2) that δ = 1 and so k = t − 1. Next, assume that m = 2. As k > t − 1 + 2(m − 1), we have
k > t+ 1 and so δ = 0. Hence, it follows from (2) that β + γ > 1. If β + γ = 2, then we get k 6 6
which contradicts k > t+ 1 > 7. Therefore, β+ γ = 1 and so we find from (2) that k = t+ 1. This
forces that β = 1 and γ = 0.

The above discussion indicates that the second term in (1) is equal to 0, implying that Gb = Gc.
We know that there is no red edge in C, meaning that G[C] = Gc[C]. From this and since G0 is a
subgraph of G with δ(G0) > 2, we deduce that V (G0) ∩ C ⊆ C1. Further, as G0 is a subgraph of
G and Gb = Gc, we yield for any vertex c ∈ V (G0) ∩C that there is an index i ∈ {1, . . . ,m} such
that NG0(c) ∩A ⊆ NG(c) ∩A = Ai.

We are now ready to describe the structure of G0. If m = 1, then G0 is obviously a subgraph
of the graph G = Ks ∨ Kn0−s for some s 6 t − 1. But, this is a contradiction, since G and
therefore G0 are not weakly K2,t-saturated. So, suppose that m = 2. As (T.1) has happened and
k = t+ 1, we may assume without loss of generality that |A1| = 2 and |A2| = t− 1. It follows from
β = 1 that A1 is an independent set. Now, it is easily seen that G0 is a subgraph of the graph H ,
depicted in Figure 2, with X ⊆ A2, Y1 ⊆ A1, and |V (H)| = n0. Since |X| 6 t− 1 and n0 6 2t− 2,
Lemma 3.12 implies that the described graph H and therefore G0 are not weakly K2,t-saturated,
a contradiction.

Case 3.16. (T.2) has happened.
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Since k = t, it follows from (1) that n − 2 +
(
t
2

)
= e(Gb) > e(Gc) + |F | > n − 2 +

(
t
2

)
− (m +

β + γ − 2) + |F | and therefore |F | 6 m + β + γ − 2 6 2m − 2. As we proved in Case 3.9, either
A ⊆ NG(u, v) or NG(u, v) ∩A = A \Ai for some i ∈ {1, . . . ,m} with |Ai| = 2.

Assume that A ⊆ NG(u, v). So, there are 2m black edges between {u, v} and {xs1 , . . . , xsm} by
(P.5) which only two of them belong to E. This yields that |F | > 2m− 2 and thus |F | = 2m− 2
and β + γ = m.

Assume that NG(u, v)∩A = A \Ai for some i ∈ {1, . . . ,m} with |Ai| = 2. We have |NG(u, v) \
A| = |NG(u, v)| − |NG(u, v) ∩ A| > t − 1 − |A \ Ai| = 1. Consider an arbitrary vertex w ∈
NG(u, v) \ A. As at most one of the edges uw and vw belongs to E, we may assume without loss
of generality that uw ∈ F . Clearly, w ∈ C1 ∪ C2. There are 2m black edges between {u, v} and
({xs1 , . . . , xsm} \ {xsi})∪{w} which at most three of them belong to E. Therefore, |F | is equal to
either 2m− 3 or 2m− 2. Since |F | 6 m+ β + γ − 2 6 2m− 2, we find that m− 1 6 β + γ 6 m.

Let R = F \ EG({u, v}, {xs1 , . . . , xsm}). According to what we saw above, |R| 6 2. Set
A′ = A ∪ {u, v}, C ′ = C \ {u, v}, A′j = Aj for j = 1, . . . ,m, and A′m+1 = {u, v}. We distinguish
the following six cases.

(I.1) A ⊆ NG(u, v), |F | = 2m− 2, and R = ∅. In this case, A′1, . . . , A
′
m+1 are independent sets.

(I.2) NG(u, v)∩A = A \Ai, Ai is an independent set, |F | = 2m− 3, and R = {uw}. In this case,
A′1, . . . , A

′
m+1 are independent sets except possibly for A′j , where j ∈ {1, . . . ,m} \ {i}.

(I.3) NG(u, v) ∩ A = A \ Ai, Ai is a clique, |F | = 2m − 3, and R = {uw}. In this case, A′i is a
clique and A′1, . . . , A

′
i−1, A

′
i+1, . . . , A

′
m+1 are independent sets.

(I.4) NG(u, v) ∩ A = A \ Ai, |F | = 2m − 2, and R = {uv, uw}. In this case, A′1, . . . , A
′
m are

independent sets and A′m+1 is a clique.
(I.5) NG(u, v)∩A = A \Ai, |F | = 2m− 2, and R = {ab, uw} for some a ∈ A′ and b ∈ C ′. In this

case, A′1, . . . , A
′
m+1 are independent sets.

(I.6) NG(u, v)∩A = A \Ai, |F | = 2m− 2, and R = {b1b2, uw} for some b1, b2 ∈ C ′. In this case,
A′1, . . . , A

′
m+1 are independent sets.

We define a supergraph G′ of G as follows. Denote by G′ the graph obtained from G by
joining u to all vertices in NG(v) \NG[u] and joining v to all vertices in NG(u) \NG[v]. For any
j > 0, let C ′j be the set of vertices in C ′ with the distance j from A′ in G′ and let {C ′1, . . . , C ′d′}
be a partition of C ′. In the cases (I.1)–(I.5), we have E(G′[C ′]) = E(Gc[C

′]) and therefore we
observe in G′ that C ′1, . . . , C

′
d′ are independent sets and moreover, every vertex in C ′j has exactly

one neighbor in C ′j−1 for j = 2, . . . , d′. In the case (I.6), we have E(G′[C ′]) = E(Gc[C
′]) ∪ {b1b2}

and therefore we observe in G′ that C ′1, . . . , C
′
d′ , all except probably for one, are independent sets

and moreover, every vertex in C ′j has exactly one neighbor in C ′j−1 for all j ∈ {2, . . . , d′} except
probably for one. Further, for every vertex c ∈ C ′1 \ {b}, there is an index j ∈ {1, . . . ,m+ 1} such
that NG′(c) ∩A′ = A′j .

First, we consider the cases (I.1), (I.3), (I.4), and (I.6). In view of the structure of G′ described
above, the following statements are easily obtained for two arbitrary distinct vertices y, z ∈ V (G′).

(i) Let y ∈ C ′ and z ∈ A′ ∪ C ′. Then, NG′(y, z) is one of ∅, {c}, {c1, c2}, A′j , or A′j ∪ {c} for
some vertices c, c1, c2 ∈ C ′ and index j ∈ {1, . . . ,m+ 1}. Hence, |NG′(y, z)| 6 4.

(ii) Let y, z ∈ A′. Assume that y ∈ A′j and z ∈ A′` for some j 6= `. In the cases (I.1) and (I.6), we
have NG′(y, z) ⊆ A′\(A′j∪A′`). In the case (I.3), we have NG′(y, z) ⊆ A′\(A′j∪A′m+1) if ` = i
andNG′(y, z) ⊆ A′\(A′j∪A′`) if i /∈ {j, `}. In the case (I.4), we haveNG′(y, z) ⊆ A′\(A′j∪A′i) if
` = m+1 and NG′(y, z) ⊆ A′\(A′j∪A′`) if m+1 /∈ {j, `}. Thus, in any case, |NG′(y, z)| 6 t−2.
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As G′ is not a complete graph and there is no pair {y, z} of vertices of G′ such that |NG′(y, z)| > t−1
and NG′(y) \ {z} 6= NG′(z) \ {y}, one finds that G′ and therefore G are not weakly K2,t-saturated,
a contradiction.

Next, we consider the cases (I.2) and (I.5). Since G0 is a subgraph of G′ with δ(G0) > 2, we
conclude that V (G0)∩C ′ ⊆ C ′1. In the case (I.2), set ‹A = A′ and in the case (I.5), set ‹A = A′∪{b}.
Now, it is easily seen that G0 is a spanning subgraph of the graph H , depicted in Figure 2, with
X ⊆ ‹A \ (A′i ∪ A′m+1) and Y1 ⊆ A′i ∪ A′m+1. As |X| 6 t− 1 and n0 6 2t− 2, Lemma 3.12 implies
that the described graph H and therefore G0 are not weakly K2,t-saturated, a contradiction.

Case 3.17. (T.3) has happened.

Since k = t+ 1, it follows from (1) that n− 2 +
(
t
2

)
= e(Gb) > e(Gc) + |F | > n− 2 +

(
t
2

)
− (β+

γ − 1) + |F |. Therefore, |F | 6 β + γ − 1 6 m− 1. As we proved in Case 3.10, either A ⊆ NG(u, v)
or NG(u, v) ∩A = A \Ai for some i ∈ {1, . . . ,m} with |Ai| ∈ {2, 3}.

Suppose that A ⊆ NG(u, v). Then, there are 2m black edges between {u, v} and {xs1 , . . . , xsm}
by (P.5) which only two of them belong to E. This yields that |F | > 2m − 2 which along with
|F | 6 m− 1 gives m 6 1, a contradiction.

So, we may assume that NG(u, v) ∩ A = A \ Ai for some i with |Ai| ∈ {2, 3}. Then, there are
2m− 2 black edges between {u, v} and {xs1 , . . . , xsm} \ {xsi} which only two of them belong to E.
This gives |F | > 2m− 4 which along with |F | 6 β + γ − 1 6 m− 1 leads to 2m− 3 6 β + γ 6 m.
Hence, either 1 6 β + γ 6 m = 2 or m = β + γ = 3.

If m = β + γ = 2, then t+ 1 = |A1|+ |A2| 6 6 which contradicts t > 6. So, assume that either
m = 2 and β+γ = 1 or m = β+γ = 3. In both cases, |F | = 2m−4 and so F is contained in the set
of the black edges between {u, v} and {xs1 , . . . , xsm} \ {xsi}. Therefore, G[C] = Gb[C] = Gc[C].
From this and since G0 is a subgraph of G with δ(G0) > 2, we conclude that V (G0) ∩ C ⊆ C1.
As each edge in F is incident to either u or v, we observe in Gb that every vertex in C \ {u, v}
has exactly one neighbor in A. Therefore, for every vertex c ∈ V (G0) ∩ C \ {u, v}, we have
NG0(c) ∩ A ⊆ NG(c) ∩ A = Aj for some j ∈ {1, . . . ,m}. It results in that G0 is a subgraph of
the graph H , depicted in Figure 2, with X ⊆ A \ Ai, Y1 ⊆ Ai ∪ {u, v}, and |V (H)| = n0. Since
|X| 6 t− 1 and n0 6 2t− 2, Lemma 3.12 implies that the described graph H and therefore G0 are
not weakly K2,t-saturated, a contradiction.

Case 3.18. (T.4) has happened.

Since k = t+ 1, it follows from (1) that n− 2 +
(
t
2

)
= e(Gb) > e(Gc) + |F | > n− 2 +

(
t
2

)
− (β+

γ − 1) + |F |. Therefore, |F | 6 β + γ − 1 6 m− 1. As we proved in Case 3.11, A \ Ai ⊆ NG(u, v)
by assuming u = xsi . So, there are m− 1 black edges between v and {xs1 , . . . , xsm} \ {xsi} which
only one of them belongs to E. Hence, |F | > m− 2 which derives that |F | equals either m− 2 or
m− 1.

We show that NG(u, v) ∩ Ai = ∅. Suppose otherwise. This forces that Ai is a clique and
uv ∈ E(G). The latter implies that |F | = m − 1 and so β + γ = m. In particular, Ai is an
independent set, a contradiction.

If NG(u, v) = A \Ai, then t− 1 6 |NG(u, v)| = t+ 1− |Ai| and so |Ai| = 2.

If NG(u, v) 6= A \ Ai, then there is a vertex w ∈ NG(u, v) ∩ C1. Since v, w ∈ C1, we have
vw ∈ F . As F also contains m − 2 edge between v and {xs1 , . . . , xsm} \ {xsi}, we conclude that
|F | = m− 1 and so β + γ = m. Note that |F | = m− 1 forces that NG(u, v) = (A \Ai) ∪ {w}.

15



Let R = F \ EG({u, v}, {xs1 , . . . , xsm}). According to what we saw above, |R| 6 1. Set
A′ = A ∪ {v}, C ′ = C \ {v}, A′i = Ai ∪ {v}, and A′j = Aj for any j ∈ {1, . . . ,m} \ {i}. We
distinguish the following five cases.

(J.1) NG(u, v) = A \ Ai, |F | = m − 2, and R = ∅. In this case, |Ai| = 2 and all of A′1, . . . , A
′
m

except possibly for one are independent sets.
(J.2) NG(u, v) = A \ Ai, |F | = m − 1, and R = {uv}. In this case, Ai is an independent set of

size 2 and A′1, . . . , A
′
i−1, A

′
i+1, . . . , A

′
m are independent sets.

(J.3) NG(u, v) = A \ Ai, |F | = m − 1, and R = {ab} for some a ∈ A′ and b ∈ C ′. In this case,
|Ai| = 2 and A′1, . . . , A

′
m are independent sets. We divide this case to the following three

subcases.
(J.3.1) There is A′` such that |A′`| = 3 and NG(b) ∩A′` = ∅.
(J.3.2) Among A′1, . . . , A

′
m, there are exactly two sets A′j1 and A′j2 which meet NG(b). In

addition, t > 8 and |A′j1 | = |A
′
j2
| = 3.

(J.3.3) t = 6, m = 3, |A′1| = |A′2| = 3, and |A′3| = 2. The vertex b has neighbors in both
A′1, A

′
2 and no neighbor in A′3.

(J.4) NG(u, v) = A \ Ai, |F | = m − 1, and R = {b1b2} for some b1, b2 ∈ C ′. In this case,
A′1, . . . , A

′
m are independent sets.

(J.5) NG(u, v) = (A \ Ai) ∪ {w}, |F | = m − 1, and R = {vw}. In this case, A′1, . . . , A
′
m are

independent sets.

We define a supergraph G′ of G as follows. Denote by G′ the graph obtained from G by joining
c to all vertices in NG(v) \ NG[c] and joining v to all vertices in NG(c) \ NG[v] for every vertex
c ∈ Ai. Note that, if either uv ∈ E(G) or Ai is a clique in G, then A′i is a clique in G′. For any
j > 0, let C ′j be the set of vertices in C ′ with the distance j from A′ in G′ and let {C ′1, . . . , C ′d′} be a
partition of C ′. In the cases (J.1)–(J.3) and (J.5), we have E(G′[C ′]) = E(Gc[C

′]) and therefore we
observe in G′ that C ′1, . . . , C

′
d′ are independent sets and moreover, every vertex in C ′j has exactly

one neighbor in C ′j−1 for j = 2, . . . , d′. In the case (J.4), we have E(G′[C ′]) = E(Gc[C
′]) ∪ {b1b2}

and therefore we observe in G′ that C ′1, . . . , C
′
d′ , all except probably for one, are independent sets

and moreover, every vertex in C ′j has exactly one neighbor in C ′j−1 for all j ∈ {2, . . . , d′} except
probably for one. Further, for every vertex c ∈ C ′1 \ {b}, there is an index j ∈ {1, . . . ,m} such that
NG′(c) ∩A′ = A′j .

First, we consider the cases (J.1), (J.2), and (J.3.1). We claim that there exists an independent
set A′` of size 3. There is nothing to prove in the case (J.3.1). In the cases (J.1) and (J.2), if A′i is an
independent set, then we let ` = i. Otherwise, since t−1 = |A′1|+ · · ·+ |A′i−1|+ |A′i+1|+ · · ·+ |A′m|
is odd and A′1, . . . , A

′
i−1, A

′
i+1, . . . , A

′
m are independent sets of sizes 2 or 3, we find an index ` ∈

{1, . . . ,m}\{i} such that A′` is an independent set of size 3, as we claimed. Since G0 is a subgraph
of G′ with δ(G0) > 2, we should have V (G0) ∩C ′ ⊆ C ′1. Now, it is straightforwardly seen that G0

is a spanning subgraph of the graph H , depicted in Figure 2, with X ⊆ A′ \ A′` and Y1 ⊆ A′`. As
|X| 6 t− 1 and n0 6 2t− 2, Lemma 3.12 implies that the described graph H and therefore G0 are
not weakly K2,t-saturated, a contradiction.

Next, we consider the cases (J.3.2), (J.4), and (J.5). In view of the structure of G′ described
above, the following statements are easily obtained for two arbitrary distinct vertices y, z ∈ V (G′).

(i) Let y ∈ C ′ and z ∈ A′∪C ′. Then, NG′(y, z) is one of ∅, {c}, {c1, c2}, A′j , A′j ∪{c}, A′j1 ∪A
′
j2

,
where c, c1, c2 ∈ C ′, j ∈ {1, . . . ,m}, and j1, j2 are given in the case (J.3.2). This shows that
|NG′(y, z)| 6 max{4, |A′j1 ∪ A

′
j2
|}. As t > 8 in the case (J.3.2) and t > 6 in the cases (J.4)
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and (J.5), one deduces that |NG′(y, z)| 6 t− 2.
(ii) Let y, z ∈ A′. Assume that y ∈ A′`1 and z ∈ A′`2 for some `1 6= `2. Then, NG′(y, z) is either

A′ \ (A′`1 ∪A
′
`2

) or (A′ ∪{b}) \ (A′j1 ∪A
′
j2

). Note that the latter one occurs in the case (J.3.2)
whenever `1 = j1 and `2 = j2. So, in any case, |NG′(y, z)| 6 t− 2.

As G′ is not a complete graph and there is no pair {y, z} of vertices of G′ such that |NG′(y, z)| > t−1
and NG′(y)\{z} 6= NG′(z)\{y}, we deduce that G′ and therefore G are not weakly K2,t-saturated,
a contradiction.

Finally, we consider the case (J.3.3). Let p ∈ A′3. It follows from A′1 ∪ A′2 ⊆ NG′(b, p)
that |NG′(b, p)| > t − 1. We define a supergraph G′′ of G′ as follows. Denote by G′′ the graph
obtained from G′ by joining both vertices in A′3 to all vertices in NG(b) \ NG(p) and joining b
to all vertices in NG(p) \ NG(b). Set A′′ = A′ ∪ {b}, C ′′ = C ′ \ {b}, A′′1 = A′1, A

′′
2 = A′2, and

A′′3 = A′3 ∪ {b}. For any j > 0, let C ′′j be the set of vertices in C ′′ with the distance j from A′′

in G′′ and let {C ′′1 , . . . , C ′′d′′} be a partition of C ′′. As E(G′′[C ′′]) = E(Gc[C
′′]), we observe in G′′

that C ′′1 , . . . , C
′′
d′′ are independent sets and moreover, every vertex in C ′′j has exactly one neighbor

in C ′′j−1 for j = 2, . . . , d′′. Further, for every vertex c ∈ C ′′1 , there is an index j ∈ {1, 2, 3} such
that NG′′(c)∩A′′ = A′′j . Using these features, the following statements are easily obtained for two
arbitrary distinct vertices y, z ∈ V (G′′).

(i) Let y ∈ C ′′ and z ∈ A′′ ∪C ′′. Then, NG′′(y, z) is one of ∅, {c}, or A′′j for some vertex c ∈ C ′′
and index j ∈ {1, 2, 3}. Hence, |NG′′(y, z)| 6 3.

(ii) Let y, z ∈ A′′. Assume without loss of generality that y ∈ A′′1 and z ∈ A′′2. So, NG′′(y, z) = A′′3
and thus |NG′′(y, z)| = 3.

As t = 6, there exists no pair {y, z} of vertices of G′′ such that |NG′′(y, z)| > t−1 and NG′′(y)\{z} 6=
NG′′(z)\{y}. But, G′′ is not a complete graph, so G′′ and therefore G are not weakly K2,t-saturated,
a contradiction.

The proof is completed here.

X

Y1

Z

Y2

Figure 2. The graph H . The set X is a clique and the sets Y1, Y2, Z are independent. Every vertex in X is adjacent
to every vertex in Y1 ∪ Y2 and every vertex in Z is adjacent to every vertex in Y1.

We end the paper here by pointing out that Theorem 1.1 is concluded from Lemmas 3.2, 3.4,
and 3.14.
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