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Abstract

A set of necessary conditions for existence of a large set of a t-design,

LS
((v−t

k−t

)
/n; t, k, v

)
, is n|

(v−i
k−i

)
for i = 0, 1, · · · , t. We show that these conditions

are sufficient for n = 3, t = 2, 3, or 4, and k ≤ 8.

1. Introduction

Let v, k, t, and λ be integers with v ≥ k ≥ t ≥ 0 and λ ≥ 1. A t-(v, k, λ) design is a

collection B of k-subsets of a v-set X such that every t-subset of X occurs exactly λ times

in B.

A large set of disjoint t-(v, k, λ) designs, denoted by LS(λ; t, k, v), is a partition of the

k-subsets of a v-set into t-(v, k, λ) designs. The number of designs in partition equals to

n =
(

v−t
k−t

)
/λ. We simply write LS(1/n; t, k, v) for LS

((
v−t
k−t

)
/n; t, k, v

)
.

A set of necessary conditions for the existence of a LS(1/n; t, k, v) is n|
(

v−i
k−i

)
for

i = 0, 1, · · · , t. In Table 1 some important cases with small k′s in which the necessary

conditions are sufficient, are shown.

A conjecture of A. Hartman[7] states that these conditions are sufficient for n = 2.

Concerning this conjecture, Ajoodani-Namini in [1], besides of establishing the truth of

the conjecture for t = 2(with some other partial results), proves some theorems for any

t. In this paper, we generalize those results for any prime power number n = pα. As a
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consequence, we show that the necessary conditions are sufficient for n = 3, t = 2, 3, or

4, and k ≤ 8.

Table 1.

t k n v Ref.

1 ∗ ∗1 ∗ [5]

2 3 ∗ 6= 7 [12,13,14]

2 ∗ 2 ∗ [1,3]

2 4 11 ≡ 14 (mod 11) [9]

3 4 ∗ ≡ 0 (mod 3) [15]

3 5 3 ≡ 4 (mod 9) [17]

3 4 5 ≡ 3 (mod 10) [9]

4 6 3 ≡ 5 (mod 9) [9]

6 7 2 ∗ [8,11]

1. ∗ means all feasible values.

2. Preliminaries

Notation. Let n, t, and k be given. The set of all v’s for which LS(1/n; t, k, v) exist is

denoted by A(n; t, k). The set of all v’s which satisfy the necessary conditions is denoted

by B(n; t, k).

The following two lemmas, which have recursive nature, provide some important

machinary for constructing families of large setes from small cases and and have been

utilized by different authors[3,9,10,17].

Lemma 1 [2]. If v ∈ ⋂l
i=0 A(n; t, k + i), then v + l ∈ A(n; t, k + l).

Lemma 2 [2]. If v ∈ ⋂k
i=t+1 A(n; t, i) and u ∈ A(n; t, k), then u + l(v − t) ∈ A(n; t, k).

Let p be a prime, and let m, l be two integers such that m > l. Let (m, l)p denote the

largest power of p which divides
(

m
l

)
.
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Lemma 3.

(m, l)p =
∑
i≥1

[
m

pi

]
−
[

l

pi

]
−
[
m − l

pi

]
.

Here [a] denotes the largest integer smaller than or equal to a.

Proof. The largest power of p that divides r! equals to
[

r
p

]
+
[

r
p2

]
+ · · ·. Using

(
m
l

)
=

m!
l!(m−l)!

, the assertion follows. 2

Let lp be the smallest power of p such that l < plp . Now we have the following

important lemma.

Lemma 4. Let pα be a prime power and let m1, m2, and l be integers such that m1, m2 ≥
l. Let m1 ≡ m2 (mod plp+α−1). Then pα|

(
m1

l

)
iff pα|

(
m2

l

)
.

Proof. If i > lp and
[

m
pi

]
−
[

l
pi

]
−
[

m−l
pi

]
= 1, then by m[x] ≤ [mx] ≤ m[x] + m − 1, we

have [
m

pi−1

]
−
[

l

pi−1

]
−
[
m − l

pi−1

]
≥ p

[
m
pi

]
− p

[
m−l
pi

]
− (p − 1)

= 1.

Now let m2 = m1+jplp+α−1 and pα|
(

m1

l

)
. We take the minimal chain i1 < i2 < · · · < iα

such that [
m1

pis

]
−
[

l

pis

]
−
[
m1 − l

pis

]
= 1, for s = 1, · · · , α.

So iα ≤ plp+α−1 ,and for s = 1, · · · , α we have[
m2

pis

]
−
[

l

pis

]
−
[
m2 − l

pis

]
=
[

m1

pis

]
−
[

l
pis

]
−
[

m1−l
pis

]
= 1.

Therefore, pα|
(

m2

l

)
. 2

3. More on the Necessary Conditions

In this section we state the necessary conditions in terms of some congruency relations.
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Theorem 1. Let pα be a prime power. Then v ∈ B(pα; t, k) iff one of the followings

hold:

i) v ≡ t, · · · , k − 1 (mod pkp+α−1).

ii) v ≡ v0 (mod pkp+α−1), k < v0 < pkp+α−1 and v0 ∈ B(pα; t, k).

Proof. Let v ≡ v0 (mod pkp+α−1) such that k ≤ v0 ≤ pkp+α−1 + k − 1. By Lemma 4,

v ∈ B(pα; t, k) iff v0 ∈ B(pα; t, k).

First let v0 = pkp+α−1 + s ,where t ≤ s ≤ k − 1. For j = 0, · · · , t , we have

(v0 − j, k − j)p ≥ ∑α−1
i=0

[
v0−j
pkp+i

]
−
[

k−j
pkp+i

]
−
[

v0−k
pkp+i

]
=
∑α−1

i=0

[
s−j

pkp+i

]
−
[

k−j
pkp+i

]
−
[

s−k
pkp+i

]
= α.

Hence pα|
(

v0−j
k−j

)
and we have v0 ∈ B(pα; t, k).

Now, for 0 ≤ j ≤ t, assume that v0 = pkp+α−1−1+j . We show that (v0−j, k−j)p < α.

Taking k − j = i, we have
(

pkp+α−1−1−j−j
k−j

)
=
(

pkp+α−1−1
i

)
. If r ≤ kp, then

[
pkp+α−1−1

pr

]
−
[

i
pr

]
−
[

pkp+α−1−1−i
pr

]
=
[
−1
pr

]
−
([

i
pr

]
+
[
−i−1

pr

])
= −1 − (−1)

= 0.

Therefore, (v0 − j, k − j)p < α and pα 6 |
(

v0−j
k−j

)
.

If k ≤ v0 ≤ k + t, we let v0 = k + i, for 0 ≤ i ≤ t and we have(
v0 − j

k − j

)
=

(
k + i − j

i

)
, for j = 0, 1, · · · , t.

By Lucas’ lemma, one can easily see that g.c.d.{
(

k+j
i

)
| j = 0, 1, · · · , i} = 1. Therefore,

v0 6∈ B(pα; t, k). This completes the proof. 2

For k = t + 1, we can completely characterize all the feasible v’s. To do this, we have

the following lemma.
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Lemma 5. Let n be an integer with a prime factorization
∏s

1 pαi
i . Then

B(n; t, t + 1) = {v| v ≡ t (mod n
s∏
1

p
(t+1)pi−1
i )}.

Proof. We use the following result of Teirlinck[16]:

λmin = g.c.d.{v − t, l.c.m.{1, 2, · · · , t + 1}}.

If v ∈ B(n; t, t + 1), then pαi
i | v−t

λmin
, for i = 1, · · · , s. Conversely, it is obvious that

p
(t+1)pi−1
i | l.c.m. {1, · · · , t+1}. Therefore, we must have p

αi+(t+1)pi−1
i |v−t for i = 1, · · · , s. 2

4. Main Results

In this section we prove a theorem with recursive nature and then obtain some results on

large sets for n = 3.

Theorem 2. Let t and k be integers such that k > t + 1 and let pα be a prime power.

Assume that the following conditions are satisfied:

i) A(pα; t, k1) = B(pα; t, k1) for k1 = t + 1, t + 2, · · · , k − 1.

ii) If 2k ≤ v0 ≤ pkp+α−1 and v0 ∈ B(pα; t, k), then v0 ∈ A(pα; t, k).

iii) If k ≤ bpkp+α−1

2
c + d t

2
e, then pkp+α−1 + t ∈ A(pα; t, k).

Then A(pα; t, k) = B(pα; t, k).

Proof. If k > bpkp+α−1

2
c + d t

2
e, then

pkp+α−1 + t − k ≤ pkp+α−1 + t − bpkp+α−1

2
c − d t

2
e − 1

≤ bpkp+α−1

2
c + d t

2
e.

Therefore, by iii), we have pkp+α−1 + t ∈ A(pα; t, pkp+α−1 + t − k) and hence,

pkp+α−1 + t ∈ A(pα; t, k).

To proceed, first we assume that v0 = pkp+α−1 + t+ l in which 0 < l < k− t. By i), we

have pkp+α−1+t ∈ ⋂l
i=0 A(pα; t, k−l+i). So by Lemma 1 we conclude that v0 ∈ A(pα; t, k).
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Now we let k + t < v0 < 2k and v0 ∈ B(pα; t, k). Then t < v0 − k < k and therefore

v0 ∈ A(pα; t, v0 − k). Thus by i), v0 ∈ A(pα; t, k).

Let v ∈ B(pα; t, k). Let v = l·pkp+α−1+v0 where k ≤ v0 ≤ pkp+α−1+k−1. By Theorem

1, v ∈ B(pα; t, k) implies that v0 ∈ B(pα; t, k). From this and the above paragraphs, we

conclude that v0 ∈ A(pα; t, k). Now, in Lemma 2, by substituting pkp+α−1 + t for v, and

v0 for u, we obtain v ∈ A(pα; t, k). This completes the proof. 2

Lemma 6. Let 2 ≤ t < k ≤ 8. Then

B(3; t, k) = {v| v ≡ t, · · · , k − 1 (mod 9)}.

Proof. By Theorem 1, the proof is straightforward. 2

Theorem 3. Let t = 2, 3, or 4 and k ≤ 8. Then A(3; t, k) = B(3; t, k).

Proof. By Theorem 2 and Lemmas 5 and 6 we need the following large sets:

1) LS(1/3; 2, 3, 11), 2) LS(1/3; 2, 4, 11), 3) LS(1/3; 2, 5, 11),

4) LS(1/3; 3, 4, 12), 5) LS(1/3; 3, 5, 12), 6) LS(1/3; 3, 6, 12),

7) LS(1/3; 4, 5, 13), 8) LS(1/3; 4, 6, 13).

7) exists by [9], and 1) and 4) are two derived large sets of 7). 2), 3), 5), and 6) are

derived and residual large sets of 8) which exists by[6]. 2

Note: Let 2 ≤ t < k ≤ 8. If a LS(1/3; 5, 6, 14) and a LS(1/3; 6, 7, 15) exist, then

A(3; t, k) = B(3; t, k). By a theorem of Alltop[4], the existence of a LS(1/3; 4, 6, 13) and a

LS(1/3, 6, 7, 15) imply the existence of a LS(1/3, 5, 7, 14) and a LS(1/3; 7, 8, 16), respec-

tively. Now, by utilizing Theorems 2 and 3, and Lemmas 5 and 6 the statement follows.

For larger values of k, we have Theorem 7. But first we need the following lemma and

theorems[2].

Lemma 7. If a LS(1/n; t, k, v) and a LS(1/n; t, k + 1, v) exist, then a LS(1/n; t, k +

1, v + 1) also exist.
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Theorem 4[Ajoodani-Namini]. If a LS(1/p; t, k, v − 1) exists, then a LS(1/p; t +

1, pk + i, pv) exists for 1 ≤ i ≤ p − 1.

Theorem 5[Ajoodani-Namini]. If a LS(1/p; t, k, v) exists, then a LS(1/p; t, pk, pv)

also exists.

We can say something further.

Theorem 6. If a LS(1/p; t, k, v) exists, then a LS(1/p; t, pk + i, pv + j) exists for

0 ≤ j ≤ 2p − 2 and −p + j + 1 ≤ i ≤ p − 1.

Proof. From LS(1/p; t, k, v) , we have LS(1/p; t− 1, k, v− 1) and so by Theorem 4 we

have LS(1/p; t, pk+i, pv) for 1 ≤ j ≤ p−1. By Theorem 5, there exists a LS(1/p; t, pk, pv).

From LS(1/p; t − 1, k − 1, v − 1) and Theroem 4 we have LS(1/p; t, pk − p + i, pv) for

1 ≤ i ≤ p − 1. Putting all these together, there exists a LS(1/p; t, pk + i, pv) for

−p+1 ≤ i ≤ p−1. Now by Lemma 7, there exist LS(1/p; t, pk+i, pv+j) for 0 ≤ j ≤ 2p−2

and −p + j + 1 ≤ i ≤ p − 1. 2

Utilizing Theorem 6, the following theorem is immediate.

Theorem 7. Let t = 2, 3, or 4, t < k ≤ 8, and v ≡ t, · · · , k − 1 (mod 9), then a

LS(1/3; t, 3αk + r, 3αv + s) exists for α ≥ 0 and 0 ≤ r, s ≤ 3α − 1.
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