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Abstract

A set of necessary conditions for existence of a large set of a t-design,
LS ((Z:i)/n;t, k‘,v) , 18 n|(z:z) for i = 0,1,---,t. We show that these conditions
are sufficient for n = 3,¢t = 2,3, or 4, and k < 8.

1. Introduction

Let v, k,t, and A be integers with v > k > ¢ > 0 and A > 1. A t-(v,k,\) design is a
collection B of k-subsets of a v-set X such that every t-subset of X occurs exactly A times
in B.

A large set of disjoint ¢-(v, k, A) designs, denoted by LS(A;t, k,v), is a partition of the
k-subsets of a v-set into ¢-(v, k, ) designs. The number of designs in partition equals to
n= (Z:i)/)\ We simply write LS(1/n;t, k,v) for LS ((Z:i)/n;t, k,v).

A set of necessary conditions for the existence of a LS(1/n;t, k,v) is n\(Z:z) for
1 =0,1,---,t. In Table 1 some important cases with small k’s in which the necessary

conditions are sufficient, are shown.

A conjecture of A. Hartman[7] states that these conditions are sufficient for n = 2.
Concerning this conjecture, Ajoodani-Namini in [1], besides of establishing the truth of
the conjecture for ¢ = 2(with some other partial results), proves some theorems for any

t. In this paper, we generalize those results for any prime power number n = p*. As a
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consequence, we show that the necessary conditions are sufficient for n = 3, ¢t = 2,3, or

4, and k < 8.

Table 1.

t|k|n v Ref.
1] | %! * 5]
23| « £ 7 [12,13,14]
20 % | 2 * [1,3]
24|11 |=14 (mod 11) 9]
314 x| =0 (mod 3) [15]
315/ 3| =4 (mod)9) [17]
314]5 | =3 (mod10) 9]
416 3| =5 (mod9) 9]
67| 2 « [8,11]

1. * means all feasible values.

2. Preliminaries

Notation. Let n,t, and k be given. The set of all v’s for which LS(1/n;t, k,v) exist is
denoted by A(n;t, k). The set of all v’s which satisfy the necessary conditions is denoted
by B(n;t, k).

The following two lemmas, which have recursive nature, provide some important
machinary for constructing families of large setes from small cases and and have been
utilized by different authors[3,9,10,17].

Lemma 1 [2]. Ifve N, A(n;t,k+1i), then v +1€ A(n;t, k +1).
Lemma 2 [2]. Ifve Ny, A(n;t,i) and u € A(n;t, k), then u + (v —t) € A(n;t, k).

Let p be a prime, and let m, [ be two integers such that m > [. Let (m, 1), denote the
largest power of p which divides (T)



Lemma 3.

Here [a] denotes the largest integer smaller than or equal to a.

Proof. The largest power of p that divides r! equals to [ﬂ + L%} + ---. Using (T) =

m!
(m—=0)1

Let I, be the smallest power of p such that | < p'». Now we have the following

the assertion follows. O

important lemma.

Lemma 4. Let p® be a prime power and let m;, msy, and [ be integers such that my, my >
I Let my =my  (mod p**~"). Then p°| (n?) iff pa|(n;2).

Proof. 1Ifi> 1, and |2| - [L]

0 > [L*l} =1, then by m[z] < [mz] < m[z]+m — 1, we

p’L
have

Now let my = my+jp»T~1 and p?| (”l”) We take the minimal chain i1 < iy < -+ < 74

such that l l
[mll — [ . ] — lml._ ] =1, for s=1,---,q.
sz p'Ls pls
S0 iy < p»t*! and for s = 1,---, a we have
][4 [ -l -
p p p
=1.

Therefore, p®| (";2) .0

3. More on the Necessary Conditions

In this section we state the necessary conditions in terms of some congruency relations.



Theorem 1. Let p* be a prime power. Then v € B(p®;t, k) iff one of the followings
hold:

i) v=t,---,k—1 (mod prrte-l)

ii) v=vy (mod pfteTl) k< vy < pftetand vy € B(p*;t, k).

Proof. Let v =y, (mod p**e~1) such that k < vy < pfrte=! + £ — 1. By Lemma 4,
v € B(p*;t, k) iff vg € B(p*; t, k).
First let vy = p**t*~! + 5 wheret <s<k—1. For j =0, ---,t, we have

(00— Gk — )y = i [h] - [t - [k]
=25 5 } [H 5]

Hence p |(”0 JJ) and we have vy € B(p®;t, k).

Now, for 0 < j < t, assume that vy = p* T~ 1 —1+5 . We show that (vo—j, k—j), < @

Taking k — j = i, we have (pkpﬂ:_;.l*j*j) = (pkpj_l*l). If » < k,, then

e e o Rl
= 7] - (] + [57)
——1-(-1)

Therefore, (vg — j,k — j), < a and p® )((”0 J)
Ifhk<vg<k+t, weletvg=~k+1i, for 0 <i <t and we have

<”0_17> - (k“__j), for j=0,1,---.1.
k—3j 1

By Lucas’ lemma, one can easily see that g.c.d.{ (ki”>| j=0,1,--- i} = 1. Therefore,
vo & B(p*;t, k). This completes the proof. O

For k =t + 1, we can completely characterize all the feasible v’s. To do this, we have

the following lemma.



Lemma 5. Let n be an integer with a prime factorization []] pj*. Then
B(n;t,t+1)={v|v=t (mod nl_[p(tJrl )}

Proof. We use the following result of Teirlinck[16]:
Amin = g.c.d{v —t,Lem{1,2,--- t+1}}.
If v € B(n;t,t + 1), then p} |— fori =1,---,s. Conversely, it is obvious that

e Y l.eom. {1, -, t+1}. Therefore, we must have p ottt —1 lv—tfori=1,--- s 0

4. Main Results

In this section we prove a theorem with recursive nature and then obtain some results on

large sets for n = 3.

Theorem 2. Let t and k be integers such that £ >t + 1 and let p® be a prime power.

Assume that the following conditions are satisfied:

i) A(p*;t, k1) = B(p*;t,ky) forky =t + 1,6 +2,---  k— 1.
i) If 2k < vy < pPte~btand vy € B(p*;t, k), then vy € A(p*;t, k).
i) If k< [E220 ) 4[], then phrto=l ¢ € A(p*;t, k).

Then A(p*;t, k) = B(p*;t, k).

kp+a 1

Proof. If k > |F—

|+ f%}, then

pkp—f—a—l +t— k Spkzﬁ»afl +t— p

< kap+o¢ 1

Therefore, by iii), we have pfrTe=l 4t € A(p*;t,pP»+t*! +t — k) and hence,
prreTh b e A(p*it k).

To proceed, first we assume that vy = p** =1 +¢+1 in which 0 < | < k —t. By i), we
have pfrte=t 4t € N\_, A(p*;t, k—I+1i). So by Lemma 1 we conclude that vy € A(p®;t, k).



Now we let k +t < vg < 2k and vy € B(p*;t, k). Then t < vy — k < k and therefore
vo € A(p®;t,v9 — k). Thus by i), vg € A(p®;t, k).

Let v € B(p*;t, k). Let v = [-p*»To"1 4oy where k < vy < pfrte=14k—1. By Theorem
1, v € B(p“;t, k) implies that vy € B(p*;t,k). From this and the above paragraphs, we
conclude that vy € A(p%;t, k). Now, in Lemma 2, by substituting p*»T*~1 4 ¢ for v, and
vo for u, we obtain v € A(p*;t, k). This completes the proof. O

Lemma 6. Let 2 <t¢ < k <& Then

B@3;t,k) ={v|v=t,---,k—1 (mod 9)}.
Proof. By Theorem 1, the proof is straightforward. O
Theorem 3. Let ¢t =2,3, or 4 and k < 8. Then A(3;t,k) = B(3;t, k).

Proof. By Theorem 2 and Lemmas 5 and 6 we need the following large sets:

1) LS(1/3;2,3,11), 2) LS(1/3;2,4,11), 3) LS(1/3;2,5,11),
4) LS(1/3;3,4,12), 5) LS(1/3:3,5,12), 6) LS(1/3:3,6,12),
7) LS(1/3;4,5,13), 8) LS(1/3;4,6,13).

7) exists by [9], and 1) and 4) are two derived large sets of 7). 2), 3), 5), and 6) are
derived and residual large sets of 8) which exists by[6]. O

Note: Let 2 <t < k < 8. If a LS(1/3;5,6,14) and a LS(1/3;6,7,15) exist, then
A(3;t, k) = B(3;t,k). By a theorem of Alltop[4], the existence of a LS(1/3;4,6,13) and a
LS(1/3,6,7,15) imply the existence of a LS(1/3,5,7,14) and a LS(1/3;7,8,16), respec-

tively. Now, by utilizing Theorems 2 and 3, and Lemmas 5 and 6 the statement follows.

For larger values of k, we have Theorem 7. But first we need the following lemma and

theorems|[2].

Lemma 7. Ifa LS(1/n;t,k,v) and a LS(1/n;t,k + 1,v) exist, then a LS(1/n;t, k +
1,v+ 1) also exist.



Theorem 4[Ajoodani-Namini]. If a LS(1/p;t,k,v — 1) exists, then a LS(1/p;t +
1, pk +i,pv) exists for 1 <i <p— 1.

Theorem 5[Ajoodani-Namini]. If a LS(1/p;t, k,v) exists, then a LS(1/p;t, pk, pv)

also exists.

We can say something further.

Theorem 6. If a LS(1/p;t,k,v) exists, then a LS(1/p;t,pk + i,pv + j) exists for
0<7<2p—2and —p+j+1<i<p—1.

Proof. From LS(1/p;t, k,v) , we have LS(1/p;t—1,k,v—1) and so by Theorem 4 we
have LS(1/p;t, pk+i,pv) for 1 < j < p—1. By Theorem 5, there exists a LS(1/p; t, pk, pv).
From LS(1/p;t — 1,k — 1,v — 1) and Theroem 4 we have LS(1/p;t,pk — p + i,pv) for
1 < i < p—1. Putting all these together, there exists a LS(1/p;t,pk + i,pv) for
—p+1 <i < p—1. Now by Lemma 7, there exist LS(1/p;t, pk+i,pv+j) for 0 < 7 < 2p—2
and —p+j+1<i<p—-1.0O

Utilizing Theorem 6, the following theorem is immediate.

Theorem 7. Lett =23, or4,t <k <8 andv =1¢t,---,k—1 (mod9), then a
LS(1/3;t,3%k 4+ r,3% + s) exists for « > 0 and 0 <r,s < 3% — 1.
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