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Abstract

The rank of a graph is that of its adjacency matrix. A graph is called reduced if it has no
isolated vertices and no two vertices with the same set of neighbors. We determine the maximum
order of reduced trees as well as bipartite graphs with a given rank and characterize those graphs
achieving the maximum order.
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1 Introduction

For a graph G, we denote by V (G), the vertex set of G and the order of G is defined as |V (G)|. If
V (G) = {v1, . . . , vn}, then the adjacency matrix of G is an n× n real matrix A(G) whose (i, j)-entry
is 1 if vi is adjacent to vj and 0 otherwise. The rank of G, denoted by rank(G), is the rank of A(G).
The roots of the characteristic polynomial of A(G) are called the eigenvalues of G.

We recall some definitions and notation used in the rest of paper. For a vertex v of a graph G, let
N(v) denote the set of all vertices of G adjacent to v. The degree of v is defined by d(v) = |N(v)|.
We call a vertex v of G pendant if d(v) = 1. A vertex adjacent to a pendant vertex is said to be
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pre-pendant. A graph is called reduced if it has no isolated vertex and no two vertices v, w with
N(v) = N(w). For a subset S of V (G), the notation G − S represents the subgraph obtained by
removing the vertices in S from G and also deleting all edges with at least one end vertex in S. For
a vertex v of G, we use G− v for G− {v}.

Let r > 2 be an integer. It is not hard to prove that every reduced graph of rank r has at most
2r − 1 vertices. Let m(r) be the maximum possible order of a reduced graph of rank r. In [6], it was
proved that there exists a constant c such that m(r) 6 c · 2r/2 and a construction was provided for
the graphs of order

n(r) =

{
2(r+2)/2 − 2 if r is even,

5 · 2(r−3)/2 − 2 if r is odd.

It is conjectured in [1] that, in fact, m(r) = n(r). We know from [4] that if G is a reduced graph of
rank r containing an induced matching of size r/2 or an induced subgraph consisting of the vertex
disjoint union of a matching of size (r − 3)/2 and a cycle of order 3, then the order of G is at most
m(r). Further, it is established in [7] that for every reduced graph G with no path of length 3 as an
induced subgraph, rank(G) is equal to the order of G. Finally, it is worth to mention that for any
eigenvalue µ 6∈ {−1, 0} of a graph G with n > 5 vertices, there is an upper bound for n in terms of
r = rank(A(G)− µI), namely n 6 r(r + 1)/2 by a result from [2].

In this paper, we show that every reduced tree of rank r has at most 3r
2 −1 vertices and characterize

all reduced trees of rank r and order 3r
2 − 1. We also prove that every reduced bipartite graph of rank

r has at most 2r/2 + r
2 − 1 vertices and characterize all reduced bipartite graphs achieving this bound.

2 Reduced trees

For any integer r, let t(r) = 3r
2 − 1. In the following, we prove that any reduced tree of rank r has

at most t(r) vertices and characterize all reduced trees achieving this bound. Notice that a tree is
reduced if and only if no two pendant vertices have the same neighbor. We first state the following
well known fact.

Lemma 1. Let G be a graph and u be a pendant vertex of G with the unique neighbor v. Then

rank(G) = rank(G− {u, v}) + 2.

We denote the path of order ` by P`. Let k be a positive integer and n = 3k − 1. We recursively
define the family Rn of reduced trees of order n as follows: The set R2 contains just P2, and Rn is
constructed from Rn−3 by attaching a pendant vertex of a P3 to a pre-pendant vertex of a tree in
Rn−3, whenever n > 5. For example, the elements of R14 are depicted in Figure 1. By Lemma 1, any
tree in Rn is of rank k.
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Figure 1: The family R14.

Theorem 2. The order of any reduced tree of rank r is at most t(r). Moreover, the set of all reduced

trees of rank r and order t(r) is Rt(r).

Proof. Suppose that T is a reduced tree of order n and rank r. Since T is a bipartite graph, r is
even. We proceed by induction on r. If r = 2, then by Lemma 1, T is a star and since T is reduced,
we have T = P2, as required. Let r > 4. Consider a path of maximum length in T and call its first
two vertices from one end u and v, respectively. Clearly, u is a pendant vertex and d(v) = 2, since
T is reduced and T 6= P2. By Lemma 1, the tree T ′ = T − {u, v} has rank r − 2. If T ′ is reduced,
then n − 2 6 t(r − 2) and hence n 6 t(r) − 1. So assume that T ′ is not reduced. Then T has a
vertex w ∈ N(v) of degree 2 which is a pendant vertex in T ′. Since T is reduced, T ′′ = T ′ − w is
also a reduced tree. Thus n − 3 6 t(r − 2) and so n 6 t(r). This proves the first statement of the
theorem. Note that if n = t(r), then T ′′ is a reduced tree of rank r − 2 and order t(r − 2). By the
induction hypothesis, T ′′ ∈ Rt(r−2) and T is obtained from T ′′ by attaching a pendant vertex of a P3

to a pre-pendant vertex of T ′′. It follows that T ∈ Rt(r). ¤

A reduced tree T is said to be maximal if any reduced tree containing T as a proper subtree has a
higher rank. In what follows, we characterize all maximal trees of a given rank. The following lemma
provides a simple description of maximal trees.

Lemma 3. A reduced tree T is maximal if and only if for every vertex v which is not pre-pendant,

rank(T ) = rank(T − v); or equivalently, there exists a vector x in the null space of A(T ) such that

x(v) 6= 0.

Proof. By Lemma 1, attaching a new vertex to a vertex v of a tree T increases rank if and only if
rank(T ) = rank(T − v). Therefore, a reduced tree T is maximal if and only if rank(T ) = rank(T − v),
for any non-pre-pendant vertex v. On the other hand, it is known that for every vertex v of a graph
G, rank(G) = rank(G − v) if and only if there exists a vector x in the null space of A(G) such that
x(v) 6= 0. This completes the proof. ¤
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Theorem 4. Every maximal tree T of rank r > 4 is obtained from a maximal tree T ′ of rank r − 2
in one of the two following ways:

(i) attaching a vertex of a P2 to a vertex of T ′ which is neither pendant nor pre-pendant;

(ii) attaching a pendant vertex of a P3 to a pre-pendant vertex of T ′.

Proof. By Lemma 1, it is easy to see that any tree resulting by (i) is maximal. Let T be a maximal
tree of rank r which is not obtained by (i). We prove that T is obtained by (ii). Consider a path
of maximum length in T and call its first four vertices from one end u, v, w, y, respectively. So u

is a pendant vertex and d(v) = 2. We claim that w is not a pre-pendant vertex. Otherwise, for any
vector x in the null space of A(T ), we have x(w) = 0. Also, since the sum of the components of
x corresponding to the neighbors of v is zero, x(u) = 0 which contradicts Lemma 3. This proves
the claim. Furthermore, if d(w) > 3, then T − {u, v} would be a maximal tree of rank r − 2 which
contradicts our assumption on T . Thus d(w) = 2. We show that T ′ = T − {u, v, w} is a reduced tree
of rank r − 2. Applying Lemmas 1 and 3, we find that rank(T ′) = rank(T − u) − 2 = r − 2 and also
rank(T − y) = rank(T ′ − y) + 2 = rank(T − {w, y}) = r − 2. This and Lemma 3 imply that y is a
pre-pendant vertex and hence T ′ is reduced.

Let z be the pendant vertex adjacent to y and let {x′1, . . . , x′n−r−1} be a basis for the null space of
A(T ′). We define a basis {x1, . . . ,xn−r} for the null space of A(T ) as follows. For 1 6 i 6 n−r−1, we
let xi(a) = x′i(a) for every a ∈ V (T ′−z) and we set xi(u) = −xi(w) = xi(z)/2 = x′i(z) and xi(v) = 0.
Moreover, xn−r is defined as zero on V (T ′ − z) and we put xn−r(u) = −xn−r(w) = xn−r(z) = 1 and
xn−r(v) = 0. Now, in view of Lemma 3, T ′ is a maximal tree of rank r − 2 and so T is obtained by
(ii), as desired.

Note that, using Lemma 3, the argument appeared in the previous paragraph also shows that any
tree resulting by (ii) is maximal. So the proof is complete. ¤

3 Reduced bipartite graphs

For an even integer r, let b(r) = 2r/2 + r
2 − 1. In this section, we show that every reduced bipartite

graph of rank r has at most b(r) vertices. We also prove that there exists a unique reduced bipartite
graph of rank r and order b(r). For a graph G, a subset S of V (G) with more than one element is
called a duplication class of G if N(u) = N(v) for any u, v ∈ S. The proof of the following lemma can
be found in [5, 6]. We remark that for every vertex v of a graph G with d(v) > 1, it is easily checked
that rank(G−N(v)) 6 rank(G)− 2.

Lemma 5. Let G be a reduced graph and H be an induced subgraph of G with the maximum possible

order subject to rank(H) < rank(G). Then the following hold.
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(i) |V (G) \ V (H)| 6 min
{|N(u)4N(v)| ∣∣u, v ∈ V (G)

}
, where 4 denotes the symmetric difference

operation on sets, and rank(H) > rank(G)− 2.

(ii) If w is an isolated vertex of H, then N(w) = V (G) \ V (H).

(iii) If H is not reduced, then rank(H) = rank(G)− 2, each duplication class of H has two elements

and H has at most one isolated vertex.

(iv) If H is not reduced and {v1, v
′
1}, . . . , {vs, v

′
s} are all the duplication classes of H, then there exist

two sets S, S′ such that V (G) \V (H) = S ∪S′, S ⊆ N(vi) \N(v′i) and S′ ⊆ N(v′i) \N(vi) for any

i ∈ {1, . . . , s}.

Lemma 6. Let G be a graph of order n and let S be an independent set in G with |S| = α > 2. Then

min
{|N(u)4N(v)| ∣∣ u, v ∈ S

}
6 α(n− α)

2(α− 1)
.

Proof. Let m = min
{|N(u)4N(v)| ∣∣u, v ∈ S

}
and s =

∑
u,v∈S |N(u)4N(v)|. We have m

(
α
2

)
6 s.

On the other hand, a double counting argument shows that

s =
∑

w∈V (G)\S
dS(w)

(
α− dS(w)

)
,

where dS(w) = |N(w)∩S|. Since dS(w)(α− dS(w)) 6 α2/4 for any vertex w ∈ V (G) \S, we find that
s 6 (n− α)α2/4. It follows that m 6 α(n−α)

2(α−1) . ¤

We recall a family of bipartite graphs, see [3]. Let n be a positive integer. Suppose that B is a set
with n elements and let P(B) denote the set of all non-empty subsets of B. We consider the bipartite
incidence graph Bn with the vertex set B ∪P(B) and the edges connecting two vertices x ∈ B and
X ∈ P(B) if and only if x ∈ X. It is easy to see that Bn is a reduced bipartite graph of rank 2n and
order 2n + n− 1.

Theorem 7. The order of a reduced bipartite graph of rank r is at most b(r). Moreover, every

reduced bipartite graph of rank r and order b(r) is isomorphic to Br/2.

Proof. Let G be a reduced bipartite graph of rank r and order n > b(r). Let {V1, V2} be a partition of
V (G) into independent sets V1 and V2. By induction on r, we prove that G is isomorphic to Br/2. Since
every graph of rank 2 is complete bipartite, there is nothing to prove when r = 2. Assume that r > 4.
Let H be an induced subgraph of G with the maximum possible order such that rank(H) < rank(G)
and let t = n − |V (H)|. Suppose towards a contradiction that H has no duplication class. By the
induction hypothesis and Lemma 5 (iii), |V (H)| − 1 6 b(r − 2). Since the independence number of G

is at least n/2, using Lemma 6, we have t < (n + 3)/4. Hence (3b(r)− 7)/4 < |V (H)| − 1 6 b(r − 2)
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which contradicts r > 4. Assume that {v1, v
′
1}, . . . , {vs, v

′
s} are the duplication classes of H and let

K be the resulting graph after deleting the vertices v′1, . . . , v
′
s and the possible isolated vertices from

H. From Lemma 5 (iv), we may assume that V (G) \ V (H) ⊆ V1 and {v1, . . . , vs} ⊆ V2. Let P be the
subset of V2 obtained by removing the vertices v1, v

′
1, . . . , vs, v

′
s and the possible isolated vertices of H

and let Q = V1 ∩ V (K). Set p = |P |, q = |Q| and k = |V (K)|. If we denote the number of isolated
vertices of H by ε, then Lemma 5 (iii) implies that ε ∈ {0, 1}. Since K is a reduced bipartite graph
with rank(K) 6 r − 2, by the induction hypothesis, we have k 6 b(r − 2).

We assume that k > (2n + r − 6)/4. This implies that equality occurs in both n > b(r) and
k 6 b(r − 2). By the induction hypothesis, K is isomorphic to B(r−2)/2 and thus q = r

2 − 1. Hence,
by n = 2k − p − q + t + ε, we find that t = p + 2 − ε. If t > 3, then by Lemma 5 (iv), there are two
vertices x, y ∈ V (G) \ V (H) such that N(x)4N(y) ⊆ P . By Lemma 5 (i), we deduce that p > t which
is impossible. Thus t 6 2. If t = 2, then either p = ε = 0 or p = ε = 1. Hence the bipartite adjacency
matrix of G, that is the submatrix of A(G) whose rows and columns are respectively indexed by V1

and V2, has one of the forms

A1 =




B B

j 0
0 j


 or A2 =




B′ B′ 0 b

j 0 1 ?

0 j 1 ?


 ,

where B = [B′ b] is the bipartite adjacency matrix of B(r−2)/2 and j is the all one vector. Since j is
not in the row space of B, rank(A1) = r

2 + 1. Also, it is easy to see that rank(A2) = r
2 + 1. Hence in

both cases rank(G) = r + 2, a contradiction. Therefore t = 1 and so ε = 1. Now, it is straightforward
to check that G is isomorphic to Br/2.

It is clear that rank(G) 6 2min{|V1|, |V2|}, namely min{|V1|, |V2|} > r/2. If min{|V1|, |V2|} = r/2,
then one can easily see that G is isomorphic to Br/2. Hence, to complete the proof, we assume, toward
a contradiction, that k < (2n+r−6)/4 and min{|V1|, |V2|} > r

2 +1. Then the equalities n = k+t+s+ε

and k = p + q + s yield that p + q 6 r
2 + t + ε− 4. Therefore, r

2 + 1 6 q + t 6 r
2 + 2t + ε− p− 4 which

implies that 2 6 (p− ε + 5)/2 6 t.

First suppose that t > 3. By Lemma 5 (iv), there are two vertices x, y ∈ V (G) \ V (H) such that
N(x)4N(y) ⊆ P . By Lemma 5 (i), we deduce that p > t. We claim that s > 2. By contradiction,
suppose that s = 1. From t < (n + 3)/4 and p + q 6 r

2 + t + ε − 4, we obtain that n = p + q +
t + 2s + ε < (n + r + 3)/2. Since n > b(r) and r > 4, we find that r = 4 and n 6 6. However,
n > p + t + 2s > 2t + 2 > 8, a contradiction. Hence s > 2. Since N(v1)4N(v2) ⊆ Q, Lemma
5 (i) implies that q > t. Now, from p + q 6 r

2 + t + ε − 4, we obtain that t 6 q 6 r
2 − 3. Since

N(v1)∩Q, . . . ,N(vs)∩Q are distinct, we deduce that s 6 2q−1 and so s 6 2(r−6)/2−1. Moreover, we
have n = p+q+t+2s+ε 6 r

2+2t+2s−2 6 3r
2 +2s−6 which in turn implies that b(r) 6 2(r−4)/2+ 3r

2 −10,
a contradiction.

Next assume that t = 2. From 2 6 (p− ε + 5)/2 6 t, we find that p = 0 and ε = 1. Furthermore,
the inequalities p + q 6 r

2 + t + ε − 4 and q + t > r
2 + 1 show that q = r

2 − 1. From b(r) 6 n and
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s 6 2q − 1, we obtain that s = 2(r−2)/2 − 1 and so the bipartite adjacency matrix of G has the form

A =




B B 0
j 0 1
0 j 1


 .

Clearly, rank(A) = r
2 + 1 which means that rank(G) = r + 2, a contradiction. ¤
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