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1 Introduction

Let G be a finite simple graph with vertex-set V (G) = {1, 2, . . . , n} and
(0,1)-adjacency matrix A = (aij). The eigenvalues of A are independent of
the vertex-ordering and are therefore called eigenvalues of G. For such an
eigenvalue µ, let E(µ) denote the eigenspace {x ∈ IRn : Ax = µx}. Let P
be the matrix of the orthogonal projection of IRn onto E(µ) with respect
to the standard orthonormal basis {e1, e2, . . . , en} of IRn. Then E(µ) is the
column space of P , and so there exists X ⊆ V (G) such that the vectors Pej

(j ∈ X) form a basis for E(µ). Such a set is called a star set for µ in G.
(The terminology reflects the fact that the vectors Pej (j = 1, . . . , n) form
a eutactic star, as defined by Seidel [38].)

We write X for the complement of X in V (G), and we write G−X for
the subgraph of G induced by X. If X is a star set for the eigenvalue µ then
G−X is said to be a star complement for µ in G. (Such graphs are called
µ-basic subgraphs in [15].) It is clear from the definitions that star sets and
star complements exist for any eigenvalue of any graph. A database of about
1500 examples is described in [9], and a survey of star complements appears
in [30]. It is observed in [15] (and attributed to S. Penrice) that if µ is an
eigenvalue of a connected graph G then G has a connected star complement
H for µ (see also [32, Theorem 2.4]). Moreover, H may be taken to contain
any connected induced subgraph of G that does not have µ as an eigenvalue
[12, Proposition 1.1].

In practice, it is often convenient to use the characterization of star
complements given by condition (iii) in the following result.

Theorem 1.1 [10, Theorem 7.2.9] Let G be a graph, let X ⊆ V (G) and let
µ be an eigenvalue of G with multiplicity k. Then the following statements
are equivalent:

(i) {Pej : j ∈ X} is a basis of E(µ),

(ii) IRn = E(µ)⊕ V, where V = span{ej : j ∈ X},
(iii) |X| = k, and µ is not an eigenvalue of G−X.

The Interlacing Theorem [27, Theorem 34.2.2] ensures that, when a ver-
tex is deleted from a graph, the eigenvalue multiplicities change by 1 at most,
and so (in the situation of Theorem 1.1) deletion of any r vertices from X
(0 < r < k) results in a graph with µ as an eigenvalue of multiplicity k − r.

Before discussing an example, we introduce some more notation. In the
literature, we find complementary definitions of the Clebsch graph, and to
avoid this difficulty we write Cl5 for the unique strongly regular graph with
parameters (16, 5, 0, 2) and Cl10 for its complement. The same is true of
the Schläfli graph, and so we write Sch10 for the unique strongly regular
graph with parameters (27, 10, 1, 5), and Sch16 for its complement. Simi-
larly, we write McL112 for the McLaughlin graph [26], and McL162 for its
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complement. The graph McL112 is the unique strongly regular graph with
parameters (275, 112, 30, 56) (see [5]).

We write ‘u ∼ v’ to mean that vertices u and v are adjacent, and we
let (a(s)

ij ) = As (s ∈ IN). The join G1∇G2 is the graph obtained from the
disjoint graphs G1, G2 by joining every vertex of G1 to every vertex of G2.

Example 1 The graph Cl5 may be constructed as follows [5, p. 35]. The
vertices are the even subsets of a 5-set, and two even sets are adjacent if
and only if their symmetric difference has size 4. Thus the vertex set has a
partition X0 ∪̇ X2 ∪̇ X4, where the sets in Xi have size i (i = 0, 2, 4), X2

induces a Petersen graph, and X0 ∪̇ X4 induces a star K1,5. The spectrum
of Cl5 is 5, 110, (−3)5, and 1 is not an eigenvalue of K1,5; hence X2 is a star
set for the eigenvalue 1. Similarly, X4 is a star set for −3 and X0 is a star
set for 5. 2

In Example 1, the vertex set is partitioned by the star sets X0, X2, X4,
and so these sets are said to form a star partition. In fact, every graph has
a star partition [10, Theorem 7.1.3]. For a discussion of star partitions in
the context of the graph isomorphism problem, see [10, Chapter 8].

The following result, known as the The Reconstruction Theorem (and
its converse), is fundamental to the theory of star complements. This ap-
plication of the Schur complement [27, p.17] in graph theory was noted
independently by Ellingham [15] and Rowlinson [28] in 1993.

Theorem 1.2 [13, Theorem 5.1.7] Let X be a set of k vertices in the graph

G and suppose that G has adjacency matrix

(
AX B>

B C

)
, where AX is the

adjacency matrix of the subgraph induced by X. Then X is a star set for µ
in G if and only if µ is not an eigenvalue of C and

µI −AX = B>(µI − C)−1B. (1)

In this situation, E(µ) consists of the vectors

(
x

(µI − C)−1Bx

)
(x ∈ IRk).

The columns bu (u ∈ X) of the matrix B are the characteristic vectors
of the H-neighbourhoods ∆H(u) = {v ∈ V (H) : u ∼ v} (u ∈ X). Thus
Theorem 1.2 shows that any graph is determined uniquely by an eigenvalue
µ, a star complement H = G − X and the H-neighbourhoods of vertices
in X. This establishes the role of a single eigenvalue in determining the
structure of a graph.

We write t = |X| (= n−k) and define a bilinear form on IRt by:

〈x,y〉 = x>(µI − C)−1y (x,y ∈ IRt).

By equating entries in (1) we see that X is a star set for µ if and only if µ
is not an eigenvalue of G−X and the following conditions hold:

〈bu,bu〉 = µ, for all u ∈ X, (2)
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and for distinct u, v ∈ X,

〈bu,bv〉 = −1 if u ∼ v, 〈bu,bv〉 = 0 if u 6∼ v. (3)

We call (3) the compatibility condition. In view of Equations (2) and (3),
we have:

Proposition 1.3 [10, Theorem 7.6.2] Let X be a star set for µ in G and let
H = G−X.
(i) If µ 6= 0 then the H-neighbourhoods of vertices in X are non-empty.
(ii) If µ 6= −1, 0 then the H-neighbourhoods of vertices in X are distinct and
non-empty.

In other words, if µ 6= 0 then X is a dominating set, and if µ 6= −1, 0
then X is a location-dominating set in G, as defined in [40]. We say that
X, with vertices 1, 2, . . . , t, is a k-location-dominating set if

(a(k)
u1 , a

(k)
u2 , . . . , a

(k)
ut ) 6= (0, 0, . . . , 0) for all u ∈ X,

and for any pair u, v of vertices in X,

(a(k)
u1 , a

(k)
u2 , . . . , a

(k)
ut ) 6= (a(k)

v1 , a
(k)
v2 , . . . , a

(k)
vt ).

Properties of k-location-dominating star complements in regular graphs are
investigated in [25]. An earlier result concerning the dominating property
of star complements in regular graphs is the following (see [10, Corollary
7.6.8]).

Theorem 1.4 [29, Theorem 3.4(ii)] Let G be a connected regular graph in
which X is a star set for the eigenvalue µ 6= −1, 0. If the dominating set
X is a minimal dominating set, and if the star complement G −X has no
isolated vertices, then G is the Petersen graph.

It follows from Proposition 1.3 that if µ 6= −1, 0 then n < t + 2t. Thus
there are only finitely many graphs with an eigenspace E(µ) (µ 6= −1, 0) of
prescribed codimension, and this observation is the basis for characterizing
graphs by star complements, as documented in [30]. For example, McL112

is the largest connected graph with K1,16 ∪̇ 6K1 as a star complement for
the eigenvalue 2 [36, Theorem 3.1]. As an example of a more general charac-
terization we have, for odd t > 3: G has the cycle Ct as a star complement
for −2 if and only if G is the line graph of a Hamiltonian graph of order t [1,
Theorem 2.4]. A sharp upper bound for n as a quadratic function of t (for
µ 6= −1, 0) is given in Section 5. Consideration of Kn and K2 ∪̇ (n− 2)K1

shows that n cannot be bounded in terms of t when µ = −1, 0.
To describe all the graphs with H as a star complement, we solve Equa-

tion (1) for AX , B and µ, given C (the ‘general problem’). Since µ is nec-
essarily an eigenvalue of a one-vertex extension of H, there are only finitely
many possibilities for µ. The ‘restricted problem’ is to find the solutions
AX , B of (1) for a given matrix C and a given eigenvalue µ, a process gener-
ally called the star complement technique (see [13, Chapter 5]). To describe
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all the graphs with H as a star complement for µ 6∈ {−1, 0}, it suffices to
determine those graphs for which X is maximal, since any graph with H as a
star complement for µ is an induced subgraph of such a graph. To construct
these graphs, we introduce the compatibility graph (or extendability graph)
Γ(H, µ) defined as follows: the vertices of Γ(H,µ) are the (0, 1)-vectors b
in IRt such that 〈b,b〉 = µ, and distinct b, b′ are joined by an edge if
〈b,b′〉 ∈ {−1, 0}. A graph G with a maximal star set X for µ such that
G −X = H now corresponds to a maximal clique in Γ(H, µ). Accordingly
the compatibility graph is well suited to a computer implementation of the
star complement technique (cf. [15, Algorithm 2.4]). The graph Γ(C5, 1) is
illustrated in [13, Section 5.1].

In addition to the general problem and the restricted problem, one can
consider the problem of finding all solutions AX , C, µ of (1) for a given matrix
B. This problem is solved in [8] in the case that B is an identity matrix. In
this situation, if G is connected then one of the following holds: (a) µ = ±1
and G = K2, (b) µ = 0 and G = C4, (c) µ = 1 and G is the Petersen graph
(cf. Theorem 1.4). Here we have a special case of a uniform star set as
defined in [33]: the star set X is said to be uniform if all vertices in X have
the same number of neighbours in X. Thus if G is regular and X is uniform
then the star complement G − X is also regular; cubic graphs satisfying
these conditions are classified in [33, Section 3] (see also [10, Chapter 6]) .

If G is r-regular and µ 6= r then the all-1 vector jn is orthogonal to µ;
in other words, µ is a non-main eigenvalue. From the description of E(µ) in
Theorem 1.2, we have the following result, where we write j for jt.

Proposition 1.5 [11, Proposition 0.3] The eigenvalue µ is a non-main
eigenvalue if and only if

〈bu, j〉 = −1 for all u ∈ X. (4)

To find the regular graphs with H as a star complement for µ, it clearly
suffices to consider the subgraph Γ∗(H, µ) of Γ(H, µ) induced by those vec-
tors b for which 〈b, j〉 = −1; this is called the non-main compatibility graph
in [14]. For example, Γ∗(C5, 1) = K5, and the unique regular graph with C5

as a star complement for 1 is the Petersen graph.

2 Stars as star complements

We shall require the following observation:

Lemma 2.1 Let G be a connected r-regular graph with µ (6= r) as an
eigenvalue of multiplicity k. Suppose that |V (G)| = r + k + 1. Then

r − µ2 − k
r µ2 − 2µ ≥ 0,

with equality if and only if G is strongly regular.
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Proof. Note that neither G nor G is complete. Let θ1, . . . , θr be the
eigenvalues of G other than µ and r. We have

r∑

i=1

θi + kµ + r = 0 and
r∑

i=1

θ2
i + kµ2 + r2 = (1 + k + r)r.

It follows that if θ = 1
r

∑r
i=1 θi then

r∑

i=1

(θi − θ)2 =
r∑

i=1

θ2
i − rθ

2 = k(r − µ2 − k
r µ2 − 2µ),

and this establishes the inequality. Equality holds if and only if θi = θ (i =
1, . . . , r), equivalently G has just three distinct eigenvalues. By [13, Theorem
1.2.20], a non-complete connected regular graph is strongly regular if and
only if it has exactly three distinct eigenvalues. 2

The strongly regular graphs that arise in Lemma 2.1 are either conference
graphs or graphs of Latin square type (see [5, Proposition 8.14]). Here we
first use Lemma 2.1 to strengthen Theorem 2.2 of [34]:

Theorem 2.2 If the r-regular graph G has K1,s (s > 1) as a star comple-
ment for µ then one of the following holds:

(a) µ = ±2, r = s = 2 and G is a 4-cycle;
(b) µ = 1

2(−1±√5), r = s = 2 and G is a 5-cycle;
(c) µ ∈ IN , r = s and G is strongly regular with parameters

((µ2 + 3µ)2, µ(µ2 + 3µ + 1), 0, µ(µ + 1)).

Proof. By Theorem 1.1(iii) we have µ 6= 0, and so G is connected by
Proposition 1.3(i). Let |V (G)| = n. If µ = r then k = 1, whence n = 4,
r = s = 2 and G = C4. Accordingly we suppose that µ 6= r, and apply the
results of Section 1 with H = G −X = K1,s. We say that a vertex u in X
is of type (a, b) if it has a neighbours of degree s in H and b neighbours of
degree 1 in H. Thus a is 0 or 1, and 0 ≤ b ≤ s.

We have C =

(
0 j>s
js O

)
, and (cf. [13, Proposition 5.1.11])

µ(µ2−s)(µI−C)−1 = (µ2−s)I+µC+C2.

Since a2 = a, Equations (2) and (4) become

µ2(µ2 − s) = aµ2 + 2µab + b2 + (µ2 − s)b, (5)

−µ(µ2 − s) = aµ2 + aµs + bµ2 + bµ. (6)

Since (a, b) 6= (0, 0), Equations (5) and (6) yield just two possibilities:

a = 0, b = µ2 +µ 6= 0, s = µ(µ2 +3µ+1) or a = 1, µ = −1, b ∈ {1, s}.
Thus if µ = −1 then the central vertex of H is adjacent to all other vertices,
and this contradicts the regularity of G since other vertices of H have degree
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less than n−1. It follows that µ 6= −1 and the central vertex of H is adjacent
to no vertices in X; in particular, r = s = µ(µ2 + 3µ + 1). All vertices in X
are of type (0, µ2 + µ), and counting in two ways the edges between X and
H we have

|X|(µ2 + µ) = µ(µ2 + 3µ + 1)(µ3 + 3µ2 + µ− 1),

whence |X| = (µ2 + 3µ + 1)(µ2 + 2µ− 1) and n = |X|+ s + 1 = (µ2 + 3µ)2.
If we apply the compatibility condition (3) to vertices u, v of X, we find

that

|∆H(u) ∩∆H(v)| =
{

0 if u ∼ v
µ if u 6∼ v

. (7)

If X induces a clique then |X| − 1 = r − µ2 − µ, whence

(µ + 1)(µ + 2)(µ2 + µ− 1) = 0.

Therefore, either µ = −2 and we have case (a), or µ = 1
2(−1±√5) and we

have case (b). If X does not induce a clique then it follows from (7) that
µ ∈ IN . In this situation, expressing r and k (= |X|) in terms of µ, we find
that r − µ2 − k

r µ2 − 2µ = 0. By Lemma 2.1, G is strongly regular, and we
have case (c) of the Theorem. 2

In case (c) of Theorem 2.2, let D = {∆H(u) : u ∈ X}. If µ = 1 then D
consists of all 2-subsets of X, and so the star complement technique yields
a unique graph G, necessarily the graph Cl5 of Example 1. If µ = 2 then
it follows from (7) that D is a Steiner system S(3, 6, 22). By a Theorem of
Witt [42], there is only one such design, and so again G is unique. Here G
is the Higman-Sims graph, the strongly regular graph HS with parameters
(100, 22, 0, 6) first constructed from S(3, 6, 22) in [19]. Accordingly, we have:

Corollary 2.3 Let G be a regular graph with K1,s (s > 1) as a star
complement for µ. If µ = 1 then G = Cl5, and if µ = 2 then G = C4 or
HS.

Note that conversely, if µ ∈ IN and if G is a strongly regular graph
with parameters ((µ2 + 3µ)2, µ(µ2 + 3µ + 1), 0, µ(µ + 1)) then G has as
a star complement for µ the star induced by the closed neighbourhood of
a vertex. Thus our proofs establish both the existence and uniqueness of
strongly regular graphs with parameters (16, 5, 0, 2) and (100, 22, 0, 6). In
the case µ = 3, D would be a 3-(57,12,2) design, but it is shown in [24] that
there is no such design; equivalently there is no strongly regular graph with
parameters (324, 57, 0, 12). Apparently, the cases µ > 3 are open.

In the situation discussed in this section, the H-neighbourhoods form a
design on a co-clique in H; generally the absence of structure makes it easier
to deal with cases in which the H-neighbourhoods lie in a clique or co-clique.
(However, there is no r-regular graph with Kt or Kt as a star complement
for an eigenvalue µ 6∈ {−1, 0, r}.) In Section 6 we shall encounter a situation
in which less tractable H-neighbourhoods can be manipulated to create
a design that can be exploited to establish a property of certain strongly
regular graphs.
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3 Windmills as star complements

Here we discuss the case in which G is r-regular with a windmill K1∇hK2

(h > 1) as a star complement H = G−X for an eigenvalue µ 6= r. We write

M(a, b, c, d, e) =




d e e e e e e . . .

e a b c c c c . . .
e b a c c c c . . .

e c c a b c c . . .
e c c b a c c . . .
...

...
...

...
...

...
...

. . .




.

Then H has adjacency matrix C = M(0, 1, 0, 0, 1), with minimal polynomial
m(x) = (x2 − 1)(x2 − x − 2h) = x4 − x3 − (2h + 1)x2 + x + 2h. Using [13,
Proposition 5.1.11], we find that m(µ)(µI − C)−1 = M(a, b, c, d, e), where

a = µ3 − µ2 − (2h− 1)µ + 1, b = µ2 − 2h + 1,

c = µ + 1, d = (µ− 1)2(µ + 1), e = µ2 − 1.

The first row of m(µ)(µI−C)−1 has row-sum −2h+2µ2h+µ3−µ2−µ+1,
and all other row-sums are µ3 + µ2 − µ − 1. Note that, for any u ∈ X,
m(µ)〈bu, j〉 is the sum of row-sums indexed by ∆H(u). Now suppose that u
has f neighbours of degree 2 in H, while w is the central vertex of H. From
Equation (4), we find that

f = 1− µ, if u ∼ w, (8)

and
f =

2h− 2
µ + 1

− µ + 2, if u 6∼ w. (9)

We consider the case µ > 0. Since also µ 6= 1 (because H has 1 as
an eigenvalue), this eliminates the first possibility (8). Hence r = 2h and
Equation (2) yields

µ(µ2−1)(µ2−µ−r) = µ(µ2−µ−r)f + (µ+1)f2 + 2(µ2−µ−r)b, (10)

where b is the number of triangles uiju with i and j neighbours of w (see
[34, Equation (9)]). In (10), we substitute for f from (9) to obtain

r = µ2(µ + 3)− 2µ+1
µ−1b. (11)

Since also kf = r(r − 2) and f = µ(µ + 1)− 2b
µ−1 , we find that

r − µ2 − k
r µ2 − 2µ =

−2b{µ2 − 2µ + (µ + 1)f)}
(µ− 1)f

. (12)

Note that µ2 − 2µ + (µ + 1)f > 0. We show that also µ − 1 > 0; this is
immediate if µ ∈ IN . If µ 6∈ IN then r ≥ k (because some algebraic conjugate
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of µ has multiplicity k). Then f ≥ r − 2. If f = r − 2 then k = r and G
has just three eigenvalues; thus G is strongly regular. By Lemma 2.1 and
Equation (12) we have b = 0, whence f = µ(µ + 1) and r = 2µ(µ + 1): then
(µ + 2)(µ − 1) = 0, a contradiction. If f = r − 1 then k(r − 1) = r(r − 2),
whence r = 2 and k = 0, a contradiction. If f = r then k = 1 by Proposition
1.3(ii), and so r = 3, a contradiction.

Now it follows from (12) and Lemma 2.1 that b = 0 and G is strongly
regular. In this situation, we have r = µ2(µ + 3), f = µ(µ + 1) and k =
µ(µ + 3)(µ2 + 2µ− 2). We can now extend Theorem 3.2 of [34] as follows:

Theorem 3.1 If the r-regular graph G has K1∇hK2 (h > 1) as a star
complement for the positive eigenvalue µ then r = 2h and G is strongly
regular with parameters

((µ2+3µ−1)2, µ2(µ + 3), 1, µ(µ + 1)).

Conversely, if G is a strongly regular graph with parameters ((µ2+3µ−1)2,
µ2(µ + 3), 1, µ(µ + 1)) (µ > 0) and h = 1

2µ2(µ + 3) then G has K1∇hK2

as a star complement for the eigenvalue µ. Examples are known to arise
when µ = 2 and µ = 4: for µ = 2, G is the unique strongly regular graph
with parameters (81, 20, 1, 6) [3, 41], and when µ = 4, a rank 3 graph with
parameters (729, 112, 1, 20) can be constructed from a projective ternary
code [20]. The case µ = 3 remains open.

The uniqueness of a strongly regular graph with parameters (81, 20, 1, 6),
previously established in [3], is proved in [41] using the star complement tech-
nique. Indeed the following suffices to establish existence and uniqueness.
For distinct vertices u, v of X, let |∆H(u)∩∆H(v)| = α(u, v), and let β(u, v)
be the number of edges ij in H with i adjacent to u and j adjacent to v.
Then the compatibility condition yields:

α(u, v)µ + β(u, v) =

{
µ + 1 if u ∼ v

µ(µ + 1) if u 6∼ v.
(13)

When µ = 2 it transpires that there is essentially just one way to add to H
the k vertices of X in such a way that (13) is satisfied for all u, v ∈ X.

4 Generalizations

In Theorems 2.2 and 3.1, our arguments led to the situation in which the
regular graph G has a star complement H = G−X induced by ∆∗(w), where
∆∗(w) is the closed neighbourhood of some vertex w of G, and the neigh-
bourhood ∆(w) induces a regular subgraph. In general this is a favourable
situation because the following result ensures that the H-neighbourhoods of
vertices in X all have the same size:
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Proposition 4.1 [34, Lemma 3.1] Let G be an r-regular graph (r > 0) with
an eigenvalue µ of multiplicity k. Suppose that G has a star set X such that
X = ∆∗(w) and ∆(w) induces an e-regular graph. Then
(i) µ 6= −1,
(ii) if µ = r then G is a cocktail-party graph,
(iii) if µ 6= r then X induces a d-regular graph, where

d =
µ(r − e + µ)

µ + 1
.

This can be proved using the relation

µPei = APei = PAei =
∑

j∈∆(i)

Pej (i ∈ V (G))

together with linear independence of the vectors Peu (u ∈ X). In similar
fashion, one can prove that in a regular graph, a uniform star set induces
a regular subgraph: if G is r-regular, and G −X is regular of degree r − c
then X induces a regular subgraph of degree µ + c [33, Theorem 2.1]. Here,
X ∪̇ X is an equitable bipartition of V (G) (cf. [6, 7]). In the situation of
Proposition 4.1, {w}∪∆(w)∪∆∗(w) is an equitable partition of V (G) with
divisor matrix

D =




0 r 0
1 e r − e− 1
0 r − d d


 .

The characteristic polynomial of D is (x− r)(x2 + (r − d− e)x− d). When
0 < µ < r, we have µ2 + (r− d− e)µ− d = 0 by Proposition 4.1(iii), and so
the eigenvalues of D are r, µ and −d/µ. If G is strongly regular then clearly
we have tight interlacing of these eigenvalues with those of G, in the sense
of [18, Section 2]. In the reverse direction, we have:

Proposition 4.2 In the situation of Proposition 4.1, let f be the number
of vertices in each neighbourhood ∆H(u) (u ∈ X). Suppose that 0 < µ < r
and we have tight interlacing of the eigenvalues of D with those of G. Then
f ≥ µ(µ + 1), with equality if and only if G is strongly regular.
Proof. Let the eigenvalues of G other than µ and r be θ1, . . . , θr in non-
decreasing order. In the case of tight interlacing, we have θ1 = −d/µ, and
so

0 =
r∑

i=1

θi +kµ+ r ≥ −rd

µ
+kµ+ r = kµ− r(r − e− 1)

µ + 1
=

k{µ(µ + 1)− f}
µ + 1

.

Hence f ≥ µ(µ + 1), and equality holds if and only if θ1 = · · · = θr (that is,
if and only if G has just three distinct eigenvalues). 2

Now we turn to other star complements H which have received atten-
tion (not necessarily in full generality) in the context of regular graphs.
These include Kr,s (r ≥ s > 1) (see [23]), K

(s)
1,r (r > 1, s ≥ 1) (see [37]),
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K1∇hKq (q > 2) (see [34]) and K1,r ∪̇ qK1 (see [22, 35]). Here K
(s)
1,r denotes

the graph of order 1+r(s+1) obtained from K1,r by adding s pendant edges
at each vertex of degree 1.

As an illustration of the first type, we have:

Theorem 4.3 [23, Theorem 3.1] The graph Sch10 is the unique maximal
graph with K2,5 as a star complement for a multiple eigenvalue other than
−1.

As an example of the second type, we have the following characterization
of the Hoffman-Singleton graph HoS; this is the unique strongly regular
graph with parameters (50, 7, 0, 1), otherwise known as the Moore graph of
degree 7 and diameter 2 (see [21]).

Theorem 4.4 [37, Theorem 2.3] If G is a regular graph with K
(2)
1,7 as a star

complement for the eigenvalue 2 then G = HoS.

Here the compatibility condition is used to prove that G has girth 5. We
note in passing that that K

(2)
1,7 is the (3-harmonic) Grünewald tree [17] of

order 22. It arises in HoS by adding one vertex neighbourhood to a maximal
independent set (of size 15). If there exists a Moore graph G of degree 57 and
diameter 2 then it has at most 400 independent vertices; moreover if there
are 400 such vertices, one vertex neighbourhood can be added to obtain an
(8-harmonic) Grünewald tree T of order 457 (see [16, pp. 99-100]). Since
T is an induced subgraph without 7 as an eigenvalue, it extends to a star
complement H for 7 (of order 1521). If such a graph G exists, in principle
it can be constructed by identifying H and 1729 H-neighbourhoods.

When H = K1∇hKq (q > 2), the arguments of Section 3 may be used
to prove the following result, which extends [34, Theorem 3.2].

Theorem 4.5 Let G be an r-regular graph with K1∇hKq (h > 1, q > 1) as
a star complement for the eigenvalue µ, where r = hq and µ > q − 1. Then
G is strongly regular with parameters

((µ2 + 3µ− 1)2, µ2(µ + 3), 1, µ(µ + 1)).

Here the assumption r = hq avoids the calculation of 〈bu, j〉 (u ∈ X),
since Proposition 4.1 yields

f =
r + (q − 1)µ− µ2

µ + 1
.

Then, in place of (12), we have

r − µ2 − k
r µ2 − 2µ =

−2b

f

(
µ +

(f − 1)µ + f

µ− q + 1

)
,

and we can invoke Lemma 2.1. An example with µ = 3, q = 3 is described
in [34, Section 3].

Some star complements of the fourth type (consisting of a star and iso-
lated vertices) are discussed in Section 6, in the context of maximal inde-
pendent sets. The motivation lies with eigenvalues of maximal multiplicity,
considered in the next section.
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5 The multiplicity of an eigenvalue

Let G be a graph (not necessarily regular) of order n with µ as an eigenvalue
of multiplicity k, and let t = n− k. In this section we discuss upper bounds
for n, and hence for k, as functions of t. We noted in Section 1 that if
µ 6= −1, 0 then n < t+2t. We shall see that this bound can be improved to a
sharp upper bound which is a quadratic function of t. A further improvement
can be made when G is regular, and in this case we find that the graphs
which attain the bound are strongly regular. The results here are taken
from [2], and the arguments refine those of [31].

In the notation of Theorem 1.2, let S be the t × n matrix (B|C − µI),
with columns su (u = 1, . . . , n). Then

µI −A = S>(µI − C)−1S, (14)

and we have, for all vertices u, v of G,

〈su, sv〉 =





µ if u = v
−1 if u ∼ v .
0 otherwise

We now define functions F1, . . . , Fn from IRt → IR as follows:

Fu(x) = 〈su,x〉2 (x ∈ IRt).

It can be shown that if, additionally, µ is different from the largest eigenvalue
λ1 then these n functions are linearly independent. The proof makes use of
the pairwise orthogonality of the subspaces E(λ1), E(µ), E(−µ2) (the last of
which is the zero subspace if −µ2 is not an eigenvalue of G). Now the space
of homogeneous quadratic functions on IRt has dimension 1

2 t(t + 1) and so
n ≤ 1

2 t(t + 1). The case µ = λ1 is treated separately to obtain the following
result.

Theorem 5.1 [2, Theorem 2.3] Let G be a graph of order n, let µ be an
eigenvalue of G, and let t be the codimension of E(µ). If µ 6∈ {−1, 0}, then
either (a) n ≤ 1

2 t(t + 1) or (b) µ = 1 and G = K2 or 2K2.

Example 2 The bound of Theorem 5.1(a) is attained when G is the graph
obtained from the regular graph L(K9) by switching with respect to a clique
of order 8; here µ = −2, t = 8 and n = 36. 2

In the case that µ is a non-main eigenvalue and t > 2 we can reduce our
upper bound by 1 as follows. We define an additional function F by

F (x) = 〈j,x〉2 (x ∈ IRt),

and then show that the functions F, F1, F2, . . . , Fn are linearly independent.
Thus n + 1 ≤ 1

2 t(t + 1), and we have:
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Theorem 5.2 [2] Let µ be an eigenvalue of an r-regular graph of order n,
and let t be the codimension of E(µ). If µ 6∈ {−1, 0, r} and t > 2 then

n ≤ 1
2 t(t + 1)− 1 = 1

2(t− 1)(t + 2).

The bound of Theorem 5.2 is also sharp; in fact, we have the following
result, for which we give a proof considerably shorter than the original.
Recall that if G is strongly regular of order n, with eigenvalues r, µ′, µ of
multiplicities 1, k′, k (1 < k′ ≤ k) then n ≤ 1

2k′(k′+3) (the ‘absolute bound’,
see [39]); and G is said to be extremal if n = 1

2k′(k′ + 3). Note that if G is
an extremal strongly regular graph then so is G.

Theorem 5.3 [2] The regular graphs attaining the bound of Theorem 5.2
are precisely the extremal strongly regular graphs.
Proof. First, let G be an extremal strongly regular graph with eigenvalues
r, µ′, µ of multiplicities 1, k′, k, where 1 < k′ ≤ k. Thus if G has n vertices
then n = 1

2k′(k′ + 3). If t = n− k then k′ = t− 1 and so n = 1
2(t− 1)(t + 2)

as required.
Conversely, if G is a regular graph that attains the bound of Theorem 5.2,

then every homogeneous quadratic function on IRt is a linear combination
of F1, F2, . . . Fn and F . In particular,

〈x,x〉 =
n∑

u=1

εuFu(x) + γF (x), (15)

for some scalars ε1, ε2, . . . , εn and γ. It follows that

〈x,y〉 =
n∑

u=1

εu〈su,x〉〈su,y〉+ γ〈j,x〉〈j,y〉. (16)

Let e = (ε1, ε2, . . . , εn)>. Taking x = si, y = −j (i = 1, . . . , n) in (16), we
find that

(µI −A) e = (1− γ〈j, j〉) j. (17)

Taking x = si in (15), we find that

(µ2I + A) e = (µ− γ) j. (18)

From (17) and (18) we see that (µ2 + µ)e is a scalar multiple of j. Since
µ2 + µ 6= 0, e = ε j for some ε. Now, taking x = si,y = sj (i 6= j) in (16),
we have

〈si, sj〉 = ε
n∑

i=1

〈su, si〉〈su, sj〉+ γ.

It follows that if i 6∼ j then 0 = εa
(2)
ij + γ. Since G is not complete, we

deduce that ε 6= 0, and a
(2)
ij = −ε−1γ when i 6∼ j. Similarly, if i ∼ j then

a
(2)
ij = 2µ− ε−1(γ + 1), and this completes the proof. 2
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The strongly regular graphs that arise in Theorem 5.3 have parameters
(n, r, e, f), where (see [2])

e = µ2 + r − nµ2(µ + 1)
n + 2µ− 2r

, f = µ2 + 2µ + r − nµ(µ + 1)2

n + 2µ− 2r
.

The known extremal strongly regular graphs are C5, Sch10, Sch16,McL112

and McL162.

6 Extremal strongly regular graphs

In investigating extremal strongly regular graphs of degree r, we may assume
(by passing to the complement if necessary) that the eigenvalue µ 6= r of
larger multiplicity k is positive. If G is such a graph with n vertices, and if
t = n − k, then G has n − t + 1 positive eigenvalues; then (by interlacing)
a co-clique in G has size at most t − 1. This bound is attained in all three
known examples, namely C5, Sch10 and McL112. Here we describe how star
complements are used to prove the converse: if G has t − 1 independent
vertices then G is one of these three graphs.

Cameron, Goethals and Seidel [4] have shown that the various parame-
ters of an extremal strongly regular graph G are again polynomial functions
of µ. These functions are as follows, where λ is the third eigenvalue of G
(see [5, Chapter 8] and [2]):

n = (2µ + 1)2(2µ2 + 2µ− 1),
r = 2µ3(2µ + 3),
e = µ(2µ− 1)(µ2 + µ− 1),
f = µ3(2µ + 3),
λ = −µ2(2µ + 3),
k = 2µ(µ + 1)(2µ− 1)(2µ + 3),
t = 4µ2 + 4µ− 1.

Moreover, either µ ∈ IN or G = C5 and µ2 + µ = 1.
We assume here that µ is an integer greater than 1, for otherwise G is

C5 or Sch10. By interlacing, the largest eigenvalue of an induced subgraph
of order t is at least µ, and so G has no induced subgraph K2 ∪̇ (t− 2)K1.
Now suppose that G has a co-clique C of order t − 1 (= 4µ2 + 4µ − 2).
Then each vertex v outside C is adjacent to at least 2 vertices of C; in other
words, C + v has the form K1,s ∪̇ (t− s− 1)K1 (2 ≤ s ≤ t− 1). The vertex
v can be chosen such that s 6= µ2 for otherwise, counting in two ways the
number of edges with a vertex in C, we have r(t−1) = µ2(n− t+1), whence
4µ(2µ + 3) = (2µ + 1)2 − 2, a contradiction. Accordingly v may be chosen
such that C + v is a star complement H for µ.

The neighbourhoods ∆H(u) (u ∈ X) do not themselves form a design,
but they can be manipulated to construct a design as follows (see [35]).
Equations (2) and (4) show that, up to isomorphism, there are at most
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four different graphs H + u (u ∈ X). If X is partitioned accordingly as
X1 ∪̇ X2 ∪̇ X3 ∪̇ X4, then (with an appropriate choice for X1, X2), G∗ is
defined as the graph obtained from G by adding an isolated vertex x and
switching with respect to {x} ∪̇ X1 ∪̇ X2. The subgraph K of G∗ induced by
{x} ∪̇ C is complete of order t, and it turns out that the

(t
2

)
neighbourhoods

∆K(y) (y ∈ V (G∗) \ V (K)) form a tight 4-design D, in the sense of [5,
Chapter 1]. Such designs are rare; indeed if 4 ≤ t − s < t − 2 then D is
necessarily the Steiner system S(4, 7, 23) (see [5, Theorems 1.52 and 1.54]).
In these circumstances, µ = 2 and we can reverse the construction of G∗

from G to obtain McL112.

The cases s = 2, s = t − 3, s = t − 2 and s = t − 1 can be eliminated
using the equation 〈j, j〉 = n/(µ − r), which follows from the observation
that 〈(r− µ)j, j〉 =

∑n
i=1〈si, j〉. The outcome can be summarized as follows.

Theorem 6.1 [2] Let G be an extremal strongly regular graph in which an
eigenvalue µ of largest multiplicity is a positive integer. If a star complement
for µ has the form K1,s ∪̇ (t− s− 1)K1 (2 ≤ s ≤ t− 1) then either
(a) µ = 1, t = 7, s ∈ {2, 5} and G = Sch10, or
(b) µ = 2, t = 23, s = 16 and G = McL112 .

Corollary 6.2 [2] Let G be an extremal strongly regular graph in which
an eigenvalue µ of largest multiplicity is positive. Then the independence
number of G is at most 4µ2 + 4µ − 2, with equality if and only if G is C5,
Sch10 or McL112.

When the eigenvalue µ of largest multiplicity is negative, an analogous
result holds, with ‘clique number’ in place of ‘independence number’ and
Sch16,McL162 in place of Sch10,McL112.

Acknowledgment. The first author is grateful to the Institute for Research
in Fundamental Sciences, Tehran, for its hospitality in April 2008.

References

[1] F. K. Bell, Characterizing line graphs by star complements, Linear
Algebra Appl. 296 (1999) 15-25.

[2] F. K. Bell, P. Rowlinson, On the multiplicities of graph eigenvalues,
Bull. London Math. Soc. 35 (2003) 401-408.

[3] A. Brouwer, W. H. Haemers, Structure and uniqueness of the
(81, 20, 1, 6) strongly regular graph, Discrete Math. 106-107 (1992)
77-82.

[4] P. J. Cameron, J. M. Goethals, J. J. Seidel, Strongly regular graphs
having strongly regular subconstituents, J. Algebra 55 (1978) 257-
280.

14



[5] P. J. Cameron, J. H. van Lint, Designs, Graphs, Codes and their
Links, Cambridge University Press, Cambridge, 1991.

[6] D. M. Cardoso, P. Rama, Equitable bipartitions of graphs and
related results, J. Math. Sci. (N. Y.) 120 (2004) 869-880.

[7] D. M. Cardoso, P. Rama, Spectral results on graphs with regularity
constraints, Linear Algebra Appl. 423 (2007) 90-98.

[8] N. E. Clarke, W. D. Garraway, C. A. Hickman, R. J. Nowakowski,
Graphs where star sets are matched to their complements, J. Com-
bin. Math. Combin. Comput. 37 (2001) 177-185.
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