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Abstract

For a given graph F, the F-saturation number of a graph G is the
minimum number of edges in an edge-maximal F-free subgraph of G.
Recently, the F-saturation number of the Erdés—Rényi random graph
G(n,p) has been determined asymptotically for any complete graph
F'. In this paper, we give an asymptotic formula for the F-saturation
number of G(n,p) when F is a star graph.
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1 Introduction

All graphs in this paper are assumed to be finite, undirected, and without
loops or multiple edges. The vertex set and the edge set of a graph G are
denoted by V(G) and E(G), respectively. For any subset S of V(G), the
induced subgraph of G on S is denoted by G[S]. For an integer n > 1 and
a real number p € [0, 1], we denote by G(n,p) the probability space of all
graphs on a fixed vertex set of size n where every two distinct vertices are
adjacent independently with probability p.

In 1941, Turan posed one of the foundational problems in extremal graph
theory [8]. His question was about the maximum number of edges in a graph
on n vertices without a copy of a given graph F' as a subgraph, a parameter
which is now denoted by ex(n, F'). A dual idea called ‘saturation number’
was introduced by Zykov [10] and later independently by Erdés, Hajnal,



and Moon [2]. It asks for the minimum number of edges in an edge-maximal
F-free graph on n vertices. We below present this notion in a more general
form.

Fix a positive integer n and a graph F. A graph G is called F'-saturated
if G contains no subgraph isomorphic to F' but each graph obtained from
G by joining a pair of non-adjacent vertices contains at least one copy of
F' as a subgraph. In other words, G is F-saturated if and only if it is an
edge-maximal F-free graph. So, ex(n, F') is equal to the maximum number
of edges in an F-saturated graph on n vertices. The saturation function of
F, denoted sat(n, F'), is the minimum number of edges in an F-saturated
graph on n vertices. For instance, it was proved by Erdds, Hajnal, and Moon
[2] that

sat(n, K,) = (r —2)n — (7;1),

where n > r > 2 and K, is the complete graph on r vertices.

For a given graph G, a spanning subgraph H of G is said to be an F'-
saturated subgraph of G if H contains no subgraph isomorphic to F' but each
graph obtained by adding an edge from E(G) \ E(H) to H has at least one
copy of F' as a subgraph. The minimum number of edges in an F-saturated
subgraph of G is denoted by sat(G, F'). Thus, sat(n, F') is by definition equal
to sat(Ky,, F). We refer the reader to [3] and the references therein for a
survey on graph saturation.

In recent years, a new trend in extremal graph theory has been developed
to extend the classical results, such as Ramsey’s and Turdn’s theorems, to
random analogues. The study reveals the behavior of extremal parameters
for a typical graph. For instance, Kordndi and Sudakov initiated the study
of graph saturation for random graphs very recently [6]. They proved for
every fixed p € (0,1) and fixed integer r > 3 that

Sat(G(n,p),Kr) = (1 —i—o(l))nlogL n
1-p
with high probability. Let us recall that, for a sequence X1, Xo, ... of random
variables, we write ‘X,, = o(1) with high probability’ if

lim P (| X,| <e¢) =1,
n—oo
for any € > 0.
Let K1, be the star graph on r+1 vertices. In this paper, we investigate
the K ,-saturation number of (G(n,p). The classical version was resolved



by Készonyi and Tuza [5], where they proved that

(5) + ("3, ifr+1<n<3;
sat(n, Ki,) =
[L;)" — g—‘ , ifn> 32—7"
The first non-trivial case, namely r = 2, is especially interesting for the
reason that sat(G, K 2) is by definition equal to the minimum cardinality
of a maximal matching in G. It has been proven by Zito [9] that

1 (np) < sat(@(n,p),KLg) <4 —log 1
1-p 1-p

lim P (g —log

n—oo

\/ﬁ> —1 (1)

Here we show that with high probability

(r—1)n

Sat(G(nvp)aKl,r) = 2

— (14 0(1))(r —1)log

n,

1
1-p
for every fixed p € (0,1) and fixed integer r > 2. Note that, for r = 2, our
result gives an upper bound stronger than (1) whereas our lower bound is
weaker. It is finally worth noting that for complete graphs the saturation
number of random graphs is much larger than the classical version while the
parameter for star graphs is slightly smaller than its classical value.

2 Results

Let G be a graph and k be a nonnegative integer. A subset S of V(G)
is called k-independent if the maximum degree of G[S] is at most k. The
k-independence number of G, denoted by ay(G), is defined as the maximum
cardinality of a k-independent set in G. In particular, ag(G) = a(G) is the
usual independence number of G. The following theorem is well known and
is proved as Theorem 7.3 in [4].

Theorem 2.1. (Matula [7]) For any fized number p € (0,1),

a(G(n,p)) = (2 + 0(1)) log

n

1
1-p
with high probability.

The following easy observation can be proved using a straightforward
union bound argument. We apply it to obtain a generalized version of
Theorem 2.1.



Lemma 2.2. Let X be a binomial random variable with parameters n and
p€(0,1). Then P(X <)< (1)(1—p)"~* for any s € {0,1,...,n}.

Theorem 2.3. For every fixed number p € (0,1) and fized integer k > 1,

ak(G(n,p)) = (2 + 0(1)) logli n

with high probability.

Proof. Let G ~ G(n,p), ¢ =1 —p, and b = 1/q. For any integer s > 1,
let X5 be the number of induced subgraphs in G on s vertices with at most
sk/2 edges. Clearly, X; = 0 implies a(G) < s — 1. For any S C V(G) with
|S| = s, let Yg count the number of edges in G[S]. By Lemma 2.2,

B(X)= > P(¥s<%)

()@

ks
2

<) () o

for some fixed value C. Put s = 2log, n 4 2k log;, log, n. We have
log (n23kqs) = 2logyn + klog,s — s — —o0

and so n?s*¢* — 0 as n tends to infinity. Therefore, [£(X;) — 0 and since
P(Xs > 0) < E(X;) by the Markov inequality, it follows that P(Xs > 0) —
0 as n goes to infinity. This proves that ai(G) < 2log, n + 2k logy log, n — 1
with high probability. Now, the assertion follows from the fact ay(G) >
a(G) and Theorem 2.1. O

The following lemma is later used to prove the lower bound on sat(G, K1 ;).

Lemma 2.4. For every graph G on n vertices and integer r > 2,

(r— 1)(n — ozr_g(G))
5 .

sat(G, Ky,) >



Proof. Let H be a K1 ,-saturated subgraph of G. Let A be the set of vertices
of H with degree at most r — 2 in H. Since H is a K ,-saturated subgraph
of G, every vertex in A = V(G)\ A is of degree r — 1 in H and G[A] = H[A].
This implies that |A| < a,—2(G). We hence obtain that

r—1)(n— a,—2(Q)) .

5 O]

1 (
|E(H)| > 5 ) degg(v) >
vEA
We will make use of the next theorem in the proof of our main result.

Theorem 2.5. (Alon—Fiiredi [1]) Let G ~ G(n,p) be a random graph and H
be a fized graph on n vertices with maximum degree A, where (A?41)? < n.

If
101og LAQLHJ
Bl

then the probability that G does not contain a copy of H is smaller than 1/n.

p? >

Now we are in the position to prove our main result.

Theorem 2.6. For every fixed number p € (0,1) and fized integer r > 2,

—1
sat(G(n,p), Ki,) = (TQM —(1+0(1))(r—1)log 1 n
1-p
with high probability.

Proof. Let G ~ G(n,p), g =1—p, and b = 1/q. Using Theorem 2.3 and
Lemma 2.4, we find that

lim P (sat(G,KL,q > 2D (1 4 6)(r — 1) log, n) =1,

n—o0

for any € > 0. So, it suffices to prove that

lim P (sat(G,KLr) < &S0 (1 e)(r— 1) log, n) -1, (2
n—oo

for any € > 0. Fix € and let £ be the least integer such that ¢ > (2—2¢) log, n
and (n—£)(r —1) is even. Also, fix a regular graph L on n — ¢ vertices with
degree r — 1. For any S C V(G) with |S| = ¢, let

1, if S is an independent set in G and

Xg = G[V(G) \ S] has a copy of L as a subgraph;

0, otherwise.



We assume n to be large enough whenever needed. It follows from Theorem

2.5 that E[Xg] > ( ) (1 - —) Therefore, if we let
Y
SCV(G)
|5|=¢

then E[X] > (’g)q(g) (1 - %Z) Moreover, for every subsets S,T C V(G)

n

of size £ with |S NT| = i, we easily see that E[XgX7]| < q2(§)_(;) By the
Chebyshev inequality and noting that n — £ goes to infinity, we have

B var(X)
_ Z E[XsXr] — E[Xs]E[X7]
N E[X]?
S,TCV(G)
|S|=\T|=
_ Z Z BE[XsXr] - E[Xs]B[X7]
BE[X]?
i=0 S,TCV(G
|S|= \T\
|SNT|=4

O <q2<s>—<;> 2O (1- ,@)2)

Using the computations given in the proof of Theorem 7.3 of [4], the last
summation above converges to 0 as n — oo and hence P(X = 0) = o(1).
This shows that with high probability there is S C V(G) with |S| = ¢ such



that S is an independent set in G and G[V(G) \ S] has a copy L' of L as a
subgraph. Denote the spanning subgraph of G with edge set E(L') by H.
It is easily seen that H is a K ,-saturated subgraph of G' and

E(H) = (”_E)Q(T_l) < (T_Ql)” — (1 —¢€)(r —1)logyn,

which concludes (2), as required. O
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