On the sum of Laplacian eigenvalues of graphs
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Abstract

Let k be a natural number and let G be a graph with at least k vertices. A.E. Brouwer

conjectured that the sum of the k largest Laplacian eigenvalues of G is at most e(G) + (k';l),

where e(G) is the number of edges of G. We prove this conjecture for k& = 2. We also
show that if G is a tree, then the sum of the k largest Laplacian eigenvalues of G is at most
e(G) + 2k — 1.
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1 Introduction

Let G be a simple graph with the vertex set V(G) = {v1,...,v,}. The degree of a vertex
v € V(G), denoted by d(v), is the number of neighbors of v. The Laplacian matrix of G is
the n x n matrix L(G) = [{;;] that records the vertex degrees d(v1),...,d(vy,) on its diagonal
and for any ¢ # j, 1 < 4,5 < n, {;; = —1 if v; and v; are adjacent and ¢;; = 0, otherwise.
It is well-known that L(G) is positive semi-definite and so its eigenvalues are nonnegative real
numbers. The eigenvalues of L(G) are called the Laplacian eigenvalues of G and are denoted by
w1 (G) = p2(G) = -+ = pn(G). Note that each row sum of L(G) is 0 and therefore, p,(G) = 0.

In this paper, we investigate the sum Si(G) = Zle wi(G) for 1 < k < n. We denote the
edge set of G by E(G) and we let e(G) = |E(G)|. A.E. Brouwer [1] (see also [3]) has conjectured
the following.
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Conjecture 1 Let G be a graph with n vertices. Then Sp(G) < e(G) + (kgl) fork=1,...,n.

Using a computer, Brouwer [1] has checked Conjecture 1 for all graphs with at most ten vertices.
For k = 1, the conjecture follows from the well-known inequality p; (G) < |V (G)| (see [7, p. 281]).
Also the cases k = n and k = n — 1 are straightforward. Here, we prove Conjecture 1 for k = 2.
We also show that Si(T) < e(T) + 2k — 1 for any tree T" and any 1 < k < n from which the
conjecture follows for trees.

Brouwer’s conjecture is related to (and motivated by) the Grone-Merris conjecture [8]. Let
dl = |{v € V(G)|d(v) = i}| for i = 1,...,n. The numbers d] > dJ > --- > d} are called
the conjugate degrees of G. The Grone-Merris conjecture asserts that Sp(G) < Zle d] for
k=1,...,n. Since the Grone-Merris conjecture uses more detailed information from the graph
than Brouwer’s conjecture, one would expect that the Grone-Merris inequalities are better. For
many graphs this is true, but not for all graphs. As an example, for the 4-cycle Cy4, the Grone-
Merris conjecture gives Sa(Cy) < 8, whilst Brouwer’s conjecture gives Sa(Cs) < 7 (in fact,
S52(Cy) = 6). The Grone-Merris conjecture is known to be true for (i) threshold graphs (see
[8]), (i) trees (see [10]), (iii) the cases k < 2 (see [4, Theorem 7.1]) and k > n — 1 (trivial), and
(iv) for all graphs with at most ten vertices (by computer; see [3]). Brouwer observed that his
conjecture also holds for threshold graphs (see Section 3), and has verified the conjecture by
computer for all graphs on at most ten vertices. Here we settle Brouwer’s conjecture for trees
and the case k < 2. Thus Brouwer’s conjecture is true for all cases (i) to (iv), for which the
Grone-Merris conjecture is known to be true.

For threshold graphs, the Grone-Merris conjecture holds with equality for every k. Examples
that satisfy Brouwer’s conjecture with equality are the complete graphs K,, with k =n —1, and
the stars Ky ,_1 with k = 1.

Another related upper bound, worth mentioning, is (see [11]):

- 2mk + \/mk(n —k — 1)(n2 —n — 2m)
= n—1

Sk(G)
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where 1 < k < n and m = e(G).

2 Notation and Preliminaries

We first present some notation and definitions. For a subset X of V(G), N(X) denotes the set
of vertices outside X, which have at least one neighbor in X. An independent set in G is a
subset Y of V(@) such that no two distinct vertices in Y are adjacent. Two distinct edges of G
are called independent if they have no common endpoint. A set of pairwise independent edges
in G is called a matching. The maximum size of a matching in G is known as the matching
number of G, denoted by m(G). For two graphs G1 and G, the union of Gy and G3, denoted by
G1 UGy, is the graph whose vertex set is V(G1) UV (G2) and whose edge set is E(G1) U E(G2).
If V(G1) N V(G2) = &, then the union of G and G9 is denoted by G + G2. We denote the



complete graph, star and path with n vertices by K,, S, and P,, respectively. The complete
bipartite graph with the part sizes m and n is denoted by Ky, ;.

Brouwer [1] has checked Conjecture 1 for all graphs with at most ten vertices. For our
purpose we only need the following statement.

Lemma 1 For any graph G with at most eight vertices, S2(G) < e(G) + 3.

We next state some lemmas and theorems which will be used in the subsequent sections.

Lemma 2 Let n be a natural number.

(i) The Laplacian eigenvalues of K,, are n with multiplicity n — 1, and 0.

(ii) The Laplacian eigenvalues of Sy, are n, 1 with multiplicity n — 2, and 0.
The following lemma gives an affirmative answer to Conjecture 1 for k = 1.
Lemma 3 [7, p. 281] If G is a graph with n vertices, then ui(G) < n.

Theorem 1 [7, p. 291] Let G be a graph with n vertices and let G' be a graph obtained from G
by inserting a new edge into G. Then the Laplacian eigenvalues of G and G’ interlace, that is,

pa(G) 2 pa(G) = -+ 2 pn(G') = pn(G) = 0.

Theorem 2 [9] Let G be a graph. Then 1 (G) < max{d(v) + m(v)|v € V(QG)}, where m(v) is
the average of the degrees of the vertices of G adjacent to the vertex v.

Theorem 3 [2] Let G be a graph with n vertices and vertex degrees dy > -+ > dy,. If G is not
Ks+ (n—s)Kq, then us(G) > ds — s+ 2 for1 < s < n.

The following theorem from matrix theory plays a key role in our proofs. We denote the
eigenvalues of a symmetric matrix M by A (M) > -+ = A\, (M).

Theorem 4 [5] (see also [6]) Let A and B be two real symmetric matrices of size n. Then for

any 1 < k < n,
k k k

D XN(A+B) < XA+ D Ni(B).

i=1 =1 =1

An immediate consequence of Theorem 4 is the following corollary which will be used fre-
quently.

Corollary 1 Let Gy, ..., G, be some edge disjoint graphs. Then Si(G1U---UG,) < >7_; Sk(G:)
for any k.



The following Lemma asserts that to prove Conjecture 1 for & = 2, it suffices to consider
connected graphs.

Lemma 4 Let G be a graph. Then either So(G) = Sa(H) for a connected component H of G
or S2(G) < e(G) + 2.

Proof. If the first statement does not hold, then G has two connected components Hy and Hy
such that u1(G) = pi1(Hy) and pa(G) = pi(Hz2). By Lemma 3, we have pi(H;) < |V(H;)| <
e(H;) + 1 for i = 1,2. Therefore, So(G) < (e(H1) + 1) + (e(Ha) + 1) < e(G) + 2. O

The next lemma is the key to our approach. Because of this result, it suffices to consider
only a very restrictive class of graphs.

Lemma 5 If Conjecture 1 is false for k = 2, then there exists a counterexample G for which
So(H) > e(H) for every subgraph H of G.

Proof. Let G be a counterexample for Conjecture 1 with £ = 2 having a minimum number of
edges. If G has a subgraph H that satisfies So(H) < e(H), then Corollary 1 gives e(G) 4+ 3 <
S2(G) < Sa(H) + S2(G — H). This implies that So(G — H) > e(G — H) + 3, which contradicts
the minimality of e(G). O

Lemma 6 Let G be a graph with n vertices. Suppose that there exist two non-adjacent vertices
u,v € V(Q) such that pi(G) = d(u) +d(v) + 2 for some integer k, 1 < k < n. If G' is the graph
obtained from G by inserting edge e = {u,v} into G, then Sp(G') < Sk(G) + 1

Proof. For i = 1,...,n, define ¢, = p;(G') — pi(G). By Theorem 1, ¢; > 0 for any i. Let
di >+ >dpand d] > --- > d), be vertex degrees of G and G’, respectively. Recall that for any
graph I', considering the trace of the matrix £(I")?, we have

V(D)
> Z d(v)? + 2¢(T).
i=1 veV (I’

Applying this fact, we have

Z 1i(G')? Z d? + 2e(G")

=1

- Zn: d? + 2¢(G) + 2d(u) + 2d(v) + 4

= Z 1:(G)? + 2(d(u) + d(v) + 2).
i=1



This yields that

n

k k n
2uk(G) D e <Y 26(G) <D (G = (@) = 2(d(u) + d(v) + 2).
1 i=1 i=1

= = i=1

Since pk(G) = d(u) + d(v) + 2, Sp(G') — Sk(G) = Zle €; < 1 and the assertion follows. O

3 Trees and threshold graphs

In the following, we obtain an upper bound for the sum of the k largest Laplacian eigenvalues
of a tree which implies Conjecture 1 for trees.

Theorem 5 Let T be a tree with n vertices. Then Sk(T) < e(T)+ 2k —1 for 1 < k < n.

Proof. We prove the assertion by induction on |V(T')|. If T is a star, then by Lemma 2(ii),
Sk(T) =n+k—1for 1 <k < n, and we are done. Thus assume that 7" is not a star. Then 7" has
an edge whose removal leaves a forest F' consisting of two trees 77 and 75, both having at least
one edge. Suppose that k; of the k largest eigenvalues of F' come from the Laplacian spectrum of
T; for i = 1,2, where k1 + ko = k. If one of k;, say ko, is zero, then by |V (T3)| > 2, Corollary 1,
and the induction hypothesis, we conclude that Sg(T) = Si(F U K3) < Sk, (Th) + Sp(K2) <
(e(Ty) +2k1 — 1) +2 < n+ 2k —2 = e(T) + 2k — 1. Otherwise, using Corollary 1 and the
induction hypothesis, we have Si(T) = Si(Th U To U Ka) < Sk, (Th) + Sk, (T2) + Sk(K2) <
(e(Th) + 2k1 — 1) + (e(T2) + 2k2 — 1) + 2 = e(T') + 2k — 1. This completes the proof. O

A threshold graph is a graph obtained from K; by a sequence of operations of the form (i)
adding an isolated vertex or (ii) taking the complement. It is clear that adding isolated vertices
to a graph only increases the multiplicity of the Laplacian eigenvalue 0. This observation and
the next theorem shows that Conjecture 1 is valid for threshold graphs.

Theorem 6 Let G be a graph with n vertices and 1 < k <n—2. If S(G) < e(G) + (kgl), then
Sn_k-1(G) <e(G) + (”gk), where G is the complement of G.

Proof. From [7, p. 280], we have 1;(G) =n — pn—i(G) for i = 1,...,n — 1. Therefore,

Snk-1(G) =n(n -k —1) = (ux11(G) + -+ + pn-1(G))
=n(n—k—1)—=2e(G) + (1 (G) + -+ (Q))

== k=1) = (3) + €@+ (n(G) + -+ 1(C) ~ ()

as desired. O



4 The case k=2

In this section, we prove Conjecture 1 for k = 2. First we establish the conjecture for graphs
with matching number at most three and then we conclude the assertion using Lemma 5.

Lemma 7 Let G be a graph with m(G) = 1. Then S2(G) < e(G) + 3.

Proof. Let n = |V(G)|. Since m(G) = 1, it is easily checked that either G = S,, + (n — m)K;
for some m, 1 <m <nor G=Ks+ (n—3)K;. By Lemma 2, the assertion holds. O

We say that a connected graph has the form A if it has a subgraph H isomorphic to K3
such that every edge is incident with some vertex of H.

Lemma 8 Let G be a graph of the form /. Then S2(G) < e(G) + 3.

Proof. Let n = |V(G)| and d] > --- > d] be the conjugate degrees of G. If ¢ is the number
of vertices of degree 1 in G, then it is not hard to see that 2(n —¢ — 3) < e(G) —t — 3. This
implies that dJ =n —t < e(G) —n+3. Since d] =n, d] +di < e(G)+ 3. By [4, Theorem 7.1],
the Grone-Merris conjecture is true for & = 2. Therefore, So(G) < d] + dJ < e(G) + 3. O

Lemma 9 Let n > 3 and let G be a connected spanning subgraph of Ko n—o. Then S3(G) <
e(G) + 3.

Proof. Assume that {{v,w}, B} is the partition of V(G). For simplicity, we write u;(G) = p;
for 1 <7< n. Letdy > -+ > d, be the vertex degrees of G and let r and s be the number
of vertices of degree 1 and 2 in B, respectively. By Theorem 5, we can assume that G is not a
tree. Hence s > 2 and the degrees di,ds > 2 are the degrees of v and w. It is easily seen that
s rows of 2I — L(@G) are identical and therefore the multiplicity of 2 as an eigenvalue of L(G) is
at least s — 1. Similarly, the multiplicity of 1 as eigenvalues of L(G) is at least r — 2. If ug < 2,
then Lemma 3 implies that p; + ua < n+ 2 < e(G) + 3. Hence we may assume that pg > 2
and SO {1 = pa = pfg = My = pn = 0 are the five remaining eigenvalues. By trace(L(G)) =
Sy i =y iy di, we have py + po + piq + pp < di + da +4. Finally, by the interlacing theorem
[7, p. 193] for the (n —2) x (n — 2) submatrix D = diag(1,...,1,2,...,2) of L(G), we find that
ta = pin—2 = Ap—2(D) > 1. Hence p1 +po < dy+do+4 — pig —pp < dy +do +3=¢(G) + 3.0

Lemma 10 Let G be a graph with m(G) = 2. Then S2(G) < e(G) + 3.

Proof. By Lemmas 1 and 4, we may assume that G is a connected graph with at least 7
vertices. First suppose that G has a subgraph H = K3 with V(H) = {u,v,w}. If every edge of
G has at least one endpoint in V(H), then by Lemma 8, we are done. Hence assume that there
exists an edge e = {a,b} whose endpoints are in V(G) \ V(H). Let M = V(G) \ {a, b, u,v, w}.



Since m(G) = 2, there are no edges between V(H) and M. Since |M| > 2, it is easily seen that
all vertices in M are adjacent to one of the endpoints of e, say a. Hence there are no edges
between b and V' (H). Now by ignoring the edges between a and V(H), we find a subgraph K of
G which is a disjoint union of K3 and a star with the center a. Since the graph L = G — E(K)
is a star, Corollary 1 yields that S2(G) < So(K) 4+ Sa(L) < (e(K) + 1) + (e(L) + 2) = e(G) + 3,
as required.

Next assume that G has no K3 as a subgraph. Suppose that e; = {aj,b1} and ey =
{az,b2} are two independent edges in G. Since G contains no 3K, and K3 as subgraphs,
M = V(G) \ {a1,b1,a2,b2} is an independent set and at least one of the two endpoints of e;
has no neighborhood in M for i = 1,2. Assume those endpoints to be by and by. If by and by
are adjacent, then |[M| > 2 yields that all vertices in M are adjacent to only one of the two
vertices a1 and as, say a1. This implies that G is a bipartite graph with the vertex set partition
{{a1,b2}, V(G) \ {a1,b2}} and so Lemma 9 yields the assertion. Now assume that b; and by
are not adjacent. If a; and as are adjacent, then G is a tree and we are done by Theorem 5.
Otherwise, G is a bipartite graph with the vertex set partition {{a1,a2}, V(G) \ {a1,a2}} and
using Lemma 9, the proof is complete. O

Lemma 11 Let G be a graph with m(G) = 3. Then S2(G) < e(G) + 3.

Proof. By Lemmas 1 and 4, we may assume that G is a connected graph with at least 9
vertices. Using Lemma 5, we may suppose that G has no subgraph H with Sy(H) < e(H).
In particular, Lemma 2 implies that G has no subgraph 3S53. Suppose that G has a subgraph
K = K3+ 2Ks. Let 2 € V(G) \ V(K). Since m(G) = 3, the vertex z is not incident with the
subgraph K3 of K and so GG has a subgraph H = K3 + S3 + Ks. Now by Lemma 2, we have
So(H) = e(H) and therefore G has no subgraph K3 + 2Ks.

Let ey = {a1,b1},e2 = {az,b2} and e3 = {as,bs} be three independent edges in G. Since
m(G) =3, M =V (G)\V({e1,e2,e3}) is an independent set. Since G has no 4K and K3+ 2Ko
as subgraphs, either N(a;) "M = & or N(b;) N M = &, for i = 1,2,3. With no loss of generality,
we may assume that N(M) C {a1, a2, as}. We consider the following three cases.

Case 1. |[N(M)| = 3. We have N(M) = {ai1,a2,a3}. Since G has no 353, the bipartite
subgraph G — {b1, b2, b3} has no perfect matching. By Hall’s Theorem, there exists a subset of
{a1,a2,a3} with 2 elements, say {a2,as}, such that |[N({az,as3}) N M| = 1. This means that
there exists exactly one vertex y € M which is adjacent to both as and as. If d(by) > 2,
then we clearly find a subgraph isomorphic to 3S3 in G, a contradiction. Therefore, d(b1) = 1.
Suppose that H is the star with center a; and V(H) C {ai,as,as,b2,bs,y}. Then G — E(H)
is a disjoint union of a star S with center a; and a graph K containing P; with the vertex
set {ag, as, ba, b3, y}. Using Theorem 2, we have u1(P5) < 4 and by Lemma 2, we obtain that
w1 (K) < e(K). This yields that So(G — E(H)) < 1 (S) + m(K) < e(G — E(H)) + 1. Thus
S2(G) < S2(H) + S2(G — E(H)) < e(G) + 3, as desired.

Case 2. [N(M)| = 2. Without loss of generality, assume that N(M) = {a1, a2}. Since m(G) = 3,
b1 is not adjacent to by. If by is adjacent to as or bz, then changing the role of ey, es, e3 by three



independent edges {a1, 2z}, ez, eg for some vertex z € M NN(ay), we have Case 1. Therefore, we
may assume that by, and similarly be, is adjacent to none of the vertices ag and bs. Let H be
the induced subgraph on {a1, a2, as, bs}.

First assume that H has a subgraph L = K3. If {a1,a2} is an edge of L, then clearly any
edge of GG is incident with L and by Lemma 8, there is nothing to prove. Now assume that
exactly one of the two vertices a1 and ag, say aq, is a vertex in L. Let K be the disjoint union
of L and the induced subgraph of G on {ag, ba} U (N(az) N M) which is a star with at least three
vertices. Note that G — E(K) is a star or a disjoint union of two stars. Now, by Lemma 2 and
Corollary 1, S3(G) < So(K) + S2(G — E(K)) = (e(K) 4+ 1) + (e(G — E(K)) + 2) = e(G) + 3, as

required.

Next suppose that H has no K3 as a subgraph. Let ¢t = d(a3) +d(b3). We have t € {3,4}. It
is not hard to see that G — e3 contains two disjoint stars Sy with centers a; and as. Therefore,
by Theorem 1, po(G — e3) > p2(2S;) = t. Using Lemmas 6 and 10, we find that Sa(G) <
So(G —e3)+1< (e(G—e3)+3)+1=e(G)+ 3, as required.

Case 3. [N(M)| = 1. Without loss of generality, assume that N(M) = {a;}. If d(b1) > 2,
then we clearly find three independent edges €}, eh, €4 in G such that the set M’ = V(G) \
V({e], €5, €e4}) is an independent set and [N(A')| > 2 which is dealt with as the previous cases.
Hence we assume that d(b;) = 1. Suppose that H is the star with center a; and the vertex
set V(H) C {a1,a2,a3,b2,b3}. Then G — E(H) is a disjoint union of a star S with center
a; and a graph L containing 2K, with V(L) = {ag2,as,bs,bs}. First assume that L # Pj.
Using Lemma 2(i) and Lemma 3, we have p1(L) < e(L). This yields that So(G — E(H)) <
1 (S) + p1(L) < e(G—E(H))+ 1. Thus S2(G) < So(H) + S2(G — E(H)) < e(G) + 3, as
desired. Next assume that L = P;. With no loss of generality, suppose that L is the path
ay — by — bs — as. If [N(a;) N L| = 1, then G is a tree and the assertion follows from
Theorem 5. If a; is adjacent to both by and b3, then by Lemma 8, there is nothing to prove.
Suppose that a; is adjacent to none of by and b3. If we let K be the disjoint union of the star
G — V(L) and the edges {a2,b2} and {as, b3}, then the graph G — E(K) is a disjoint union of
a star with the center a; and the edge {bs,b3}. Now, by Lemma 2 and Corollary 1, we have
S2(G) < S2(K) + S2(G— E(K)) < (e(K)+ 1)+ (e(G— E(K)) +2) = e(G) + 3. If none of the
above cases occurs, then G is one of the following forms:

b1
a2

If G = G4, then by Theorem 3, we have p2(G) > 3. Since d(a3)+d(b3) = 3, applying Lemma 6 for
the graph G —e3 and using Lemma 10, we find that So(G) < S2(G—e3)+1 < (e(G—e3)+3)+1 =



e(G) + 3, as required. Hence assume that G = G5 or G = (3. First suppose that us(G) > 4.
Since d(a3) 4+ d(b3) = 4, applying Lemma 6 for the graph G — e3 and using Lemma 10, the result
follows. Now suppose that p2(G) < 4. By Theorem 2, we have 11 (G2) < |[V(G2)|—1 =e(Ga)—1
and by Lemma 3, 111(G3) < |[V(G3)| = e(G3) — 1. Therefore, Sa(G) < (e(G) —1)+4 = e(G) + 3.
This completes the proof. O

We now present the main theorem of the paper.
Theorem 7 Let G be a graph with at least two vertices. Then Sa(G) < e(G) + 3.

Proof. Using Lemmas 7, 10 and 11, we may assume that G has a subgraph H = 4K5, which
satisfies So(H) = e(H). So the result follows by Lemma 5. O
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