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Abstract

For a simple graph G, let e(G) denote the number of edges and Sk(G) denote the sum of

the k largest eigenvalues of the signless Laplacian matrix of G. We conjecture that for any

graph G with n vertices, Sk(G) ≤ e(G) +
�

k+1
2

�
for k = 1, . . . , n. We prove the conjecture

for k = 2 for any graph, and for all k for regular graphs. The conjecture is an analogous to

a conjecture by A.E. Brouwer with a similar statement but for the eigenvalues of Laplacian

matrices of graphs.
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1 Introduction

Let G be a simple graph with vertex set V (G) = {v1, . . . , vn}. The degree of a vertex v ∈ V (G),
denoted by d(v), is the number of neighbors of v. The adjacency matrix of G is an n×n matrix A(G)
whose (i, j) entry is 1 if vi and vj are adjacent and zero otherwise. The Laplacian matrix and the
signless Laplacian matrix of G are the matrices L(G) = A(G)−D(G) and Q(G) = A(G) + D(G),
respectively, where D(G) is the diagonal matrix with d(v1), . . . , d(vn) on its main diagonal. It is
well-known that L(G) and Q(G) are positive semidefinite and so their eigenvalues are nonnegative
real numbers. The eigenvalues of L(G) and Q(G) are called the Laplacian eigenvalues and signless
Laplacian eigenvalues of G, respectively, and are denoted by µ1(G) ≥ · · · ≥ µn(G) and q1(G) ≥
· · · ≥ qn(G), respectively. We drop G from the notation when there is no danger of confusion.
Note that each row sum of L(G) is 0 and therefore, µn(G) = 0. We denote the edge set of G by
E(G) and we let e(G) = |E(G)|.
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Grone and Merris [9] conjectured that for a graph G with degree sequence d1, . . . , dn, the
following holds:

k∑
i=1

µi(G) ≤
k∑

i=1

#{` | d` ≥ i}, for k = 1, . . . , n. (1)

This conjecture was recently proved by Hua Bai [1]. As a variation on the Grone-Merris conjecture,
Brouwer [3, p. 53] conjectured that for a graph G with n vertices,

k∑
i=1

µi(G) ≤ e(G) +
(

k + 1
2

)
, for k = 1, . . . , n.

The conjecture is known to be true for

(i) k = n and k = n− 1 (straightforward);

(ii) k = 1 by the well-known inequality µ1(G) ≤ n;

(iii) k = 2 [10];

(iv) trees [10];

(v) unicyclic and bicyclic graphs [5] (see also [15]);

(vi) regular graphs [2, 11];

(vii) split graphs (graphs whose vertex set can be partitioned into a clique and an independent
set) [2, 11];

(viii) cographs (graphs with no path on 4 vertices as an induced subgraph) [2, 11];

(ix) graphs with at most 10 vertices [2, 11].

We remark that (iv) was proved in [10] by showing that
∑k

i=1 µi(T ) ≤ e(G) + 2k − 1 for any
tree T . This was improved in [8] to the stronger inequality

∑k
i=1 µi(T ) ≤ e(T ) + 2k − 1− 2k−2

n .

For a graph G, let

Sk(G) :=
k∑

i=1

qi(G).

In analogy to Brouwer’s conjecture, we put forward the following.

Conjecture 1. For any graph G with n vertices and any k = 1, . . . , n,

Sk(G) ≤ e(G) +
(

k + 1
2

)
. (2)
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To support Conjecture 1, we prove that it holds for k = 1, 2 for any graph, and for all k for regular
graphs. By computation we establish Conjecture 1 for all graphs up to 10 vertices. Similar to
Brouwer’s conjecture, Conjecture 1 is straightforward for k = n and k = n−1. As it is well-known
that Q(G) and L(G) are similar if G is bipartite (see [4, p. 217]), the correctness of Conjecture 1 for
trees follows from that of Brouwer’s conjecture. We also show that Conjecture 1 is asymptotically
tight for any k.

2 Preliminaries

For a subset X of V (G), N(X) denotes the set of vertices outside X, which have at least one
neighbor in X. An independent set in G is a subset Y of V (G) such that no two distinct vertices
in Y are adjacent. A set of edges which pairwise have no common endpoints is called a matching.
The maximum size of a matching in G is called the matching number of G, denoted by m(G). For
two graphs G1 and G2, the union of G1 and G2, denoted by G1 ∪ G2, is the graph whose vertex
set is V (G1) ∪ V (G2) and whose edge set is E(G1) ∪ E(G2). The complement of G is denoted by
Ḡ. We denote the complete graph, star and path with n vertices by Kn, Sn and Pn, respectively.
The complete bipartite graph with the part sizes m and n is denoted by Km,n. First, we recall the
following two well known result.

Theorem 2. (see [4, p. 222]) Let G be a graph with n vertices and let G′ be a graph obtained from
G by inserting a new edge into G. Then the signless Laplacian eigenvalues of G and G′ interlace,
that is,

q1(G′) ≥ q1(G) ≥ q2(G′) ≥ q2(G) ≥ · · · ≥ qn(G′) ≥ qn(G).

Theorem 3. ([6]) Let A and B be two Hermitian matrices of size n. Then for any 1 ≤ k ≤ n,

k∑
i=1

λi(A + B) ≤
k∑

i=1

λi(A) +
k∑

i=1

λi(B),

where λ1(X) ≥ · · · ≥ λn(X) denote the eigenvalues of Hermitian matrix X.

The following is straightforward.

Lemma 4. If for some k, (2) holds for G and H, then it does for G ∪H.

Therefore, in order to prove (2) for some k, it suffices to do so for connected graphs.

Theorem 5. Conjecture 1 is true for k = 1, n− 1, n.
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Proof. By Lemma 4, it suffices to consider connected graphs. The result for k = 1 follows from
the fact that e(G) ≥ n− 1 as well as the inequality q1(G) ≤ 2e(G)

n−1 + n− 2, for any graph G ([7]).
So we have q1(G) ≤ e(G) + 1.

For k = n− 1, n, (2) follows as Sn−1(G) ≤ Sn(G) = 2e(G) ≤ e(G) +
(
n
2

)
. �

Using the McKay’s database on small graphs [12], by a computer search we checked Conjecture 1
for graphs with at most 10 vertices.

Lemma 6. Conjecture 1 is true for all graphs on at most 10 vertices.

Lemma 7. Let n be a positive integer.

(i) The signless Laplacian eigenvalues of Kn are 2n−2 and n−2 with multiplicities 1 and n−1,
respectively.

(ii) The signless Laplacian eigenvalues of Sn are n, 1 and 0 with multiplicities 1, n − 2, and 1,
respectively.

We close this section by a remark on tightness of (2).

Remark 8. We show that for any k, the conjectured inequality (2) is asymptotically tight. Let
G = G(k, t) denote the graph Kk ∨Kt, the join of Kk and the empty graph Kt. We have

e(G) +
(

k + 1
2

)
= tk +

(
k

2

)
+
(

k + 1
2

)
= k(t + k).

The graph G has an obvious equitable partition where the corresponding quotient matrix of Q =
Q(G) is (

2k + t− 2 t

k k

)
,

with characteristic polynomial

f(x) := x2 + (2− t− 3k)x + 2k2 − 2k.

On the other hand, Q− (k + t− 2)I and Q− kI have k and t identical rows, respectively, thus Q

has eigenvalues k + t− 2 and k with multiplicities at least k − 1 and t− 1, respectively. It follows
that the characteristic polynomial of Q is

(x− k − t + 2)k−1(x− k)t−1f(x).

Now, by virtue of

f(3k + t− 2) = 2k2 − 2k, and f

(
3k + t− 2− 1√

t

)
= −

√
t + 2k2 − 2k +

2− 3k√
t

+
1
t
,
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we see that, with t sufficiently large, 3k + t− 2− 1/
√

t < q1(G) ≤ 3k + t− 2. It turns out that

Sk(G) > (k − 1)(k + t− 2) + 3k + t− 2− 1√
t

= k(k + t)− 1√
t
,

for large enough t. This shows that the inequality (2) is asymptotically tight for any k.

3 Regular graphs

In this section, we prove that Conjecture 1 holds for regular graphs. We start with the following
lemma.

Lemma 9. Let G be an r-regular graph on n vertices. If either

(i) 4kr + n2 + n ≤ 2nr + 2kn + 2k, or

(ii) 4kr + 2n2 ≤ 3nr + 2kn + k2 + k,

then Sk(G) ≤ e(G) +
(
k+1
2

)
.

Proof. We have qi = 2r − µn−i+1 for i = 1, . . . , n. Since Brouwer’s conjecture holds for regular
graphs ([2, 11]), we have

k∑
i=1

qi = 2kr − 2e +
n−k∑
i=1

µi

≤ 2kr − 2e + e +
(

n− k + 1
2

)
.

If (i) holds, then 2kr − 2e + e +
(
n−k+1

2

)
≤ e +

(
k+1
2

)
and we are done. On the other hand, since

µ1 ≤ n we have
∑n−k

i=1 µi ≤ n(n− k) and similarly if (ii) holds, we yield the result. �

Lemma 10. Let G be an r-regular graph on n vertices and suppose that 4k ≤ n + 2r + 3. If
Sk(G) ≤ e(G) +

(
k+1
2

)
, then Sn−k+1(G) ≤ e(G) +

(
n−k+1

2

)
.

Proof. Let q1 ≥ · · · ≥ qn be the signless Laplacian eigenvalues of G. Then q1 = 2(n− r− 1) and
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qi = n− 2− qn−i+2 for i = 2, . . . , n. So we have

n−k+1∑
i=1

qi = 2(n− r − 1) + (n− k)(n− 2)−
n∑

i=k+1

qi

= 2(n− r − 1) + (n− k)(n− 2)− 2e(G) +
k∑

i=1

qi

≤ 2(n− r − 1) + (n− k)(n− 2)−
(

n

2

)
+ e(G) +

(
k + 1

2

)
≤ e(G) +

(
n− k + 2

2

)
.

The last inequality follows from 4k ≤ n + 2r + 3. �

Lemma 11. ([13, 14]) Let A be a (0, 1)-symmetric matrix with eigenvalues θ1 ≥ · · · ≥ θn, then

θ1 + · · ·+ θk ≤
n

2

(
1 +

√
k
)

, for k = 1, . . . , n.

If G is an r-regular graph, then Q(G) = (r − 1)I + (A(G) + I). If θ1 ≥ · · · ≥ θn are eigenvalues of
A(G) + I, then by Lemma 11,

q1 + · · ·+ qk = k(r − 1) + θ1 + · · ·+ θk ≤ k(r − 1) +
n

2

(
1 +

√
k
)

. (3)

Theorem 12. Conjecture 1 holds for regular graphs.

Proof. Let the adjacency eigenvalues of r-regular graph G be θ1 ≥ · · · ≥ θn. Then qi = r + θi

for i = 1, . . . , n. Using the Cauchy-Schwarz inequality and the fact that
∑n

i=1 θ2
i = 2e = nr, we

observe that
k∑

i=1

qi = kr +
k∑

i=1

θi ≤ kr +

(
k

k∑
i=1

θ2
i

) 1
2

≤ kr +
√

knr.

If we show that the right hand side is at most nr
2 +

(
k+1
2

)
, then the proof is complete. So it suffices

to show that
nr + k2 + k − 2kr − 2

√
nkr ≥ 0.

The left hand side is a quadratic function in
√

r. Substituting
√

r = x we may write it as

f(x) = (n− 2k)x2 − 2
√

nkx + k2 + k

= (n− 2k)

(
x−

√
nk

n− 2k

)2

+ k2 + k − nk

n− 2k
. (4)

Now we consider three cases.
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Case 1. n ≥ 2k + 2.

In this case, (4) is nonnegative, as desired.

Case 2. n = 2k + 1.

If r ≥ n/2, then the result follows from Lemma 9 (i). Suppose that r < n
2 . The roots of f(x)

are
√

n(n− 1)/2 ± (n − 1)/2. Both the roots are greater than
√

n/2 for n ≥ 11. So for n ≥ 11,
we have f(

√
r) > 0, as desired. Since in this case n is odd, the assertion for the remaining values

of n follows from Lemma 6.

Case 3. n ≤ 2k.

The result for k ≥ 3n/4 follows in view of Lemma 10 and the fact that the theorem is true for
k ≤ n/4 by Case 2. So we only need to prove the theorem for n/2 ≤ k < 3n/4. First assume that
r ≤ 3n/4. By Lemma 11, we have Sk(G) ≤ k(r − 1) + n

2 (1 +
√

k). So it is sufficient to show that

g(r) := 2k(r − 1) + n(1 +
√

k)− rn− k(k + 1) ≤ 0.

As n/2 ≤ k, g is increasing with respect to r. Thus

g(r) ≤ g(3n/4) = −3n2/4 + n(3k/2 +
√

k + 1)− k(k + 3).

Now, g(3n/4) as a quadratic form in n has a negative discriminant, and thus it is negative. Finally
assume that r > 3n/4. In view of Lemma 9 (ii) it suffices to show that

2n2 ≤ (3n− 4k)r + 2kn + k2 + k. (5)

Since k < 3n/4, the right hand side of (5) is increasing in r, so it is enough to show that (5) holds
for r = 3n/4 but this amounts to show that n2/4 − kn + k2 + k ≥ 0 which always holds. This
completes the proof. �

4 Proof of Conjecture 1 for k = 2

In this section, we prove that Conjecture 1 is true for k = 2.

Lemma 13. Let G be a graph and v ∈ V (G) with q2(G) ≥ d(v). If the graph G′ is obtained
from G by duplicating v, i.e. adding a new vertex v′ with N(v) = N(v′), then S2(G′) − e(G′) ≤
S2(G)− e(G).

Proof. Let Q and Q′ be the signless Laplacian matrices of G and G′, respectively. Let d be the
common value of d(v) and d(v′). Then the corresponding rows of v and v′ in Q′−dI are the same.
Thus the nullity of Q′ − dI is one more than the nullity of Q− dI. So the multiplicity of d as an
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eigenvalue of Q′ is one more than that of Q. On the other hand, from Theorem 2 it follows that
q2(G′) ≥ q2(G) ≥ d. Since Sn(G′) = Sn(G) + 2d, it turns out that adding v′ increases the sum of
the two largest eigenvalue by at most d, that is S2(G′) ≤ S2(G) + d. The result now follows. �

Since µ1(G) + µ2(G) ≤ e(G) + 3 by [10], using the fact that signless Laplacian matrix and
Laplacian matrix are similar for a bipartite graph we have the following.

Lemma 14. If G is a bipartite graph, then S2(G) ≤ e(G) + 3.

Lemma 15. If Conjecture 1 is false for k = 2, then there exists a counterexample G for which
S2(H) > e(H) for every subgraph H of G. In particular, G contains neither H = 4K2 nor H = 3S3

as a subgraph.

Proof. Let G be a counterexample for Conjecture 1 with k = 2 having a minimum number of
edges. If G has a nonempty subgraph H with S2(H) ≤ e(H), then by Theorem 3, e(G) + 3 <

S2(G) ≤ S2(H) + S2(G − E(H)). This implies that S2(G − E(H)) > e(G − E(H)) + 3, which
contradicts the minimality of e(G). Noting that for H = 4K2 or H = 3S3, one has S2(H) = e(H),
completes the proof. �

Now from Lemma 15 we see that in order to prove the main result of this section, it is sufficient
to consider only graphs G whose matching number m(G) is at most 3.

Lemma 16. Let G be a graph with m(G) = 1. Then S2(G) ≤ e(G) + 3.

Proof. Let n = |V (G)|. Since m(G) = 1, it is easily checked that either G = Sa ∪ (n− a)K1 for
some a, 1 ≤ a ≤ n or G = K3 ∪ (n− 3)K1. By Lemma 7, the assertion holds. �

Lemma 17. Let G be a graph with m(G) = 2. Then S2(G) ≤ e(G) + 3.

Proof. We may assume that G is a connected graph by Lemma 4. First suppose that G has a
subgraph H = K3 with V (H) = {u, v, w}. If every edge of G has at least one endpoint in V (H),
then G is a graph of the following form:

...
...

. . .

Figure 1: a

{a1, b1, a2, b2} is an independent set and at least one of the two endpoints of ei has no neighborhood

in M for i = 1, 2. Assume those endpoints to be b1 and b2. If b1 and b2 are adjacent, then |M | ≥ 2

yields that all vertices in M are adjacent to only one of the two vertices a1 and a2, say a1. This

implies that G is a bipartite graph with the vertex set partition {{a1, b2}, V (G)− {a1, b2}} . Now

assume that b1 and b2 are not adjacent. If a1 and a2 are adjacent, then G is a tree. Otherwise, G

is a bipartite graph and the proof is complete by Theorem 8. �

Lemma 14. Let G be a graph with m(G) = 3. Then S2(G) ≤ e(G) + 3.

Proof. At first, we assume, G be a connected graph that has K3+2K2 as a subgraph. G is a super

graph of the following form that might have some edges between vertices {a1, a2, a3, a4, b1, b2, b3}

which contain neither 3S3 nor 4K2.

in those cases is similarly proved.

Then suppose that G has no subgraph K3 + 2K2. Let e1 = {a1, b1}, e2 = {a2, b2} and

e3 = {a3, b3} be three independent edges in G. Since m(G) = 3, M = V (G) − V ({e1, e2, e3}) is

an independent set. Since G has no 4K2 and K3 + 2K2 as subgraphs, either N(ai) ∩ M = ∅

or N(bi) ∩ M = ∅, for i = 1, 2, 3. With no loss of generality, we may assume that N(M) ⊆

{a1, a2, a3}.We consider the following three cases.

Case 1. |N(M)| = 3. We have N(M) = {a1, a2, a3}. Since G has no 3S3, the bipartite subgraph

G − {b1, b2, b3} has no perfect matching. By Halls Theorem, there exists a subset of {a1, a2, a3}

with 2 elements, say {a2, a3}, such that |N({a2, a3}) ∩ M | = 1. This means that there exists

exactly one vertex y ∈ M which is adjacent to both a2 and a3. If d(b1) ≥ 2, then we clearly find

5
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By Lemma 13, we may assume that, in the right graph, the number of degree 1 vertices and in
the left graph the number of degree 1 vertices in either side and the number of degree 2 vertices
at the bottom are at most one. Such a graph has at most 6 vertices and the result follows from
Lemma 6.

Hence assume that there exists an edge e = {a, b} whose endpoints are in V (G) − V (H). Let
M = V (G)−{a, b, u, v, w}. Since m(G) = 2, there are no edges between V (H) and M . Therefore,
G has one of the following form:

...

fig2

...

fig3

...

fig4

. . .

b1 b2 b3

a1 a2

a3

a4

fig5

a subgraph isomorphic to 3S3 in G, a contradiction. Therefore, d(b1) = 1. Suppose that H is

the star with center a1 and V (H) ⊆ {a1, a2, a3, b2, b3, y}. Then G− E(H) is a disjoint union of a

star S with center a1 and a graph K containing P5 with the vertex set {a2, a3, b2, b3, y}. We have

q1(K) ≤ e(K). This yields that

S2(G− E(H)) ≤ MaxS2(S), S2(K), q1(S) + q1(K) ≤ e(G− E(H)) + 1

. Thus S2(G) ≤ S2(H) + S2(G− E(H)) ≤ e(G) + 3, as desired.

Case 2. |N(M)| = 2. Without loss of generality, assume that N(M) = {a1, a2}. Then G

is a connected supergraphs of the following form that might have some edges between vertices

{a1, a2, a3, b1, b2, b3}.

When t = 1 and s = 1, where t and s are the number of vertices of degree 1 and degree 2,

respectively. The number of vertices are less than 10 and the result follows by a computer search.

If we increase s by 1, then the sum of eigenvalues increases by 4. On the other hand we know that

this increase the multiplicity of eigenvalue 2 by 1. So q1 + q2 increases at most by 2, and we are

done in this case.

Case 3. |N(M)| = 1. Without loss of generality, assume that N(M) = {a1}. If d(b1) ≥ 2, then we

clearly find three independent edges e′1, e
′

2, e
′

3 in G such that the set M ′ = V (G) − V ({e′1, e
′

2, e
′

3})

6

...

fig2

...

fig3

...

fig4

. . .

b1 b2 b3

a1 a2

a3

a4

fig5

a subgraph isomorphic to 3S3 in G, a contradiction. Therefore, d(b1) = 1. Suppose that H is

the star with center a1 and V (H) ⊆ {a1, a2, a3, b2, b3, y}. Then G− E(H) is a disjoint union of a

star S with center a1 and a graph K containing P5 with the vertex set {a2, a3, b2, b3, y}. We have

q1(K) ≤ e(K). This yields that

S2(G− E(H)) ≤ MaxS2(S), S2(K), q1(S) + q1(K) ≤ e(G− E(H)) + 1

. Thus S2(G) ≤ S2(H) + S2(G− E(H)) ≤ e(G) + 3, as desired.

Case 2. |N(M)| = 2. Without loss of generality, assume that N(M) = {a1, a2}. Then G

is a connected supergraphs of the following form that might have some edges between vertices

{a1, a2, a3, b1, b2, b3}.

When t = 1 and s = 1, where t and s are the number of vertices of degree 1 and degree 2,

respectively. The number of vertices are less than 10 and the result follows by a computer search.

If we increase s by 1, then the sum of eigenvalues increases by 4. On the other hand we know that

this increase the multiplicity of eigenvalue 2 by 1. So q1 + q2 increases at most by 2, and we are

done in this case.

Case 3. |N(M)| = 1. Without loss of generality, assume that N(M) = {a1}. If d(b1) ≥ 2, then we

clearly find three independent edges e′1, e
′

2, e
′

3 in G such that the set M ′ = V (G) − V ({e′1, e
′

2, e
′

3})

6

...

fig2

...

fig3

...

. . .

b1 b2 b3

a1 a2

a3

a4

fig5

a subgraph isomorphic to 3S3 in G, a contradiction. Therefore, d(b1) = 1. Suppose that H is

the star with center a1 and V (H) ⊆ {a1, a2, a3, b2, b3, y}. Then G− E(H) is a disjoint union of a

star S with center a1 and a graph K containing P5 with the vertex set {a2, a3, b2, b3, y}. We have

q1(K) ≤ e(K). This yields that

S2(G− E(H)) ≤ MaxS2(S), S2(K), q1(S) + q1(K) ≤ e(G− E(H)) + 1
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is a connected supergraphs of the following form that might have some edges between vertices
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When t = 1 and s = 1, where t and s are the number of vertices of degree 1 and degree 2,

respectively. The number of vertices are less than 10 and the result follows by a computer search.
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this increase the multiplicity of eigenvalue 2 by 1. So q1 + q2 increases at most by 2, and we are

done in this case.

Case 3. |N(M)| = 1. Without loss of generality, assume that N(M) = {a1}. If d(b1) ≥ 2, then we

clearly find three independent edges e′1, e
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Again by Lemma 13, we only need to prove the assertion when the number of degree 1 vertices is
at most 1 in which case the result follows by Lemma 6.

Next assume that G has no K3 as a subgraph. Suppose that e1 = {a1, b1} and e2 = {a2, b2}
are two independent edges in G. Since G contains neither 3K2 nor K3 as subgraphs, M =
V (G) − {a1, b1, a2, b2} is an independent set and at least one of the two endpoints of ei has no
neighbors in M for i = 1, 2. Assume those endpoints to be b1 and b2. If b1 and b2 are adjacent, then
|M | ≥ 2 yields that all vertices in M are adjacent to only one of the two vertices a1 and a2, say a1.
This implies that G is a bipartite graph with the vertex set partition {{a1, b2}, V (G)− {a1, b2}} .
Now assume that b1 and b2 are not adjacent. If a1 and a2 are adjacent, then G is a tree. Otherwise,
G is a bipartite graph and the proof is complete by Lemma 14. �

Lemma 18. Let G be a graph with m(G) = 3. Then S2(G) ≤ e(G) + 3.

Proof. We first assume that G is a connected graph that has K3 + 2K2 as a subgraph. So
G contains the following graph as a subgraph with possibly some edges between the vertices
{a1, a2, a3, a4, b1, b2, b3} which contain neither 3S3 nor 4K2.

...

fig2

...

fig3

...

. . .

b1 b2 b3

a1 a2

a3

a4

fig5

a subgraph isomorphic to 3S3 in G, a contradiction. Therefore, d(b1) = 1. Suppose that H is

the star with center a1 and V (H) ⊆ {a1, a2, a3, b2, b3, y}. Then G− E(H) is a disjoint union of a

star S with center a1 and a graph K containing P5 with the vertex set {a2, a3, b2, b3, y}. We have

q1(K) ≤ e(K). This yields that

S2(G− E(H)) ≤ MaxS2(S), S2(K), q1(S) + q1(K) ≤ e(G− E(H)) + 1

. Thus S2(G) ≤ S2(H) + S2(G− E(H)) ≤ e(G) + 3, as desired.

Case 2. |N(M)| = 2. Without loss of generality, assume that N(M) = {a1, a2}. Then G

is a connected supergraphs of the following form that might have some edges between vertices

{a1, a2, a3, b1, b2, b3}.

When t = 1 and s = 1, where t and s are the number of vertices of degree 1 and degree 2,

respectively. The number of vertices are less than 10 and the result follows by a computer search.

If we increase s by 1, then the sum of eigenvalues increases by 4. On the other hand we know that

this increase the multiplicity of eigenvalue 2 by 1. So q1 + q2 increases at most by 2, and we are

done in this case.

Case 3. |N(M)| = 1. Without loss of generality, assume that N(M) = {a1}. If d(b1) ≥ 2, then we

clearly find three independent edges e′1, e
′

2, e
′

3 in G such that the set M ′ = V (G) − V ({e′1, e
′

2, e
′

3})

6

Again it suffices to prove the assertion when the number of degree 1 vertices is at most 1 for which
the result follows from Lemma 6.
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Then suppose that G has no subgraph K3 + 2K2. Let e1 = {a1, b1}, e2 = {a2, b2} and
e3 = {a3, b3} be three independent edges in G. Since m(G) = 3, M = V (G)− V ({e1, e2, e3}) is an
independent set. Since G has neither 4K2 nor K3 + 2K2 as subgraphs, either N(ai) ∩ M = ∅ or
N(bi)∩M = ∅, for i = 1, 2, 3. With no loss of generality, we may assume that N(M) ⊆ {a1, a2, a3}.
If |N(M)| ≤ 2, then applying Lemma 13, we may assume that G has at most 10 vertices and so the
result follows Lemma 6. Hence, assume that |N(M)| = 3. We have N(M) = {a1, a2, a3}. Since G

has no 3S3, the bipartite subgraph G−{b1, b2, b3} has no any matching of size 3. By Hall’s theorem,
there exists a subset of {a1, a2, a3} with 2 elements, say {a2, a3}, such that |N({a2, a3})∩M | = 1.
That means that all other vertices of M are adjacent to a1 only and again we are done by Lemmas 6
and 13. �

Now from Lemmas 15, 16, 17 and 18, the main result of this section follows:

Theorem 19. Let G be a graph with at least two vertices. Then S2(G) ≤ e(G) + 3.
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