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Abstract

In this paper, we classify all non-isomorphic LS[2](2, 3, 10) with non-trivial au-

tomorphism group. Rigid large sets are also enumerated. Consequently, all simple

2-(10, 3, 4) designs are classified and enumerated in the same sense.

1. Introduction

For given v, k, and t, let X = {1, 2, . . . , v} and let Pk(X) denote the set of all k-subsets

of X. The elements of X and Pk(X) are called points and blocks, respectively.

A t-(v, k) trade T = {T1, T2} consists of two disjoint collections of blocks T1 and T2

such that for every A ∈ Pt(X), the number of blocks containing A is the same in both

T1 and T2. T is called simple if there are no repeated blocks in T1 (T2). Here, we are

concerned only with simple trades.

The foundation of a trade T , denoted by found(T ), is the set of all elements covered

by T1 and T2. The number of blocks in T1 (T2) is called the volume of T and is denoted

by vol(T ).

Two trades T = {T1, T2} and T ′ = {T ′
1, T

′
2} are called isomorphic if there exists a

bijection σ : found(T ) → found(T ′) such that σ(T ) = {σ(T1), σ(T2)} = {T ′
1, T

′
2} = T ′. An

isomorphism σ such that σ(T ) = T is called an automorphism of T . Clearly, the set of all

automorphisms of T forms a group. T is called rigid if its automorphism group is trivial.

For each point x ∈ found(T ), we consider the set of all blocks containing it. By

omitting x from these blocks, we obtain a (t − 1)-(v − 1, k − 1) trade and we call it the

derived trade with respect to x.
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A t-(v, k, λ) design is a collection B of blocks of X such that every t-subset of X occurs

exactly λ times in B. Again, we are concerned only with simple designs. Pk(X) is called

the complete design. A large set of t-(v, k, λ) designs, denoted by LS[N ](t, k, v), is a

partition of the complete design into N disjoint t-(v, k, λ) designs, where N =
(

v−t
k−t

)
/λ.

An LS[2](t, k, v) is called a halving of the complete design. A t-(v, k) trade T = {T1, T2}
of volume

(
v
k

)
/2 is exactly an LS[2](t, k, v). Clearly, T1 and T2 are simple t-(v, k,

(
v−t
k−t

)
/2)

designs.

In [5], a lower bound of 961 is given for the number of non-isomorphic 2-(10, 3, 4)

designs (some with repeated blocks). In [2], a linear algebraic approach based on the

standard basis of trades is presented to classify 2-(8, 3) trades. In Section 2, a description of

this basis, quoted from [2], is provided. In this paper, we employ, with slight modifications,

the same approach to classify all non-rigid 2-(10, 3) trades of volume 60, i.e. LS[2](2, 3, 10).

Rigid large sets are also enumerated. Consequently, all simple 2-(10, 3, 4) designs are

classified and enumerated in the same sense.

2. The standard basis for trades

Let 1 ≤ t < k < v, and let X be a v-set. Let P v
t,k = [pA,B] be the

(
v
t

)
×

(
v
k

)
inclusion

matrix, where for a t-subset A of X and a block B, pA,B = 1 if A ⊆ B and 0 otherwise.

For t < k < v− t, it is known that the rank of P v
t,k is

(
v
t

)
and hence its kernel, denoted by

N v
t,k, is a Z-module of dimension

(
v
k

)
−

(
v
t

)
. The trade T = {T1, T2} corresponds to the(

v
k

)
-integral vector F which is a solution of the equation P v

t,kF = 0. That is, the set of all

t-(v, k) trades is the kernel of P v
t,k.

There are different bases for N v
t,k in the literature. For a brief description the reader is

referred to [4], where the authors also introduce a new basis which is called the standard

basis. Here, we show how this basis can be used to classify t-(v, k) trades of volume
(

v
k

)
/2.

The
(

v
k

)
−

(
v
t

)
trades of the standard basis constitute the columns of a matrix M v

t,k which

has the following block structure:

M v
t,k =

 I

M̄ v
t,k

 (1)

The rows corresponding to I are indexed by the so-called starting blocks and the remaining

rows by the non-starting blocks [3]. By (1), the following observation is clear.
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Lemma. Let T be a trade. Then T 6= 0 if and only if T contains at least one starting

block.

The starting blocks corresponding to the triple (v, k, t) on the point set {1, . . . , v} have

the following property. If we choose from among these starting blocks the ones containing

i (for i = 1, . . . , v − k − t) and omit i from them, the resulting blocks are the starting

blocks for the triple (v − 1, k − 1, t − 1) on the point set {1, . . . , v}\{i}. Let i=1. Then

we have the following block structure for M v
t,k :

I 0

0 I

K L

Q R

 (2)

The indices corresponding to the first and the third rows of this block structure are the

starting and non-starting blocks for the triple (v − 1, k − 1, t − 1) , respectively. By the

lemma, we have L = 0 and therefore K = M̄ v−1
t−1,k−1. Clearly R = M̄ v−1

t,k . Hence by

permuting the rows of M v
t,k, we obtain

M v
t,k =

 M v−1
t−1,k−1 0

N M v−1
t,k


We now focus only on trades with volume

(
v
k

)
/2. Hereafter, by “trade” we mean

such a trade. A direct way to produce and classify all t-(v, k) trades is to compute

linear combinations of the columns of M v
t,k with coefficients 1 and −1, and then to decide

whether the result is a simple trade. However, this is practical only for small values of

the parameters. Hence we make the following improvements to this crude procedure so

that it will not be necessary to deal with all linear combinations of the columns of M v
t,k.

Suppose (t − 1)-(v − 1, k − 1) trades have been classified so that we have one repre-

sentative for each isomorphism class. Let T be a t-(v, k) trade and T ′ its derived trade

with respect to the point 1. T ′ is clearly isomorphic to one of the representative (t− 1)-

(v − 1, k − 1) trades, say T ′′. So, there exists a permutation π such that T ′′ = πT ′.

Therefore, πT (an isomorphic copy of T ) will be the extension of T ′′. Hence, to classify

t-(v, k) trades, up to isomorphism, it suffices to extend only the representatives of the

isomorphism classes of (t− 1)-(v − 1, k− 1) trades. The recursive structure of M v
t,k helps

us in determining t-(v, k) trades by extending (t − 1)-(v − 1, k − 1) trades. Let T ′ be a

(t−1)-(v−1, k−1) trade. Then the coefficients of the first
(

v−1
k−1

)
−

(
v−1
t−1

)
columns of M v

t,k
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are specified by the blocks of T ′. To extend T ′, it suffices to determine the coefficients of

the remaining columns in such a way that the result would be a simple trade. Finally, we

check for isomorphism among all extensions.

3. Classification of non-rigid LS[2](2, 3, 10)

The approach described in Section 2 is employed to classify 2-(10, 3) trades of volume 60,

i.e. LS[2](2, 3, 10). In what follows, we only deal with such trades. First, 1-(9, 2) trades of

volume 36 are classified. Up to isomorphism, there exist exactly 10 non-isomorphic 1-(9, 2)

trades, S1, . . . , S10, which are given in Table I of the Appendix. The direct extensions of

these derived trades result in over 200,000,000 solutions for which isomorphism testing

would be clearly hard to carry out. To overcome this difficulty, we focus our attention

only on non-rigid trades.

Let T = {T1, T2} be a trade with a non-trivial automorphism, say π. As in [1], we can

take π to be of the type 1nam, that is, π consists of n fixed points and m disjoint cycles of

length a, where a is a prime and n+am = 10. The case a = 7 can be ruled out as follows.

Let x1, x2, and x3 be the fixed points of π and let x1x2x3, x1x2x4, x1x2x5, x1x2x6 ∈ T1.

Then x4, x5, and x6 form a cycle of length 3 of π, a contradiction. Therefore a ∈ {2, 3, 5}.
First suppose that a 6= 2. By a suitable relabeling of the points, we can assume that

π(1) = 2 and π(2) = 3. Let Di be the derived trade of T with respect to i. So we have

D2 = πD1 and D3 = πD2. D1, D2, and D3 constitute the first 61 columns of M10
2,3. If

a = 2, then by similar arguments we have D2 = πD1. Moreover, D1 and D2 together

identify the coefficients of the first 47 columns of M10
2,3.

The foregoing observations lead us to the following procedure. Let Si be one of the

10 non-isomorphic 1-(9, 2) trades and let x, y ∈ found(Si). Suppose γ is a permutation

on {2, . . . , 10} such that γ(x) = 2 and γ(y) = 3. We take D1 to be γSi. We also choose

π from one of the basic types 1nam, where a ∈ {3, 5} such that π(1) = 2 and π(2) = 3.

Now, D2 and D3 are obtained by D2 = πD1 and D3 = πD2. We set the remaining 14

columns of M10
2,3 in such a way that π is an automorphism of the resulting trade. We

repeat this procedure for each Si, i = 1, . . . , 10. We then consider the case a = 2 and

assume that every automorphism of T is of order 2. In this case the size of automorphism

group is a power of 2. By similar arguments, we assume that π(1) = 2 and π(2) = 1, then

D2 = πD1, and this case is also treated as before. We then use McKay’s nauty to de-

termine the automorphism group of one half of the trades and obtain the following results:
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|Aut| #trades

1 168, 514

2 72, 526

3 4, 670

4 3, 457

5 52

6 304

8 362

9 8

10 21

16 39

20 6

24 32

32 8

48 19

320 1

720 1

Isomorphism testing within each of these classes is done by applying only a fraction

of 10! permutations. For example, the 43,322 trades in the largest subclass of the second

class (those having an automorphism with 2 fixed points) can be tested for isomorphism

with only 768 permutations. The final results show that there exist 19,945 non-rigid

trades. In Table 1, the number of non-isomorphic trades with non-trivial automorphism

group is given. The trades with at least 40 automorphisms are presented in Table II of

the Appendix.

Each 2-(10, 3) trade T = {T1, T2} consists of two 2-(10, 3, 4) designs, that is T1 and

T2. There exist 15,220 trades with exactly two automorphisms in which T1 and T2 are

rigid and therefore isomorphic. This means that we have classified a total of 15,220 of

the rigid 2-(10, 3, 4) designs. On the other hand, there are 442 trades in which T1 and T2

are non-rigid but isomorphic. Therefore, the number of non-isomorphic simple 2-(10, 3, 4)

designs with non-trivial automorphism group is 9,008. The number of these designs in

each automorphism group size are given in Tabel 2.

We are not able to classify trades with trivial automorphism group. However, we

enumerate in the next section the exact number of this class of trades and consequently
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we obtain the exact number of rigid 2-(10, 3, 4) designs.

Table 1.

The number of non-rigid LS[2](2, 3, 10).

|Aut| #LS |Aut| #LS

2 19,180 20 1

3 214 24 2

4 426 32 2

5 2 40 2

6 23 48 1

8 70 64 1

9 2 640 1

10 10 1440 1

16 7

total: 19,945
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Table 2.

The number of non-rigid 2-(10, 3, 4) designs.

|Aut| #designs |Aut| #designs

2 8,285 16 4

3 428 20 2

4 179 24 4

5 10 32 1

6 46 48 2

8 32 320 1

9 4 720 1

10 9

total: 9,008

4. Enumeration of rigid LS[2](2, 3, 10)

In this section, rigid 2-(10, 3) trades of volume 60, i.e. LS[2](2, 3, 10), are enumerated. Let,

up to isomorphism, R be the number of such trades and let S be the total number of all

distinct trades. Recall that S1, . . . , S10 are the 10 non-isomorphic 1-(9, 2) trades. Let di be

the size of automorphism group of Si and let ri be the number of its extensions. Suppose

that T1, . . . , T19945 are the non-isomorphic trades with non-trivial automorphism group

and t1, . . . , t19945 are the sizes of their corresponding automorphism group.Therefore, we

have

S =
10∑
i=1

ri×9!
di

.

R =
S−

19945∑
i=1

10!
ti

10!
. (3)

Using M10
2,3, we extend S1, . . . , S10 and determine the numbers ri. The results are as
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follows:
i di ri

1 2 21, 263, 595

2 4 21, 287, 629

3 4 21, 279, 485

4 8 21, 274, 056

5 12 21, 301, 446

6 16 21, 242, 020

7 16 21, 325, 376

8 18 21, 277, 437

9 64 21, 306, 583

10 144 21, 288, 480

Consequently, by (3) we obtain R =2,993,342. In Section 3, we classified a total of

15,220 of the rigid 2-(10, 3, 4) designs. Therefore, the exact number of rigid 2-(10, 3, 4)

designs is 6,001,904.
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5. Appendix

Table I. The 10 non-isomorphic LS[2](1, 2, 9).

|Aut| 2 4 4 8 12 16 16 18 64 144

23 23 23 23 23 23 23 23 23 23
24 24 24 24 24 24 24 24 24 24
25 25 25 25 25 25 25 25 25 25
26 26 26 26 26 26 26 26 26 26
38 38 38 38 38 38 38 38 38 36
39 39 39 39 39 39 39 39 39 39
47 47 48 47 47 46 48 47 48 45
49 49 49 49 49 47 49 49 49 48

D1 56 56 56 57 56 56 57 56 56 57
58 58 57 58 59 57 59 58 57 59
67 67 67 67 67 59 67 67 67 67
69 68 69 68 68 68 68 69 78 68
78 78 78 69 78 79 78 78 79 78
79 79 30 30 30 30 79 30 30 79
30 30 40 40 40 40 30 40 40 30
40 40 50 50 50 70 40 50 50 40
50 50 70 70 70 89 50 70 60 80
80 90 89 89 89 81 60 89 89 90
27 27 27 27 27 27 27 27 27 27
28 28 28 28 28 28 28 28 28 28
29 29 29 29 29 29 29 29 29 29
34 34 34 34 34 34 34 34 34 34
35 35 35 35 35 35 35 35 35 35
36 36 36 36 36 36 36 36 36 37
37 37 37 37 37 37 37 37 37 38
45 45 45 45 45 45 45 45 45 46

D2 46 46 46 46 46 48 46 46 46 47
48 48 47 48 48 49 47 48 47 49
57 57 58 56 57 58 56 57 58 56
59 59 59 59 58 67 58 59 59 58
68 69 68 78 69 69 69 68 68 69
20 20 79 79 79 78 20 79 69 20
60 60 20 20 20 20 70 20 20 50
70 70 60 60 60 50 89 60 70 60
89 89 80 80 80 60 80 80 80 70
90 80 90 90 90 90 90 90 90 89
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Table II. The LS[2](2, 3, 10) with at least 40 automorphisms.

|Aut| 40 40 48 64 640 1440

123 457 123 378 123 456 123 456 123 379 123 378
124 459 124 457 124 459 124 457 124 456 124 456
125 467 125 458 125 467 125 458 125 458 125 467
126 469 126 459 126 469 126 459 126 459 126 479
138 568 138 467 136 568 138 467 138 468 136 568
139 569 139 468 139 569 139 468 139 469 139 569
146 578 147 568 145 579 148 469 148 478 145 579
147 130 149 569 148 130 149 567 149 479 148 130
156 140 157 579 157 140 156 130 156 567 157 140
157 170 158 130 159 180 157 140 157 130 159 180
159 189 167 140 167 190 167 150 167 140 167 190
168 180 168 150 168 250 178 160 178 150 168 250
179 250 169 170 178 260 179 189 179 160 178 260
234 260 234 189 179 289 234 240 234 189 179 280

D1 237 280 235 230 234 280 235 270 237 230 236 290
239 290 246 270 236 290 236 280 247 240 237 350
246 350 249 289 237 350 247 290 257 289 238 370
248 360 256 280 245 370 258 340 258 280 245 389
257 370 258 290 247 389 259 350 259 290 247 390
258 389 267 350 258 390 268 360 267 340 249 460
269 450 278 360 269 460 269 389 268 370 258 470
278 489 279 450 278 470 278 470 269 470 269 489
279 480 347 460 279 489 279 589 345 570 278 480
345 490 348 480 347 480 348 580 346 580 279 570
347 590 349 560 348 570 349 590 356 590 345 589
348 678 357 690 349 580 356 689 358 670 346 580
356 670 359 789 356 678 357 680 359 680 348 678
358 680 367 780 357 670 367 690 368 690 349 670
367 789 368 790 358 690 378 780 369 789 356 689
369 790 369 890 368 789 379 790 378 890 357 690
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Table II. Continued.

127 379 127 456 127 379 127 369 127 457 127 457
128 456 128 469 128 457 128 478 128 467 128 458
129 458 129 478 129 458 129 479 129 568 129 459
134 468 134 479 134 468 134 568 134 569 134 468
135 478 135 567 135 478 135 569 135 578 135 469
136 479 136 578 137 479 136 578 136 579 137 478
137 567 137 120 138 567 137 579 137 120 138 567
145 579 145 160 146 578 145 120 145 170 146 578
148 120 146 180 147 120 146 170 146 180 147 120
149 150 148 190 149 150 147 180 147 190 149 150
158 160 156 240 156 160 158 190 158 250 156 160
167 190 159 250 158 170 159 230 159 260 158 170
169 230 178 260 169 189 168 250 168 270 169 189

D2 178 240 179 340 235 230 169 260 169 350 234 230
235 270 236 370 238 240 237 289 235 360 235 240
236 289 237 389 239 270 238 370 236 389 239 270
238 340 238 380 246 340 239 380 238 380 246 289
245 380 239 390 248 360 245 390 239 390 248 340
247 390 245 470 249 380 246 450 245 450 256 360
249 460 247 489 256 450 248 460 246 460 257 380
256 470 248 490 257 490 249 489 248 489 259 450
259 560 257 570 259 560 256 480 249 480 267 490
267 570 259 589 267 589 257 490 256 490 268 560
268 589 268 580 268 590 267 560 278 560 347 590
346 580 269 590 345 679 345 570 279 589 358 679
349 679 345 678 346 689 346 678 347 678 359 680
357 689 346 679 359 680 347 679 348 679 367 789
359 690 356 670 367 780 358 670 349 689 368 780
368 780 358 689 369 790 359 789 357 780 369 790
378 890 379 680 378 890 368 890 367 790 379 890
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