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Abstract

A recent result of Schmidt has brought Williamson matrices back into the spotlight.
In this paper a new algorithm is introduced to search for hard to find Williamson
matrices. We find all nonequivalent Williamson matrices of odd order n up to n = 59.
It turns out that there are none for n = 35, 47, 53, 59 and it seems that the Turyn
class may be the only infinite class of these matrices.
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1 Introduction

In 1944, Williamson introduced a class of matrices now known as Williamson matrices
[11]. Four symmetric circulant (−1, 1)-matrices A,B, C,D of order n satisfying

AAt + BBt + CCt + DDt = 4nIn,

are called Williamson matrices of order n. Using such matrices in the array

W =




A B C D

−B A D −C

−C −D A B

−D C −B A




results in a Hadamard matrix of order 4n.
∗Supported by an NSERC operating grant.
†Supported by a grant from IPM.
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The method of Williamson has been extended in a number of directions. In one way one
may replace the symmetric circulant matrices A,B, C,D with abelian group matrices and
in order to gain more structure impose a condition such as ABt−BAt + CDt−DCt = 0.
In doing so, one needs to change the array above to

W =




A B C D

−B A −D C

−Ct Dt At −Bt

−Dt −Ct Bt At


 .

Such matrices are known in literature to be of Williamson type. See [8] for details. In this
paper we concentrate only on Williamson matrices.

Let X = circ(x0, x1, . . . , xn−1) be a circulant matrix with the first row x0, x1, . . . , xn−1.
Let σ be an automorphism of the additive group Zn and define σX = circ(xσ(0), xσ(1), . . . , xσ(n−1)).
If A,B,C, D are Williamson matrices of order n, then it is easy to see that σA, σB, σC, σD

are also Williamson matrices. Two sets of four Williamson matrices of order n are called
equivalent if either set can be obtained from the other by applying an automorphism of
Zn and/or by negating matrices.

Despite the fact that Williamson matrices were introduced quite early in the develop-
ment of the theory of orthogonal matrices, we still do not know much about them. For
example, the only known infinite class of Williamson matrices are those of order (q +1)/2,
where q ≡ 1 (mod 4) is a prime power [2, 5, 9, 10, 12]. Also all equivalence classes of
Williamson matrices have been determined only for odd orders up to 39, see [3, 6]. It
seems that the only known order n > 39, which is not included in the above infinite class
is 43 [1]. Most researchers working in the area had hoped that Williamson matrices of
every order must exist. However, it was quite disappointing when it was shown that there
was none of order 35 [3]. A recent result of Schmidt [8] that Williamson type Hadamard
matrices are Ito group Hadamard matrices has brought Williamson matrices back into
the spotlight. Generally speaking the search for Williamson matrices of order n is easier
whenever n is a composite number. For such orders there is a specific algorithm which
reduces the search to matrices of smaller orders, see [3, 7]. This method has been used
successfully by Doković and van Vliet for orders 45, 51 [3, 7]. There seems to be no pub-
lished work in which the search for Williamson matrices of orders 45, 51 is claimed to
have been exhaustive. Doković in [3] writes that “In the case n = 35 our computer search
did not produce any solutions of eq. (1). Thus, we claim that there are no Williamson
matrices of order 4.35. Although we are confident about the correctness of this claim, an
independent verification of it is highly desirable since this is the first odd integer, found
so far, with this property”.

In this paper we develop a new algorithm which makes it computationally possible
to search for all Williamson matrices of odd order up to order 59. Using this algorithm
we find all equivalence classes of Williamson matrices of odd order n, n ≤ 59. Our
computation confirms the previous exhaustive searches for Williamson matrices of orders
n ≤ 39, n = 45, 51. For the order n = 43 we find a new class. Furthermore, it turns out
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that there are no Williamson matrices of order 47, 53 or 59. The fact that we can advance
our computation to order 59 is an indication of the power of the algorithm. In light of the
statement above by Doković and a new result of Schmidt that Williamson type Hadamard
matrices are Ito Hadamard groups, we felt that it was essential to conduct this search.
Our result is convincing enough that Williamson’s method is almost fruitless. This leaves
researchers to look for Williamson type matrices.

2 Preliminaries

Let Ai, 0 ≤ i ≤ 3 be Williamson matrices of order n. Then by definition,

3∑

i=0

AiA
t
i = 4nI. (1)

Consider a common basis consisting of eigenvectors of the commuting symmetric matrices
AiA

t
i. Let λi,j (0 ≤ j ≤ n− 1) denote the nonnegative eigenvalues of AiA

t
i corresponding

to this set of eigenvectors. It follows from (1) that

3∑

i=0

λi,j = 4n, 0 ≤ j ≤ n− 1. (2)

Note that the eigenvalues of a circulant matrix X = circ(x0, x1, . . . , xn−1) are calculated
by the formula

λj =
n−1∑

k=0

xkω
k
j , 0 ≤ j ≤ n− 1,

where {ωj} are the n-th roots of unity. From this identity one can easily find the eigenval-
ues of XXt in terms of the inner products of rows of X. In fact for odd n, the eigenvalues
of XXt are given by

µj = p0 +
(n−1)/2∑

k=0

2pk cos
(

2jkπ

n

)
, 0 ≤ j ≤ n− 1,

where pk is the inner product of rows 0 and k of X.

The identities (2) are useful in pruning the search space in our algorithm. Since the
eigenvalues are all nonnegative, we must have

l∑

i=0

λi,j ≤ 4n

for all 0 ≤ j ≤ n− 1 and 0 ≤ l ≤ 3. But we only need to use these inequalities for l ≤ 1.
Let si be the constant row sum of Ai. Then s2

i is the eigenvalue of AiA
t
i corresponding to

the eigenvector with every component 1. So it follows from (2) that

3∑

i=0

s2
i = 4n. (3)
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This identity is specially useful in the pruning process. One of the main features of our
algorithm is based on the following theorem of Williamson.

Theorem 1 [11] Let Ai = circ(ai,0, ai,1, . . . , ai,n−1) (0 ≤ i ≤ 3) be Williamson matrices
of odd order n. Then a0,ja1,ja2,ja3,j = −a0,0a1,0a2,0a3,0 for all 1 ≤ j ≤ n− 1.

3 The algorithm

In this section we present our new search algorithm for Williamson matrices of odd or-
ders. Let n be odd and suppose that we are looking for Williamson matrices Ai =
circ(ai,0, ai,1, . . . , ai,n−1) for 0 ≤ i ≤ 3, with the constant row sum si, respectively. Without
loss of generality, we may assume that ai,0 = 1 for all i. By (3), we have

∑3
i=0 s2

i = 4n,
where si ≡ n (mod 4). We may also assume that |s0| ≥ |s1| ≥ |s2| ≥ |s3|. This as-
sumption is made to have fewer number of choices for A0 and A1. First we find the set
M of all symmetric circulant (−1, 1)-matrices with the row sum s0. We then apply the
automorphism group of Zn to the set M and select a representative X from each of the
orbits and check if all the eigenvalues of XXt are at most 4n. This process eliminates
some of the unnecessary cases resulting in a set M ′ of all possible candidates for A0. For
each element A0 from M ′ we proceed to find all possible corresponding A1. We do this
by finding the set N of all symmetric circulant (−1, 1)-matrices Y with the row sum s1 in
such a way that no eigenvalue of A0A

t
0 + Y Y t exceeds 4n. Now we choose an element A1

of N and having A0 and A1 in hand we then proceed to find A2 and A3 simultaneously
using Theorem 1 applying the following procedure.

For an exhaustive search it is necessary to solve the system of equations of (1) which
in expanded form becomes

n−1∑

j=0

(a2,ja2,j+k + a3,ja3,j+k) = −
n−1∑

j=0

(a0,ja0,j+k + a1,ja1,j+k), 1 ≤ k ≤ n− 1
2

, (4)

where the subscripts are taken modulo n. Noting that a3,j = −a2,ja1,ja0,j (by Theorem
1) and a2,j = a2,n−j for 1 ≤ j ≤ n− 1, the actual variables in the system (4) to be found
are a2,j , 1 ≤ j ≤ (n − 1)/2. In dealing with the equations we first make the observation
that for 1 ≤ j, k ≤ (n− 1)/2, we have

a2,ja2,j+k + a2,n−j−ka2,n−j + a3,ja3,j+k + a3,n−j−ka3,n−j = 2a2,ja2,j+k + 2a3,ja3,j+k,

and so by Theorem 1 we get

2a2,ja2,j+k + 2a3,ja3,j+k =

{
0 if a0,ja1,ja0,j+ka1,j+k = −1,

4a2,ja2,j+k otherwise.
(5)

Therefore, given A0 and A1, by using (5) and a2,j = a2,n−j (1 ≤ j ≤ n−1), the system (4)
becomes a system in variables a2,j (1 ≤ j ≤ (n − 1)/2) and all its equations are divisible
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by 4. We divide all equations by 4. Using the known fact that xy = x + y − 1 (mod 4)
for x, y ∈ {−1, 1}, we convert the system to a system of linear equations and proceed
to find all solutions modulo 4. To do this we transform the system into the standard
reduced echelon form. In practice, for small values of n the standard reduced echelon form
allows all (−1, 1)-solutions to be found very quickly. In fact, the number of solutions found
were between 1 and 28 with highest frequency at 1. For example, for n = 47, 53 there
was always a unique solution. This is an indication that our algorithm works best for
prime orders. Next, we check all obtained solutions in the original system (4) to find all
possible Williamson matrices. In the final step the obtained sets of matrices are checked
for equivalence and a representative for each equivalence class is recorded. A summary of
the algorithm is as follows.

An algorithm for finding all Williamson matrices of odd order n

1. Find all the integer solutions of the equation

3∑

i=0

s2
i = 4n, |s0| ≥ |s1| ≥ |s2| ≥ |s3| and si ≡ n (mod 4).

2. For any solution s1, s2, s3, s4, of part 1 do the following:

(a) Set S = ∅.
(b) Find the set M of all symmetric circulant (−1, 1)-matrices with the row sum

s0 and the first entry in the first row being 1.

(c) Find a set M ′ of representatives X of orbits of the action of the automorphism
group of Zn on M such that none of the eigenvalues of XXT exceed 4n.

(d) For each element A0 of M ′ do the following:

i. Find the set N of all symmetric circulant (−1, 1)-matrices Y with the
row sum s1, the first entry in the first row being 1 and no eigenvalue of
A0A

t
0 + Y Y T exceeding 4n.

ii. For each element A1 of N do the following:
A. Write down the equations of the system

∑3
i=0 AiA

t
i = 4nI with the

unknowns being only the entries of A2 (using Theorem 1).
B. Divide all equations of the system by 4.
C. Convert the system into a linear system of equations modulo 4.
D. Transform the system to the standard reduced echelon form and then

find all (−1, 1)-solutions of the system.
E. Check the obtained solutions in D for validity in the original sys-

tem in part A and add them to S, as a set of Williamson matrices
A0, A1, A2, A3.

(e) Check the elements of S for equivalence and retain a representative from each
equivalence class.
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4 The results

Using the algorithm described in the previous section we found all Williamson matrices of
odd order n ≤ 59. Our results confirm those of all previous authors up to the order 39 (see
[3, 4, 6] and the references therein). Our search turned in exactly one solution for orders
n = 41, 45, 49, 55, 57 all being included in the only known infinite class of Williamson
matrices. For n = 47, 53, 59, no Williamson matrices were found. For n = 43, there are
exactly two solutions, one of them previously known [1]. For n = 51, there are exactly
two solutions, also a previously known fact. These results are summarized in Table 1.

Table 1: Number of Williamson matrices of order 1 – 59

Order: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Number: 1 1 1 2 3 1 4 4 4 6 7 1 10 6 1
Order: 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
Number: 2 5 0 4 1 1 2 1 0 1 2 0 1 1 0

The computations were done twice on two different hardware systems. The first time a
cluster of sixteen 2.6 GHz PC was used, while the second time we used a cluster of five dual
processor 3.06 GHz PC. The order 57 and 59 computations were done just on the latter
cluster. The computational times scaled to a single 1 GHz machine were approximately
12, 24, 100, 600 and 900 days for the orders 51, 53, 55, 57 and 59, respectively.

Christos Koukouvinos maintains an elaborate web page for selected Williamson ma-
trices of small order at http://www.math.ntua.gr/people/ckoukouv/en index.html. For
completeness, we present representatives of all equivalence classes of Williamson matrices
of odd orders up to 57 in Tables 2 and 3. In the tables, as is conventional, + and − denote
1 and −1, respectively. Matrices are given in truncated form. For circ(x0, x1, . . . , x2m),
the truncated form is just x1x2 · · ·xm; throughout x0 = 1.

Acknowledgment. We are grateful to NSERC for equipment grants which made our
extensive searches possible.
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Table 2: All Williamson matrices of order 3 – 25
Order A∗ B∗ C∗ D∗ row sums

3 + − − − 3 −1 −1 −1

5 −− −− +− −+ −3 −3 1 1

7 −−− +−− −+− −−+ −5 −1 −1 −1

7 ++− −++ −++ −−+ 3 3 3 −1

9 +−−− −−+− −+−− −−−+ −3 −3 −3 −3

9 −+++ +−−− −++− −++− 5 −3 1 1

9 −+++ −−−+ +−+− −−++ 5 −3 1 1

11 −−−−+ −+−++ −−+++ +−−+− −5 3 3 −1

13 −−−−−+ ++−+−− −++−−+ −+−−++ −7 1 1 1

13 −+++−+ −++−−− −++−−− +−−−+− 5 −3 −3 −3

13 −+++−+ +−−+−− −−−+−+ −−−−++ 5 −3 −3 −3

13 ++−+−+ −−++++ −+++−− −++−−+ 5 5 1 1

15 −+−−−−+ −+−−−−+ −−++−++ ++−−+−− −5 −5 3 −1

15 −++++−+ ++−++−− −−−++−+ −+−−−++ 7 3 −1 −1

15 −+++−++ ++−−+−+ −+−−++− −−−−+++ 7 3 −1 −1

15 −++−+++ −++−−++ +−++−−− −+−−−++ 7 3 −1 −1

17 −−−−−++− +−+−+−−− −−+++−−− −++−+−−+ −7 −3 −3 1

17 −−−−−++− +−+−−+−− −−−++−+− −+−−−+++ −7 −3 −3 1

17 −−−−−++− ++−−−−+− −−−+−+−+ −−+−+++− −7 −3 −3 1

17 −++−+++− −−+−++++ −−−+++−− +−+−−−+− 5 5 −3 −3

19 −−++++−++ +−+−−+−−− ++−−−+−+− +−+−−−++− 7 −5 −1 −1

19 −−++−++++ −−−+++−−− −+++−−−+− +−+−−+−+− 7 −5 −1 −1

19 −−++++−++ ++−−−−+−− −+−−−++−+ −+−−−++−+ 7 −5 −1 −1

19 −+++++−−+ ++−+++−−− −−+++−+−+ −++−−+−++ 7 3 3 3

19 −+++++−−+ +−++++−−− −+++−−+−+ −+−−++−++ 7 3 3 3

19 −−+−+++++ −+++−−++− −+++−−+−+ ++−+−−−++ 7 3 3 3

21 −−−−−+−+−+ −−++−++++− +−+−−−++−− −++−+++−−− −7 5 −3 1

21 −−−+−−−+−+ −−−+++++−+ +−−−+−−+−+ −++++−−−+− −7 5 −3 1

21 −−−−−+−+−+ +−−+−−++++ +−+−−−++−− ++−−+−+−−+ −7 5 −3 1

21 ++++−−++−− −++++−+−−+ −+−+++++−− −−+−+−−++− 5 5 5 −3

21 −++++−++−− −+−++−−+++ −++++−++−− +−+−−++−−− 5 5 5 −3

21 ++++−−−+−+ −+−++−−+++ ++−−++−+−+ +−−++−+−−− 5 5 5 −3

21 −++−−+++++ −++−+−−++− −+++−+−−−+ +−−−−+−+++ 9 1 1 1

23 −−−+++++++− −−++−−−+−+− −+++++−−−+− +−+−++−+−−+ 7 −5 3 3

25 +−−−−+−−+−−+ −−−−−−+++−−+ −−++++−+−+−− −+−−−+−++−++ −7 −7 1 1

25 −+−−−+−−+−−+ −−−−−−−++−++ +−−+−+−+++−− −−+−++++−−−+ −7 −7 1 1

25 −−−−−+−++−−+ −−−−−+−++−−+ −++−+−+++−−− +−−+−+−−−+++ −7 −7 1 1

25 −−−−−+−++−−+ +++−+−−+++−− −−+−+++−+++− −−++++−+−+−− −7 5 5 1

25 −−−−−+−++−−+ −+−++−++++−− +−+−++−−−+++ −−−−++−+++−+ −7 5 5 1

25 −−−−−+−+−++− ++−−++−+−++− +++−−−−+++−+ ++−+−++−−−+− −7 5 5 1

25 ++−++++−−+−− −−++++++−−−+ +−++−+−+++−− +−+−+−++−++− 5 5 5 5

25 +++−++−+−+−− −−−+++++−++− −+++−+−−+++− −++++−−+−−++ 5 5 5 5

25 ++−−+++−+−+− −−+−−++++−++ ++−+−+−++−−+ ++−−−−++−+++ 5 5 5 5

25 −++−−−++++++ +−−+−−++−+−− −+−−−+−−−+++ −+−−+−++−−++ 9 −3 −3 1
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Table 3: All Williamson matrices of order 27 – 57
Order A∗ B∗ row sums

C∗ D∗ row sums

27 −−−−−−++−+−−+ +−−+−−+++−−−− −9 −5

−−+−+−+++−−−+ −+−−−+−−+−+++ −1 −1

27 −−−−−−−++−−++ ++−+−−−−−+−+− −9 −5

−++−−−+−+++−− −+−−++−−++−+− −1 −1

27 −+−−−++++++−+ −−+−+−+−−++−− 7 −5

−−−++−++−−−−+ +−−−+−−+−++++ −5 3

27 ++−+−++−+++−− −−−++−++−++++ 7 7

+−+−−++−−−+++ +−−+−+−−−+−++ 3 −1

27 −+−+++++−−−++ −−−++−+−+++++ 7 7

−−−++++−++−+− +−+−−+−−++−−+ 3 −1

27 −−−+++++−+−++ −−−+++++−+−++ 7 7

++−++−+−−−++− −−+−−+−+++−−+ 3 −1

29 −−−+++−++++++− ++++−−++−−−+−+ 9 5

−+−−−−++++−−+− −+−+−−+−++−++− −3 1

31 −−−+++−+−++++−+ +++−−−+−+−−−−+− 7 −5

−++−−−−−+−++−−+ −++−−−−−+−++−−+ −5 −5

31 ++−+−−+−−+++−++ −−−++−−+++++−++ 7 7

−+−−−+−−+−−+−++ −+++−−−−+++−+−− −5 −1

33 −−−−−−−−++−++−−+ −−−+−−−++++−+−+− −11 −3

+−−−+−++++−+−−+− −++−−+−+−−−++++− 1 1

33 −++−−+−+−−−−+−+− −−+++−+−−−+−−−−+ −7 −7

+−+−−−++−−++++−+ −−−−−−+++++−+−−+ 5 −3

33 −−+++−−−+−++++++ +−+−−−+−−−+−−+−+ 9 −7

+−++−+−++−−−++−− ++−+−−−−+++−+−−+ 1 1

33 −−++−++++++−−−++ −+++++−++−++−−−− 9 5

+−+−+−−+−++++−−+ −−−+++−−++−+−+−+ 5 1

33 −−+++−−+−−++++++ +++++−−−−++−+−−+ 9 5

+−+−+−+−−+++−+−+ +−−+−+−−++−+++−− 5 1

37 −−+++−+−−−−−+−−−−+ −−−++−++−−+−+−++−− −11 −3

++++−+−−−−−++−−−−+ −−+−+−+−++−−−+−−++ −3 −3

37 −+++−−−+−−+−−−+−+− −−−−−−−++−+++−−+−+ −7 −7

−+−−−+++++−+−−+++− ++−−+−−−+−++−++++− 5 5

37 −+−+−−−+−++−−−+−+− −−−−−−−++−++++−+−− −7 −7

++−−+++−+−−+−−+++− −++−−−−++−++−−++++ 5 5

37 −−−++++−−++−+++−++ +++−−−−++−−+−−−+−− 9 −7

+−−−+−++−++−+−+−−− +−−−+−++−++−+−+−−− −3 −3

39 −−−+−−−+−++−++−−−−+ +−−+++−+−−++−+−−−−− −9 −5

−−−+−−++++−−−−+−+−+ −++−−−−−−++−−+−+−++ −5 −5

41 −+−−−+++−++−+−−+++++ −+−−−+++−++−+−−+++++ 9 9

−++++−+−−−+−−+−−+++− +−−−−+−+++−++−++−−−+ 1 1

43 ++−+−++−−+−+−++++−+−− −−−++−−++++−+−+++−++− 7 7

+−++++++−−−−+−+−−++−+ +−−−++++−+−−+−−++−−−− 7 −5

43 −−+−−+++−+−+++−++++−+ −+−−−−−−++++−+++−−+−− 11 −5

+−−+−−+−−−+++−+−−−+−+ −−−−+−+−−++−++++−−−++ −5 −1

45 −−++−−+−+++−+−+−−+++++ ++−−++−+−−−+−+−++−−−−− 9 −7

+−−−−+−++++−+++−−++−+− +−−−−+−++++−+++−−++−+− 5 5

49 −−−−+−+−+++++−++−++−−+++ −−−−+−+−+++++−++−++−−+++ 9 9

+−++−−+−+−−+++−+++−−−−++ −+−−++−+−++−−−+−−−++++−− 5 −3

51 −−−+++−++−+−+++−−+++++−−+ +++−−−+−−+−+−−−++−−−−−++− 11 −9

−++−++++−+−−−+−+−−−−−++−+ −++−++++−+−−−+−+−−−−−++−+ −1 −1

51 −−−++++−−+−++−++−+−+−++++ −−+−−+++−−−+−+++−+++−+++− 11 7

−−++−++−−−++++−+−+−−+−−−− ++++−−−−+−−−+++−+−−+−+++− −5 3

55 −−−+−−++++−+−−+++++−+++−+−+ +++−++−−−−+−++−−−−−+−−−+−+− 11 −9

−+−−+++−−+++−+−−−−−+++−++−+ −+−−+++−−+++−+−−−−−+++−++−+ 3 3

57 −−−++−+−−++++−+++−++−−−+−+++ +−+−+−−−++−++−+−−+++−−−−−+−− 9 −7

+++−−+−++−−−−+−−−+−−+++−+−−− +−+−+−−−++−++−+−−+++−−−−−+−− −7 −7
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