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Abstract

A detailed description of an improved version of backtracking algo-
rithms for finding t-designs proposed by G. B. Khosrovshahi and the
authors of this paper [J. Combin. Des. 10 (2002), 180-194] is pre-
sented. The algorithm is then used to determine all 5-(14,6,3) designs
admitting an automorphism of order 13, 11 or 7. It is concluded that
a 5-(14,6,3) design with an automorphism of prime order p exists if
and only if p = 2, 3, 7, 13.

1. Introduction

One of the central topics in design theory is the classification of different

kind of designs. Most of these classifications are usually carried out using

computational methods. These methods have been improved over the years
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by different authors. Moreover, the increasing speed of computers have made

it now possible to solve more difficult problems of classifications of designs.

There are some known results on the classifications of t-designs for t ≥ 3,

see for example [2,4,6,7,8,9]. The problem of search for a t-design can be

formulated as a solution to a linear Diophantine system of equations. Back-

tracking algorithms are usually used to solve the system. For a brief descrip-

tion of backtracking algorithms and their applications the reader is referred

to [3]. In [4], an improved version of the classical backtracking algorithm is

presented for finding and classifying t-designs. The algorithm uses a system-

atic method to obtain new redundant equations from the initial equations

which are helpful in speeding up the classical backtracking algorithm. It also

takes advantage of the so-called preset technique to prune the search space.

The improved algorithm was used in [4] to classify all 6-(14,7,4) designs with

a nontrivial automorphism group. In this paper, we first present this algo-

rithm in details and then use it to determine all 5-(14,6,3) designs admitting

automorphisms of order 13, 11 and 7.

Let t, k, v, and λ be integers such that 0 ≤ t ≤ k ≤ v and λ > 0. Let

V be a v-set and Pk(V ) the set of all k-subsets (called blocks) of V . A t-

(v, k, λ) design on V is a collection D of the blocks of V such that every

t-subset of V occurs exactly λ times in D. If no blocks are identical, then D
is called simple. If D is simple, then D = Pk(V ) \ D is obviously a simple

t-(v, k,
(

v−t
k−t

)
− λ) design which is called the supplement of D. Here, we are

concerned only with simple designs. Let W ⊆ V such that |W | = i ≤ t. Then

DW = {B \ W : B ∈ D, W ⊆ B} is a (t − i)-(v − i, k − i, λ) design which

is called the derived design of D with respect to W . Two t-(v, k, λ) designs

D1 and D2 are called isomorphic if there is a permutation σ on V such that

σD1 = D2 (note that σ induces a permutation σ̄ on the blocks, for simplicity,

we write σD instead of σ̄D). An automorphism of D is a permutation σ such

that σD = D. The group generated by some of the automorphisms of D is

called an automorphism group of D and the group of all its automorphisms
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is called the full automorphism group of D, denoted by AutD.

Let Wtk(v) be a
(

v
t

)
×

(
v
k

)
(0, 1)-matrix whose rows and columns are

indexed by the t-subsets and k-subsets of V , respectively, and for a t-subset

T and a k-subset K, Wtk(v)(T,K) = 1 if and only if T ⊆ K. Wtk(v) is called

the incidence matrix of t-subsets vs. k-subsets of V . We simply write Wtk

instead of Wtk(v) if there is no risk of confusion. If D is the (0,1)-column

vector representation of D (with the blocks ordered in the same order of the

indices of columns of Wtk and D(B) = 1 if and only if B ∈ D), then we have

WtkD = λJ, (1)

where J is the all-one column vector. The equation (1) is used to find t-

designs computationally.

2. The Algorithm

In this section, we expose and formulate the algorithm presented in [4] in

details. Indeed this improved version of classical backtracking algorithm en-

ables us to find new t-designs. There are two main new ideas in this improved

algorithm: the first being a utilization of the so-called preset technique and

the second being the addition of some redundant equations to system (1)

above. This modification prunes the search space and thus substantially in-

creases the speed of the classical backtracking algorithm. We illustrate the

ideas involved by a simple example.
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Example 1. Suppose that we want to find all 1-(4,2,2) designs by a back-

tracking algorithm. By (1), we need to solve the system of equations


1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1





x1

x2

x3

x4

x5

x6


=


2

2

2

2

 . (2)

First we set x1 = 1. At this stage, we know nothing about xi, i = 2, . . . , 6.

In the second step, set x2 = 1. From the first equation of (2), it follows that

x3 = 0. In this case we say that x3 is preset to 0 and in the next step x4

is dealt with. The idea of presetting a variable is crucial for improving the

backtracking algorithm. On the other hand, by adding new suitable equations

to (2) which are not linearly independent from the equations in (2) , one can

make use of the presetting technique more efficiently. For example, in (2) by

subtracting the last two equations from the sum of the first two equations,

we have x1 = x6. Hence, in the first step of algorithm, x6 can be preset to 1.

By adding further similar equations to (2), we obtain the following equivalent

system of equations:

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

1 0 0 0 0 −1

0 1 0 0 −1 0

0 0 1 −1 0 0





x1

x2

x3

x4

x5

x6


=



2

2

2

2

0

0

0


.

Later on this section we will explain a systematic method to extract proper

equations from the incidence matrices.

Now, we need some more notation to formulate the preset concept.
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Notation. All matrices are assumed to be integer valued. The ith entry

of a column vector P is denoted by Pi. Let A = [Aij] and B = [Bij] be two

h× k and k × l matrices, respectively. By |A|, we refer to the matrix whose

(i, j) entry is |Aij|. The positive product A�p B is an h× l matrix defined

by

(A�p B)ij =
k∑

e=1

max(aiebej, 0).

The negative product is defined by A �n B = A �p (−B). It is easy to see

that

A�p B =
1

2
(|A||B|+ AB), (3)

A�n B =
1

2
(|A||B| − AB). (4)

Suppose that we want to find all (0,1)-solutions X of the equation

AX = C, (5)

where X and C are column vectors. To do this, equivalently, we can assume

that X is a (-1,1)-vector (if X is a (0,1)-solution of (5), then X ′ = 2X − J is

a (-1,1)-solution of AX ′ = 2C − AJ). By (3) and (4), we have

A�p X = P, (6)

A�n X = N, (7)

where P = 1/2(|A|J + C) and N = 1/2(|A|J − C). Initially, we let X = 0.

Now, suppose that in a step of the algorithm we have a partial (0,±1)-

solution for X. By (6) and (7), if for some i, we have (A �p X)i > Pi, or

(A �n X)i > Ni, then the algorithm should backtrack. On the other hand,

if for any i, we have (A �p X)i = Pi, then for each j for which Aij > 0 and

xj = 0, xj should be preset to -1 and for each j for which Aij < 0 and xj = 0,

xj should be preset to 1. A similar argument is used when (A�nX)i = Ni for

any i. When some xi is preset to +1 or −1, it can possibly enforce presetting
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some other xj. We continue the process of presetting until it can not continue

anymore, then we go to the next step of the algorithm.

In order to find new equations from the initial ones and add them to

the system, we define some special intersection matrices for t-designs (note

that these matrices were derived in [4] by a different method). Let D be a

t-(v, k, λ) design. For nonnegative integer s, let

M s
tk(v) =

t∑
i=0

(−1)t−iW T
isWik. (8)

The rows and columns of M s
tk(v) are indexed by the s-subsets and k-subsets of

V in the same orders of indices of rows and columns of W T
isWik, respectively.

Usually we write M s
tk instead of M s

tk(v) if there is no risk of confusion. It is

easy to see that

M s
tkD = bs

tkJ, (9)

where bs
tk =

∑t
i=0(−1)t−i

(
s
i

)
λi. Using the well known identity(

l − 1

t

)
=

t∑
i=0

(−1)t−i

(
l

i

)
,

we have

M s
tk(S, K) =

(
|S ∩K| − 1

t

)
,

for any s-subset S and k-subset K of V . It can be seen from (8) that

the equations in (9) are not linearly independent from the equations in (1).

However, appending some of them to (1), sometimes improves the speed of

the algorithm. The useful equations from (9) to be added to (1) very highly

depend on the parameters of the underlying design and are chosen by hand.
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Example 2. Let D be a 1-(4,2,2) design. Then

M2
1,2 =



1 0 0 0 0 −1

0 1 0 0 −1 0

0 0 1 −1 0 0

0 0 −1 1 0 0

0 −1 0 0 1 0

−1 0 0 0 0 1


,

and M2
1,2D = 0. These are exactly the appended equations discussed in

Example 1.

Example 3. Let D be a 5-(14,6,3) design. Consider the following matrices:

M6
5,6(S, K) =


1 if S = K ,

−1 if S ∩K = ∅,

0 otherwise,

M7
5,6(S, K) =


1 if K ⊂ S ,

−1 if S ∩K = ∅,

0 otherwise,

which yield the useful equations M6
5,6D = −9J and M7

5,6D = 0.

In [5], Kramer and Mesner suggested an approach, based on Wtk, to find

t-designs with a prescribed automorphism group. In their approach the size

of Wtk is reduced by applying a suitable group on the indices of rows and

columns of Wtk. Suppose that {∆i} and {Γj} are the orbits of t-subsets and

k-subsets of V under the action of the group G, respectively. Let Wtk[G] be a

matrix whose rows and columns are indexed by {∆i} and {Γj}, respectively

and define Wtk[G](∆i, Γj) = |{K ∈ Γj : T ⊆ K}|, for some fixed T ∈ ∆i.

Then it is easily seen that Wtk[G] is a well defined matrix and every (0, 1)-

solution D of the equation

Wtk[G]D = λJ,
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is a t-(v, k, λ) design with G as its automorphism group [5]. M s
tk[G] is defined

similarly. Let {Λi} be the orbits of s-subsets of V under the action of G. Let

M s
tk[G] be a matrix whose rows and columns are indexed by {Λi} and {Γj},

respectively and define

M s
tk[G](Λi, Γj) =

∑
K∈Γj

(
|S ∩K| − 1

t

)
, for some fixed S ∈ Λi.

Clearly M s
tk[G] is a well defined matrix and by (9), we have

M s
tk[G]D = bs

tkJ.

An important technique to limit search space in backtracking algorithms

is the isomorphic rejection technique. The idea is simply to remove the

isomorphic copies of a partial solution X from the set of partial solutions in

any step of the algorithm because they all lead to isomorphic solutions. This

technique is usually used in the initial steps of the algorithm where many

copies of each partial solution are found.

3. Isomorphism test

As mentioned in Section 2, we use the isomorphic rejection technique only

in the early steps of the backtracking algorithm. However, there may be

some isomorphic copies among the final solutions too and of course we have

to remove those. Suppose that we have found every possible design with a

prescribed automorphism group G. The isomorphism test is carried out in

two phases. In the first phase, we apply the normalizer of G in Sv to the

set of solutions. This rapidly rejects many of the isomorphic copies. In the

second phase, we deal with the remaining designs regardless of G. There

are many algorithms to test isomorphism between designs, see [3] for details.

Here we use a simple method to check isomorphism between two given t-

(v, k, λ) designs D1 and D2. Let D1 and D2 be the supplements of D1 and
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D2, respectively. Let Vi = {1, . . . , i} for k ≤ i ≤ v. Let Σ denote the set

of all one-to-one functions from Vi to Vv for all k ≤ i ≤ v. If σ ∈ Σ and

σ is defined on Vi, we write σi instead of σ to show its domain. Σ can be

ordered lexicographically. Then, Σ is searched to find a possible permutation

σv such that σvD1 = D2. In order to test a σi, we proceed as follows. If

there is a k-subset B of Vi containing i such that B ∈ D1, σi(B) 6∈ D2 or

B ∈ D1, σi(B) 6∈ D2, then we skip to the next element σj of Σ with j ≤ i. If

there is no such B, then either i = v and σvD1 = D2, or i < v and we keep

testing the next element of Σ.

4. 5-(14,6,3) designs

In the literature there is only one 5-(14,6,3) design found in [1]. The full

automorphism group of this design is of order 39. In this section, we use our

algorithm to find new designs with these parameters admitting prescribed

automorphism groups. We focus only on the cyclic groups of prime orders.

An automorphism of prime order p which contains exactly r cycles of length

p is said to be of type pr. First we need the following result.

Lemma. There are no 5-(14, 6, 3) designs with an automorphism of type

71, 51 or 52.

Proof. Let D be a 5-(14,6,3) design on the point set V = {1, . . . , 14} with

an automorphism σ. First suppose that σ = (1 2 · · · 7). Then the blocks

{i, 8, 9, 10, 11, 12} (1 ≤ i ≤ 7) must be all in D or in its supplement, which

is impossible. Now let σ = (1 · · · 5). Assume that D′ is the derived design

of D with respect to the point set {11, 12, 13, 14}. Then there are no blocks

{i, j} in D′ such that 1 ≤ i ≤ 5 and 6 ≤ j ≤ 10. Therefore, D′ must

contain a 1-(5,2,3) design. However, there is no such design. Finally, let

σ = (1 · · · 5)(6 · · · 10). Let D′ be the derived design of D with respect
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to 14. The block orbits of D′ are of lengths 1 or 5. D′ has 429 blocks so it

should contain at least 4 orbits of length 1. But there are exactly 2 orbits of

length 1 on the 5-subsets of V . This completes the proof. �

To find all 5-(14,6,3) designs D with a prescribed automorphism group

G, we consider the equations

W5,6[G]D = 3J, (10)

M6
5,6[G]D = −9J, (11)

M7
5,6[G]D = 0. (12)

These equations are solved using our modified backtracking algorithm de-

scribed in Section 2. The computations have been carried out on a PC with

a 533 MHz Pentium II CPU and 128 MB RAM running a C program. We

have been able to solve the system above for the cyclic groups of orders

p = 13, 11, 7. For the case p = 13, W5,6[C13], M
6
5,6[C13] and M7

5,6[C13] have

154, 231 and 264 rows, respectively and 231 columns. The results are as

follows: if we use only the equation (10) in our algorithm, then the compu-

tational time is about 30 minutes. By incorporating the equations (11) and

(12) to the system, the computation is reduced to 15 minutes. We can do

even better. Assume that the point 1 is fixed by the automorphism of order

13. Therefore, we can add the equation

M6
4,5(13)[C13]D

′ = 9J,

to our system, where D′ is the derived design of D with respect to 1. The

computational time in this situation is around 30 seconds. This is an instance

which demonstrates that by adding an appropriately chosen set of equations

to the system the speed of backtracking algorithms improves substantially.

The case p = 11 takes about a minute and the appended equations do not

show a remarkable improvement. For the case p = 7, we used the equations

(10), (11) and (12) in our algorithm and it took a few days to find all solutions.

The isomorphism test was done to remove the isomorphic copies among the
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solutions using the method described in Section 3 which took only a few

minutes. The results are summarized in the following theorem.

Theorem. Let D be a 5-(14, 6, 3) design.

(i) There is a unique design D with an automorphism of order 13. The

full automorphism group is of order 39.

(ii) There are no designs D with an automorphism of order 11.

(iii) There exist exactly 4 designs D with an automorphism of order 7. Three

of these having full automorphism group of order 42 and one of order

14.

Corollary. There are 5-(14, 6, 3) designs with an automorphism of prime

order p if and only if p = 2, 3, 7, 13.

It is not known that if it is possible to partition the 6-subsets of a 14-set

into three 5-(14,6,3) designs. According to our computations, these designs

do not permit such partitioning.

The 5-(14,6,3) designs with an automorphism of order 7 are new and are

presented in the Appendix.
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Appendix

The orbit representations of new 5-(14,6,3) designs admitting an automor-

phism of order 7 are given below. The point set is V = {1, . . . , 9, A, . . . , E}.
Design #i (1 ≤ i ≤ 4) has Gi as the full automorphism group where Gi are
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as follows:

G1 =< σ1, σ2 >, G2 =< σ1, σ2, σ3 >, G3 =< σ1, σ4, σ5 >, G4 = G2,

σ1 = (1 · · · 7)(8 · · · E),

σ2 = (1 8)(2 E)(3 D)(4 C)(5 B)(6 A)(7 9),

σ3 = (2 3 5)(4 7 6)(8 E C)(A B D),

σ4 = (2 3 5)(4 7 6)(8 D 9)(B C E),

σ5 = (1 A)(2 B)(3 C)(4 D)(5 E)(6 8)(7 9).

Note that |G1| = 14 and |G2| = |G3| = |G4| = 42.

Design #1.

123458 123459 12345B 123468 123469 12346C 12349A
1234AD 1234BC 1234BD 1234CE 1234DE 12356A 12356B
12356D 12358C 12359C 12359E 1235AD 1235AE 1235CD
123689 12368D 1236AC 1236AE 1236BC 1236BE 12389D
1238AB 1238AC 1238AE 1238BC 1238BE 1238DE 1239AB
1239AD 1239BD 1239BE 1239CE 123CDE 12458A 12458E
1245AC 1245BD 1245BE 1245CD 12468A 12468C 12469B
1246AB 1246BE 1246CD 12489B 12489D 1248AE 1248BC
1248CD 1249AC 1249CE 1249DE 124ABD 124ACE 124ADE
12589B 12589C 1258BD 1258CD 1259AD 1259DE 125ABE
125ACE 1269BD 1269CE 126ABD 1358AC 1359BD 135ACE

Design #2.

123458 123459 12345A 12349D 1234AD 1234BC 1234BD
1234BE 1234CE 12358B 12358D 12368A 12369B 12389A
12389B 12389E 1238AD 1238BE 1238CD 1238CE 1239AB
1239AE 1239DE 123BCD 12489B 1249AC 1249AE
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Design #3.

123458 123459 12345C 12349D 1234AB 1234AC 1234AE
1234BD 1234CD 12358A 1235BC 12368A 12369C 12389B
12389C 12389E 1238AD 1238BD 1238CE 1239AE 123ABC
123BDE 12489B 12489D 1248CE

Design #4.

123458 12345A 12345C 12348D 12349C 1234AB 1234AE
1234BD 1234DE 12358A 12359A 123689 12369B 12389C
12389E 1238AC 1238AE 1238BC 1238DE 1239AD 123ABC
123BCD 12489B 12489D 1249AC 1249AE 1249DE 1268AE
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