
Graphs cospectral with starlike trees

N. Ghareghanib,a F. Ramezanic,a B. Tayfeh-Rezaiea,1

aInstitute for Studies in Theoretical Physics and Mathematics (IPM),

P.O. Box 19395-5746, Tehran, Iran
bSchool of Mathematics, Statistics and Computer Science,

University of Tehran, Tehran, Iran
cFaculty of Mathematics and Computer Science,

Amirkabir University of Technology, Tehran, Iran

February 2, 2008

Abstract

A tree which has exactly one vertex of degree greater than two is said to be star-
like. In spite of seemingly simple structure of these trees, not much is known about
their spectral properties. In this paper, we introduce a generalization of the notion
of cospectrality called m-cospectrality which turns out to be useful in constructing
cospectral graphs. Based on this, we construct cospectral mates for some starlike
trees. We also present a set of necessary and sufficient conditions for divisibility of the
characteristic polynomial of a starlike tree by the characteristic polynomial of a path.
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1 Introduction

In this paper, we are concerned only with undirected simple graphs (loops and multiple
edges are not allowed). Let G be a graph of order n with the adjacency matrix A. We
denote det(λI −A), the characteristic polynomial of G, by χ(G) = χ(G,λ). The multiset
of eigenvalues of A is called the adjacency spectrum, or simply the spectrum of G. Since A

is a symmetric matrix, the eigenvalues of A (or G) are real. Two nonisomorphic graphs
with the same spectrum are called cospectral. We say that a graph is determined by the
spectrum (DS for short) if there is no other nonisomorphic graph with the same spectrum.

A tree which has exactly one vertex of degree greater than two is said to be starlike.
The vertex of maximum degree is called the central vertex. We denote by S(n1, n2, . . . , nk)
a starlike tree in which removing the central vertex leaves disjoint paths Pn1 , Pn2 , . . . , Pnk

.
We say that S(n1, n2, . . . , nk) has branches of length n1, n2, . . . , nk. Note that it has
n1 + n2 + · · · + nk + 1 vertices. In spite of seemingly simple structure of these trees, not
much is known about their spectral properties. A summary of the main known results is
as follows. In [9, 12], bounds on the maximum eigenvalue are given and also integral and
hyperbolic starlike trees are characterized. In [8], it is shown that no two nonisomorphic
starlike trees are cospectral. It has also been proved that starlike trees are determined by
their Laplacian eigenvalues [10]. All cospectral mates of starlike trees with three branches
have been found in [14]. For more results, we refer the reader to [5, 7, 15].

In recent years, there has been a growing interest to find new families of DS graphs.
For a survey of the subject, the reader can consult [2, 3]. The problem of determination
of DS starlike trees has been investigated by some researchers. For example, in [14], DS
starlike trees with three branches have been recognized. The problem seems to be hard
even in the case of trees with four branches. For this reason we have considered a related
problem which hopefully will be useful in tackling the main problem. In this paper, we
present a general method for constructing cospectral graphs and make use of it to find
many infinite families of graphs cospectral with starlike trees. The method is developed
from an example given in [7]: If we take the cospectral graphs K1,4 and C4 + K1 and
attach the path Pn to each vertex in these graphs, then the resulting graphs, one of them

S(n, n, n, n, n− 1), are still cospectral.

All known graphs cospectral with starlike trees have a component which is a path. This
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has motivated us to establish a set of necessary and sufficient conditions for divisibility
of the characteristic polynomial of a starlike tree by the characteristic polynomial of a
path. We show how the characterization could be useful in determining cospectral mates
of starlike trees.

2 m-Cospectrality

In this section we introduce the notion of m-cospectrality. It is used to find cospectral
mates for many infinite families of starlike trees.

2.1 The generalized characteristic polynomial

Let Q = {Q1, Q2, . . . , Qm} be an ordered partition of vertices of a graph G with the
vertex set {1, 2, . . . , n} and the adjacency matrix A. The generalized characteristic poly-
nomial of G with respect to Q, denoted by χQ(G) = χQ(G; λ1, λ2, . . . , λm), is defined as
det(

∑m
i=1 λiI(i) − A), where I(k) is a (0, 1)-matrix of order n in which I(k)(i, j) = 1 if and

only if i = j ∈ Qk.

Let σ be a permutation on V . Then σG is a graph on V such that {i, j} is an edge of
G if and only if {σ(i), σ(j)} is an edge of σG. Two graphs G and G′ on the same vertex
set V are called m-cospectral if there exist an ordered partition Q of size m of V and a
permutation σ on V such that χQ(G) = χQ(σG′).

It is obvious that an (m + 1)-cospectral pair is at the same time an m-cospectral pair.
Also clearly, 1-cospectrality is the same as cospectrality. On the other hand, at the other
extreme case, we have the following.

Proposition 1 Let G and G′ be two graphs of order n. Then G and G′ are isomorphic if
and only if they are n-cospectral.

Proof. Assume that G and G′ are n-cospectral. Since the only possible partition with
n parts is Q = {{1}, {2}, ..., {n}}, there is a labeling of the vertices of G and G′ such that

det(diag(λ1, ..., λn)−A) = det(diag(λ1, ..., λn)−A′),
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where A and A′ are the adjacency matrices of G and G′, respectively. Let i and j be two
distinct vertices of G (and also of G′). The coefficient of

∏
k 6=i,j λk in χQ(G) (χQ(G′)) is

equal to the determinant of two by two submatrix of A (A′) corresponding to rows and
columns i, j. Therefore, ij is an edge of G if and only if it is an edge of G′. This implies
that the graphs are isomorphic. The converse is obvious. ¤

It is an easy task to construct nonisomorphic pairs of m-cospectral graphs of order n

for m close to n. Let H be an arbitrary graph on n − 5 vertices. Then it is not hard to
show that H + K1,4 and H + C4 + K1 are (n− 3)-cospectral (see the example below).

Example 1 Figure 1 depicts the smallest pair of cospectral graphs. We show that they
are 2-cospectral but not 3-cospectral. Let A and A′ be the adjacency matrices of G and
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Figure 1: 2-cospectral graphs

G′, respectively. Using the labeling in Figure 1, the generalized characteristic polynomials
of G and G′ with respect to the partition Q = {{1}, {2}, . . . , {5}} are as follows:

χQ(G) = det(diag(x1, . . . , x5)−A) = x1(x2x3x4x5 − x2x3 − x2x5 − x4x5 − x3x4),

χQ(G′) = det(diag(y1, . . . , y5)−A′) = y1y2y3y4y5 − y1y3y4 − y1y2y4 − y1y2y3 − y2y3y4.

Now suppose that Q is a partition of {1, 2, . . . , 5} for which χQ(G) = χQ(G′). We claim
that Q cannot have more than two parts. Since the multisets {x1, . . . , x5} and {y1, . . . , y5}
are the same and x1 is a factor of χQ(G), with no loss of generality we may assume that
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x1 = y1 = y2. Dividing both sides by x1, we find out that that equality holds if and only
if x1 = x2 = y1 = y2 and x3 = x4 = x5 = y3 = y4 = y5. This yields Q = {{1, 2}, {3, 4, 5}}
or Q = {{1, 2, . . . , 5}} and therefore G and G′ are 2-cospectral but not 3-cospectral.

Example 2 The graphs in Figure 2 are 4-cospectral but not 5-cospectral. Let A and
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Figure 2: 4-cospectral graphs

A′ be the adjacency matrices of G and G′, respectively. Using the labeling in Figure
2, the generalized characteristic polynomials of G and G′ with respect to the partition
Q = {{1}, {2}, . . . , {7}} are as follows:

χQ(G) =det(diag(q1, . . . , q7)−A)

=q1q2q3q4q5q6q7 − q1q2q3q4q5 − q1q2q3q6q7 − q1q4q5q6q7 − q2q3q4q5q7

− q2q3q5q6q7 − q3q4q5q6q7 + q1q2q3 + q1q4q5 + q1q6q7 + q2q3q5 + q2q3q7

+ q3q4q5 + q3q6q7 + q4q5q7 + q5q6q7 − q1 − q3 − q5 − q7,

χQ(G′) =det(diag(y1, . . . , y7)−A′)

=y1(y2y3y4y5y6y7 − y2y3y4y5 − y2y3y4y7 − y2y3y6y7 − y2y5y6y7

− y3y4y5y6 − y4y5y6y7 + y2y3 + y2y5 + y2y7 + y3y4 + y3y6

+ y4y5 + y4y7 + y5y6 + y6y7 − 4).

Now suppose that Q is a partition of {1, 2, . . . , 7} for which χQ(G) = χQ(G′). We claim
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that Q cannot have more than four parts. Comparing the sentences of degree one, we find
that y1 = q1 = q3 = q5 = q7. After dividing both sides by y1, since the sum of sentences
of degree two should be equal, we obtain 3y1(q2 + q4 + q6) = (y3 + y5 + y7)(y2 + y4 + y6).
It is not hard to see that with no loss of generality, equality holds if and only if y1 = y3 =
y5 = y7 = q1 = q3 = q5 = q7, y2 = q2, y4 = q4 and y6 = q6. Therefore, G is 4-cospectral
with G′ with respect to Q = {{2}, {4}, {6}, {1, 3, 5, 7}}. The argument also proves that G

is not 5-cospectral with G′.

Two rooted graphs G and G′ are called cospectrally rooted if they are cospectral and
also remain cospectral by removing their roots [11]. It is easily seen that if G and G′ are
cospectrally rooted, then they are 2-cospectral.

2.2 Constructing cospectral graphs

The notion of m-cospectrality can be used to construct new cospectral graphs from given
m-cospectral pairs. Let H be a sequence of rooted graphs H1,H2, . . . ,Hm with the cor-
responding roots r1, r2, . . . , rm, respectively. Let Q = {Q1, Q2, . . . , Qm} be an ordered
partition of the vertex set of graph G. The rooted product of G by H with respect to Q,
denoted by GQ[H], is obtained from G by identifying each vertex v ∈ Qi by the root of Hi.
(This definition is a generalization of the rooted product given by Godsil and Mckay in
[4].) The characteristic polynomial of GQ[H] is given by Godsil and McKay. The following
is their result in a slightly different form.

Theorem 1 [4]

χ(GQ[H], λ) =
m∏

i=1

χ(Hi−ri, λ)|Qi|χQ

(
G;

χ(H1, λ)
χ(H1 − r1, λ)

,
χ(H2, λ)

χ(H2 − r2, λ)
, . . . ,

χ(Hm, λ)
χ(Hm − rm, λ)

)
.

We make use of the rooted product to construct new cospectral pairs from given
m-cospectral graphs. The method is based on the following theorem which is a direct
consequence of Theorem 1.

Theorem 2 Let G and G′ be m-cospectral graphs with respect to an ordered partition
Q of vertices and let H be a sequence of m rooted graphs. Then GQ[H] and G′

Q[H] are
m-cospectral and so cospectral.
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Example 3 The graphs in Figure 3 are 2-cospectral and they are constructed from graphs
in Example 1 by letting H = Pn, Pm in Theorem 2 (the branches with solid vertices are
Pm and the rest are Pn).
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Figure 3: Cospectral pairs obtained from graphs in Example 1

2.3 Graphs cospectral with starlike trees

We use Theorem 2 to construct cospectral mates for some starlike trees. First, we give an
infinite family of m-cospectral pairs for any positive integer m.

Theorem 3 For any integers m ≥ n ≥ 1, the graphs K1,mn and Km,n +(m− 1)(n− 1)K1

are m-cospectral with respect to the partition of vertices given in Figure 4.

Proof. Let Q = {Q1, Q2, . . . , Qm} be the ordered partition of vertices in such a way
that Qi (1 ≤ i ≤ m) consists of the vertices labeled i (see Figure 4). By expansion of the
determinants one can prove the following inductively:

χQ(G) = χQ(G′) = y1

m∏

j=1

yn
j − n

m∏

j=1

yn−1
j (

m∑

i=1

m∏

j=1,j 6=i

yj).

¤
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LetH be the sequence Pr1 , Pr2 , . . . , Prm , where ri are positive integers. Using Theorems
2 and 3, we find a cospectral mate for any starlike tree of the form

S(r1 − 1, r1, . . . , r1︸ ︷︷ ︸
n

, r2, . . . , r2︸ ︷︷ ︸
n

, . . . , rm, . . . , rm︸ ︷︷ ︸
n

).

This suggests that there is probably no simple characterization of DS starlike trees.

3 Path dividing starlike tree

All known examples of cospectral mates of starlike trees have path as a component and so
it is natural to consider the following question: When the characteristic polynomial of a
path divides the characteristic polynomial of a starlike tree? We try to find necessary and
sufficient conditions. The characteristic polynomial of Pn will be denoted by pn = pn(λ).
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3.1 Some useful lemmas

First we recall two well known results from the literature.

Theorem 4 [1, page 78] Let N denote the set of vertices adjacent to vertex x in a tree
T . Then

χ(T ) = λχ(T − x)−
∑

y∈N

χ(T − x− y).

Theorem 5 [1, page 59] Let G be the graph obtained by joining vertex x of a graph G1

to vertex y of a graph G2 by an edge. Then

χ(G) = χ(G1)χ(G2)− χ(G1 − x)χ(G2 − y).

Lemma 1 pk(m+1)+r ≡ (−1)kpk
m−1pr (mod pm) for any m ≥ 1, k ≥ 0 and r ≥ 0.

Proof. We give a proof by induction on k. For k = 0 there is nothing to prove. For
k = 1, by Theorem 5, we have

pm+1+r = pmpr+1 − pm−1pr

≡ −pm−1pr (mod pm).

By the induction hypothesis, we have

p(k+1)(m+1)+r = pk(m+1)+m+1+r

≡ (−1)kpk
m−1pm+r+1 (mod pm)

≡ (−1)k+1pk+1
m−1pr (mod pm).

¤

Lemma 2 Let m ≥ 1 and s ≥ 3 and let mi = ki(m + 1) + ri, where 1 ≤ ri ≤ m + 1 for
1 ≤ i ≤ s. Then

pm|χ(S(m1, . . . , ms)) ⇔ pm|χ(S(r1, r1, . . . , rs)).
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Proof. By Theorem 4, we have

χ(S(m1,m2, . . . ,ms)) =λpm1pm2 · · · pms − pm1−1pm2 · · · pms

− pm1pm2−1 · · · pms − · · · − pm1pm2 · · · pms−1.

Hence by Lemma 1 and by letting K =
∑s

i=1 ki, we have

χ(S(m1, m2, . . . , ms)) = (−1)KpK
m−1(λpr1pr2 · · · prs − pr1−1pr2 · · · prs

− pr1pr2−1 · · · prs − · · · − pr1pr2 · · · prs−1) (mod pm)

= (−1)KpK
m−1χ(S(r1, r2, . . . , rs)) (mod pm).

Since gcd(pm, pm−1) = 1, the assertion follows. ¤

Lemma 3Let m ≥ 1, s ≥ 3 and k ≥ 1. Then

pm|χ(S(m1, . . . , ms)) ⇔ pm|χ(S(m1, . . . , ms, k(m + 1))).

Proof. By Lemma 2, we may assume that k = 1. By Theorem 5, we have

χ(S(m1,m2, . . . , ms,m + 1)) = pm+1χ(S(m1,m2, . . . , ms))− pmpm1pm2 · · · pms .

Since gcd(pm, pm+1) = 1, the assertion follows. ¤

Lemma 4 Let m ≥ 1, s ≥ 3 and suppose pm|χ(S(r1, . . . , rs)), where 1 ≤ ri ≤ m + 1 for
1 ≤ i ≤ s. Then r1 = m implies ri = m for some 2 ≤ i ≤ s.

Proof. Let r1 = m. The largest eigenvalue of pm is 2 cos π
m+1 . On the other hand by

Theorem 4, we have

χ(S(m, r2, . . . , rs)) = λpmpr2 · · · prs − pm−1pr2 · · · prs

− pmpr2−1 · · · prs − · · · − pmpr2 · · · prs−1.

Therefore,
pm | pm−1pr2 · · · prs .

Hence the result easily follows. ¤
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The proof of the following lemma is straightforward by Theorem 4.

Lemma 5 Let m ≥ 1 and s ≥ 3. Then

pm|χ(S(m,m, m3, . . . , ms)).

Lemma 6 Let m ≥ 1, s ≥ 3 and 1 ≤ ri < m for 1 ≤ i ≤ s. Then pm does not divide
χ(S(r1, r2, . . . , rs)).

Proof. Assume that pm | χ(S(r1, r2, . . . , rs)). First suppose that λ1(S(r1, r2, . . . , rs)) ≥
2. By interlacing theorem, we have

λ2(S(r1, r2, . . . , rs)) ≤ 2 cos
π

ri + 1
,

where ri = max{rj |j = 1, . . . , s}. Therefore, 2 cosπ/(m + 1) ≤ 2 cos π/(ri + 1) and hence
ri ≥ m, which is a contradiction.

Now let λ1(S(r1, r2, . . . , rs)) < 2. Then our graph T is S(1, 2, 2), S(1, 2, 3), S(1, 2, 4) or

S(1, 1, l) [13] (see also [1, page 78]). Therefore, χ(T, 2) is 3, 2, 1 or 4, respectively (note
that χ(S(a, b, c), 2) = 2 + a + b + c − abc). If pm|χ(T ), then m + 1 divides 3, 2, 1 or 4,
respectively. Hence the only possibility is that T = S(1, 1, 1) or T = S(1, 1, 2) and m = 3.
But it is easy to see that in any case p3 does not divide χ(T ). ¤

The following lemma is also trivial.

Lemma 7 Let m, r ≥ 1. Then

pm | pr ⇔ r ≡ −1 (mod m + 1).

3.2 The main result

We are now ready to state the main theorem.

Theorem 6 Let m ≥ 1, s ≥ 3 and mi ≥ 1 for 1 ≤ i ≤ s. Then pm | χ(S(m1,m2, . . . , ms))
if and only if (without loss of generality) one of the following holds:

11



(i) m1,m2 ≡ −1 (mod m + 1),

(ii) m3,m4, . . . ,ms ≡ 0 (mod m + 1) and m1 + m2 ≡ −2 (mod m + 1).

Proof. Let mi = ki(m + 1) + ri, 1 ≤ ri ≤ m + 1 for 1 ≤ i ≤ s. By Lemma 2, it suffices
to prove the theorem for S(r1, r2, . . . , rs).

If (i) holds, then the result follows from Lemma 5. Now assume that (ii) holds. Then
by Lemma 3, it is sufficient to show that pm | χ(S(r1, r2,m + 1)). By Theorem 4 and
Lemma 7, we have

χ(S(r1, r2, m + 1)) = λpr1pr2pm+1 − pr1−1pr2pm+1 − pr1pr2−1pm+1 − pr1pr2pm

≡ pm+1(pr1+r2+1) (mod pm)

≡ 0 (mod pm).

Now let pm | χ(S(r1, r2, . . . , rs)) and assume that (i) does not hold. Then by Lemma
4, ri 6= m for any 1 ≤ i ≤ s. So from Lemmas 3 and 6, it follows that rj = m + 1 for
3 ≤ j ≤ s (we assume that r1 ≤ r2 ≤ · · · ≤ rs). Hence pm | χ(S(r1, r2,m + 1)). But as
above, we have

χ(S(r1, r2,m + 1)) ≡ pm+1(pr1+r2+1) (mod pm).

Therefore by Lemma 7, r1 + r2 + 1 ≡ −1 (mod m + 1) and we are done. ¤

Corollary 1 Let m ≥ 1, k > 1 and T be a starlike tree. Then pk
m | χ(T ) if and only if T

has at least k + 1 branches of lengths −1 (mod m + 1).

Proof. If T has at least k + 1 branches whose lengths are −1 (mod m + 1), then by
Lemma 7, it is easy to see that pk

m | χ(T ). We now prove the converse by induction on k.

First let k = 2. Let λ be an eigenvalue of Pm. Since λ is a multiple eigenvalue of T ,
there is a corresponding eigenvector which is zero at the central vertex of T . Consequently,
by Lemma 7, T has two branches A and B of lengths −1 (mod m + 1). Now T has an
eigenvector which is zero on A. Removing A from T , we obtain a starlike tree T ′ such that
pm | χ(T ′). Therefore, by Theorem 6, T ′ has another branch (apart from B) of length −1
(mod m + 1).
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Now let k > 2. Fix a branch A of T . Let λ be an eigenvalue of Pm. There are at least
k−1 independent eigenvectors (corresponding to λ) which are zero on A. This yields that
pk−1

m | χ(T ′), where T ′ is obtained from T by removing A. Now the assertion follows from
the induction hypothesis. ¤

From Theorem 6 and the above corollary, we also have the following result.

Corollary 2 The multiplicity of zero as an eigenvalue of S(m1,m2, . . . , ms) is |∑s
i=1 ti−

1|, where ti = 0, 1 is the parity of mi.

3.3 Application

We present an application of Theorem 6 to cospectral graphs. We show that how Theorem
6 can be used to find the cospectral mates of starlike trees.

Let G and H be two cospectral graphs. Then the degrees of vertices satisfy certain
equations. Let xi and yi denote the numbers of vertices of degree i in G and H, respectively.
By counting the number of vertices, edges and closed walks of length 4 in G and H, we
have the following relations:

∑
xi =

∑
yi,

∑
ixi =

∑
iyi,

∑(
i

2

)
xi + 2n4 =

∑(
i

2

)
yi + 2n′4,

where n4 and n′4 are the numbers of cycles of length 4 in G and H, respectively. When
one of the graphs is starlike, then by adding up these equations with coefficients 2,−2 and
2, respectively, we obtain the following.

Lemma 8 Let G be cospectral with a starlike tree T with the maximum degree ∆. Then

2n4 +
∑(

i− 1
2

)
xi =

(
∆− 1

2

)
,

where xi is the number of vertices of degree i and n4 is the number of cycles of length 4
in G.
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The following theorem characterizes all starlike threes with maximum degree three
which are determined by their spectrum. We denote by D(m,n) the graph obtained by
joining a vertex of degree one of path Pn to a vertex of cycle Cm by a new edge.

Theorem 7 [14] Let T = S(l1, l2, l3) (l1 ≤ l2 ≤ l3). Then T has a cospectral mate if
and only if (l1, l2, l3) = (l, l, 2l − 2) for some l ≥ 2 which in this case it is cospectral with
G = Pl−1 + D(2l + 2, l − 2).

Let G be cospectral with T = S(l1, l2, l3). Let xi denote the number of vertices of
degree i and n4 denote the number of cycles of length 4 in G. Then by Lemma 8,

∑
(i− 1)(i− 2)xi + 4n4 = 2.

This yields xi = 0 for i ≥ 4, n4 = 0 and x0 + x3 = 1. Therefore, G = Pl−1 + D(2n,m) for
some n and m.

Note that if l = 2 or m = 0, then T = S(2, 2, 2) and n = 3. So we may assume that
l ≥ 3 and m ≥ 1. Also note that pn−1pl−1 | χ(G). Hence

pn−1pl−1 | χ(T ).

This suggests that a new proof of Theorem 7 may be given by the use of Theorem 6. By
the Theorem, we know that the lengths of branches in T are of special forms. In fact,
there are seven cases for the lengths of branches. All these cases are dealt with elementary
arguments. Here for example we illustrate one of these cases.

In our case, without loss of generality, we assume that l1 = kl = k1n− 1, l2 = k′1n− 1
and l3 + k′1n = k′′l − 1. First note that m < li for i = 1, 2, 3 (this follows from a theorem
of Hoffman and Smith on subdividing internal paths, see [6]). This implies k′1 = 1. Now
since k1n− 1+ k′′l− 1 = 2n+m+ l− 1, we have k1 < 3. If k1 = 2, then m = (k′′− 1)l− 1
and on the other hand l3 + n = m + l gives n < l and since m < n we have m < l − 1,
a contradiction. Therefore k1 = 1. Let l3 = k′l − 2. We have m = (k′ − 1)l − 2 and so
k′ ≤ 1 + k (since m < l3). Now evaluating the characteristic polynomials of T and G at 2
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gives:

− n2(k′l − 1) + 2n(k′l − 1) + n2 = −2nl((k′ − 1)l − 2)

⇒ − (kl + 1)(k′l − 1) + 2(k′l − 1) + kl + 1 = −2l((k′ − 1)l − 2)

⇒ − kk′l + 2k + k′ = −2k′l + 2l + 4

⇒ − kk′l + 3k > −2k′l + 2l

⇒ (−kk′ + k)l > l(−2k′ + 2)

⇒ kk′ < k + 2k′ − 2

⇒ k′ < 3.

Hence k′ = 2 and consequently k = 1. Therefore, T must be of the type S(l, l, 2l − 2).

Finally, we note that a similar approach can be applied to find cospectral mates of
starlike trees with four branches. However this procedure is too long and laborious in this
case since there are a lot of different possibilities to be considered. This enforces us to
wait until new ideas are developed for this problem.
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[8] M. Lepović and I. Gutman, No starlike trees are cospectral, Discrete Math. 242
(2002), 291–295.
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